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ABSTRACT 

The advent of a new mathematics curriculum in South Africa requires a sound 

Pedagogical Content Knowledge (PCK) for both novice and experienced educators. 

Central to this is the challenge of identifying and exploring “rich and appropriate” contexts 

that may serve as “scaffolds” in the understanding and internalization of school level 

mathematics concepts. This exploratory, inductive study focused on a real-life irrigation 

technology in the farming sector with a view to “exploring” the general school level 

mathematics concepts that might be “grounded” in the machine’s mobility and water 

spread mechanisms. Data was generated through two stages of theoretical and practical 

approaches. This was in accordance with Alasuutari’s (1993) phases of simplification of 

observations and “solving the enigma” during an exploratory research project. In the 

theoretical approach, the operations of a linear move irrigation machine and a circular 

move center pivot irrigation system were mimicked through sketches which were explored 

for the general school level mathematics concepts embedded therein. The practical 

approach centrally focused on hands-on activities that aimed at verifying the theoretical 

mathematics models that were perceived to explain how the CPIS moves and spread 

water across the entire irrigation field. An intense observation of the actual Centre Pivot 

Irrigation System (CPIS) at the research site formed the spine of the latter data collection 

stage. Finally a document analysis, which focused on mathematics documents such as 

the National Curriculum Statement and Curriculum and Assessment Policy Statement 

documents for grades R-12, was done to ascertain the school level at which the grounded 

general mathematics concepts are applicable. The findings of this study indicated that 
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certain mathematics concepts might be “constructed” and consolidated in the CPIS 

context or setting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

DECLARATION 

I declare that the mini-dissertation: Exploring Mathematical Concepts Embedded in the 

Mechanics and Operations of the Centre Pivot Irrigation System, hereby submitted by me 

to the University of Limpopo for the degree Master of Education in Mathematics 

Education, has not previously been submitted by me for a degree at this or any other 

university; that it is my work in design and execution, and all the material contained herein 

has been duly acknowledged. 

 

       08 September 2016 
…………………………   ………………………………… 
Morongwana Elias Tau     Date 



i 
 

 

 

 

 

 

Children [learners] will understand mathematical concepts and procedures more thoroughly if they 

are allowed to use their own thinking processes to explore mathematics as if it were a dark room, 

and eventually find the light switch and come to an answer (Kamii, Lewis, & Jones, 1993 cited in 

Geist, 2001). Mathematical exploration, therefore, allows learners to make connections to what 

they already know and to real life experiences. However, this requires a special combination of 

the educator’s subject matter (content) knowledge and knowledge of multiple teaching strategies 

(pedagogy) to ensure learners’ cultural backgrounds, prior knowledge and experiences are 

effectively tapped into and maximally utilized (Geddis, 1993). 
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CHAPTER 1 

 THE THEORETICAL OVERVIEW OF THE STUDY 
 

1.1 Introduction 

The use of authentic, real-world contexts, as advocated by the National Curriculum 

Statement (NCS) documents (Department of Education [DoE], 2007), helps to extend 

learners’ conceptual grasp throughout the concrete-to-representational-to-abstract 

sequence of mathematical understanding. According to Fleener, Westbrook and Rogers 

(1995), conceptual understanding is enhanced when learners “construct” understanding 

of a concept from their interaction with real-life settings, not from a telling method or 

repetitive drill.  

Furthermore, Frykholm and Glasson (2005) recommend a contextual learning theory 

according to which learning occurs only when learners process new knowledge in ways 

that make sense to their inner worlds, memory, experience and response. This clearly 

means that the newly acquired knowledge must resonate and “fit-in” with what learners 

already learnt or experienced in their actual life-worlds. Buxton (1978) concurs with this 

view when he indicates that understanding a topic of study is a matter of being able to 

perform in a variety of thought-demanding ways with the topic, for instance: explain, find 

examples, generalize, apply concepts, analogize, represent in new ways, and muster 

evidence. The prerequisite for all these assertions on effective teaching and learning 

mathematics concepts, however, is the use of “scaffolds” or contexts from learners’ 

immediate environments that encourage processes of mathematics practice such as 
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persistence, curiosity, flexibility, thoroughness, creativity, communication, reasoning and 

problem solving (Montgomery, 2001). 

One of the aims of the NCS, as reiterated in the Curriculum and Assessment Policy 

Statement (CAPS) documents is to ensure that learners acquire and apply knowledge 

and skills in ways that are meaningful to their lives by grounding knowledge in local 

contexts while being sensitive to global imperatives (DoE, 2011). This simply means that 

contexts that learners are exposed to while learning and being taught mathematics have 

to be drawn from genuine and realistic situations, be relevant, and relate to daily life, the 

work place and the wider social, political and global environments. 

1.2 Purpose of the study 

The purpose of this exploratory, inductive study, therefore, was to explore and explicate 

the general school level mathematics concepts that are “grounded” in the mobility and 

water spread mechanisms of the Centre Pivot Irrigation System (CPIS) throughout the 

irrigation acreage or field. 

1.3 Research Questions 

Creswell (2009) directs that a research question is a clear, focused, concise, complex 

and arguable question around which a research study centers. It, therefore, helps in 

focusing a study by providing a path through the research as well as the writing process 

involved. The central, guiding research questions for this exploratory, investigative 

process were: 
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1.2.1 Research Question #1 

What are the general mathematics concepts that are “grounded” in the CPIS’ mobility and 

water spread patterns per sections of the irrigation field?  

The way the CPIS moves as well as the way it spreads water to avoid swelling or water-

logging of the centre were the bases of this investigative study. 

1.2.2 Research Question #2 

What are the “potential” authentic tasks within school level mathematics that may be 

designed and packaged in the context of the CPIS mobility and water spread 

mechanisms?  

The focus was limited to interpretation of the “potential” tasks using mathematics policy 

documents and did not involve administering and/or piloting of the tasks in the actual 

school context.  

1.3 Significance of the study 

The study was firstly significant to me as a classroom-based mathematics educator who 

ventured into the “unusual” research territory outside the classroom setting, away from 

the common classroom interactions with learners during lesson presentations. I had the 

real experience of “doing” mathematics through the generation of endless sketches that, 

theoretically, were inspired by the irrigation machine’s mobility and water spread patterns. 

This was a meaningful, real experience that I believe should be transferred to 

mathematics learners in a quest to make the subject more practical and interesting to 

them. In addition, the mathematics education research community may appreciate and 
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value, through the outcomes of this study, the wealth of teaching and learning 

opportunities prevalent in real settings outside the normal classroom interactions.  

Furthermore, the package of “potential” authentic teaching and learning tasks, comprising 

of interlinked activities, might assist in addressing the much emphasized use of real-world 

contexts and integration across learning areas and subjects in the NCS documents. 

These tasks might minimize the “widespread teacher frustration and dissatisfaction” on 

the use of projects and investigations in learner assessment as reported in The Report 

on the Implementation of the NCS (DoE, 2009, p. 31). 

Consequently, mathematics policy makers may have, through the results of this study, 

more grounds to demand or encourage the vision of “using real contexts” in mathematics 

learning and teaching in modern classrooms. 

1.4 The Structure of the Report 

The main aim of this study was to explore and unearth the general school-level 

mathematics concepts that might be grounded in the mobility and water spread 

mechanisms of the Centre Pivot Irrigation System (CPIS), thereby rendering the machine 

a possible rich context for mathematical exploration. The research questions that steered 

this study ensured that this aim was realized.  

This research report is arranged in six interwoven chapters as follows: 

Chapter 1 is the introductory background of the study that alludes to the emphasis on the 

importance and use of real-world context in mathematics learning and teaching as 

advocated by National Curriculum Statement (NCS) and Curriculum and Assessment 

Policy Statement (CAPS) documents as well as by related literature. Furthermore, the 
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chapter recaps the purpose, the research questions as well as the significance of the 

study. 

Chapter 2 reviews the literature regarding irrigation systems, particularly the lateral move 

and circular move machines that might provide real contexts for mathematical exploration. 

In addition, the chapter zooms into exploratory, creative mathematics and problem 

solving, in a quest to establish the link and relevance to the irrigation systems context.  

Chapter 3 outlines the methodology adopted in this investigative study and also 

encompasses the description of the research design, sampling or selection, data 

collection and analysis techniques and instruments used, ethical considerations, and the 

limitations of the study. 

Chapter 4 reports the findings and analysis of data gathered from the operations of a 

linear move irrigation system that provides a springboard for the entire mathematical 

exploration in this study. Two basic types of structures of a linear move irrigation machine, 

namely, ground-bound pipes with sprinklers spraying water upward and suspended or 

hanging sprinklers on a mobile tower spraying water onto crops, are thoroughly explained. 

The sketches that were inspired by these systems’ manual operations are used to provide 

a “visual” explanation and clarity. Furthermore, the type of sprinkler nozzles assumed at 

this stage, the mobility of a single tower linear move machine as well as a reflection on 

the gathered data are captured in this chapter. 

Chapter 5 focuses on a circular move irrigation system’s sprinkler nozzles, mobility and 

water spread patterns in a quest to unpack its operations with regard to the research 

questions posed earlier. The chapter gradually unfolds from single tower to the complex 
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mimicked operations of a multi-tower machine and concludes with a reflection on the data 

gathered. A practical approach, in which data gathered from intense observation of the 

machine at the research site, also forms part of this chapter. The intention is to address 

the research questions of the study by verifying, comparing and linking the theoretical 

approach data about the CPIS mobility and water spread patterns with the data obtained 

from hands-on sessions at the research site. 

Chapter 6 provides the overall summary and conclusion of the study by outlining the 

package of “possible” teaching and learning activities emerging from exploring the linear 

move and the circular move irrigation machines. It further proposes recommendations for 

future follow-up studies on mathematical exploration within the Centre Pivot Irrigation 

System context.  
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 Introduction 

According to Lamb (1998), the review of literature in a research project is a discursive 

prose or a form of expository writing that seeks to situate the study within a body of 

literature or write-ups by offering critical insights on the topic or problem under scrutiny. 

The key issue in this section of academic writing is to critically peruse and dissect 

documents relevant to the field or topic under research and also to offer an argumentative 

thesis for the current study. 

The following expository piece of writing under subheadings “Irrigation systems” and 

“Exploratory, creative mathematics and problem solving”, therefore, provide a critical 

appraisal of the literature related to the topic of this study. The literature relevant to various 

irrigation techniques or methods and the embedded opportunities that cater for creative, 

exploratory mathematics and problem solving approach to mathematics teaching and 

learning are henceforth outlined. This literature, however, is of a limited nature because 

the area of this study is relatively new, with a paucity of related academic write-ups within 

school level mathematics teaching and learning. 

2.2 Irrigation systems 

Snyder and Melo-Abreu (2005) define irrigation as the controlled application of water to 

land or soil for purposes of assisting the growing of crops, maintenance of landscapes 

and re-vegetation of disturbed soils in dry areas and during periods of inadequate rainfall. 
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The general purpose of irrigation, therefore, is to supply the entire field uniformly with 

water in a predetermined pattern so that each plant has the amount of water it needs, 

neither too little nor too much. This “controlled application” of water, is achieved through 

artificial or man-made irrigation systems whose design, installation and operations require 

and involve a mammoth of creativity, innovation and problem solving skills that are most 

basic or fundamental in mathematics teaching and learning in schools. 

Snyder and Melo-Abreu (2005) indicate that irrigation techniques evolved from surface 

systems where water moves over and across land by simple gravity flow in order to wet 

the land and infiltrate soil; through localized irrigation where water is distributed under low 

pressure through piped network in a predetermined pattern and applied as a small 

discharge to each plant or adjacent to it; then through drip irrigation where water fall drop 

by drop or trickles just at the position of roots; and presently to sprinkler or overhead 

irrigation where water is piped to one or more central locations within the field and 

distributed by overhead high-pressure sprinklers or guns. This evolution of irrigation 

systems had both merits and demerits with regard the cost of labour, fuel and time 

required to spread water uniformly across the entire acreage.  

The common denominator for these irrigation systems, for this study, is that their 

operations generally offer opportunities that invite “construction”, “exploration” and 

consolidation of school level mathematics concepts. The operations of pipes that require 

manual labour to move them from one spot to the next, for example, involve considering 

the circular wetted area achieved earlier by rotating sprinklers at the initial spot so that 

there would not be over-irrigation of a spot when moving pipes to the next spot. This 

means making sure that the distance between linear arrangements of sprinklers from one 
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spot to the next is more feasible to cater for uniformity of water spread on areas between 

the sprinkler arrangements. The diagram in Figure 2.1  clearly shows how the water pipes 

are arranged in an irrigation field in an attempt to achieve water spread uniformity. 

      

Figure 2.1: A picture of schematic layout of irrigation pipes in a field 
(www.shutterstock.com.) 
 
     
Furthermore, the use of words and phrases such as “controlled application”, “artificial or 

manmade”, “predetermined pattern” and “uniformly” in the preceding paragraphs 

suggests that the planning, design, lay-out, installation and the operation of the irrigation 

systems is not a haphazard or clumsy activity, but rather requires a carefully thought-out, 

calculated, innovative and creative process that is accommodative of vital process skills 

envisaged in mathematics teaching and learning in schools. The knowledge and skills 

that may be constructed and nurtured in the settings or contexts of the different irrigation 

systems can be sourced out from cross curricula fields of, inter alia, Mathematics, 

Agricultural sciences and Physical sciences. For example, setting up furrows for irrigation 

purposes required thorough consideration of such factors as direction of crop rows, 

gravity flow and soil topography (slope). In addition, the concepts of pressure required in 

the pipes to ensure sufficient wetting around the crops, the amount of wetted area 

http://www.shutterstock.com/
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achievable under a certain pressure for a sprinkler nozzle as well as the speed of wheel 

sets carrying overhead irrigation systems, clearly lend themselves for critical and 

intensive enquiry within these irrigation systems contexts. 

The vital aspects of irrigation systems’ operations for this study, particularly the operations 

of the Centre Pivot Irrigation System (CPIS), are its mobility and water spread patterns 

between identified points on the irrigation field. According to Snyder and Melo-Abreu 

(2005), a centre pivot irrigation systems is a form of overhead sprinkler irrigation 

consisting of several segments of pipe (usually galvanized steel or aluminium) joined 

together and supported by trusses, mounted on wheeled towers with sprinklers positioned 

along its length. This definition clearly indicates that, with the CPIS, labour costs are 

minimized since the cumbersome duty of having to carry pipes from one point to the other 

across the irrigation field is discarded. Furthermore, Frenken (2006) alleges that a centre 

pivot irrigation system moves in circular pattern and that its overall speed is governed by 

the tower on the outside, which has to travel farther and faster than the towers towards 

the pivot centre. This simply means that when one tower gets behind, its motor turns on 

or runs faster to catch up, and this kind of movement is achieved through control sensors 

which were initially simple mechanical linkages but presently being electric sensors under 

computer control. 

However, the complex mobility and water spread mechanisms of the CPIS provide a rich 

and authentic setting for the construction of mathematics concepts and nurturing of 

mathematics process skills in a creative, innovative and exploratory manner. In addition, 

the National Curriculum and Assessment Policy Statement (CAPS) document for 

Mathematics grades R-12 (DoE, 2007, p. 8) indicates that mathematics, as a human 
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activity, involves observing, representing and investigating, and thus assist in the 

development of mental processes that enhance logical and creative thinking, accuracy 

and problem solving necessary for decision-making. 

2.3 Exploratory, creative mathematics and problem solving 

Bunt and Conati (2003) assert that exploratory environments or contexts seek to 

encourage active learning of mathematics through discovery and exploration. It is in these 

authentic, real-world settings that learners learn mathematics from their own experiences 

obtained in environments in which the mathematics they learn is rooted in real-life. This 

augurs well for this study as it stresses the “power” of irrigation systems, particularly the 

linear move machine and the centre pivot irrigation system (CPIS), in serving as 

“scaffolds” in the construction, internalization and consolidation of mathematics concepts. 

Furthermore, these irrigation systems have recently become a popular constant feature 

in many areas of the South African society, particularly learners in remote, rural schools.  

According to Lester, Masingila, Mau, Lambdin, dos Santon and Raymond (1994), a 

problem solving approach to mathematics teaching focuses on teaching mathematics 

topics or concepts through enquiry-oriented environments which are characterized by 

teachers helping learners to construct a deep understanding of mathematical ideas and 

processes by engaging them in “doing mathematics”: creating, conjecturing, exploring, 

testing and verifying. Again, this concurs with the current study’s advocacy that irrigation 

systems offer teaching and learning opportunities in a relaxed context “familiar” to 

learners who have become accustomed to their visibility and daily operations in their 

(learners’) periphery.  
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Another supportive assertion to a problem solving approach in authentic contexts is by 

Fleener et al (1995), who indicate that conceptual understanding is enhanced when 

learners “construct” understanding of a mathematics concept from “their interaction with 

real-world settings”, not from a lecture or repetitive drill (rote learning). The clear man-

date for teachers here is to let learners to, personally and independently, grapple with 

real-world contexts in order to find out solutions to problems, make conjectures and rules 

that they may test so as to check if they are feasible in a given context. Teachers should, 

therefore, know when it is appropriate to intervene and when to step back and let learners 

make their own way. Piggot and Pumfrey (2005) summarize the joy provided by problem 

solving to learners as: 

“The joy of confronting a novel situation and trying to make sense of it – the joy of 

banging your head against a mathematical wall, and then discovering there may 

be ways of either going around or over the wall”  (p. 27).  

However, Cobb, Wood and Yackel (1991) identify specific characteristics of a problem 

solving approach to mathematics teaching that include: teachers providing just enough 

information or “scaffolds” to establish background or interest of the problem, and learners 

clarifying, interpreting and attempting to construct one or more solution processes; and 

teachers encouraging learners to make generalizations about rules and concepts. This 

means that a problem solving approach to mathematics teaching and learning using 

authentic, real contexts like the linear move and circular move irrigation machines does 

not only develop learners’ confidence in their own ability to think mathematically, but also 

serve as a vehicle for learners to construct, evaluate and refine their own theories about 

mathematics and the theories of others so that they can develop their own “rules” that 
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rarely involve standard algorithms. It is, therefore, a contextualized problem solving 

approach to mathematics teaching and learning that has the potential to enhance 

conceptual understanding than non-contextual problem solving that only targets 

regurgitation of mathematical “facts and correct procedures or answers” at all times. 

A valuable contribution on a creative problem solving approach to mathematics teaching 

and learning is from the Osborn-Parnes process model, hinted in Hurson (2007). This 

model is defined as a simple process that involves breaking down a problem to 

understand it, generating ideas to solve the problem and evaluating those ideas to find 

the most effective solution to the problem. 

2.4 The Osborn-Parnes process model 

The Osborn – Parnes process model to creative problem solving was founded by Alex 

Osborn and Sidney Parnes in the 1950s. The model initially had six steps, which Watson 

and Mason (1998) condensed to three stages of: exploring the challenge; generate ideas 

and prepare for action. They further used the diagram in Figure 2.2 to recap the original 

six steps of the Creative Problem Solving process: 

 

Figure 2.2: The condensed version of the Osborn–Parnes process model for Creative 
Problem Solving (Watson and Mason, 1998) 

Explore the 
Challenge: OF FF 

PF

Generate Ideas: IF
Prepare for 

Action: SF AF
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The three flexible, cyclical stages or phases of the Creative Problem Solving model in 

Figure 2.2 can clearly be outlined, with their respective original steps, as follows: 

    2.4.1 Explore the challenge  

This phase involves three steps of: objective finding (OF) wherein one identifies a wish 

goal or challenge; fact finding (FF) wherein one gathers data and considers it in order 

to review the objective and begin to innovate; and problem finding (PF) wherein one 

makes sure that they are focusing on the right problem by exploring facts and data to 

find all the problems and challenges inherent in the situation together with all the 

opportunities they present. 

    2.4.2 Generate ideas 

This phase involves a single step of idea finding (IF) wherein one becomes vigilant 

about differing judgment and comes up with wild, outrageous, out-of-the-box ideas 

that are possible solutions in a quest to finding a potentially innovative, novel solution 

to the problem at hand. 

    2.4.3 Prepare for action 

This final phase of the Creative Problem Solving (CPS) process model involves two 

steps of: solution finding (SF) wherein one selects and strengthens a solution, bearing 

in mind that “a creative idea is not really useful if it won’t be implemented”; and 

acceptance finding (AF) wherein one adopts and embarks on a plan of action looking 

at who is responsible, what has to be done by when, and what resources are available 

to realize a fully-fledged, activated solution.  
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In a nutshell, the unique feature of the Osborn – Parnes process model is that each 

step first involves a divergent phase in which one generates lots of ideas (facts, 

problem definitions, evaluation criterion, implementation strategies) and then a 

convergent phase in which only the most promising ideas are selected for further 

exploration. Forbes (1995) refers to this act of generating lots of ideas to a problem 

as “multiple-idea facilitation” technique wherein the intention is that a larger number 

of ideas increase the chances that one of them has value. This, therefore, connects 

well with the purpose of the current exploratory study as it commenced with  gathering 

lots of ideas on the mobility and water spread patterns of both linear move machine 

and centre pivot irrigation system through mimicked sketches and figures, and then a 

selection of the most promising data (theoretical mathematical models) thought to be 

useful in explaining the machines’ mobility and water spread patterns, and lastly a 

verification phase of checking the feasibility of the possible theoretical models at the 

research site using a hands-on or practical approach.  

Furthermore, the National Council of Teachers of Mathematics (NCTM, 1980, p. 2-3) 

recommend a mathematics curriculum organized around and focusing on: developing 

skills and ability to apply these skills to unfamiliar situations; gathering, organizing, 

analyzing and conceptualizing problems; defining problems and goals; discovering 

patterns and similarities; seeking out appropriate data; experimenting, transferring 

skills and developing curiosity, confidence and open-mindedness. This resonates well 

with what the new mathematics curriculum in South Africa advocates through 

emphasis on both the use of authentic or real-world contexts and an integrated 

learning of theory, practice and reflection (Department of Education [DoE], 2007). 
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The research works quoted above make it clear that an integrated approach to 

mathematics teaching and learning in real-world, familiar settings like irrigation 

systems, particularly the linear move and CPIS machines in this study, is not optional 

for a constructivist educator who aspires to nurture creativity and critical thinking in 

learners. The most basic responsibility for constructivist educators, therefore, is to 

learn the mathematical knowledge of their learners and to learn how to harmonize 

their teaching methods with the nature of that mathematical knowledge (van Oers, 

1996), and this requires planning whereby educators “plant” powerful mathematical 

ideas in  personally meaningful contexts for learners to investigate. It must be borne 

in mind that creativity in mathematics classrooms is not just about what learners do, 

but also what we do as teachers. If we think creatively about the mathematical 

experiences we offer our learners, we can then open up opportunities for them (the 

learners) to be creative. This reaffirms the need for educators to have a set of special 

attributes that would help them to transfer their content knowledge to learners in a 

manner that is personally meaningful to the learners (Geddis, 1993). Shulman (1987) 

summarizes these attributes as follows: 

“The key to distinguish the knowledge base of teaching  lies at the intersection of 

content and pedagogy, in the capacity of a teacher to transform the content 

knowledge he/she possesses into forms that are pedagogically powerful and yet 

adaptive to the variations in ability and background presented by the students” (p. 

9). 
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      2.5 Conclusion 

 The value and emphasis of the above-quoted research works on the need for a 

contextualized teaching and learning of mathematics concepts, the paucity of 

literature on the exploration of the general school level mathematics concepts 

embedded in the irrigation systems context signaled a “grey area” that needed 

intensive inquiry. The CPIS setting provided a scaffold for the researcher to employ 

his creativity in garnering school level “possible” teaching and learning activities in 

chapter 6 of this report. These activities differ from the “traditional application-recall 

textbook exercises” wherein learners’ imagination and curiosity are stifled by 

demanding regurgitation of routine procedures and “mathematical facts”.  

Furthermore, the condensed version of the Osborn-Parnes process model in Figure 

2.2 was also applicable during the entire study. The challenge of “unearthing” and 

“ungrounding” the possible school level activities and concepts in the CPIS setting 

was explored through direct observation of the machine’s mobility and water spread 

patterns as well as through sketches inspired by such mobility and water spread 

patterns. The verification act in chapter 5 yielded the data in Table 5.4 that intended 

to ascertain the assertion that sprinkler nozzle radii seem to differ from closer to the 

pivot point going to the extreme end of the machine tower. 
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CHAPTER 3 

RESEARCH METHODOLOGY 
 

3.1 Introduction 

According to Kruger, Michelle, and Welman (2005, p. 2), a research methodology 

considers and explains the logic behind any research project. In addressing the afore-

stated central research questions in the introductory part of this exploratory investigative 

study, the following overall procedures (outlined under sub-headings: research design, 

sampling, data collection, data analysis, ethical considerations, significance and 

limitations of the study) were adopted. Furthermore, the study adopted a qualitative 

methodology, which according to Franklin (2012) focuses on natural settings and 

artificially constructed data as well as data derived from narratives, images and 

observation. 

3.2 Research Design 

The study used an emergent, exploratory, inductive approach to “unearth” the general 

school level mathematics concepts that are grounded in the mobility and water spread 

mechanisms of the Centre Pivot Irrigation System. It was an exploratory study which, 

according to Yin (1994), tries to look for patterns in collected data and come up with a 

model within which to view the data. This clearly meant or implied that the researcher in 

this study just had to begin with a rather vague impression of what should be studied, that 

is, with a “preliminary theoretical notion” of how linear move and circular move CPIS 

operate in a quest to spread water evenly across the entire irrigation field. Denzin and 

Lincoln (1994) echo supporting sentiments when they highlight that an exploratory study 
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is an approach of developing concepts, establishing connections or links between 

concepts, thereby creating an understanding of the entire setting to explicate the central 

phenomenon by relating diverse concepts in order to account for complex relationships, 

and to define multiple realities in a research setting. 

Furthermore, Lambin (2000) asserts that an exploratory project is conducted to help 

researchers to have a better understanding of a situation or problem. However, the 

researcher in this type of study ought to be willing to change direction as a result of 

revelation of new data and new insights (Saunders, Lewis & Thornhill, 2007). 

 Perhaps a better summary of an exploratory research study is provided by Pride and 

Ferrell (2007) when they indicate that it should: have a general purpose of intending to 

generate insights about a situation or problem; involve a flexible, open-ended and rough 

data collection form with no set of defined procedures: and use a relatively small, 

subjectively selected sample in order to maximize generalization of insights. This study’s 

findings and results, however, are not generalized for all CPIS technologies in the farming 

fraternity. Furthermore, Cuthill directs that exploratory design is often conducted about a 

research problem when there are fewer or no earlier studies to refer to or rely upon to 

achieve an outcome. 

3.3 Sampling  

Govindarajulu (1999) defines sampling as the process of selecting units from a wider 

population of interest so that by studying the subset one may fairly generalize results back 

to the population from which the units were chosen. This implies that sampling is 

necessarily vital when outcomes of a research project are to be “blanketed” for the entire 
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population of interest. However, the selection of the CPIS in this study, may, in real life, 

be likened to a “raw selection” of a car from a group of cars of the same model and design. 

Cuthill (2002) supports this by arguing that an exploratory research is often conducted 

with a view to gaining insights and familiarity rather than for prediction purposes.  

The selection criterion and technique for the intensely observed CPIS was not essentially 

necessary since generalizations were not going to be made to all unobserved and 

unstudied machines in the farming sector. However, the researcher adopted a typical 

case sampling, which is a purposive sampling technique that is used when the researcher 

is interested in the typicality of a setting or context (Patton, 1990). The CPIS mobility and 

water spread mechanisms were a typical context, which needed to be zoomed into in a 

quest to explicate the general school level mathematics concepts that might be 

embedded therein. 

3.4 Data Collection 

Yin (1994) listed six sources of evidence for data collection in an exploratory study 

protocol as: documentation; archival records; interviews; direct observation; participant 

observation and physical artifacts. In this study an intense direct observation of the CPIS 

mobility and water spread mechanisms per sections of the field was used as a follow-up 

or back-up to a theoretical observation approach that purported to explore the setting 

through sketches that mimicked both the linear move and the circular move irrigation 

machines. In addition, video recording of the observed CPIS in operation was done as it 

had an advantage of capturing data more faithfully than hurriedly written notes at the 

research site (Lincoln & Guba, 1985). 
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However, the data collection process in the study begun when the researcher observed 

the CPIS at a distant. This was followed by visits to the research site for an up-close, 

direct observation and video recording of the machine’s mobility and water spread 

patterns. The process of data collection then resulted in the generation of many sketches 

inspired by the CPIS mobility and water spread patterns (see Figures 4.3, 4.5, 4.6, 4.7, 

4.8, 4.9, 5.3, 5.4, 5.5 and 5.6). In summary, data collection involved gathering primary 

data through exploratory observation of CPIS mobility and water spread patterns and then 

gathering secondary data through sketches inspired by CPIS mobility and water spread 

patterns. 

3.5 Data Analysis 

According to Alasuutari (1993, p. 22), in an analysis of empirical findings of an exploratory 

study, the researcher should distinguish the following two overlapping phases: 

simplification of observations and interpretation of results or “solving the enigma”. In the 

simplification phase, the material is inspected from a theoretical point of view of the study 

project and only the points relevant from this angle are noted while differing or random 

details are omitted and set aside so that the general lines of the data can be discerned 

more easily. The aim here is to find a general rule or model that is valid in all or most of 

the observations. This means that analysis starts from separate cases and aspires to 

create one or a few general models. 

“Solving the enigma”, however, does not always mean answering exactly those questions 

that were posed at the outset of the study project. Sometimes most interesting questions 

are found at a stage when the researcher has become an “expert” of the subject of study, 

where it is often said “data teach the researcher”. 
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The study adopted both phases of data analysis advocated above since drawings or 

sketches inspired by the mobility and water spread mechanisms of both a single tower 

linear move machine and a single tower circular move machine (CPIS) were initially used 

(in a theoretical approach) to generate mathematical models applicable in both irrigation 

technologies’ mobility and water spread patterns. The analysis deepened when the 

complex mobility and water spread patterns of the actual multi-tower CPIS had to be 

practically or literally observed at the research site with a view to ascertaining the 

theoretical mathematical models that were perceived to explain how the CPIS moves and 

spreads water uniformly across the entire irrigation field. In addition, the numerical data 

generated during the data collection process was captured vividly using Tables 4.1-4.4 

and 5.1-5.4, followed by elaborative, clarification notes that deepened insight into the 

CPIS mobility and water spread patterns. Clifton (2010) refers to “Data mining”, which is 

an analysis technique that focuses mainly on extraction of patterns and knowledge from 

large amounts of data. 

Lastly, a document analysis of mathematics policy documents such the National and 

Curriculum and Assessment Policy Statement documents for grades R-12 was employed 

in identifying the general school level mathematics concepts “grounded” in the CPIS 

context as well as packaging, per level of schooling, “potential” authentic teaching and 

learning activities from the CPIS setting or context. Weber (1990) concurs with this use 

of document analysis by indicating that it is a systematic examination of instructional 

documents such as syllabi, assignments, lecture notes, and evaluation of course results 

in order to identify instructional needs and challenges. However, the document analysis 

in this study was only limited to the school level mathematics policy documents mentioned 
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earlier. The grade levels, within the school level, for each “possible” activity in chapter 6 

are clearly suggested at the start of each activity (sections 6.3.1 to 6.3.9). 

3.6 Ethical Considerations 

During the unfolding of this study, all ethical codes such as asking for permission from 

the gate-keeper, honesty and use of pseudonyms when reporting (Kruger, Michelle & 

Welman, 2005), were carefully observed. In particular, I requested for permission to 

conduct my research work at the research site (see Appendix A). Furthermore, the main 

focus was on the machine’s structure and operations resulting in more work on generating 

more sketches based on and inspired by the structure and operations (mobility and water 

spread patterns). 

3.7 Limitations of the Study 

The lack of powerful cameras or videotapes that could vividly capture the subtle and 

complex operations and mechanics of the multi-tower Centre Pivot Irrigation System had 

a negative impact on the study. A very closer look at the machine at the research site 

revealed that the successive machine towers actually moved together for a while before 

the preceding one came to a halt, and the available videotape’s ability could not clearly 

capture such observation. 

In addition, the sprinkler nozzle type assumed for this study, as having a rigid 360 degrees 

circular pattern, had inherent limitations with regard to water spread. It must be 

understood at a micro level of exploration that within a single circular sector area watered 

by a sprinkler nozzle, there exist sectors between the circular pores which do not receive 

water directly from the nozzle pores. 
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Furthermore, videotaping or recording of the observed CPIS could not always coincide 

with days of irrigation at the site and this led to some reluctance from the farm manager 

to make unplanned operations of the machine. The data in Table 5.4 was generated at 

the time when soya beans at the research site only needed enough moisture for them to 

be easily uprooted by the farm labourers. This meant that the amount of water had to be 

restricted in accordance with soil structure and aeration of the research site and this 

affected the overall mobility of the CPIS. 
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CHAPTER 4 

 LINEAR MOVE IRRIGATION SYSTEM 

 

4.1 Introduction 

This chapter seeks to offer a theoretical basis and springboard for the entire study by first 

looking at a linear move machine’s mobility and its water spread patterns. The intention 

is to conform to the general mathematics teaching principles of moving or commencing 

from: the simple to the complex, the easy to the difficult, and the known to the unknown. 

After all, effective mathematics teaching and learning should enable learners to make 

connections between their prior knowledge and new ideas or concepts generated in rich 

contexts. Furthermore, learners must learn mathematics with understanding, actively 

building new knowledge from experience and prior knowledge (Hiebert & Carpenter, 

1992). 

According to Evans and Sneed (1996), a linear or lateral move machine is designed to 

be used on rectangular-shaped fields and moves at right angles to the field row direction. 

The machine moves continuously in a straight line from one end of the field to the opposite 

end while spreading or releasing water. 

4.2 Getting to know the linear move machine 

There are two common basic types of linear move irrigation structures that quickly come 

to mind. The first type of structure comprises of ground pipes with vertically arranged 

sprinklers that spray or ‘throws” water upwards as shown in Figure 4.1 below. It is 



26 
 

important to note that this type of structure requires a lot of manual labour when pipes are 

physically moved from one spot to the other within the irrigation field. 

 

 

Figure 4.1:  A linear arrangement with ground pipes and vertical sprinklers spraying 
water upward (www.shutterstock.com.) 

 

The second type of a linear move irrigation machine comprises of suspended or hanging 

sprinkler nozzles that throw water downward onto plants and crops as shown in Figure 

4.2. It is also important to indicate that this type of an irrigation machine actually comprises 

of a tower of pipes wheeled along the field length. The wheeled tower spans the irrigation 

field while the hanging sprinklers release water while the machine is operating along the 

field length. 

http://www.shutterstock.com/
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   r=1 

r =1m  O 

 

 

 

Figure 4.2: A wheeled linear move tower with hanging sprinkler nozzles spraying water 
(www.shutterstock.com.) 

The latter type of linear move irrigation machine, which perfectly fits Evans and Sneed’s 

(1996) description of a linear move machine, has been assumed for this investigative 

inquiry. The diagram in Figure 4.3 is a schematic representation of a linear move machine 

in a 10m x 10m irrigation field. 

   10m 

 

RR  

 

 

                                                                                                                                    10m 

 

Figure 4.3: Circumference-to-circumference arrangement of sprinkler nozzles for a 
stationary single tower linear move machine 

 

4.3 Sprinkler Nozzles 

The purpose of any sprinkler is to take water from the mainline and distribute it uniformly 

over an area in droplets form. However, the ability of a sprinkler nozzle to cover a large 

area depends on the pressure, which for sprinkler nozzles on a mainline that moves in a 

http://www.shutterstock.com/
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linear way, is the same (Evans & Sneed, 1996). This means that as the pressure 

increases, the area wetted by a sprinkler nozzle also increases and vice versa. 

The sprinkler nozzles used in a linear move irrigation machine may, from a theoretical 

perspective, be imagined as being one of the two types shown in Figure 4.4. They may 

either be a “shower-like” type with many random pores/openings or the one with “circular 

uniformly-arranged pores or openings”. The latter type of sprinkler nozzle was imagined 

or assumed for this exploratory research project because of its perceived ability to spread 

or “throw” water uniformly outward from its centre. Furthermore, this type of sprinkler 

nozzle delivers water in a fixed 360-degrees spray pattern. 

 

            

 

          Shower-like sprinkler nozzle    Sprinkler nozzle with circular uniform pores 

Figure 4.4: Types of perceivable sprinkler nozzles 

 

4.4 Stationary Single Tower Linear Move Machine 

Suppose each sprinkler nozzle has a radius of one metre (1m) and five (5) sprinkler 

nozzles are fitted on a single horizontal tower as shown in Figure 4.3. When the stationary 

single tower machine starts to release water in the first horizontal field strip, the area of 

the field strip that is wetted by each sprinkler nozzle at this stage may be determined as 

follows: Area wetted by each nozzle = 𝜋r2= 𝜋(1m)2 =𝜋 m2
, where r=1 m. 

This means that the wetted area within a single rectangular horizontal field strip, as more 

sprinkler nozzles are fitted along the tower length, may be calculated as follows:  A =𝜋𝑟2 

.. . . . 
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times the number of sprinkler nozzles. And if the number of sprinkler nozzles fitted along 

the length of the tower is represented by letter x, then this wetted area within a single 

rectangular field strip will be A= 𝜋𝑥 m2.  

However, the arrangement of sprinkler nozzles in Figure 4.3, for a stationary single tower 

machine, clearly shows areas within the rectangular horizontal field strip that do not 

receive water when the machine begins to irrigate the field. The area that does not receive 

water directly from a single sprinkler nozzle in a 2m x 2m area/cell may be determined as 

follows: Area not receiving water = (2m x 2m) – 𝜋 (1m)2 = (4 -𝜋) m2 

Table 4.1 captures and summarizes both sets of areas (receiving or not receiving water) 

as the number of sprinkler nozzles along the length of the irrigation tower increases. 

Table 4.1: The data for a single stationary lateral move tower that begins to irrigate a 
single horizontal rectangular field. 

Number of 
sprinkler 
nozzles 

1 2 3 4 5 x 

Wetted area 
(m2) 

𝜋 2𝜋 3𝜋 4𝜋 5𝜋 𝜋𝑥 

Area not 
wetted (m2) 

(4 -𝜋) 2(4 -𝜋) 3(4 -𝜋) 4(4 -𝜋) 5(4 -𝜋) (4 -𝜋)x 

 

 Furthermore, when a stationary single tower linear move machine starts to irrigate the 

field in the first horizontal field strip with a side by side or circumference-to-circumference 

horizontal arrangement of sprinkler nozzles along the field width, it is clear that the “nodal 

points”, where two sprinkler nozzles or circumferences meet, receive more water from the 

adjacent sprinkler nozzles than any other section within the field strip. These “nodal 

points” within the first horizontal field strip increase with an increase in the number of 

sprinkler nozzles along the field width. Table 4.2 then captures the numbers of sprinkler 
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nozzles and nodal points receiving more water as a result of the co-incising “water throw” 

from adjacent sprinkler nozzles. 

Table 4.2: The number of nodal points receiving more water from adjacent horizontally 
arranged sprinkler nozzles in the first horizontal field strip 

Number of sprinkler 
nozzles 

1 2 3 4 5 x 

Number of nodal 
points  

0 1 2 3 4 x – 1 

   

The scenario of a single stationary tower irrigation machine in a rectangular horizontal 

field strip (see Figure 4.3) triggers the question of how the sprinkler nozzles should be 

arranged in order for the entire field strip to receive water at the start of irrigation, that is, 

to avoid having areas within the horizontal field strip which do not receive water at all. 

This may clearly be addressed by starting irrigation outside the field boundary or gradually 

moving the machine towards the field edge as shown in Figure 4.5. But the question here 

still remains: How far outside or towards the field edge should the sprinkler nozzles or the 

tower be moved?  

 

 

A                                                                                                                            B         

 

 

Figure 4.5: Shifting the sprinkler nozzles a metre outside the field boundary/edge AB 

 

For simplicity sake, Figure 4.5 assumes moving the sprinkler nozzles by one metre (1m) 

towards the outside of the field edge or boundary indicated by the bold line segment AB. 

 

r=1m 
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Moving or shifting the sprinkler nozzles, as in Figure 4.5, results in each nozzle irrigating 

half of its initial wetted area inside the first field strip and half wetted area outside the field. 

Table 4.3 captures and shows how the initial wetted area inside the first field strip will be 

affected when the sprinkler nozzles are shifted a metre outside the field boundary AB, as 

opposed to the normal way of starting irrigation inside the field boundary. 

Table 4.3: The data for a single stationary tower with sprinkler nozzles moved or shifted 
a metre outside the field edge AB 

Number of 
sprinkler nozzles 

1 2 3 4 5 x 

Inside wetted area 
(m2) 

𝜋/2 𝜋 3𝜋/2 2𝜋 5𝜋/2 𝜋𝑥/2 

 

 The data in Table 4.3, however, is just a simplified version of the area changes that occur 

inside and outside the first horizontal field strip when the machine is moved towards the 

outside of field edge AB (see Figure 4.5). The emerging question then becomes: How will 

the inside wetted area compare to the outside wetted area if the machine is moved by 

fractions of a metre towards field edge, AB? 

 The logical answer would then indicate that the sum of both inside wetted and outside 

wetted areas should always give 𝜋 square metres. For example, if the inside wetted area 

from the first sprinkler nozzle is 
𝜋

2
 square metres, and then the same amount of area will 

be wetted outside the field edge. 

However, this equality or congruence of both areas holds only for a shift and translation 

towards the field edge by half the diameter of the circular area wetted by a sprinkler 

nozzle. The data in Table 4.4 clearly shows both sets of areas when a machine nozzle is 

moved by fractions of a metre (the radius) towards the outside of field edge AB. 
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Table 4.4: The data from moving or shifting sprinkler nozzles by fractions of a metre 
towards field edge AB 

Machine nozzles 
shifted by 

0 m 
1

4
 m 

1 

2
 m 

3

4
 m 1 m 

5

4
 m 

3

2
 m 

7

4
 m 2 m 

Inside wetted area 
(m2) 

𝜋 
7𝜋

8
 

3𝜋

4
 

5𝜋

8
 

𝜋

2
 

3𝜋

8
 

𝜋

4
 

𝜋

8
 0 

Outside wetted 
area (m2) 

0 
𝜋

8
 

𝜋

4
 

3𝜋

8
 

𝜋

2
 

5𝜋

8
 

3𝜋

4
 

7𝜋

8
 𝜋 

 

 It is, therefore, evident that gradually moving the sprinkler nozzle circumference towards 

the outside of the field edge (that is, by fractions of the radius) will still achieve the 

objective of ensuring that the entire horizontal field strip receives water at the start of 

irrigation.  

However, while the translations of sprinkler nozzles hinted above will ensure that each 

section of the horizontal field strip receives water when the machine starts irrigating the 

field, a considerable portion of uncultivated land will be watered, thus resulting in an 

unnecessary wastage of water. As one of Africa’s water-stressed countries, South Africa 

already has irrigation as a dominant water use activity (Department of Water Affairs and 

Forestry (DWAF), 2004). Furthermore, Evans and Sneed (1996) concede that about 70% 

of the earth’s water is used for irrigation worldwide. The global water conservation 

campaigns, therefore, discourage irresponsible or inconsiderate use of water such as 

irrigating areas not meant for economic production purpose. 

4.5 Manually moving the linear machines 

As a theoretical basis to the mobility and water spread patterns of the linear machines in 

Figure 4.1, the sketches in Figure 4.6 were produced to mimic how the water spread 

patterns would look like when the machines are manually lifted and moved between 

points within the irrigation field. The sprinkler nozzle arrangements in these sketches were 
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assumed to be circumference-to-circumference (see left side of the arrow) and 

circumference-to-centre (see right side of arrow) as shown in Figure 4.6: 

 
Figure 4.6: Field coverage in a circumference-to-circumference and horizontal 

circumference-to-centre arrangements of sprinkler nozzles 

 

4.6 Circumference-to-circumference manual machine movement 

The rows of the green horizontal circles on the left side of the arrow in Figure 4.6 represent 

sprinkler nozzles arranged in such a way that the circumference of one nozzle touches 

the circumference of the adjacent nozzle. It is therefore, apparent that the green areas 

within the circles receive water directly from individual sprinkler nozzles while the black 

shaded and blank areas within the field boundary do not receive water directly from any 

of the sprinkler nozzles. This clearly means that more water is received by the green 

areas than the black and blank portions of the field. 

 However, these black shaded and blank areas within the field only receive water as a 

result of water seepage or possibly blowing wind that might cause some droplets to fall 
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there. Furthermore, the common pattern of the green circles and the blank and black 

portions repeat itself throughout the field from one end of the field to the opposite end. 

From a mathematics exploratory perspective, which was the objective of this study, it is 

crystal clear that area calculations within the irrigation field might be performed. It would 

be interesting for learners to determine the amount of field area receiving water directly 

from the sprinkler nozzles as well as the area that do not receive water directly from the 

nozzles. These areas could be calculated as reflected in table 1 above for data from a 

single stationary linear machine considering that a sprinkler nozzle still has a metre 

radius. 

4.7 Circumference-to-centre manual machine movement  

The right side of the arrow in Figure 4.6shows a circumference-to-centre arrangement of 

the sprinklers wherein the circumference of one nozzle waters or touches the centre of 

the adjacent nozzle. When these sprinkler nozzles are manually lifted and moved as per 

the direction of the arrow in Figure 4.6, such that circumferences touch each other going 

downward, it is clear that three different areas (green, black and sky blue) receive various 

volumes of water during irrigation. As in circumference-to-circumference arrangement of 

sprinkler nozzles on the left side of the arrow in Figure 4.6, the green shaded portions of 

the field receive water once directly from one sprinkler nozzle and the black shaded and 

blank portions receive no water directly from a nozzle. However, the sky blue portions of 

the field each receive water directly from two sprinkler nozzles. The area calculations in 

this case begun to elevate to a higher order intensity than in the circumference-to-

circumference vertical manual shifting of sprinkler nozzles on the left side of the arrow in 
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Figure 4.6. This, once again, confirmed the need for exploring area calculations and water 

spread volumes in this exploratory research study.  

The diagram in Figure 4.7 is a schematic of two identical one metre radius sprinkler 

nozzles with a circumference-to-centre in a 3m x2m field cell adapted from the right side 

of the arrow in Figure 4.6. 

 
Figure 4.7: A schematic of two identical 1m radius sprinkler nozzles arranged 

circumference-to-centre in a 3m x 2m field area. 

 

When one considers the scenario in Figure 4.7, it is crystal clear that the blank(white) and 

the black areas of field receive no water directly from the two sprinkler nozzles, the green 

areas receive water directly from one of the two sprinkler nozzles, and the red “lens-

shaped” area receive water directly from the two sprinkler nozzles simultaneously.   

The area calculations in this scenario can, therefore, be performed as outlined below: 

The value of the area of each blank corner portion of the field may be deduced from the 

calculations whose results were captured in Table 4.1for data from a stationary single 
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tower CPIS as: (
4− 𝜋

4
) = (1 -

𝜋

4
) m2. This area then translates to a total of (4 – 𝜋) m2 for all 

the blank areas within the 3m x 2m field area in figure 9 above. 

The red shaded area, the area of common overlap of the two sprinkler nozzles, can be 

calculated using the formula: A = 2R2Cos-1(
𝑑

2𝑟
) - 

1

2
 d√𝑅2 − 𝑑2 , where d is the overlapping 

distance between the centres of the sprinkler nozzles and r and R the radii of radii of the 

wetted areas by the individual sprinkler nozzles (Weisstein, 1999). Furthermore, the 

central angle between the radii forming area sectors in the red area, given by 𝜃 = Cos-1 

(
𝑑

2𝑟
), must be converted from degrees to radians in the interval 0≤ 𝜃 ≤ 2𝜋 during 

calculations involving the formula above.  

It is important, therefore, to realize that the variables d, r and R in Figure 4.7 have the 

same value of one metre (1m) each. This then means that the red shaded area in Figure 

4.7 can be calculated as follows: 

 Ared part = 2(1)2cos-1(
1

2(1)
) - 

1

2
 (1)√4(1)2 −  (1)2  

                       = 2Cos-1(
1

2
) - 

1

2
(√3) 

                       = 2 x 600 - 
1

2
(√3)   

                       = 2(
𝜋

3
) - 

1

2
(√3)             [600 = 

𝜋

3
  in radians] 

                       = 
4𝜋−3√3

6
 m2 
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This area of 
4𝜋−3√3

6
  metres within the 3m x 2m field in Figure 4.7 receives water directly 

from two sprinklers simultaneously. However, the green shaded areas of the field in 

Figure 4.7 that receive water from only one of the two sprinkler nozzles are linked to the 

red lens-shaped area calculated above in that it is the area of common overlap of the two 

nozzles. This red area falls in both wetted areas of the two sprinkler nozzles. The value 

of one of these green areas can be calculated as: Aone sprinkler nozzle – Ared part = 𝜋 - 
4𝜋−3√3

6
 = 

2𝜋+3√3

6
 m2. This, therefore, translates to a total of 

2𝜋+3√3

3
 square metres within the 3m x 2m 

field area that receives water once directly from both sprinkler nozzles in Figure 4.7. 

But the two black shaded areas in the 3m x 2m field area in Figure 4.7 are of equal 

magnitude. If the variable x is used to represent each of these areas (resulting in 2x for 

both areas), then the total area that does not receive water directly from any of the 

sprinklers nozzles within the 3m x 2m field area in Figure 4.7 will be (4 – 𝜋 + 2x) m2. This 

makes it easier to calculate x and hence 2x within the entire 6m2 field area as follows:  

 Afield = Ablack & blank areas + Agreen total + Ared part 

        6 = (4 – 𝜋 + 2x) + 
2𝜋+3√3

3
 + 

4𝜋−3√3

6
  

 This ultimately results in x = (1 - 
𝜋

6
 - 

√3

4
) m2 for each black shaded area in Figure 4.7 and 

(2 - 
𝜋

3
 - 

√3

2
) m2 for both black shaded areas in the six square metre field. This clearly means 

that the total area not receiving water directly from any of the two sprinkler nozzles in 

Figure 4.7 will be:  (4 – 𝜋  + 2 - 
𝜋

3
 - 

√3

2
 ) = (

36−8𝜋−3√3

6
) m2. 
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 These area calculations were further expounded on under “packaging the activities” 

section toward the end of this report as the types of “possible” authentic teaching and 

learning tasks. The intention at this stage was to show the “richness” of the linear irrigation 

context with regard to mathematical area exploration. 

4.8 Circumference-to-centre: both horizontal and vertical manual machine 

movement 

The complexities regarding the areas receiving water directly from individual sprinkler 

nozzles further took a more advanced level of exploration when a horizontal 

circumference-to-centre sprinkler arrangement, with a vertical manual lifting and 

placement in the direction of the arrow in Figure 4.8, was considered. Unlike in the 

previous scenario on the right side of the arrow in Figure 4.6, the lifting and the vertical 

manual movement of the sprinkler nozzles in this case was such that the circumferences 

of the first row of sprinklers were translated downward to the centres of the sprinkler 

nozzles until the far end of the field was reached. 

The areas receiving water directly from the sprinkler nozzles were deduced from Figure 

4.8 as follows: the green shaded portions of the irrigation field receive water directly from 

one sprinkler nozzle; the pink and black portions receive water directly from two nozzles; 

the yellow and blue areas receive water directly from three nozzles while the red field 

portions receive water directly from four sprinkler nozzles. The complexities of the 

possible area calculations for this study, therefore, became more and more apparent at 

this stage of theoretical exploration through sketches that the object of the study could be 

realized. The crucial thing to realize with regard this variation is that the area not receiving 

water directly from the sprinklers was drastically reduced. 
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Green:   Serviced by 1 Nozzle Black & Pink: Serviced by 2 Nozzles 

Yellow & Blue: Serviced by 3 Nozzles Red: Serviced by 4 Nozzles 

 

Figure 4.8: Field coverage in a vertical and horizontal circumference-to-centre 

arrangements of sprinkler nozzles 

 

4.9 Reflection and Conclusion on Manual Linear Movements of Irrigation 

Machines 

The theoretical exploration of the manual lifting and movement of the linear machines in 

Figure 4.1, through sketches generated in Figures 4.6, 4.7 and 4.8, laid a solid foundation 

for the study in that it explicated area calculation possibilities and opportunities within the 

irrigation context. This ensured that the exploration activity had a starting point and 

direction in line with the objective of “unearthing” the general mathematics concepts 

grounded in these irrigation machines setting. 
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Figure 4.6 clearly indicates that the areas that do not receive water directly from the 

individual sprinkler nozzles, particularly the black shaded portions, are minimized or 

reduced in size when the sprinkler nozzle arrangement was assumed to be 

circumference-to-centre as opposed to circumference-to-circumference. Furthermore, 

these areas seemed to be eliminated with a theoretical perspective depicted in Figure 4.8 

where all field areas receive water directly from at least one sprinkler nozzle. 

The area calculation opportunities embedded in these manual movements intensify in 

order of difficulty in line with mathematics teaching principles of moving from the simple-

to-complex as well as from the easy to the difficult. The calculations in these scenarios 

occur within a rectangular irrigation field and tap into fundamental knowledge of the 

section of mensuration in mathematics, especially formulae involving rectangles and 

circles.  For example, the calculation of the area not receiving water directly from a 

sprinkler nozzle on the left side of the arrow in figure could be determined as the sum of 

four quarter circles forming that shape/cell (see Table 4.1). 

The downside, for water spread uniformity, of these manual movements seemed to be 

with the availability of areas “not receiving” water directly from the individual sprinklers, 

especially in Figure 4.6. This might have rendered these linear move machines less 

popular in the irrigation fraternity. The fact that these assumptions meant intense manual 

labour as well as the need for a stricter precision with water pipe arrangements also might 

have discouraged the use of these tedious systems. However, the question that came up 

at this stage was: Would it make any difference if continuous linear movement irrigation 

was used to curb the alluded demerits of the manual movement arrangements? 
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4.10 Continuous Mobile Single Tower Linear Move Machine 

When the single tower linear move machine starts to move continuously while releasing 

water, the question of how the released water is spread with a linear movement of the 

machine comes to mind. However, factors such as the speed of the machine and the 

amount of water that needs to be used for daily irrigation are determined by the user of 

the machine. 

According to Sanders (2001), a continuous linear move system requires a guidance 

mechanism to guide it in a straight line down the field and this usually means following an 

above-ground cable via a radio signal, an under-ground cable or a Global Positioning 

System (GPS). Furthermore, the speed of the machine is controlled through the use of a 

flow control in an attempt to run it at a “given speed”. This clearly means that a lateral or 

linear move irrigation machine moves continuously at a constant or same speed across 

the length of the irrigation field.  

In an attempt to determine the rate of water spread for a linear move single tower irrigation 

machine, the speed of the tower as well as the amount of water to be used for the entire 

field were assumed to be constant. Figure 4.9, which is adapted from Figure 4.3, shows 

the same information, but indicates the complexities for a mobile single tower system in 

a portion of the rectangular 10m x 10m field. 
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       A         2m             B        2m             C 

  1m 

 

  1m 

     D                                                            E 

 

 

 

     F                                                             G  

 

 

 

 H                                                                 I 

 

Figure 4.9: An adapted schematic of a linear move machine moving in units of 1metre 

 

When the single tower linear move machine starts to operate, from inside the first 

horizontal field strip as it normally does, at a constant speed down the field while releasing 

water, some areas within the first horizontal field strip receive no water while other areas, 

even in the next horizontal field strips, receive water either once or twice in the same 

pattern until the machine reaches the opposite end of the field (see Figure 4.6). If irrigation 

commences inside the field boundary, as in Figure 4.9, while the machine has moved a 

metre from its starting position, an area of (
4−𝜋

2
) square metres does not receive water 

from individual sprinkler nozzles and this area replicates to (
4−𝜋

2
)x square metres as the 
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number of sprinkler nozzles increases to x units along the field width. The same amount 

of area will, thus, also not receive water at the opposite end of the field. 

What Figure 4.9 shows is that when the machine’s sprinkler nozzle is a metre (1m) away 

from the field edge (line segment AB) within a 2m x 2m cell, an area that either receives 

water once or twice is affected as follows: 

 Area within first 2m x 2m cell receiving water once = (
𝜋

2 
 + 

4−𝜋

2
) = 2 m2 

 Area within first 2m x 2m cell receiving water twice = 
𝜋

2
 m2 

This means that out of a four square metre (4 m2) area, a total of (
4 + 𝜋

2
) square metres 

receive water from individual sprinkler nozzle within the first horizontal field strip, and this 

amounts to 5(
4 + 𝜋

2
) square metres considering the five sprinkler nozzles along the tower 

length (see Figure 4.3). 

However, from the second horizontal field strip to the second last horizontal field strip, the 

areas within a 2m x 2m cell are affected as follows: 

 Area within a 2m x 2m cell receiving water once = (4 – 𝜋) m2 

 Area within a 2m x 2m cell receiving water twice = 𝜋 m2 

This clearly means that each section of the four square metre cells now receives water! 

And if it takes the machine a minute to travel past a 4 m2 cell while 1000 litres of water 

need to be used for the entire 10m x 10m rectangular field, then a four square metre (4 

m2) cell will have to receive 40 litres of water (i.e. 10 l/m2). The rate of water spread in the 

first and second field strips may be determined as follows: 
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 The amount of water released in the first horizontal field strip = 10 l/m2 x 5(
4 + 𝜋

2
) m2 

= 50(
4 + 𝜋

2
) litres.  

 The rate of water spread in the first field horizontal field strip will, therefore, be 

50(
4 + 𝜋

2
) l/minute. 

The amount of water released in second horizontal field strip until the second last 

horizontal field strip = 10l/m2 x 5 x 4 m2 = 200 litres. And this then translates to a water 

spread rate of 200 l/minute in each of these horizontal field strips. The suggestion here 

seems to be that a uniform water spread for a lateral move machine only occurs in the 

horizontal field strips between the first and the last horizontal strips. The vegetation on 

rectangular fields using a linear move machine seems to support this assertion about 

uniformity of water spread because the crops at the part where irrigation begins are of the 

same approximate height as those at the other end of the field. 

4.11 Reflection and Conclusion on Continuous Single Tower Linear move Machine 
Data 

Though not very successful in answering the main research questions of this exploratory 

study, the data from the side by side arrangement of sprinkler nozzles on a single lateral 

move CPIS provided a solid theoretical basis for the investigative inquiry. For example, 

the idea of a high possibility of the swelling of the centre or water-logging could be clearly 

explicated in the side by side arrangement of sprinkler nozzles as testified by the “nodal 

points” and other outlined areas of the field that were perceived as evidence of the 

swelling and water-logging (receiving water twice). Figures 4.6 and 4.8 also assisted in 

explicating these uneven water spread within the field. For example, the field areas 

receive water directly from no sprinkler nozzle to a maximum of four nozzles. 
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The important thing to note, which is relevant and fundamental for this study though, is 

that general school level mathematics concepts such as determining area of rectangles 

and circles, number patterns (linear sequences) as well as ratio and rate of water spread 

can be facilitated and consolidated in this linear move irrigation machine context. The 

Curriculum and Assessment Policy Statement (CAPS) for Mathematical Literacy, as an 

integration opportunity, specifically states that learners in grade ten should be able to 

perform calculations of area of circles (quarters, semi- and three quarters) using known 

formulae (DoE, 2011a, p. 68). In the same breadth, the CAPS document for Mathematics 

in the Further Education and Training (FET) band of schooling (DoE, 2011b, p. 22) directs 

that learners should investigate number patterns leading to those where there is a 

constant difference between consecutive terms, and the general term or formula, 

therefore being linear. The single tower linear move machine scenario, theoretically 

explored in this chapter, therefore, explicated the afore-stated mathematics concepts or 

topics.  

In addition, the lateral move variations explored thus far could only concur with Harrison’s 

(2012) assertion that even if the sprinklers distribute equal amount of water regardless of 

its position on the tower and makes it ideal for low-pressure applications, almost 98% of 

the field gets wetted or irrigated. Furthermore, the major disadvantage of not having an 

immediate dry area ahead of the machine seems to have had a bearing on the minimal 

or unpopular use of lateral move machines in most farms. 
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CHAPTER 5 

CENTRE PIVOT IRRIGATION SYSTEM 

5.1 Introduction 

This chapter purports to theoretically explore a centre pivot irrigation system in an attempt 

to develop a mathematics model that may be useful in explaining the irrigation machine’s 

mobility and water spread patterns. Central to this objective is trying to answer the main 

research questions posed at the beginning of this research study. 

 Evans and Sneed (1996) indicate that a Center-pivot irrigation system (CPIS), unlike a 

lateral or linear move irrigation machine that has been theoretically explored in the 

previous chapter, is a self-propelled continuous move irrigation machine that rotates 

round a central pivot point. 

In this study, however, it was found worthwhile to first consider possible patterns of water 

spread if the system was to be moved manually like is the case with systems explored 

earlier. In this instance, the idea is to produce pictorial patterns without necessarily 

exploring their associated mathematical models (that will be addressed in the future 

studies). Different colours are used to map different amounts of water that is received by 

different portions of the field. 
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5.2 Getting to know the Centre Pivot Irrigation System 

The machine, as shown in figure 12 below, has become a common and popular sight in 

the farming fraternity to an extent that it may be regarded as an inseparable part of life in 

farms in most rural areas.  

The diagram in Figure 5.2 is a schematic representation of a single tower CPIS on a 

rectangular field with a radius of five metres (5m). 

 

Figure 5.1: A picture of CPIS in operation 

 

5.3 Sprinkler Nozzles 

The sprinkler nozzles are similar to those in the previously explored linear move machine 

and are assumed to have a metre (1m) diameter each and are still mainly arranged side 

by side or circumference-to-circumference, while the radii of the engraved circular tracks 

remain in the ratio 1:2:3:4:5. (see Figure 5.2). This, therefore, implies that R5=5m; R4= 

(R5-1) m; R3= (R5-2) m; R2= (R5-3) m and R1= (R5-4) m.  
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5.4 Manual Movement of a Single Tower CPIS 

There are different variations in terms of how the system can be manually moved. In a 

sequence of sketches below, I have shown a system moved in such a way that (a) the 

outer nostrils produce circumference-to-circumference arrangement whilst towards the 

centre circumference-to-circumference is also maintained; (b) the outer nostrils are in a 

circumference to centre arrangement whilst towards the centre circumference to 

circumference is maintained, and (c) the circumference-to-centre arrangement is done in 

both ways.  

                                                                10m 

 
 

 

 

 

 

 

                                                                                                                     10m 

                                                                                                         10m 

 

 

 

 

 

 

 

Figure 5.2: A single tower CPIS on a 5m radius irrigation field 
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(a) Circumference-to-circumference arrangement in both ways  

 

 

 

 

Figure 5.3: Water coverage in a circumference to circumference arrangement in a manually 

moving system 

In this case, the system was moved manually 32 times to provide coverage of the field. 

Because of the length of the circumference, the last arrangement does not overlap into 

the first as the rest of the arrangement. This produces a slightly different arrangement. 

Interesting mathematical problem solving opportunities arises from this situation. Among 

those is: what are the relative water coverage as represented by the different colours.  

Green: One nostril Black: No water Pink: Two nostrils Yellow: three nostrils 

Red: four nostrils Blue: 5 nostrils Brown: 32 nostrils  
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(b) Circumference-to-centre and circumference-to-circumference arrangement 

 
Green: 1 nostril Pink: 2 nostrils Yellow: 3 nostrils Red: 4 nostrils 

Dark Red: 5 nostrils Blue: 6 nostrils Dark Blue:  Light Blue: 0 nostrils 

 

Figure 5.4: Circumference-to-centre and circumference-to-circumference 

arrangement coverage 

 

Similar patterns like the one in Figure 5.3 are produced. However, pink and 

yellow emerge earlier indicating more water coverage that it was the case then. 

In this arrangement, the centre becomes quickly flooded that was the case 

earlier.  
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(c) Circumference to centre in both ways 

 

 
Green: 1 nostril Pink:2 nostrils Yellow: 3nostrils Red: 4 nostrils 

 

Figure 5.5: Circumference-to-circumference arrangement in both ways 

 

In this arrangement each square meter of the entire field is covered by more than one 

nostril. Mathematically, there are even more problem situations that could be explored. 

The number of nostrils covering different areas of the field is itself a worthy mathematical 

exploration.  

In the three scenarios presented above, it is quite clear that if the nostrils were to 

discharge the same amount of water per time, the obviously the centre of the system will 

be flooded in no time whilst the outmost areas will receive little amount of water. In order 

to counter-act this effect, the water distribution from the inners nostrils to the outer ones 
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should be differentiated. The how part, is the focus of this study. However, before 

addressing the question, we proceed to the continuous moving system.  

5.5 Continuous Moving Single Tower CPIS 

If it takes the entire single tower CPIS in Figure 5.2 an hour (60 minutes) to rotate or make 

one revolution around the central pivot point, then the rotational speed of the individual 

wheel sets carrying the machine and located on circular tracks is determined as follows: 

Rotational speed for the innermost wheel set (W1) = (2𝜋R1/60)  

                                                                                  = 2𝜋(1m)/60 

                                                                                  = 𝜋/30 m/minute 

Similarly, the rotational speeds for the next wheel sets can be determined as captured 

and shown in Table 5.1. 

 Table 5.1: Rotational speed for the wheel sets carrying the single tower CPIS 

Wheel set 
number 

1 2 3 4 5 X 

Rotational 
speed 
(m/minute) 

𝜋/30 𝜋/15 𝜋/10 2𝜋/15 𝜋/6 𝜋x/30  

 

The area of individual field strips, A1 to A5 in Figure 5.2, from the innermost field strip to 
the outermost field strip is determined as follows: 

 The area of innermost field strip, A1 = 𝜋(R1)2= 𝜋(R5-4)2 =𝜋 (5-4)2 = 𝜋 m2.  

Similarly, areas for field strips, A2 to A5, can be calculated to be 3𝜋 m2; 5𝜋 m2; 7𝜋 m2 and 

9 𝜋 m2 respectively. 



53 
 

And if a thousand (1000) litres of water are used to irrigate the entire five metre radius 

field (25𝜋 m2), then a rate of 
40 

𝜋
 litres per square metre will have to be applied for the 

entire field. This clearly means that the amount of water per field strip will be determined 

as follows: 

 Amount of water released in A1 = 
40

𝜋
 L/m2 x 𝜋 m2 = 40 L 

 Amount of water released in A2 =
40

𝜋
 L/m2 x 3𝜋 m2 = 120 L  

 Amount of water released in A3 =
40

𝜋
 L/m2 x 5𝜋 m2 = 200 L 

 Amount of water released in A4 =  
40

𝜋
 L/m2 x 7𝜋 m2 = 280 L 

 Amount of water released in A5 =
40

𝜋
 L/m2 x 9𝜋 m2 = 360 L 

Consequently, the water spread rate within the individual field strips, A1 to A5, using the 

assumed rotational time of 60 minutes per revolution is determined as follows: 

 Water spread in the innermost field strip, A1 = 40/60 = 2/3 L/minute 

 Water spread in field strip, A2 = 120/60 = 2 L/minute 

 Water spread in field strip, A3 = 200/60 = 10/3 L/minute 

 Water spread in field strip, A4 = 280/60 = 14/3 L/minute 

 Water spread in field strip, A5 = 360/60 = 6 L/minute 

Table 5.2 below recaps and shows the data for the areas of individual field strips, the 

amount of water released per field strip as well as the water spread rate in the field strips 

on a rectangular 10m x 10 m  irrigation field for a 5m radius single tower CPIS. 
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Table 5.2: The area, amount of water released and rate of water spread per field strip on 
a 100 m2 irrigation field using a 5m single tower CPIS 

Field strip 
number 

1 2 3 4 5 X 

Field strip area 
(m2) 

𝜋 3𝜋 5𝜋 7𝜋 9𝜋 𝜋(2𝑥 − 1)  

Amount of 
water released 
per field strip 
(L) 

40 120 200 280 360 40(2x-1) 

Water spread 
rate per field 
strip (L/minute) 

2/3 2 10/3 14/3 6 4X/3 – 2/3 

  

When the five metre single tower CPIS starts to rotate while releasing water in the various 

field strips, sectors of the field strips which may be labeled A1 to A5 as shown in Figure 

5.6, which was adapted from Figure 5.2, receive fractions of water in a fraction of the 

rotational 60 minutes time. 

For simplicity sake, if the machine covers a quarter circles from P to Q in quarter of an 

hour (15 minutes), the sector areas within the different field strips are determined as 

follows: 

 Sector area, a1 = 900/3600(Area of field strip A1) 

                                     = 1/4( 𝜋) m2 

                                     =𝜋/4 m2  

 Sector area, a2 =1/4(3𝜋) m2 = 3𝜋/4 m2 

Similarly, the values of sector areas a3 to a5 may be calculated to be 5𝜋/4; 7𝜋/4 and 9𝜋/4 

square metres respectively. 
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Figure 5.6: An adapted schematic representation of mobile single tower CPIS on a 5m 
radius irrigation field covering a quarter circle in quarter of an hour 

 

The amount of water released by the single tower CPIS within field sector areas, a1 to a5, 

in the quarter hour (15 minutes) rotational time assumed above will be determined as 

follows: 

 Amount of water released in sector area, a1 = 
40

𝜋
 L/m2 x 𝜋/4 m2 = 10 L  

 Amount of water released in sector area, a2 = 
40

𝜋
 L/m2 x3𝜋/4 m2 = 30 L  

 Amount of water released in sector area, a3 = 
40

𝜋
 L/m2 x5𝜋/4 m2 = 50 L  

 Amount of water released in sector area, a4 = 
40

𝜋
 L/m2 x7𝜋/4 m2 = 70 L 

Green: 1 nostril Pink: 2 Nostrils Yellow: 3Nostrils Red: 4 nostrils 

Dark red: 5 nostrils Dark Blue: 6 nostrils Light Blue: 7 Nostrils Black: 0 Nostrils 
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 Amount of water released in sector area, a5 =  
40

𝜋
 L/m2 x9𝜋/4 m2 = 90 L 

It, therefore, follows that the rate of water spread within the sector areas, A1 to A5, during 

the assumed quarter hour (15 minutes) of the single tower machine’s mobility can be 

determined as follows: 

 Rate of water spread in sector area, a1 = 10/15 L/minute =2/3 L/minute 

 Rate of water spread in sector area, a2 = 30/15 L/minute = 2 L/minute 

 Rate of water spread in sector area, a3 = 50/15 L/minute = 10/3 L/minute 

 Rate of water spread in sector area, a4 = 70/15 L/minute = 14/3 L/minute 

 Rate of water spread in sector area, a5 = 90/15 L/minute = 6 L/minute 

The data in Table 5.3 recap and indicate the sector area, amount of water per sector area 

in a field strip as well as the rate of water spread per sector area within quarter of an hour 

of the single tower’s operation, that is, its mobility and spread of water.  

Table 5.3: Data for sector area, amount of water per sector area and water spread rate 
per sector area by a single tower CPIS on a 5m radius irrigation field in quarter of an hour 

Field sector number 1 2 3 4 5 X 

Sector area (m2) 𝜋/4 3𝜋/4 5𝜋/4 7𝜋/4 9𝜋/4 𝜋(2𝑥 − 1)/4 

Amount of water per 
sector area (L) 

10 30 50 70 90 10(2x-1) 

Water spread rate per 
sector area (L/minute) 

2/3 2 10/3 14/3 6 4X/3 – 2/3 

 

Figure 5.6, like Figures 4.6, 4.8 and 5.3, depicts from a theoretical perspective the water 

spread pattern likely to be observed when the single tower circular move machine (CPIS), 

with a vertical circumference-to-circumference sprinkler arrangement, is manually lifted 

and moved in a clockwise direction such that the sprinkler nozzles’ circumference touch. 

The purple areas of this quarter field do not receive water directly from any of the sprinkler 



57 
 

nozzles, the dark red areas receive water directly from one sprinkler nozzle and the red 

areas receive water directly from two sprinkler nozzles. However, the area calculations 

for the “lens-shaped” areas do not vary from those performed from Figure 4.7. 

5.6 Reflection and Conclusion on the Single Tower CPIS Data 

The data in Tables 5.2 and 5.3, though suggesting a “linear constant increase” water 

spread rate for the single tower CPIS, does not account for “corner areas” of a 10m x 10m 

rectangular field in Figure 4.3  which do not receive water from the sprinkler nozzles fitted 

along the length of the machine. A total corner area of (100 - 25𝜋) square metres is left 

out without being watered when the single tower CPIS operates in a circular pattern of 

motion. However, Evans and Sneed (1996) concede that, with an overhand from an end 

gun, approximately 132 acres can be irrigated, thereby providing a solution to these 

corner areas which do not receive water. In addition, a corner attachment (which is 

operated and controlled by a signal sent through a buried electric cable) allows for the 

corners of square fields or other odd-shaped field areas to be watered.  

The key argument for this study, as viewed from the single tower CPIS data, is that again 

school level mathematics concepts such as area of circles; speed of wheel sets carrying 

the machine; number patterns; ratio and rate can be facilitated and consolidated within 

the circular move irrigation machine context. According to the CAPS document for 

Mathematics in the Senior Phase (DoE, 2011a, p. 31), educators should define a circle 

and revise the terminology associated with circles, that is, centre, radius, diameter, 

circumference, chord, secant, tangent segment and sector. The document further 

emphasizes that learners should be encouraged to develop relationships between: 

radius, diameter and circumference, that is, d = 2r; C = 𝜋d or C = 2𝜋𝑟. The clarification 
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notes or teaching guidelines provided in the document categorically state that educators 

should invest much time explaining these relationships so that learners develop a sense 

of , for example, where the rational number Pi (𝜋) is derived from in terms of the ratio of 

the circumference of a circle to its diameter. 

However, a disconcerting limitation of the data generated from the perceived single tower 

CPIS, that rotates around a central pivot point, is that it overlooks the complexities of a 

real multi-tower CPIS’s mobility and water spread mechanisms. The towers do not just 

rotate like a “single bar of pipe” when they operate on an irrigation field. Diener (2009) 

concurs with the assertion of a complex CPIS mobility when he indicates that an “overall 

speed” of the machine is governed by the tower on the outside, which has to travel farther 

and faster than the towers toward the pivot point. The diagram in Figure 5.7 shows how 

the towers of water pipes apes are joined using sensor joints. 

  

Figure 5.7: A picture of sensory joint linking CPIS towers 

 In addition, the speed of rotation (time it takes the machine to complete one revolution of 

a circle) involves controlling the speed of the extreme tower, that is, does the electric 
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motor on that tower operate continuously or is there a stop and start operation (Evans & 

Sneed, 1996)? 

Furthermore, the notion of sprinkler nozzles having the same radii for wetted area would 

not suffice considering the rotational speeds of the individual wheel sets carrying the 

single tower CPIS. One is tempted to literally think of a situation where an empty fish tin, 

with pores or openings at the bottom similar to those of the assumed sprinkler nozzles, is 

used to spray water over a piece of ground at different speeds. Logically, with the slowest 

speed over the piece of ground, water-logging is more likely to result than at high speed. 

This clearly negates or rather puts in doubt the assumption of the sprinkler nozzles having 

the same wetted area size or radius from the innermost to the outermost sprinkler nozzle 

along the length of the single tower.  

The alluded complex mobility of the real multi-tower CPIS triggers questions such as: 

How much sector area is swept by the outermost tower before coming to a halt, thereby 

letting the next tower to catch-up in a certain time? The diagram in Figure 5.8 illustrates 

a mimicked actual anti-clockwise movement of CPIS towers and shows only field strips 

A1 and A2 with their respective arcs QW and PR.  

The areas of field sectors, a1 and a2, in Figure 5.8 can be determined when the central 

angle POR is known and measured either in radians or degrees using the expression 

𝜃

360°
 (𝜋𝑟2) where 𝜃 is the central angle value in degrees while r is the radius of the sector 

(Russel, 2013). The calculations of the sector areas do not essentially differ from those 

done in the single tower CPIS scenario (Table 5.3) as they involve finding fractional parts 

of the entire circle area, depending on the value of the central angle. 
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Figure 5.8: A mimicked actual movement of innermost towers of the CPIS and swept 
sector areas 

 

However, the somehow “zigzag” movement of the actual multi-tower CPIS, as perceived 

from its stop and start mode of operation, coerces one to expect the resultant engraved 

track of the “entire machine’s single rotation round the pivot point” to be represented by 

the diagram in Figure 5.9. 

The convex and concave sections of the figure represent the alternating movements of 

the various wheel sets carrying the towers of the actual CPIS. A closer look at Figure 5.9 

makes one to perceive, from a theoretical perspective, that each wheel set except the 

extreme wheel set makes both concave and convex arcs and tracks “simultaneously” as 

they move to catch up and align with preceding wheel sets. For example, the second 
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wheel set from the outer part of the field carrying the tower shown by the second last red 

dotted line makes the black solid arc as it moves to catch up and align with the outermost 

wheel set.  

But because the outermost wheel set would already be stationary at point Q, from point 

P, when the black solid arc is formed by the second last wheel set, the tower between the 

last two wheel sets may be viewed to now have point P as its “pivot point” since it is 

motionless during the “perceived” formation of the green dotted concave track at that 

point. The same analogy may, thus, be considered for the third wheel set from the outer 

part of the irrigation field. 

 The hinted complex mobility and possible water spread mechanism of the real multi-

tower CPIS warranted a practical or hands-on approach at the research site where 

following emergent questions needed to be addressed: 

 How long does each tower take to cover a “swept” area before it comes to a halt, 

thereby letting the next tower to catch up? 

 Are the sprinkler nozzles arranged along the lengths of the towers of the same 

radius as assumed in the theoretical approach chapters above? 

 Does the real multi-tower CPIS release the same amount water in the various field 

strips within some designated areas per unit time? 
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Figure 5.9: The perceived awkward looking holistic track of a single shift of the multi-
tower CPIS   

 

5.7 Multi-Tower CPIS and Water Spread Mechanism 

This practical or hands-on stage of this intensive exploratory study focused on a five-

tower CPIS at the research site, and encompassed using a stopwatch to determine the 

time it took individual wheel sets carrying the towers to “sweep” a sector area or arc length 

within a field strip before coming to a halt. The emergent questions hinted above coupled 

                                               

 

      0 
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with the central research questions posed in the introductory part of the study, particularly 

on CPIS mobility and water spread patterns, steered and guided this stage of the project. 

 According to the farm manager at the research site, the observed five-tower CPIS was 

set at 85% of a minute on its “percentage timer” (see Figure 5.10) for the device) just to 

ensure enough moisture for the planted Soya beans to be easily up-rooted by the farm 

labourers.  

 

Figure 5.10: A picture of a percent input/timer 

In addition to determining times taken by individual CPIS towers to sweep arc lengths in 

field strips A1 to A5, the exploration involved ascertaining the uniformity of water released 

at identified spots within the field strips from the innermost field strip (A1) to the outermost 

field strip (A5). This was informed by Harrison’s (2012) useful hint that water application 

uniformity under a certain centre pivot irrigation system (CPIS) is determined by setting 

out cans or rain gauges along the length of system, bringing it up to proper operating 

pressure and letting it pass over the cans or rain gauges. In this practical exploration, rain 
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gauges were duly set out in successive field strips between the wheel sets carrying the 

machine towers and water was collected at such identified spots on the irrigation field. 

The water collection exercise was repeated at the identified field spots within the field 

sectors in order to maximize the accuracy of measurement. The data emerging from the 

practical activities mentioned above were vividly captured using Table 5.4. 

Table 5.4: The data for the complex circular motion and water spread of the actual five-
tower CPIS on a 5m radius irrigation field 
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A1 
(Innermost 
swept 
sector area) 

5,7 5,9 5,8 5.80 47 0,123 

A2 5,9 5,9 5,8 5,87 48 0,122 

A3 5,9 6,0 6,5 6,13 49 0,125 

A4 6,6 6,5 6,0 6,37 50 0,127 

A5 
(Outermost 
swept 
sector area) 

6,5 6,0 7.0 6,50 51 0,127 

  

5.8 Reflection and Conclusion on Multi-Tower CPIS Data 

 

The data in Table 5, particularly in the “average water collection” column, seem to confirm 

an earlier assertion in the previous chapter that the sprinkler nozzle radii from the 

innermost tower span to the extreme span cannot be the same as assumed in the 

previous theoretical approach chapters. The seemingly slight difference in the readings 

across the length of the machine radius clearly confirms Frenken’s (2006) assertion that 

nozzle sizes of the sprinklers used in a CPIS are smallest at the inner spans and increase 

with distance from the pivot centre. However, these smaller sprinkler nozzle sizes used 
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at the inner spans seem to be compensated by the slower pace or rotational speed of 

these towers in order for the machine to achieve uniformity of water spread. For example 

the wheel set closest the pivot point moves very slowly while releasing a small average 

water of 5,80 milliliters at the identified spot in the innermost field strip. Felck and Frenken 

(2005) concur by indicating that centre pivot systems require a continuously variable 

emitter flow rate across the radius of the machine in order to achieve uniform water 

application. 

The intensive practical approach data in Table 5.4, as evidenced from the “rate of water 

spread” column, yielded a near uniform or constant water spread model across the field 

strips of approximately 0,12 milliliters per second. This model differs from the “constant 

increase” mathematical models of water spread suggested by the data in the previous 

chapters of the theoretical approach to the machine’s exploration. The efficient 

management and control aspects of the actual CPIS’ overall operation, which were not 

essential object of this study, clearly has an impact on application uniformity of the 

machine. This, therefore, begs for a thorough understanding of the system assembly 

aspects as well as the factors such as pressure regulations, land topography and the 

calculation of a “coefficient of uniformity” suggested by Harrison (2012). 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

 

6.1 Introduction 

The study was inspired by the way the centre pivot irrigation system moves as well as the 

way it spreads water to avoid swelling or water-logging of the centre. In the provinces 

where farming is a major activity, pursuing this form of activity could inspire a lot of 

learners as it has a potential to bring mathematics closer to their environment. 

6.2 Addressing the research questions   

6.2.1 Research Question #1: School level mathematics concepts embedded in CPIS  

This study had two research questions. The first research question was: ‘What are the 

general mathematics concepts that are “grounded” in the CPIS’ mobility and water spread 

patterns per sections of the irrigation field’ (Section 1.3.1)? This question was pursued 

throughout the different sections of this report. Geometrical and algebraic patterns were 

created, analysed and interpreted in the context of the centre pivot irrigation systems.  

That, however, did not provide complete coverage of the possible mathematics that is 

embedded in the system. Much more work can still be done in the area.  

6.2.2 Research Question #2: “Potential” authentic tasks within school level mathematics  

The data from both theoretical and practical approaches to both linear move and a circular 

move irrigations machines (Tables 4.1 to 4.4 and Tables 5.1 to 5.4) make it clear that 

certain general school level mathematics concepts may indeed be “unearthed” or 

“generated” and consolidated within the CPIS setting. Mathematics concepts “grounded” 
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in this context include, inter alia, area of circles and rectangles; number patterns with 

constant first difference; ratio and rate (speed of CPIS towers and rate of water spread); 

unit conversions and measurement in real-world setting, for example, the use of rain 

gauges and a stopwatch in the practical approach to the exploration of the actual CPIS 

(section 5.7). 

The activities as well as the critical and creative aspects involved throughout the 

exploration are as advocated by the new mathematics curriculum documents. For 

example, the use of the “what if” questions in generating the data in Table 4.2 may further 

enhance learners understanding of the concept of area, thereby arousing the awareness 

campaigns for responsible water use. The design and use of tables to capture emergent 

data may, if left for learners to decide on, cater for the learners’ conceptual grasp 

“throughout the concrete-to-representational-to-abstract sequence of mathematical 

understanding” (DoE, 2007). 

6.3 Packaging Activities 

The package of the “possible” authentic activities involved throughout this exploratory 

study (see Tables 4.1 to 4.4 and Figures 4.6 and 4.7) may be used as a teaching and 

learning task as outlined below. 

6.3.1 Activity 1 

This may be designed to allow learners to generate the data in Tables 4.1, 4.3 and 4.4 

by focusing on the following aspects: 
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 Considering a linear move irrigation machine, on a rectangular field, to determine 

the relationship between areas of the first horizontal field strip receiving and not 

receiving water at the start of irrigation. 

 Finding theoretical mathematical models or general rules applicable in determining 

these areas as the field width (machine radius and number of sprinkler nozzles) 

changes. 

 Extending the learners’ thinking by introducing the “what if” questions such as the 

one that the entire horizontal field strip receive water when irrigation commences. 

The choice steps or units of translating the machine toward the outside of the field 

edge, but within feasible limits of the sprinkler nozzle radius, may depend on the 

developmental stages of learners executing the activity. 

 An integration of subjects and learning areas may be catered for by soliciting from 

learners, through guiding questions, a response that explicates their awareness of 

the need to use water sparingly as well as related water policies. 

6.3.2 Activity 2 

This may involve sheer observation that at the start of irrigation within the first horizontal 

field strip on a rectangular field, some points or areas receive more water as a result of 

co-incising “water throw” from adjacent sprinkler nozzles. A mathematical model for the 

relationship between the number of these “nodal points” and number of sprinkler nozzles 

fitted along the field width may be determined by learners to this effect. 

6.3.3 Activity 3 

This may relate to finding the rate of water spread from a circular move single tower CPIS 

(Table 5.1). This, however, would require that learners understand that the speed of the 
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machine’s single tower as well as the amount of water used daily for irrigating a field are 

determined by the farmer or user depending on such factors as soil topography, type of 

crops and soil capacity to hold water (aeration). This clearly speaks to controlled, 

independent and dependent variables in an experimental set-up. The issue of measuring 

units for the water spread rate may, if opened for learners to decide on, pose an 

interesting challenge that may stretch learner thinking in this regard. In addition, the 

algorithms or procedural fluency required to arrive at the rate of water spread may be 

enhanced in this regard. 

6.3.4 Activity 4  

This may be set out in situations where the single tower CPIS has to irrigate fractions of 

a circular field, that is, considering quarter circles, semi-circles, and three quarter circles 

instead of full rotations or circles. Although the necessary algorithm or formula as 

suggested by Russel (2013) is hardly taught at school level, this may be handled as a 

useful expanded opportunity as advocated in mathematics curriculum documents. 

6.3.5 Activity 5 

This may be a hands-on, field work under supervision at a research site wherein learners 

carry out some predetermined instructions on work sheets. This may clearly offer a 

mammoth of opportunities wherein mathematics process skills such as following 

instructions, ability to handle measuring instruments, taking measurements (e.g. taking 

the bottom of the meniscus when measuring amount of water collected in the rain 

gauges), recording using various modes of representation (e.g. tables; symbolic 

representation using algebraic variables) and reporting results both orally and visually 

using appropriate technology (e.g. power point presentations) may be facilitated and 
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assessed. The joy and fun of having to work in an authentic, realistic setting in the field 

may have positive spin-offs regarding learner attitude towards mathematics, which has 

always been a feeling of negativity worldwide (Frykholm & Glasson, 2005). This is indeed 

the joy of learners having to “bang their heads against a mathematical wall and then 

having to discover ways of either going over or around the wall” to reach desired levels 

of understanding the operations of the CPIS, particularly how it moves and spread water 

uniformly across the entire irrigation field. 

When one reverts back to Figures 4.6, 4.8, 5.3 and 5.4 about the water spread patterns 

suggested therein, it is crucial to realize that these are indeed mathematics exploration 

and learning opportunities for learners. How self-fulfilling would it be for learners to 

engage in the production of their own colour decorated water spread patterns of an 

irrigation field? The learners’ creativity and design capabilities would be aroused and 

nurtured if given these rare opportunities from earlier grade levels in the senior phase of 

schooling. After all, one of the founding principles of mathematics curriculum in South 

Africa is “active and critical learning” wherein an active and critical approach to learning, 

rather than rote and uncritical learning of given truths is encouraged ([DoE], 2011, p. 4). 

6.3.6 Activity 6 

This may be a consolidation exercise for learners in the senior phase where learners may 

be asked to identify the various geometric shapes formed by the area of common overlap 

of two, three and four circles. Weisstein (1999), on one hand, refers to an area of overlap 

of two circles as either a “symmetrical or asymmetrical lens” depending on whether the 

radii of the circles are equal or not and whether a circumference-to-centre arrangement 

of the circles is considered or not. Fewell (2006), on the other hand, used the concepts 
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of “circular triangle” and “circular quadrilateral” to identify the geometric shapes formed at 

the area of common overlap of three and four circles respectively (see Figure 6.1). In 

using these terms, Fewell (2006) reasoned that the sides of these shapes are actually 

arcs of different circles.  

                                (a) Lens shape 

                                 (b) Circular triangles 

                             (c) Circular quadrilateral 

Figure 6.1: Geometric shapes formed at area of common overlap of two, three and four 
identical circles (Weisstein, 1999) 

 

 Awkward sounding as it may, learners may either draw or imagine straight lines joining 

the points of intersection of the circles to check if they obtain “normal” triangles and 

quadrilateral in these areas of common overlap. 
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Furthermore, learners may be asked to come up with a necessary condition that must be 

met in order for two circles to overlap. Weisstein (1999) indicated that for two circles to 

produce an area of common overlap, the distance between their centres must not be 

more than twice the radii of the circles. 

The activity may, therefore, incorporate the “what-if” questions that lead learners to the 

realization of this condition. For example, how would the area of common overlap 

between two circles be affected if the distance between their centres is zero, equal to any 

value within the limit of the diameter of one of the circles? If the radii of both circles are 

equal in magnitude, would the shape formed by the area of common overlap be 

symmetrical or asymmetrical about the line joining the points of intersection of the two 

circles (radical line)? 

The identification act in this activity may further be extended to Figure 5.6 where learners 

may be asked to focus on patterns that seem to be shown by the number of sprinkler 

nozzles and the “lens-shaped” areas within sectors of the quarter field, especially from 

field sector A2 going towards the field edge. These patterns become easier to spot if 

learners are directed to regard sector A2 as their point of departure or being told to 

assume sector A1 as a pivot point similar to a radio dial knob for switching from one radio 

station to the other. This assumption would, therefore, allow learners to identify the 

sequences formed by the numbers of sprinkler nozzles and “lens-shaped” areas within 

the quarter field from the second sector to the field edge as 5; 8; 11;…. and 4; 7; 10;… 

respectively. These sequences would then have the general linear expressions (3x +2) 

and (3x +1) respectively, where x represents the sector numbers with A2 now regarded 

as A1.   
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6.3.7 Activity 7 

Most learners in the senior phase and even beyond, struggle with the concepts of space 

as advocated in the learning outcome of “Space and Measurement”. The use of Venn 

diagrams in the section of “Probability calculations for dependent events” in grade eleven 

quickly comes to mind at this stage. 

This activity may, therefore, assist learners in consolidating their identification ability 

regarding areas of common overlap between and among circles, and hence Venn 

diagrams if administered in earlier grades of high school (grades 8 and 9). In this case 

letters of alphabet (variables) may be randomly placed in different areas of common 

overlap and learners asked to tell into how many circles the variables lie. Most often 

learners may fail to realize that it would be easier to use “concave” and “convex” arcs 

surrounding the variable to tell an answer. 

The calculations of areas of the common overlap of circles alluded to in Figure 6.1, though 

stretching beyond school level mathematics as prescribed in the CAPS documents, may 

serve as good expanded teaching and learning opportunities or enrichment opportunities 

for learners in the Further Education Training (FET) band of schooling, that is, from grade 

ten to grade twelve. Weisstein (1999) gave a complicated formula that may be used to 

determine the area of common overlap between two circles as: A = 2R2Cos-1(d/2R) – 

(1/2)d x sqrt (4R2 – d2), where d is the distance between the circle radii R and r of the two 

circles. 
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However, a school level expanded opportunity activity based on this area of common 

overlap between two circles with equal radii may still be administered in the FET band 

(grades 10-12).  

6.3.8 Activity 8 

This activity would require prior foundational knowledge of properties of a rhombus and 

equilateral triangles, the Cartesian plane, transformation (reflection of shapes across a 

vertical or horizontal line, Pythagorean theorem, cosine rule or cosine ratio as well as the 

formula for calculating area of circle segment, which may be stated in the problem or left 

out for learners to look for using relevant sources, together with the common value for the 

radii of the circles. The diagram in Figure 6.2 vividly captures the two circles and their 

common radius as well as the area of common overlap hinted in the scenario above. 

                                             

Figure 6.2: A schematic of area of common overlap of two identical circles on a 
Cartesian plane (Weisstein, 1999) 

 

The diagram in Figure 6.2 may be followed by leading questions that “scaffold” learners’ 

understanding of the scenario and hence the calculation of the shaded area. Learners 

should understand and deduce that if the radii of the circles are equal, then an equilateral 
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triangle or a rhombus may be constructed in the area of overlap by drawing straight lines 

to the centres to each other and then to the points of intersection of the circles, with all 

sides of the triangle or rhombus equal to the common radius (r). Weisstein (1999) 

provides the following breakdown of steps needed to finally find the total area of common 

overlap of circles with equal radii: 

o Construction of an equilateral triangle in the shaded area of Figure 6.2 above by 

joining the centres together, and then joining each centre to one of the points of 

intersection of the circles (the cusps of the “lens” shape); 

o Calculating the central angle that would assist in finding the area of a circle sector; 

o Using the area formula, Area = 0,5 x r x r x Cos (central angle) or A = 0,5 x base x 

height, to determine the area of the equilateral triangle; and, 

o Calculating the area of a sector, subtracting the area of the equilateral triangle and 

multiplying the result by two to get the total area of common overlap of the circles. 

6.3.9 Activity 9 

This may be a further extension activity that requires grades 11-12 learners to determine 

the area of common overlap of three identical circles, that is, with equal radii. Croft, 

Falconer and Guy (1991) liken the shape of this area of common overlap to a Reuleaux 

triangle, which they define as a constant width curve based on an equilateral. Weisstein 

(1999) gave the formula for the area of a Reuleaux triangle as: A= 0,5πs2 – 0,5sqrt (3)s2, 

where s is the constant width (common radius of the circles). Weisstein (1999) further 

alleges that a breakdown of the steps towards finding this area of common overlap of 

three circles may be as follows: 
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o Finding the sector area and multiplying it by three (number of sectors overlapping); 

and 

o Subtracting the area of two equilateral triangles from value of the three sector 

areas to account for over-count of the triangles to get an answer. 

This, however, is the same as finding the total area of three sectors forming the common 

overlap portion and adding the area of the equilateral triangle once. The diagram in Figure 

6.3 shows the Reuleaux triangle formed by the green and black areas between the arcs 

of the three circles. The straight line equilateral triangle, shaded in black, may be 

constructed within the Reuleaux triangle.  

                                 

Figure 6.3: Reuleaux triangle at the area of common overlap of three identical circles 
(Weisstein, 1999) 

 

It, therefore, follows that the CPIS context or setting caters for the development of the 

afore-mentioned mathematics concepts due to its circular pattern of movement as well as 

its towers which could be thought of as representing radii of various circles. In addition, 

the data in Tables 4.1 and 4.2 could be used to facilitate the concepts of number patterns 
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or sequences within the FET band of the school system. For example, the theoretical 

model for data in various columns of Tables 4.1 and 4.2 might be useful in offering 

“scaffolds” necessary for conceptual understanding of sequences in the CPIS setting.  

However, the concept of sector area calculations in school level mathematics is restricted 

to quarters and half sectors. The CAPS document for Mathematical Literacy ([DoE], 2011, 

p. 68) concurs by stating that learners in grade ten should be able to perform calculations 

of area of circles (quarters, semi and three quarters) using known formulae. Perhaps, 

exercises or assessment tasks involving other circle sectors than those mentioned in the 

document might be administered to Mathematics learners as “expanded opportunities” or 

“enrichment or extension exercises”. 

6.4 Linking the creative mathematics and problem-solving to the study 

According to Forbes (1995) creativity is process that involves novelty, originality, 

innovations and inventions in problem-solving. However, all inventions as creative 

solutions but not all creative solutions are innovations. This means that if one happens to 

know the solution to a problem without previously thinking about the problem, then that 

solution is not creative. During the unfolding of this study, the researcher had to think 

deeply about data collection techniques like generating and using sketches inspired by 

the mobility and water spread patterns of the CPIS using computer skills using the 

sketchpad program. This meant mimicking and simulating how the machine moves and 

spread water across the irrigation acreage, which was not an overt act but yet effective in 

ensuring that the research questions driving the study are addressed. Furthermore, the 

“possible” teaching and learning activities packaged require some measure of “out-of-the-
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box” thinking from learners in the identified grade levels of schooling (sections 6.3.1 to 

6.3.9). The bottom line is that a real-life context known to the researcher was explored to 

a certain level of “understanding” how the machine moves and spread water evenly on a 

field. After all, creative problem-solving encompasses mental shift from working in less-

authentic settings; problem reframing techniques; multiple-idea techniques; and inducing 

change of perspective (Forbes, 1995). These techniques are evident in solutions that 

have “elegant” characteristics such as using existing components of a problem without 

introducing any new components in the solution. Thus, a creative solution must solve the 

stated problem in a novel way and the solution must be reached by the learners 

independently. 

6.5 Recommendations 

 

The study finally indicated that the question of designing and packaging a “potentially” 

authentic task, comprising of interwoven activities, using the CPIS context for teaching 

and learning still needed to be thoroughly done and polished. This might, perhaps, be 

viewed as a “grey area” that requires to be zoomed into and evaluated under real 

classroom interactions in a follow-up study. These model-eliciting activities (MEAs), as 

advocated by Chamberlin and Moon (2005), might help to avert the “widespread teacher 

frustration” on the use of projects and investigations in “alternative learner assessment”. 

A further research study may, therefore, focus on the design and thorough packaging of 

authentic tasks that might be useful in actual school settings. 
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APPENDIX A 

 

Dear Farm Manager/Owner 

I hereby kindly request you to allow me, [Tau ME} masters student registered with the 

University of Limpopo (Turf loop Campus)], to execute my research project on your farm. 

The execution of the research study will focus on the mobility and water spread 

mechanisms of one of your irrigation technologies, the Centre Pivot Irrigation System, 

which I strongly believe may be used as a “rich” context in the teaching and learning of  

mathematics concepts at school level (grades R-12). I promise that the execution and 

findings of the study will in no way hamper or negatively affect your daily work as well as 

the integrity of the farm. 

Thanking you in advance 

Yours sincerely 

Tau ME        Signature: …………….. 

(Researcher)      Date: …………………… 

 

 

 

 


