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ABSTRACT

Stabilised cubic zirconia is an important engineering material. Its high ionic
conductivity, especially at high temperatures, makes it suitable for use as an
electrolyte in solid oxide fuel cells as well as in devices such as oxygen sensors,
electrochemical oxygen pumps, susceptors for induction heating, resistance heating

elements and electrodes for magnetohydrodynamic power generators.

At the fundamental level, the nature of the defect interactions between the impurity
cations and the oxygen vacancies is not well understood and presents challenging
problems. In the present investigation, computer modelling methods were used to
clarify the nature of the defect structure and its effects, the defect interactions and
ordering, the transport mechanism as well as related properties in ZrO2 (x mol %
Y203}, for x = 9.4, 15, 21 and 24. The defect and thermodynamic properties of
this material were investigated using static lattice simulations, using the CASCADE
and THBREL computer codes, respectively. The transport properties were derived

from molecular dynamics simulation techniques using the FUNGUS code.

The present investigation presented for the first time elastic constants, and their
temperature dependences, in 9.4 mol%, 15 mol%, 21 mol% and 24 mol%
concentrations using the complementary computer simulation techniques. The
calculated values of elastic constants agreed well with those from experiment.
Various configurations were tested and it was found that in general the I-type
configuration was most stable; and was subsequently used as the structural entity

on which supercells for molecular dynamics (MD) calculations were formed.



Furthermore, the oxygen vacancies were found to be preferentially located at NNN
positions to the dopant yttria cations, in agreement with experimental results and

computer simulation studies on calcia-stabilized cubic zirconia.

The magnitudes of the oxygen ion diffusion coefficients were found to be
comparable to those of liquids as in other fastion conductors. These magnitudes
decreased with increasing yttria content. This was ascribed to the trapping of
oxygen vacancies in large defect complexes. The magnitudes also decreased with

decreasing temperature as in other fluorite structured materials.

Cation-cation and cation-anion radial distribution functions (RDFs) were found to be
typical to those found in solids. Thus, the FCC structure, even at a high
temperature such as 1600 K, was preserved indicating that yttria-stabilised cubic
zirconia is a solid electrolyte. On the otherhand, anion-anion RDFs were typical to
those found in liquids, indicating that the oxygen ions formed a weakly correlated

subsystem.
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CHAPTER 1
INTRODUCTION AND GENERAL SURVEY

Solid electrolytes, more popularly known as fastion conductors, are electrolytes
whose ionic conductivities, well below their melting points, are comparable with
those found in the liquid state. These materials are of particular interest to both
physicists and technologists because of their intricate conduction mechanism. As a
result, the past decade has witnessed the introduction of new techniques, both
theoretical and experimental, for investigating these compounds. At the moment
research on defect, thermodynamic, transport and structural properties is at such an
advanced stage that the properties of these materials are understood much better.
This chapter outlines fastion conduction, phenomenological models, properties of
yttria-stabilised cubic zirconia and reviews previous studies on fastion conductors,
with special reference to yttria-stabilised cubic zirconia, using both experimental and

theoretical techniques.

1.1 IONIC TRANSPORT AND DEFECT MECHANISMS

In this section ionic transport in fastion conductors based on different types of
defect mechanisms is discussed. This will be followed by a brief discussion of the
phenomenological model, which is an essential theoretical model explaining the

mechanisms responsible for order-disorder transitions.

The basic theory of ionic transport in solids at the macroscopic level concern both
diffusion and conductivity, i.e. matter and charge transport (Wagner 1943, Catlow

1986a). A hop diffusion model is appropriate in fastion conductors with a hopping

distance d_ » 2A, diffusion coefficient D = 10 cm?s™" and site dwell time t

dwe



(v 3ps) > tsp (x 0.5 ps), where tsp denotes the time spent between sites. Thus

diffusion is a process of discrete jumps of particles over an energy barrier and it is

this hopping process that gives rise to ionic conductivity, provided an energetically

accessible empty site is available in the immediate vicinity of the ion.

Chandra (1981) has identified five properties that characterise fastion conductors :

(a)

(b)

(c)

(d)

(e)

the number of available empty sites exceeds the number of ions;

the ionic conductivity is high (107" - 10'4)9'1cm'1:

the principal charge carriers are ions which implies an ionic transference
number close to unity;

the electronic conductivity is small, with electronic transference number, t_,

less than 1074,

the activation enthalpy is low.

During diffusion and ionic conduction, ions move through the lattice. The diffusion

process only occurs when defects are present in the lattice. The four major types

are :

(a)

(b)

(c)
(d)

Schottky defects, which form when positive and negative ions leave their
normal lattice sites, thereby creating vacancies, and eventually residing at
internal or external surfaces;

Frenkel defects, which occur when ions move to intestitial positions and
leaving vacancies at their lattice sites;

dislocation and boundaries;

electronic defects and substitutions.



The first two types of defects are mainly responsible for ionic transport. Some
possible transport mechanisms involving these defects are shown in figure 1.1.
Figure 1.1(a) shows the vacancy mechanism in which atoms merely jump into
vacancies while figures 1.1(b) and 1.1(c) involve interstitials or Frenkel defects.
An interstitial mechanism (figure 1.1(b)) involves hops by interstitials from interstice
to interstice. Another manner in which interstitials can be transported is when an
interstitial hops to a normal lattice site pushing the atom there to another interstice
and is known as the "concerted" or "interstitialcy” mechanism (figure 1.1(c)).
Conduction via defects involving several disordered atoms in a ring, giving rise to a

"ring" mechanism, has been identified (Chandra 1981).

1.2 PHENOMENOLOGICAL MODELS

The phenomenological model is one of the theoretical approaches that are used to
clarify the mechanisms responsible for the transitions to the fastion phase. The
second theoretical model is computer simulation, discussed in Chapter 2. Other
theoretical models are discussed by Boyce and Huberman (1979), Chandra (1981)
and Ngoepe (1987).

In the phenomenological models, the interaction of thermally generated defects
determines whether the charge carrier density will increase abruptly or continuously
at the transition temperature. This results in an associated increase in conductivity.
Several phenomenological approaches to the diffuse transition have been based on
defect interactions (Catlow et a/. 1978, Huberman 1974, Rice et al. 1974, Welch
and Diénes 1977). lllustration of how the high temperature phase transition may be
simulated, will be based on the models proposed by Huberman (1974), Rice et al.

(1974) and Welch and Diénes (1975, 1977).



e —+—t—t
bt F—t—+-
— e+ — =t
+—t et e
e —+—+—t

(b) (©

Figure 1.1 Possible ion transport mechanisms in lonic solids: (a) vacancy
mechanism, (b) interstitial mechanism and (¢) interstitialcy mechanism



The phenomenological models are generally characterised by the free energy of the
crystal having the form

F(n) = nh_ - hin) - nS T - S_(n)T 1.2
where n denotes the interstitial concentration, ho is the Frenkel defect formation
energy at n = 0O, hi(n) is the defect interaction energy which reduces the effective
Frenkel energy as n increases, Sv is the defect vibrational entropy, SC is the
configurational entropy and h0 is the Frenkel pair formation energy at n = O.
The formation energy is given by

E(n) = nh0 - hi(n)
in accordance with the Huberman’s model. The Welch and Diénes model assumes
that E(n) varies quadratically with n as

E(n) = nh_ - hn?
without going into details of defect interactions. The condition of a free energy
minimum

IBFISn}T = 0
determines the equilibrium value of n at a fixed temperature in each model. The
different types of phase transitions are determined by the values of the
phenomenological constants chosen, the detailed nature of the transition and the
disordered state being controlled by hi(n) and SC (Strassler and Kittel 1965,

Huberman 1974, Rice et a/. 1974, Welch and Diénes 1975, 1977).

In fluorites a quantitative application of equation 1.2.1 is consistent with the anion
Frenkel defect concentration rising rapidly near the transition temperature Tc' This
is due to the attractive defect interactions. High temperature Brillouin scattering
studies (Catlow et a/. 1978) indicated that repulsive interactions become important
at concentrations of n > 0.1 and suppress further generation of defects. This

would result in limited disorder as opposed to the earlier suggestions of massive



fluorine disorder in a "liquid-like" state (Derrington and O’ Keefe 1973).

1.3 YTTRIA-STABILISED CUBIC ZIRCONIA

In this section properties of yttria-stabilised cubic zirconia will be discussed in terms
of structure, transformation and cubic stabilisation. This is particularly important
since these aspects have a significant bearing on the observed defect and transport

mechanisms in this material.

Stabilised cubic zirconia is an important engineering material. Apart from its use as a
structural material, it also finds applications in a variety of devices because of its
diversified properties. Its high ionic conductivity, especially at high temperatures,
makes it suitable for use as an electrolyte in solid oxide fuel cells (Etsell and Flengas
1970, Dell and Hooper 1978, Steele 1992, 1995, Moulson and Herbert 1990,
Minh 1993, Kilner et al. 1997) as well as in devices such as oxygen sensors (Ketron
1989, Etsell and Flengas 1970), galvanic cells for measuring both oxygen activities
in gaseous environments and thermodynamic quantities (Steele 1968, Goto and
Pluschkell 1972, Rapp and Shores 1970, Tretyakov and Kaul 1972, Etsell and
Flengas 1970, Schmalzreid and Pelton 1972), resistance heating elements and
electrodes for magnetohydrodynamic power generators (Wolff 1969, Etsell and
Flengas 1970, Hammou et al. 1971) and susceptors for induction heating (Etsell and

Flengas 1970, Hull et a/. 1988).

1.3.1 STRUCTURAL PROPERTIES

A low temperature fluorite structure (Fm3m) may be viewed as a simple cubic array
of anions with cations occupying alternate cube centers (Hodby 1974). In a
primitive cube of side x the fluorite structure consists of three interpenetrating face

centered cubic lattice with the first lattice of species A located at origin (0, O, 0)



and having a translational vector

0 . 05x , 05%]:
0.5x , 0 , 0.5 x|:
6Ex . O06x . O ]

lons of type B are located on two further lattices with similar translational vectors
but with the origin at (0.25 x, 0.25 x, 0.25 x] and [0.75 x, 0.75 x, 0.75 x|.
The interstitial site is located at a cube center coordinated by eight ions of type B.
Both the A ion and interstitial sites possess an Oh symmetry whilst the site of the
B ion has a ng symmetry. The fluorite structure provides a close packing of
different ion species and two individual hard sphere-like ions are in contact when the

condition

4.45 > "A) 5 573
r(B)

is satisfied (Wyckoff 1965). Here r(A) and r(B) represent the radii of species A
and B, respectively. Contact between distinct ions is favoured predominately by
strongly ionic compounds with formula A82 possessing large ions of component A.
The fluorite structure in yttria-stabilised cubic zirconia is shown in

figure 1.3.1.1.



Figure 1.3.1.1 The fluorite structure of cubic zirconia

Key:
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1.3.2 STRUCTURAL TRANSFORMATION IN Zr0,

More than five polymorphisms of zirconia are reported in the literature (Subbarao
1981, Ho 1982, McCullough and Trueblood 1959, Smith and Newkirk 1965, Teufer
1962). They have been examined as a function of temperature using infrared
(Phillippi and Mazdiyasni 1971, Feinberg and Perry 1981), Raman (Kermidas and
White 1974, Anastassakis et al. 1975, Ishigame and Sakurai 1977, Hamilton and
Nagelberg 1984, Perry et al. 1985) and luminescence (Asher et al. 1976)

spectroscopy. However, only there polymorphisms are well established.

Pure zirconia possesses a monoclinic structure [P21/C] at ambient temperatures
(Asher et al. 1976, Ishigame and Sakurai 1977). The monoclinic phase can be
described as a distortion of the cubic fluorite (Can)-type structure. The zirconium
ions have a coordination number of seven. A structural transition to the tetragonal
structure {P42/nmc] occurs at about 1300 K. This form represents a slightly
distorted fluorite structure (Teufer 1962, Smith and Newkirk 1965). This transition
is athermal and diffusionless (Bansal and Heuer 1972), which is characteristic of a
martenistic transformation. The transformation is further accompanied by a change
in coordination from seven to eight. A tetragonal to cubic transformation was
observed at about 2640 K (Smith and Cline 1962, Nikol'skii et a/. 1972) with each

4* jon still coordinated by eight equidististant 0% ions since no bond

Zr
configuration change occurs. The cubic phase of ZrO:2 has the fluorite structure

Fm3m.

1.3.3 CUBIC STABILISATION OF ZrOZ
The polymorphism of pure ZrO2 restricts the practical usefulness of pure zirconia as
the structural transitions are accompanied by substantial and disruptive volume

changes (about 9%). It is for this reason that interest has been centered on



compounds of zirconia which form a stable structure. Ruff and Ebert (1929) and
Duwez et al. (1951) postulated that an oxide could stabilise ZrO2 if its radius is
similar to that of the zirconium cation and has a cubic fluorite structure. Dietzel and
Tober (1953) added the requirement that the metal-oxygen bonds of the oxide must
be more ionic than those of ZrOz. These conditions are satisfied when oxides such
as CaO and Y203 form non-stoichiometric compounds with zirconia such as
ZrO,,(x mol% CaO) and Zr0,(x mol% Y203), respectively (Etsell and Flengas 1970,
Dell and Hooper 1978). A concentration of the stabilising oxide in the range 8 to

36 mol% is required to stabilise zirconia to the cubic phase (Duwez et a/. 1951).

An aliovalent cation is a cation whose charge differs from that of the host cation. If
the dopant ion has a lower vacancy than that of the host cation, an anion vacancy is
formed; otherwise an interstitial anion vacancy is created. Thus, in zirconia
systems one oxygen vacancy is produced if a host oxide cation, Zr4+, is replaced

by a divalent substitutional cation, Caz"', or by a pair of trivalent substitutional

cations, y3+, These oxygen vacancies are introduced as charge compensating
defects. Commercial cubic zirconias have the formulae Zr, Ca O,  and
Zr1v2xY2x02-x' The stabilised form of cubic zirconia is much less susceptible to

thermal shock, is highly resistant to the effects of oxidising environments and is
stable up to 2800 K. It is this high temperature reliability that makes stabilised cubic
zirconia important in technology of materials. Some of the physical properties of

cubic zirconia are given in table 1.3.3.1.

10



Table 1.3.3.1 Physical properties of cubic zirconia

Quantity Magnitude Unit

YZOS concentration range 8 - 36 mol %
Refractive index 2:15-2.18

Transparent region 300 - 7000 nm
Hardness 7-8 Moh's scale
Lattice constant 5.14.-65.22 10 "%m
Melting point 2800 K

1.4 LITERATURE REVIEW
Numerous experimental techniques, notably Brillouin scattering, ultrasonic, electrical
conductivity and neutron, Raman and quasi-elastic scattering, have been used to

study properties of fastion conductors.

Fundamental studies on cubic zirconias in the past decade have provided essential
information that helped clarify not only the intricate defect and conduction
mechanisms but the underlying structural properties as well. The observations and
conclusions arrived at using both experiment and computer simulation are reviewed

in this section.

1.4.17 EXPERIMENTAL CALCULATIONS AND OBSERVATIONS

The order-disorder transformation at 1300 K in both Zr02{x mol% CaO) and ZrOz(x
mol % Y203) systems has been the subject of numerous investigations (Carter and
Roth 1968, Steele and Fender 1974, Allpress and Rossell 1975, Alpress et al.
1975, Faber et al. 1978, Hudson and Moseley 1976, Cohen et a/. 1981, Morinaga

11



and Cohen 1979, 1980, Botha et a/. 1993). Neutron scattering (Steele and Fender
1974, Faber et al. 1978) and x-ray diffraction (Cohen et a/. 1981, Morinaga and
Cohen 1979 1980) studies indicate that the disordered state, which lacks
long-range order on the oxygen sublattice, results from the displacement of oxygen
ions along the [100] direction. Thus, since these experiments were conducted at
ambient temperature subsequent to cooling, static lattice displacements were often
favoured in the intepretations. This was demonstrated by Feinberg and Perry (1981)
in their Raman scattering work on ZrO2 (12 mol% Y203). They compared the
spectrum of the zirconia system with one phonon density of states derived from a
rigid ion model and confirmed that the polarised spectra, arising from contributions
of modes throughout the Brillouin zone, originate from the breakdown of wave
vector selection rules owing to the structurally disordered oxygen sublattice. In
particular, Steele and Fender (1974) observed smaller [111] outward motions in
addition to the [100] movements of nearest-neighbour oxygen ions towards the

vacancies.

Point defects have been identified as directly responsible for ionic transport (Wagner
1943, Etsell and Flengas 1970). However, at the fundamental level information on
the nature of the defect structures and transport mechanisms giving rise to fastion
conduction is sparse and present challenging problems. The ordering of defects has
been observed in stabilised zirconia when annealed for prolonged periods below the
transition temperature (Carter and Roth 1968, Dell and Hooper 1978). The
observed gradual decrease in ionic conductivity was attributed to the ageing
phenomenon originating from the ordering of both cations and anions (Allpress et al.

1975, Allpress and Rossell 1975).

Hudson and Moseley (1976) have suggested the presence of oriented intergrowths

12



of monoclinic ZrO2 to be responsible for the observed diffuse electron scattering
and for the resulting super structure. Faber et al (1978) explained neutron
scattering results from single crystals of ZrOZ(x mol% CaO) and Zr02(x mol%
Y203) in terms of collective [100] displacements on the oxygen sublattice. On the
other hand, x-ray diffraction studies (Morinaga and Cohen 1979 1980) indicate
[100] displacements in both ordered and disordered states. They suggested that the
[100] displacement in the disordered state may be a precursor to the ordering
process and may be related to the transformation from cubic to tetragonal phase at
2573 K. Teufer (1962) described the tetragonal phase as resulting from anion
displacements from the cubic fluorite positions along [100] directions. The motion
of oxygen ions results in quasi-elastic light scattering (Perry and Feinberg 1980,
Suemoto and Ishigame 1983). Both workers associated the polarizability
fluctuations with the motion of the oxygen ions. The oxygen ions migrating to
neighbouring sites have to overcome barrier heights, which are dependent on the

arrangement of the Y3* and z** ions.

Andersen et al. (1985, 1986b) and Osborn et al. (1986) used high temperature
coherent diffuse neutron scattering to probe both the local deformations in the
vicinity of an oxygen vacancy and longe-range correlations. The observed room
temperature diffuse intensity was ascribed to two main contributions: (a) a
relatively vacancy-free tetragonally distorted region whose volume decreases with
increasing dopant concentration and (b) a region in which vacancies and their
aggregates are present. The aggregates were found to be stable on the time scale
which can be determined by neutron scattering up to a temperature of 1900 K in
ZrO2 (9.4 mol % Y203). The scattering becomes quasi-elastic above 1200 K. This
behaviour was attributed to more stable small defect clusters or single vacancies,

and was associated with ionic conduction. Furthermore, the tetragonal region was

13



found to be negligible for Y203 concentrations above 18 mol % suggesting a direct
relation between the cubic phase stabilisation and the mechanism involved in the

distortion.

Elastic constants measurements are crucial since these quantities provide
fundamental information concerning the interionic forces in solids. Furthermore,
they are used extensively in the derivation of the interionic potentials used in
computer simulation studies of solids (Catlow 1986a). Elastic constants of cubic
zirconia have been measured at room temperature by ultrasonic (Pace et al. 1969,
Farley et al. 1972, Hailing and Saunders 1982, Hart et al. 1986) and Brillouin
scattering techniques (Botha et a/. 1993, Aleksandrov et al. 1975, Chistyi et al.
1977) as a function of composition. The ultrasonic measurements were extended to
1000 K by Kandil et al. (1984) who observed a quasi-linear decrease in elastic
constants associated with lattice anharmonicity. The quasi-linear behaviour was
explained in terms of the quasi-harmonic approximation (Garber and Granato 1975).
A study by Ngoepe and Comins (1987) using Brillouin scattering methods in ZrOZ(x
mol % Y203), with x = 9.4, 15, 21 and 24, have shown the softening of the
acoustic mode frequencies above about 1100 K which are somewhat similar to

those observed in other fluorite-structured compounds.

High temperature Brillouin scattering and refractive index measurements (Botha et al.
1993) on the behaviour of the elastic constants of cubic zirconia has shed new light
on the properties of ZrOz(x mol % Y203). This investigation presented for the first
time a complete set of elastic constants of cubic zirconia in the 300 - 1400 K
temperature region. A significant elastic constant anomaly was observed above a
characteristic transition temperature, T _, which is dependent of the concentration

c
of Y203. This behaviour was attributed to cooperative development of disorder

14



emanating from defect-defect interactions. It was concluded that the observed
significant differences associated with disorder process, leading to features common
with the transition to the fastion phase in the other fluorites, suggest a different

nature of defects created in cubic zirconia.

1.4.2 THEORETICAL CALCULATIONS

In this section previous results obtained from computer simulation studies are
reviewed. These concern the calculation of defect energies, ionic transport and
structural properties obtained using static lattice simulations, molecular dynamics
methods, Monte Carlo techniques and quantum mechanical methods. The first two
techniques are the major methods in the present investigation and as such Chapter 2

discusses them in detail.

1.4.2.1 STATIC LATTICE SIMULATION

Static lattice simulation techniques have been used to investigate the behaviour of
elastic constants in alkaline-earth fluorides CaF2, Ser, BaF2 and F'ic:;F2 (Catlow and
Norgett 1973, Harley et a/ 1975, Catlow et al. 1977, 1978). All the elastic
constants, and their combinations, were observed to decrease linearly with
increasing temperature up to the transition temperature, Tc' Vacancy activation
energies in Can, Ser, BaF2 and SrCI2 were calculated by Catlow and Norgett
(1973) and Catlow et al. (1977). In general, low activation energies, as compared
to experimental values, were obtained, indicating the uncertainity around the precise
nature of the anion migration mechanism. Leslie (1983) has attributed the observed
differences between the calculated and the experimental values to the exclusion of
the treatment of ligand field effects while Harding (1985) ascribed the discrepancies
to the neglect of entropy terms rather than problems with the adopted interionic

potential model. Defect formation and activation energies in the tysonite-structured
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LaF3 were calculated using the CASCADE computer program by Jordan and Catlow
(1987). Frenkel disorder was found to be favourable. Ngoepe et a/. (1990) used

the THBREL code to determine lattice energies and elastic constants in LaF,. The

3
calculated temperature gradients of the elastic constants were reproduced
satisfactorily below 1150 K. Furthermore, Frenkel disorder was found to be

favourable, confirming ealier results by Jordan and Catlow (1987).

The current direction of the field of static lattice simulations is increasingly towards
complex and semi-ionic materials. Catlow (1986b) determined the defect energies
of BaTiO3 and observed that Schottky defects are favourable in this material.
Catlow (1981) reviewed earlier applications to non-stoichiometric oxides such as
Fe1_x0, TiOz_x and U02+x. Catlow and Fender (1975) used the HADES program
to perform lattice energy calculations based on the Born model to examine the
possible structures in Fe1"XO. They identified a basic and stable cluster comprising
four vacancies and one tetrahedral Fe° ™' ion, i.e. 4:1 cluster. Their results agree
with those from microscopy (lijima 1974) and neutron diffraction (Cheetham et al.
1971) studies. The complex near-stoichiometric Ti02_x was investigated by
Catlow and James (1982) and they observed the predominance of vacancy point
defects, which aggregate into shear planes at higher deviations from stoichiometry.
Jackson et al. (1986) used the CASCADE simulation program to determine the
dependence of the calculated Frenkel formation energy on the size of region | in
uranium oxide. Their results show a saddle point energy occuring with 200
particles, in contrast to 100 particles used by Catlow (1977). The work by
Jackson et al. (1986) gave high cation migration energies. This was attributed to
the inadequacies of the ionic model to describe the interactions at the saddle point

for cation migration in uranium dioxide.
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Doped fluorite oxides differ from the halide systems discussed above in that disorder
is generated by impurities rather than thermally. The most widely studied fluorite
oxides are Zr02 and CeOz. When stabilising agents such as CaO and Y203 are
added to Zr02, the dopant cation substitutes for the zirconium ion and oxygen
vacancies are created for charge compensation. Butler et a/. (1983) studied CeO2
using both  HADES and CASCADE simulation codes and concluded that the binding
energies are strongly sensitive to the radius of the impurity ions. The calculations by
Jackson et al. (1986) showed that a large component of the binding energy is due to
elastic effects arising from the mismatch between dopant and host ion radii. It is for
this reason that the largest energy was obtained for Sc3+ which has the smallest
radius and hence the largest mismatch, in agreement with results from conductivity

measurements by Gerhardt-Anderson and Norwick (1981).

The nature of the interaction between the dopant cation and the oxygen vacancies
has been widely studied (Etsell and Flengas 1970, Tien and Subbarao 1963, Rhodes
and Carter 1962, Allpress et a/. 1974). Dwivedi and Cormack (1990) investigated
the defect structure of calcia-stabilised cubic zirconia by atomistic simulation
techniques using CASCADE. Anion defect association energies for oxygen
vacancies and impurity calcium ion at both NN and NNN positions suggested the
preferential sitting of the vacancies in the NNN position with respect to the dopant
cation at low concentration. This is in contrast with results from diffuse scattering
of x-rays (Morinaga et a/. 1979 1980) and neutrons (Steele and Fender 1974) and
EXAFS studies (Tuiler et al. 1987) but agrees with electron microscopy results
(Allpress and Rossell 1975) and EXAFS studies (Catlow et al. 1986). Veal et al.
(1988) suggested that a mixture of vacancies sitting at NN and NNN positions
might occur at high concentrations based on observations from EXAFS studies.

Dwivedi and Cormack (1990) explained their findings in terms of the larger size of
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Ca2+ ions which impose a cubic symmetry on the anion sublattice at NNN
positions. Anion vacancy association energies for NN positions were found to be
negative. Schottky intrinsic disorder with low energy per defect was identified, in
contrast with the prevalence of Frenkel disorder in other fluorite-structured oxides

(Buchanan 1986).

Mackrodt and Woodrow (1986) also reported a lower value of energy per defect for
Schottky disorder in Zr02. Dwivedi and Cormack (1990) argued that because of

the small radius of the Zr4+

ion, ZrO2 has the natural tendency to transform to the
monoclinic form in which the zirconium ion is sevenfold coordinated by oxygen ions,
thus providing a closer packing of the oxygen ions around the cation. Anion vacancy
migration energies were found to be in the range 0.8 - 1.1 eV (Oishi and Ando
1984, Etsell and Flengas 1970). Dwivedi and Cormack (1990) calculated this

energy to be ~ 0.6 eV and suggested that a larger energy of migration might be

obtained from large defect complexes.

1.4.2.2 MOLECULAR DYNAMICS

Fastion conduction was first demonstrated by Rahman (1976) using molecular
dynamics (MD) simulation techniques in Can. In a later study Gillan (1985)
observed that diffusion of the anions occurs predominantly along the <100>
directions and that the fluorine ions seemed to execute correlated motion. The
observed steep slope of the mean-square displacement versus time graph show that
the anions were diffusing rapidly while the constant long-time value for the cations
implies that these were vibrating about their lattice positions, confirming that the
system was in the solid state. Ngoepe and Catlow (1991) observed no anion
diffusion in pure CaF2 below the transition temperature Tc' However, doping this

material with La3+ ions was seen to promote diffusion below TC and suppress
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diffusion above Tc'

Sindzingre and Gillan (1988) studied both liquid and solid UO2 at constant pressure
using the isobaric-isothermal ensembles introduced by Andersen (1980) and Nosi
(1984). The simulation work confirmed that uranium dioxide is an oxygen fastion
conductor in accord with neutron scattering experiments (Clausen et a/. 1984a).
The calculated elastic and dielectric constants were compared with those from
experiment (Jackson et a/. 1986) and the agreement was found to be good. The
anion diffusion coefficient showed a continuous transition from low values at low
temperatures to liquid-like values of about 10°cm?s’ and higher at high
temperatures, in agreement with results obtained in other fluorite-structured
materials (Hayes 1978, Gillan and Dixon 1980, Walker et al. 1982, Gillan 1986).
The cation diffusion constant was found to be immeasurably small. Almost similar
results were obtained in the liquid state, however, the cation diffusion coefficient

was found to be comparable with the corresponding anion diffusion constant.

Shimojo and Okazaki (1992) have investigated microscopic diffusion mechanism in
yttria-stabilised cubic zirconia by means of a polyhedron analysis method. The
oxygen migration mechanism was found to be predominantly along the [100]
direction and preferably between tetrahedra having a common Zr-Zr edge. The
oxygen self-diffusion constants for the 4.85, 10.2 and 22.7 mol% Y203 at
1800°C were found to be 1.1, 1.9 and 1.6 x 10 cmZ/s, respectively, showing a
maximum at 10.2 mol% Y203. In a subsequent study (Shimojo et a/. 1992) the
presence of dopant yttria ions was shown to strongly affect the diffusion of oxygen
vacancies. Yttria ions promote oxygen ion migration at low concentrations but with
increasing concentration, tetrahedra having the Y-Y edge increases, and the

diffusion paths of the anions become restricted by neighbouring y3+ ions, leading
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to a decrease in diffusion constant. This was advanced as the explanation for the
observed decrease in conductivity with increasing concentration above 10 mol%.
This phenomenon was also attributed to a correlated migration of a diffusing ion.
The degree of correlation was studied (Shimojo and Okazaki 1992) by examining the
relation between successive migrations, especially the ratio of backward migration
following the preceding forward one, since the backward migration cancels out the
contribution of the forward migration. As the doping level increased the number of
backward-forward migrations increased as well. However, at high concentrations
most of the increases in oxygen migrations were local forward-backward, leading to

a decrease in diffusive migration and diffusion constant.

Shimojo et al. (1992) have calculated partial pair distribution functions for all pairs of
ions in yttria stabilised cubic zirconia. Cations were observed to form a well-defined
FCC lattice while the anion-anion functions were seen to have a weak structure
characteristic of a liquid. The NN distances in Zr-Zr were found to be slightly
shorter than those for Zr-Y and Y-Y. This was explained in terms of local
deformation on the FCC lattice. The shorter Zr-Zr distances arise from strong
Coulomb attractions between Zr** ions on corners of tetrahedron and oxygen ions
inside the tetrahedron. The Zr-O distances were shorter than the Y-O distances in
agreement with results by Catlow et al. (1986) and Veal et al. (1988). The
difference between Zr-O and Y-O distances was about 0.2 angstroms, which is
longer than the distance between the cations. This showed that the oxygen ions
inside the tetrahedron were shifted towards a zirconia ion from the normal fluorite
position by the presence of the Y3* ion. The first peak was found to heighten,
accompanied by a slight decrease in cation-oxygen distance and a broadening in
both er_o“’ and gY_O(r) profiles futher away from the first peak, with increasing

yttria content. The observed broadening of the profile in go_o(r) with increasing

20



concentration was ascribed to local deformation on the anion sublattice from a

simple cubic lattice.

Diffusion in ZrOz(x Y203} was found to occur predominatly on the oxygen sublattice
(Li and Hafskjold 1995) using molecular dynamics. A maximum in oxygen diffusion
was noted near 8 mol% Y203. The study further revealed that an increase in Y3+ .
St neighbour clusters tend to trap more oxygen vacancies than isolated ¥t
More such neighbour clusters tend to occur at higher concentrations of Y203 and

lead to reduced oxygen diffusion.

Transport properties in Zr02(10 mol% Y203) were investigated (Khan et a/. 1998)
using computer simulation techniques in the temperature range 873 - 2073 K. The
cation mean-square displacements were found to remain almost constant with time,
confirming that cation diffusion is insignificant. In contrast, the oxygen ion diffusion
increased rapidly with time. It was concluded that the presence of yttria as a
stabiliser in zirconia enhances oxygen ion diffusion. Furthermore, results from radial
distribution functions showed a considerable disorder in the oxygen sub-lattice. The

degree of disorder was found to increase with increasing temperature.

1.4.2.3 MONTE CARLO TECHNIQUES

Monte Carlo (MC) simulation technique is essentially a method of computational
statistical mechanics ideally suited for calculating ensemble averages in the
canonical and grand canonical ensemble. Reviews and papers (Murch 1982a, b,
1984a, b, De Bruin and Murch 1973) give a good indication of the scope and range
of application of MC methods. Murch et al. (1986) have combined MC
techniques with static lattice simulation methods to study the intriguing problems

related to the maximum in conductivity observed in CeOz(x mol % Y203). They
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noted that the efficacy of ion jumps in effecting conductivity decreases with
increasing dopant concentration. The vacancy jumps become decreasingly effective
in leading to bulk ionic conductivity at high doping levels, an observation which
yields a qualitative insight into the origins of the observed maximum. It is evident
that further work needs to be done but results already obtained illustrate the power
and potential of Monte Carlo techniques in investigating diffusion in complex

systems.

1.4.2.4 QUANTUM MECHANICAL METHODS

The simulation procedures discussed already are limited in their range of applications
because they cannot be used to model color centers or defects in covalent materials
with broken bonds such as semiconductors. In contrast, quantum mechanical (QM)
methods are generally applicable to all kinds of defects. These methods involve
endeavours at varying levels of approximation to solve the Schrédinger equation for
the appropriate defect configurations. The technique has been used to study
interstitials in diamond (Mainwood et al. 1978, Payne et al. 1992) where the
< 100> split interstitial in a singlet state was found to be most stable. A similar
result was obtained by Masri et a/. (1983) in silicon. Successful applications of the
related ab-initio Hartee-Fock methods on the study defects were reported in quartz
(Mombourquette and Weil 1985). These studies have indicated the role that can be
played by quantum mechanical methods on defect studies. These methods will

become increasingly predictive with growing computer power.

Recently, ab-initio (Lindan et al. 1997) calculations based on both density functional
theory (DFT) and Hartree-Fock (HF) methods were used to investigate the
equilibrium structure of the stoichiometric and reduced TiO2 (110) surface, the

atomic and electronic structure of TiO2 surfaces reduced by removal of oxygen and
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addition of potassium as well as the molecular and dissociative adsorption of water
at the (110) surface. It was found that both DFT and HF calculations give very
similar predictions for the ionic displacements at the stoichiometric (110) surface. It
was concluded that spin unpairing was a dominant effect on oxygen vacancies in
both the bulk and at the surface. The unpairing of spins leads to a substantial
lowering of the total energy and to the appearance of the localised states in the band

gap which are observed experimentally.

1.5 MOTIVATION OF THE RESEARCH PROGRAM

The theoretical models presented in section 1.4 have contributed enormously to the
understanding of a number of features such as the defect species involved in
migration processes, the nature and configuration of defect interactions, defect
mobility as well as the extent of disorder at and above the transition to the fastion
phase. Information on high temperature elastic properties of pure fluorites, which
defines the onset of the fastion phase, has been extended to doped fluorites and
fastion conductors with different mobile species, structure and symmetry by Ngoepe
(1987). This work helped to classify certain fastion conductors whose transition to

the fastion state is not accompanied by structural transitions.

The open, fluorite structure in cubic zirconia provides ample space to allow ionic
diffusion. The basis for this argument is obtained from observations in other fluorite
structured compounds which exhibit high ionic conductivities. However, at the
fundamental level, information on the defect structures and transport mechanism
giving rise to fastion conduction is limited and presents challenging problems. In the
present investigation computer modelling methods will be used to clarify these

processes.
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Brillouin scattering and refractive index measurements (Botha et a/. 1993) have
presented temperature variations of a complete set of elastic constants in cubic
zirconia. In the present investigation different dopant-oxygen vacancy clusters will
be investigated to identify the cluster(s) that reproduce(s) the elastic constants from
experiment. The relationship between different configurations and the temperature
dependence of the elastic constants will also be investigated using the
quasi-harmonic approximation. The appropriate cluster(s) will be used as the

structural entity on which supercells from MD calculations are prepared.

Computer simulation studies by Dwivedi and Cormack (1990) have shown the
power of static lattice methods in predicting defect energies and processes in
calcia-stabilised cubic zirconia. These defect calculations will be extended to cubic
zirconia doped with both 9.4 mol% Y203 and 24 mol% Y203. The calculated
defect energies will be compared with those from experiment and also used to

clarify the transport phenomenon obtained from molecular dynamics.

Molecular dynamics studies on yttria-stabilised cubic zirconia (Shimojo and Okazaki
1992, Shimojo et al. 1992, Li and Hafskjold 1995) were carried out using randomly
selected clusters. Our MD calculations will be based on the preferred dopant-oxygen
vacancy cluster(s) thus giving the present investigation a unique originality. It is
hoped that the transport and structural properties obtained will help to clarify the

defect mechanisms as well as ionic conduction processes in doped zirconia.

The presentation in this dissertation has been arranged in the following manner:
Chapter 1 introduced the properties of yttria-stabilised cubic zirconia, which is the
subject of the present study. General theoretical techniques used to study this

material were outlined. Chapter 2 introduces the theoretical background to the main
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computer simulation techniques, namely static lattice and molecular dynamics.
Results from static lattice simulations and molecular dynamics are presented and
discussed in Chapters 3 and 4, respectively. Chapter 5 summarises the main

conclusions and advances recommendations for further studies.
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CHAPTER 2
THEORETICAL BACKGROUND AND TECHNIQUES

The present chapter deals with static lattice and molecular dynamics
simulation techniques, which are the theoretical methods used in the present
investigation. Computer simulation techniques are discussed in detail, paying
special attention to the theory behind interionic potential model. This model is
equivalent to sample preparation in experiment and thus plays a central role in

all simulation studies.

2.1 COMPUTER SIMULATION TECHNIQUES

This section gives an indepth discussion of the major computer simulation
methods in the present investigation. The section commences with a review
of the interionic potential models and parameterisation of the associated
potential parameters in the adopted model. This is followed by an outline of
the static lattice and molecular dynamics methods, in that order, wherein

advantages and limitations of each technique are highlighted.

Simulation is the testing of a model of some real life situation with a view of
determining approximately how the real life situation will behave, without
going to the trouble and expense of using the real, physical system. Thus, in
computer simulation a computational model whose equations encapsulate the
behaviour of a physical system are evaluated and the computer is then used

to follow the evolution of that model in detail.

Computer simulations are used to predict properties of systems from an



interionic potential model. They are applied in both physical and biological
sciences to probe properties of materials under extreme conditions such as
high pressure and temperature, shock and radiation, which are difficult or
dangerous to perform experimentally. The simulation techniques have been
prompted by the latest developments in supercomputers with high speeds and
rapid access memory. They have been used to study bulk and surface
properties in condensed matter. Two prominent aspects of the theoretical
approaches are : (a) classical methods and (b) quantum mechanical
calculations (Hayes and Stoneham 1985, Catlow 1986a, Wimmer 1996,
Catlow 1997). The classical methods are based on the interionic potential
models for the material and comprise three main categories: (a) static lattice
simulations, (b) molecular dynamics and (c) Monte Carlo Methods. Quantum
mechanical techniques mainly involve density functional methods and
Hartree-Fock approximations and find applications in a wide variety of

materials such as semiconductors, ionic crystals, metal alloys, etc.

Classical static lattice simulation and molecular dynamics methods are the
major techniques in the present investigation and as such the present chapter
discusses these methods in detail. The different categories of simulations are
illustrated in figure 2.1.1 while table 2.1.1 presents the analogies that exist

between computer simulation and experiment.
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Table 2.1.1 Analogies between experiment and computer simulation

Computer simulation Experiment
Computer model Sample
Computer program Apparatus
Program testing Calibration
Computation Measurement

Data analysis

Data analysis
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COMPUTER SIMULATIONS

Figure 2.1.1 Different categories of simulation
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2.2 INTERIONIC POTENTIAL MODELS

An interionic potential model is a mathematical representation of the potential
energy of a system as a function of particle coordinates. The model (a)
describes the forces acting between the ions in the solid, (b) helps to
determine the reliability of computer modelling studies for the prediction of
structural, elastic and dielectric properties, (c) provides a substitute for the
explicit solution of the Schrodinger equation and (d) should be accurate,
transferable, stable and convenient. As an example a model of pair
interaction type is defined by the lattice energy UL”.;’;') of an assembly of

particles and it is written as

_ A Tulhl qfq! h Tuh
U () = ‘2‘ > + ‘2.‘% 2,23

P2 i>j
The various symbols are discussed below. Extensive discussions are given by

Catlow and Mackrodt (1982) and Catlow (1997).

2.2.1 THE LONG RANGE INTERACTIONS

The first term in equation 2.2.1 represents the long range or Coulomb
interactions between point charges q; and qj. . The sources of the long
range interactions are covalence and dispersion and the interactions are best
handled via the Ewald summation method (Jackson and Catlow 1988). This
method involves the transformation of lattice summations of the coulombic
terms from a slowly converging series in real space to a rapidly converging

series in reciprocal space.

2.2.2 THE SHORT RANGE INTERACTIONS
The second term in equation 2.2.1 represents the short range interactions

whose effects come into play when atomic and ionic charges overlap. The
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short range interactions with a particular ion are truncated on a sphere
centered on the ion and with the radius of the inscribed sphere of the
simulation box. This truncation is performed for the simple reason that
beyond 10'%m the short range terms are no longer effective. Evidence from
quantum mechanical studies suggest that the exponential function is suitable
for modelling the short range repulsion between closed shell species. The
most common short range interactions are two body and many body

interactions.

(a) Two body interactions
The interactions may be one of the two types, namely bonded and
non-bonded. In the bonded interaction the simplest function applied to a
bonding pair of ions is the bond harmonic function

o(r;) = %k(r&.-ro)z 2.9.2.1
where r,. is the equilibrium bond distance and k is the bond force constant.

0

This function is appropriate for r!}-m r.. The Morse function (Saul et a/. 1985)

0"
2
"P(rg) = d[‘l - exp[- i} (rﬁ.- ro]]] 2:2.2.2
is used for larger separations. In equation 2.2.2.2 the quantity d is the
dissociation energy of the bond and [ is a variable parameter determined

from spectroscopic data. The most widely used function for the non-bonded

interactions is the Lennard-Jones potential (Allen and Tildesky 1987)

o) - ()" 1))

where the steeply repulsive p12 term describes the non-bonded repulsion
and the attractive 8  function models the dispersive interaction. The

quantity € is the minimum energy of the function with respect to the
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infinitely separated atoms and ® denotes the approximate radius of the atom.
This type of function has been used to model rare gas fluids as well as

non-bonded interaction in molecular fluids and solids.

An alternative and more popular function is the Buckingham potential (Catlow
1982, 1983) in which the r1? term is replaced by an exponential repulsive
term, giving

o A =-f.. - - C r..-
2(ry) = Ayexp(y! ) - Sy
This is the potential form used in the present investigation. The second term

8 2,904

in equation 2.2.2.4 denotes the van der Waal's interactions to which
dispersive interactions are added. The van der Waal's interaction is dominant
in rare-gas solids and is occasionally important in ionic systems where it may
provide attraction between next nearest neighbour ions and always has the
the longest range form - C/r6 which is inappropriate at short distances for
which it is most important. The dispersive interactions arise from the
correlated motions of electrons on different ionic {or molecular) centers. Also,
the use of two terms in equation 2.2.2.4 depends on the ranges over which

the individual terms are effective.

The cubic fluorite phase of pure zirconia is not stable at low temperatures.
This is attributed to the radius of the zt** ion being too small for eightfold
coordination, resulting in the occurence of low symmetry distortions (Dwivedi
and Cormack 1990). In interionic potential terms this means that if the
potential is derived by fitting to the fluorite structure, the model will include a
large cation radius, thus adversely affecting the calculated properties.
Furthermore, that approach assumes that the cubic structure is the equilibrium

one, such that calculations performed on the lower symmetry structures will
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incorporate a fictitious relaxation energy term since the structure around the
defect will try to regain its cubic configuration. This problem was overcome
in this work by fitting the rigid-ion potential parameters to a lower symmetry

(monoclinic) structure, corresponding to O K calculations.

In the present investigation, short range interionic forces were described by
the Buckingham potential (equation 2.2.2.4) with the short range parameter
C assuming values 0.0 or 27.89. The potential parameters were adjusted
via a least-squares fitting routine until the closest agreement between the
calculated and experimental quantities has been achieved. Both the high
frequency and static dielectric constants were included in the fit, following the
suggestion by Catlow (1983). The potential parameters that gave the most
reasonable thermodynamic quanties were then used as input in THBREL
(Ngoepe et al. 1990, Catlow 1983), CASCADE (Leslie 1982, Leslie and Smith
1989) and FUNGUS (Walker 1982) programs. The short range parameters
in both the shell and the rigid-ion models were taken to act between cations
and anions as well as between anions and anions, following the studies by
Jackson et al. (1986). This is justified given the very large cation-cation

separations in yttria-stabilised cubic zirconia (Shimojo et a/. 1992).

The functions discussed above are simply functions of internuclear distances
between pairs of ions and as such have serious shortcomings as increasing
evidence suggests that anisotropic terms must be included. This is achieved

by taking many body interactions into consideration.
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(b) Many body interactions

Here the interactions may be one of three forms, namely bond-bending, triple
dipole or torsional. The bond-bending interactions are the simplest and has
the form

2(0) = %kB(f?- 0,

where kg is the bond-bending force constant, 80

angle and @ is the angle subtended by the central atom in a system of three

is the equilibrium bond

atoms (Jackson and Catlow 1988). These functions are suitable for
covalently bonded systems with O-Si-O bonds. The functions have also
enjoyed success when applied in the modelling of force fields for covalently

bonded molecules and macromolecules.

We will now discuss the various ways of obtaining the short range potential
parameters A, p, and C. These parameters may be obtained from one of

two main approaches, namely empirical fitting or direct calculation.

(c) The empirical method

The empirical method involves the fitting of variable parameters to crystal
structure and lattice properties. This involves starting with some initial guess
of the parameters followed by a systematic adjustment of the parameters until
the differences between the calculated and experimental properties such as
elastic constants, dielectric constants, and where possible, phonon dispersion
curves, is minimised. The procedure followed in a typical fitting routine using
the THBFIT program (Leslie 1982) was extensively discussed by Watson et al.

(1997). The methodology is summarised below:
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A Initial guess of parameters in the specified expression for short-range
interactions
B Calculate, at the observed structure :
1. Crystal properties
2. Bulk lattice and internal ion strains
C Minimise
1. Difference between observed and calculated properties
2. Strains
By adjusting the potential parameters (numerical derivative taken
to calculate the magnitude of the adjustment)
D Improved potential mode
E Repeatsteps B to D
F Stop at minimum

Note that weights may be applied to observables at stage B.

At the moment, the empirical procedure is the only available approach for
determining shell model parameters. The value of the shell model in defect
calculations was shown by Dick and Overhauser (1958) . This model is, in
essence, a simple mechanical model which couples ionic polarization to the
effective overlap forces and describes the harmonic properties of a crystal at
small displacements. The procedure normally followed is to:

(a) simulate the outer valence electron cloud by a massless shell of
charge Y. Since the shell is massless, it responds instantly and
adiabatically to changes in core positions.

(b) simulate the inner electrons and nucleus by a core of charge X. In
this way the total charge of the ion is X + Y, which is equal to the

oxidation state of the ion. Electrostatically, the core and shell are both
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treated as point charges so that relative displacements give a dipole
associated with each ion, but no higher multipoles.

(c) assume that the core and shell are joined by a harmonic spring of force
constant k.

(d) assume that the mass of the ion is centered at the core and that the short
range or overlap forces act through the massless shells. When an electric
field, E, is applied to the ion the shell will be displaced from the core and

a dipole moment is formed (figure 2.2.2.1).

The interaction between the core and shell is harmonic (since the interionic
forces between nearest neighbour shells are harmonic and repulsive) and is
given by
V. r. = — kd
() = Sk
where d',. is the relative core-shell displacement for ion of type /. The

free-ion polarizability, a; is given by

The values of the shell charges, spring constant k and the short-range
variable parameters A, p and C are parameterised by either adjusting the
variables until the best possible agreement between the calculated and
experimental properties such as dielectric and elastic constants is achieved or
by calculation using theoretical methods such as electron gas and ab initio
procedures. The shell model was used for the perfect lattice and defect

energy calculations reported in Chapter 3.
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The empirical method is one of considerable power. However, its range of
applications is limited by the fact that it can only be applied to materials for
which empirical data is available, although extrapolation procedures may be
used in some cases. Secondly, only potentials at internuclear spacings close
to those observed in the perfect lattice can be studied. The advantages of
this method include the correct reproduction of both the defect energies and
the thermodynamic properties of ionic materials. Simulation of fastion

conduction in fluorites provides a good example.
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Figure 2.2.2.1
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2.3 STATIC LATTICE SIMULATIONS

Static lattice calculations involve two aspects, namely (a) perfect lattice
calculations and (b) defect energy calculations. This type of simulation does
not explicitly include effects of thermal motions of ions in the material and, as
such, the method is not able to deal with correlations between diffusing ions.
An attempt to include thermal effects is made via the quasi-harmonic

approximation, discussed in section 2.3.1.

2.3.1 PERFECT LATTICE SIMULATIONS

Perfect lattice simulations involve the specification of a unit cell structure,
which is then repeated infinitely in space in order to generate an infinite
periodic system. In modern work, the unit cell may be very large and
complex, containing several hundred atoms. Static calculations on perfect

structures have three main components (Catlow 1990 and Watson 1997):

(a) Lattice summations

The lattice summations of the Coulombic term are slowly converging owing to
the r! dependence of the electrostatic interactions. They must be taken to
infinity and not truncated. This is easily achieved by using the Ewald
procedure. The lattice summations of the short range terms are handled in

real space as they may be safely truncated beyond a cutoff distance.

(b) First and second order derivatives of the lattice energy
The lattice energy is the binding or cohesive energy of a perfect crystal per
unit cell or per formula unit. It plays a crucial role in treating properties of

solids as well as in assessing the relative stabilities of different structures.
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Moreover, its derivatives with respect to elastic strain and displacement are
related to elastic and dielectric constants. The dielectric constants reflect the
response of the solid to an electric field. The high frequency (optical)
constant € gives the response of the electrons alone whilst the static
dielectric constant ¢, involves the balance between the direct force of the

0
applied field, the interionic forces and the induced polarisation.

Elastic constants are particularly important as they provide fundamental
information concerning the interionic forces in solids. Furthermore, they are a
measure of the energy change when a solid is strained uniformly and are
related to lattice vibrations and originate from long wavelength acoustic
modes associated with relative motion of unit cells. The elastic constants are
derived from the lattice energy using a procedure outlined next. Suppose a
lattice is near its equilibrium configuration and contains n atoms per unit cell.
Using the formalism of Born and Huang (1954) the lattice energy is expressed
to second order in the total strain as

UM =U(R +g -§+8 -W.5 2.3.1:1
where ¢ denotes the generalised (3n + 6)-dimensional strain vector
comprising of 3n internal components, 4r, and six bulk components, {e,
such that

o = [ér, 56]
g is a vector of first derivatives of the energy

g = |ou/ar, ouy ae] 2.3.1.2
and W is tl;e corresponding matrix of second derivatives

BZUL / dror azuL / Orde
W = 2.3.1.3
azuL / Bedr 82UL / Bede
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The configuration, R = {rn} is related to R via the transformation
N = A€ - (rn + rn]
in which Ae¢ denotes the symmetric strain matrix formed from the

components of

1 1 1
be — Je — e
1 1
Ae = | — be b€ — e
2 6 2 2 4
1 1
— fe — € de

The various- derivatives in equation - 2.3.1.3 can be evaluated using an
appropriate form of pair potential. In the absence of external fields,
application of the equilibrium conditions g = 0, for lattices without
permanent moments, and 8UL;’6r = 0 to equation 2.3.1.1 vyields

- 1 1
ULR = U (Ry) + e [we£~w£r-wrr -wrf] fe 2.3.1.4

where F{e denotes the field-free equilibrium configuration. Elastic constants
are defined as the second derivatives of the lattice energy with respect to
strain, with the lattice energy normalised to unit volume. From equation

2.3.1.4 the elastic constants tensor, C, is given by
1

Ve

— - -1-
L = {Wff'wer Wir Wre]

These basic principles are incorporated into the computer programs PLUTO
and THBREL. The latter was used to calculate the thermodynamic properties

reported in the present investigation.

The variation of elastic constants with temperature is related to the
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anharmonic nature of lattice vibrations (Stern 1958, Born and Huang 1954).
One measure of this anharmonicity is the asymmetry of the lattice potential
energy. The asymmetry is related to the higher order elastic constants and as
such, the temperature dependences of the second order elastic constants
depend on the second, third and fourth order elastic constants (Garber and
Granato 1975, Born and Huang 1954, Stern 1958, Mitskevich 1963, Hiki et
al. 1967, Cowley and Cowley 1965). According to the harmonic

approximation the internal energy of a system of N particles is given by
3N
_ ls, 1
U= ¢, + ‘Z‘ (n; + Emw"
i=1
where ¢0 and n; denote the potential energy of the particles in their mean
positions and the average number of phonons with frequency w, at
temperature T, respectively. The quasi-harmonic approximation is satisfied

when ¢o and Wi and their strain derivatives, depend indirectly on
temperature through the temperature dependence of the lattice parameter.

The adiabatic and isothermal second order elastic constants are given by

_ 4
Cﬁkfmnp = Py (8 U/ 5?39- Bnkl 6nmn 6nop)s and

T _PF

Cs = p
ijkl 0
Mij Ok

, respectively, where Py F and M denote the

density of the system in the initial configuration, the Helmholtz free energy
and the Lagrangian strain parameter (Brugger 1964), respectively.

Differentiating with respect to strain and temperature yields

3N U
ac . . = a0y
ki we
—;— = -Kgpy ) ax 2.3.1.5
=1 Tl )+
1 wa
Substitution of the Gruneisen parameter Py = =
J 2w |0n ..
i ij
T,n=0
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into equation 2.3.1.5 vyields

oC 3N f
ik _ o W |oif k1| NTT STT
p ,] kafo , 3, |27 Y ou | Ciikime * Ch jkimrsyVsYy
x=1 X N
ST ST
+ zck!mrs;“sui + 2ijmrslusuk NmNr 2.3.1.6

where only temperature independent terms appear on the right hand side.
The expression above can be expanded for different elastic constants for
cubic and all other symmetries. The derivatives in equation 2.3.1.6 are

evaluated at the initial configuration and using Voight notation, C1111

becomes C C becomes C12 and C becomes C44. All other

11" 71122 2323
elastic constants are zero or equal to one of the preceeding three, for crystals

with a cubic symmetry, as shown below

11 12 12

12 11 12

12 12 11

44
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44
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o oo 0O O O
o 0Oo o o o

The linear temperature variation of the elastic constants in yttria-stabilised
cubic zirconia below the fastion transition temperature will be explained in

terms of this theory in Chapter 3.

(c) Energy minimization (E.M.)
In energy minimization techniques the cell volume and coordinate positions are
adjusted, using an iterative computational method, until the minimum energy

configuration is attained and the net pressure or strain (stress) is zero. The
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state of minimum energy is an equilibrium one and all thermodynamic
quantities are calculated when this state has been attained. The pressure is
given by the derivative of the free energy with the bulk property, such as
thermal expansion coefficient. Thus, it is possible to deduce the elastic
constants at various temperatures from the determined expansion
coefficients. Energy minimisation techniques are restricted to the prediction
of static structures and to those properties which can be described within a
harmonic or quasi-harmonic dynamical approximation in which there is no

explicit inclusion of atomic motions (Catlow 1990).

The choice of the computational minimisation technique is very important.
There are several approaches, mainly in three classes: (a) direct searches, (b)
conjugate gradients methods and (c) Newton-Raphson procedures. Direct
searches are the simplest methods and use the energy function alone and
searches over the whole configuration space until the minimum is located.
This method is suitable only for very simple systems with few variables.
Much greater efficiency is achieved from the gradient methods in which the

derivatives N with respect to all the structural variables, X; are determined.
6xi
These then guide the direction of minimisation. Much more rapid convergence
can be obtained by using the Newton-Raphson methods in which the second
derivatives of the energy function are used to guide the minimisation
direction. Here the (j+1 )th set of coordinates is obtained from the jth set
by the relationship
A7
. =%+ W..g.
e TN TG
where g and W are defined in equations 2.3.1.2 and 2.3.1.3,

respectively. Though these methods are far more rapidly convergent than
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gradient procedures, the improved convergence may be lost in the extra
computational effort required to store the Hessian matrix W' . In that case,
the simpler conjugate gradient methods, which involve storage of the first

derivative of the energy function only are used (Catlow 1983).

2.3.2 CALCULATION OF DEFECT ENERGIES

The aim of computer simulation studies of defects in solids is threefold:
Firstly, it is to comprehend the structures and energies of defects and their
aggregates, their diffusion mechanism and how they get trapped. Secondly, it
is to study the effect of defects on the host crystal and lastly, it is to
understand the effect of changes in the host crystal on the defects. Most
calculations involve three ingredients: (a) an ionic model (b) an interionic
potential model and (c) an efficient computer code and algorithm. The ionic
model is usually the shell model, which avoids the instabilities found with
simpler models of polarizable point ions. There are basically two methods
used for calculating defect energies. These are the two region strategy and

the supercell procedure.

2.3.2.1 THE TWO REGION STRATEGY

The central problem in static lattice defect energy calculations involves the
treatment of the lattice relaxation around the defect. This is particularly
crucial for ionic and semi-ionic solids because defects in these solids are
generally charged species, owing to the long range of the coulomb forces
which lead to a long range relaxation field (Norgett and Lidiard 1972, Catlow

and Mackrodt 1982).

There are two important technical features in the calculation of defect
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energies. The first point concerns the handling of the host lattice ions far
from the defect while the second concerns numerical methods. Three main
methods are used in the former case: Firstly, rigid boundary conditions are
applied in which ions outside a given region are assumed immobile and
unpolarisable. A variant uses a crystallite with a free surface. Secondly,
periodic boundary conditions are applied to a regular array of defects. The
lattice then consists of large supercells, each containing one defect. Lastly,
the Mott-Littleton approximation is used (Mott and Littleton 1938). The two
region strategy was used for the defect energy calculations reported in
Chapter 3 and, in essence, it involves the division of the lattice surrounding

the defect into two regions | and Il as shown in figure 2.3.2.1.1.

Region | surrounds the defect and contains generally between 100 and 300
particles. This region is treated atomistically and since the forces exerted by
the defect on the surrounding are strong, the relaxation of this region is best
handled by the energy minimisation technique. In contrast, for the more
distant, weak-field regions, the defect forces are relatively weak and as such
lattice relaxation may be treated by more approximate methods. Note that in
polar crystals, region Il must extend to infinity owing to the long range of the

coulomb forces exerted by the effective charge of the defect.
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(II a) (I b) —» 0O

Figure 2.3.2.1.1 The two region strategy for defect calculations. “D” indicates a
defect. Note that region IIb extends to infinity
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The commonest treatment is based on the Mott-Littleton approximation,

which is appropriate for ionic crystals. For dielectrically isotropic materials,

the polarisation P(r), at a point r from the defect of charge q, is given by
Pir) = ﬂ[1 -10] 2:3:2.1.1

€
r3

where € is the static dielectric constant of the crystal.

Equation 2.3.2.1.1 applies strictly to cubic crystals. For non-cubic materials,
more complex expressions are used as discussed by Catlow et a/. (1982) and
Catlow and Mackrodt (1982). Within the two-region approximation the
defect formation energy, ED, may be written as

ED = Eﬁx) + EL”Lx,y} -+ E”(y} 2.3.2,1.2

where EI denotes the energy arising solely from the interaction of particles in
region |, which is treated in terms of discrete ions with shell or core
displacements x; E|| is the self energy of region Il for which y is the vector
of coordinate displacements and EI,II represents the energy arising from the
interaction between regions | and Il. In order to avoid consideration of all
ion-ion interactions in region Il, (a) E“ is assumed to be a quadratic, i.e.

harmonic function, according to

E, = ~yAy 2.3.2.1.3
, Ve

where A is a force constant matrix and (b) region Il is taken to be in

equilibrium under the forces exerted on it by region |. Differentiating ED with

respect to y, and applying the equilibrium condition to region Il, it follows

that
[BE_D _ [FEp . [oEw
oy Y=Y Loy Y=Y 5y Y=Y
= |9, (xy) + 10 vAy
¥ y=y 20y
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so that

[@1 (% y’] = -
ay Y=Y

Substitution of 2.3.2.1.4 and 2.3.2.1.2 into 2.3.2.1.3 yields
Ep = B+ E byl - 1v{@1,ll{""”]
' ay

2.3.2.1.4

1nxr

Y

D
2
Y=Y

thereby removing the explicit dependence of ED on E , which is convenient.

I
Defect calculations therefore consist of the relaxation of region I, followed by
the evaluation El(x) by direct summation and then El,ll(x’v) and its
derivative. For the latter, region Il is subdivided into an inner, interface region
lla  and an outer region Ilb. Region lla surrounds region | and its
displacements are calculated by the Mott-Littleton procedure as the sum of
the response from all the charged components at the defect in region |. This
is followed by direct summation of the interactions between regions | and Il
and the determination of their derivatives. The use of the interface, region lla,
is found to be necessary in obtaining accurate results with inner regions of a
modest size. For the remainder of region Il, region Ilb - regarded as a
dielectric continuum, the interaction is treated as arising solely from the net
effective charge of the defect in region | (Norgett 1974, Catlow et al. 1982,
Catlow and Makrodt 1982), and the appropriate summations may be

evaluated analytically.

2.3.2.2 SUPERCELL PROCEDURES

The two region strategy bases its approach on embedding the defect in an
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infinite and otherwise perfect crystal. An alternative approach is to set up a
defect supercell. A supercell is made up of a number of basic unit cells and
must include the surrounding lattice. After introducing the defect in the
structure, the defect, as well as the surrounding region of the lattice, are
repeated infinitely in space. Supercells of different sizes may be constructed
by appropriate choices of lattice vectors. Perfect lattice calculations are then
carried out on the resulting structure via energy minimisation techniques. Of
particular importance is that the results obtained from this routine converges
to those obtained from the two region strategy as the size of the supercell
increases. An example of application of supercell methods to tysonite

structured LaF3 is given by Ngoepe et al. (1990).

The supercell procedure looks at the impact of defects on the properties of
materials such as elastic and dielectric constants. Moreover, the method
provides additional information to that obtained from calculations performed
on isolated defects because it yields energies of interaction between defects.
The disadvantages of the methods include the use of both smaller region |
sizes and periodic boundary conditions. The choice of a unit cell and the
subsequent specification of a supercell structure is illustrated in figure

S W i e
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Figure 2.3.2.2.1 The choice of a unit cell and the subsequent specification of the
supercell structure
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Finally, static lattice simulation methods are limited in that it is not trivial to
predict free energies of defects. These methods usually concentrate on
internal energies and generalisations to give free energies is not always easy.
Secondly, specific defect processes have to be postulated for assessment and
although many processes can be tried, one always wonders if a critical

process has been left out.
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2.4 MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics (MD) simulation, developed by Alder and Wainwright
(1959) and extensively utilised by Jacobs and Rycerz (1997), explicitly
includes thermal effects by solving the reversible equations of motion of a
dynamical ensemble of particles representing the system. Thus, MD is able
to simulate correlations between diffusing atoms, which is not possible with

static lattice simulation techniques.

In its original form, MD simulation was carried out under constant particle
number, volume and energy, i.e. NVE simulation. However, the more
recently developed techniques allow one to work at constant pressure,
temperature and number of particles in which dynamic changes in both the
lattice vector and the angles occur with time (Parrinello and Rahman 1981).
In the present research endeavour NPT simulation was performed by
combining the constant pressure method proposed by Andersen (1980) with
the constant temperature procedure proposed by Nosi (1984). A variety of
statistical ensembles are used in most MD and Monte Carlo simulation
techniques. In the microcanonical ensemble NVE simulation is carried out.
The canonical ensemble has N, V, and T as constant parameters and the
NPT simulation uses the isothermal-isobaric ensemble. Furthermore, in the
grand canonical, uVT, ensemble the number of particles is allowed to vary in

order to achieve a constant chemical potential L.

2.4.1 MODELING AND APPROXIMATIONS
In a molecular dynamics simulation one starts by specifying a simulation box
comprising a regular array of atoms, molecules or ions arranged and located at

lattice sites. This simulation box is usually a cubic supercell. However, the
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cubic nature of the box introduces anisotropy since there would be more
particles along the cube’s body diagonals than elsewhere. This anisotropy
may be reduced by enclosing the particles in a more complicated
Wigner-Seitz, spherical, type of box. Its advantage is that for a given number
of particles and number density, valid correlations are obtained over a greater
range of ionic separations. The latter set-up poses several problems,
particularly in the indexing of particles as they pass through the walls of the
box and in the summations over image particles. Despite its shortcomings,

however, the cubic box is commonly used.

A typical classical molecular dynamics sample contains up to ten thousand
particles which must necessarily be conserved both inside the system and
equivalent surroundings. The number of particles is conserved by creating
outside the simulation box, some images of the particles enclosed in the box.
This is accomplished by introducing periodic boundary conditions (explicitly
assumed) which ensure that when a particle leaves the box on one side, its
image from a neighbouring box enters the box on the opposite side (see figure

2.4.1.1).

The periodic boundary conditions give rise to an infinite system without
surfaces and as such, Schottky defects cannot be simulated unless vacancies
are artificially introduced at the beginning of the simulation. Periodic boundary
conditions preserve the shape of the simulation box and hence are appropriate

for simulation runs at constant volume.
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Figure 2.4.1.1 An illustration of periodically repeated ensemble of particles. The
arrows below one of the particles indicate that the particle is leaving the box,
while its image in an adjacent box enters
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However, Parinello and Rahman (1980, 1981) have developed a method
which allows the shape of the simulation box to vary under constant pressure
conditions. The next step is the assignment of positions, X and velocities v
in line with a target temperature, T. Various initial conditions have been
used, however, in most cases the particles are given equal kinetic energies
with a random selection of the three direction cosines of the velocity and
initial positions corresponding to a face-centered cubic lattice. The adopted
interionic potentials are then used to calculate the total force F acting on

each particle. The force acting on the f'th particle is given by

_ ) 2 _ ) 6
;= Z[ a; /5= Aj/oexp -t/ - C%)
j

where the point charges q; and qj are separated by a distance rﬁ. . The

movement of the particles is described by Newton’s equations of motion

dr’- P

= 2.4.1.
dt m;

dpf.

_— = Ff- 2.4.1.2
dt

A time step, At, is specified. The choice of At is very critical. If it is too
large, lattice vibrations can occur within the time step leading to gross errors.
If it is too small, the simulation will exceed the computer time available. The
time step must be shorter than the time scale of any important process in the
system such as the period of atomic vibration. Usually At lies between
10" and 10'° seconds. The calculation of the forces takes more than
90% of the total CPU time, with most of the time spend in replacing the
continuous differential equations 2.4.1.1 and 2.4.1.2 with discrete, finite
difference one-step equations. There are a number of ways in which these
equations can be approximated by discrete analogs (Berendsen 1986). In

particular, the coordinates and velocities are updated using a simple procedure
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based on Newton’s equation of motion. The simplest zero order version of
this equation is given by
X: = X+ V.At
F
N = MR N
m;
where the primes indicate values of X; and v; after time At and m;
denotes the mass of particle /. A number of sophisticated updating
algorithms that minimise the accumulation of errors on repeated updating due
to the finite size of At are available. The Beeman (Beeman 1976) algorithm
is more popular and has been incorporated into solid-state simulation code by
Walker (1982). It is of the form
X(t + A1) = x{t) + VAt + [4F (1) - Fft- Av] (A% / (6m)
v!.(t + At) = vf.(t} [4Fi(t + At) + 1OF!.(t} - 2F!-(t - At)] At/ (‘I2rn!.}.
for an infinitesimally small time-step. The leap-frog algorithm (Hockey 1970)

has the form

x{t + At) = x{t) + v[t + = m
J 2
Vit + At = [t A 4 Faum,

whereas the Verlet's (Verlet 1967) algorithm has the form

XAt + At = -x{t- At + 2x(t) + F(t)(A)%/m,

vit) = [xft + At) - x{t - At)] / (2At)
The updating procedure is repeated several thousand times, thus permitting
the study of the time evolution of the system. The system is then allowed to
settle into equilibrium, which is indicated by a constant temperature. In the
equilibration period the ensemble attains equipartition between kinetic and
potential energy as well as a thermalised distribution of velocities. After
equilibrium the coordinates and velocities of successive time steps are stored

and analysed for properties of interest. The analysis will include the

57



determination of radial distribution functions, diffusion coefficients and a
range of correlation functions including the velocity auto-correlation and the

van Hove correlation functions.

Molecular dynamics is one of considerable power in the study of the dynamics
of condensed matter as it yields detailed dynamical information and includes
time as a parameter in the simulation. However, MD is severely limited :

(a) The short time scale of the simulations, typically 10 - 100 ps, restricts
the study of fastion conductors since it would not normally be possible
to observe a sufficient number of atomic migration events within this
time period.

(b) The size of the simulation box raises the second difficulty. The number
of mobile species must be very large. Consequently, full unrestricted
applications are confined to the study of fastion conductors. Restricted
application to non-fastion conductors have been reported by Jacobs and
Moscinski (1985) and Gillan and Harding (1986).

(c) The use of periodic boundary conditions.

(d) The inclusion of ionic polarisabiliy is very taxing in CPU time because the
electron distribution responds to changes in nuclear positions
instantaneously. Hence for each time-step the ionic dipole moments
have to be calculated through time-consuming iterative processes. The
time factor is further exacerbated by an increased number of species in
the simulation. However, it is possible to perform MD calculations
using the shell model (Lindan and Gillan 1994)

(e) Only rapid diffusion with diffusion coefficients greater than
1077 cmz;‘s may be simulated since the number of atomic displacements

is insufficient for slower diffusions in ordinary conductors.
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(f) Simulation has to be run at several temperatures in order to extract
Arrhenius energies, which is a costly process. And once calculated the
Arrhenius energies cannot be easily decomposed into defect formation
and migration energy terms. This is naturally and simply achieved in
static lattice simulation procedures.

(g) The choice of an interionic potential is normally more restrictive than in

energy minisation techniques.

Despite these limitations, MD techniques are widely used and may now be
routinely employed in both microcanonical and NPT ensembles. The major
advantages include direct provision of the rates of processes, treatment of the
liquid state, or other highly defective states with transient defects, or
non-equilibrium processes following a sudden perturbation, on exactly the
same basis as the solid and the automatic detection of any process occuring
with reasonable probability so that the user need not find the right mechanism

in advance.

2.4.2 CALCULATION OF PROPERTIES OF INTEREST
In this section the formalism for the calculation of physical and
thermodynamic properties such as tracer diffusion constant, radial distribution

functions and specific heat will be discussed.

(a) Tracer diffusion constant, D i

The calculation of the tracer diffusion coefficient is particularly
straightforward and relies on the outcome of random walk theory (Catlow
1990). The determination of the diffusion constant is crucial because it gives

an indication about the rate of diffusion. A particular ion / is chosen from the
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mobile sublattice and its position, r(t1), at time t, is noted. A new position,

1
rit + t1), after time t is determined, followed by the calculation of

ri('c)2 = |r(t + t1) - r(t1)|2. This procedure is repeated several times but
always keeping the same time difference t. The process is then repeated for
all ions of the same type. Thereafter, the mean-square displacement
</_\.r’.(t}2> is determined from the large sample of values of Ar}it)z. The
diffusion constant is obtained directly from the graph of <Ari(t)2> vVersus
time in line with <Arft)>> = 6D]t| + B. The constant B, is a
Debye-Waller factor denoting a thermal factor arising from atomic vibrations

and as such, it is related to the mean amplitude of a particle’s vibrational

motion.

(b) Self correlation functions

The mean-square displacement shows the rate of diffusion and little else.
Self-correlation functions, on the other hand, provide a means of capturing the
diffusion process by giving full probability distributions of the displacements.
Three types of self correlation functions are (a) radial distribution function
(RDF), (b) Van Hove self-correlation function and (c) velocity auto-correlation
function (VAF). The radial correlation function, g&J{r), is the simplest positional
correlation function and it gives the probability of finding a particle of type /
at a distance r from a particle of type / situated at the origin, O. This
function is of particular importance in the study of fastion conductors since it
contains information about the structure and interparticle correlations of
materials. Furthermore, it gives a measure of long range order in solids. In
the present investigation, structural information in yttria-stabilised cubic
zirconia is obtained from RDFs and discussed in Chapter 4. The Van Hove

self-correlation function G‘?(r, t) gives the probability of a particle of type /,
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at position vector r = O at time t = O, moving to another point r at time t.
Hansen and MacDonald (1976) have shown that the structure of G‘?(r, t)
gives information about the nature of ionic transport in a material. A Gaussian
function indicates a continuous liquid-like migration process whilst a
non-Gaussian function shows a hopping migration mechanism. Lastly, VAF
gives an ensemble average of the projection of the velocity vector of a particle
along its velocity vector at an earlier time t. Details are available from Ladd

(1990)

(c) lon trajectories and migration mechanisms

The raw output from molecular dynamics simulation is a voluminous and
incomprehensible record of particle coordinates. The best way of making this
mass of numbers meaningful is to turn it into pictures. This is accomplished
by plotting ion trajectories. The trajectories play a crucial role in ion migration
mechanisms as they give an indication of the type of migration process, either
vacancy or intertitial, and also illustrates the presence or absence of
correlated motion in the system. Vacancy mechanism occurs when the
mobile ions move along the < 100> directions while interstitial migration
mechanisms are along the <111> directions in a fluorite structure formed

by yttria-stabilised cubic zirconia.

2.5 SIMULATION CODES

Computer simulation codes used in the present study for static lattice
simulation are (a) CASCADE (Leslie and Smith 1989) (b) THBREL, closely
related to the PLUTO program (Catlow and Norgett 1978) and (c) THBFIT
(Leslie 1982, Watson et al. 1997). The computer programs were obtained

from Daresbury Laboratory.
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(a) CASCADE (Cray Automatic System for the Calculation of Defect
Energies)
The CASCADE code was used for the defect energy calculations reported in
this work. CASCADE was written by Leslie and Smith at Daresbury
Laboratory and combines defect and perfect lattice calculations. Although the
program was initially adapted to exploit the parallel processor of the CRAY
series computers, it was possible to commission the program to run on the
VAX mainframe. In a typical calculation, data describing the unit cell and
defect are first read in. This is followed by the determination of the point
group symmetry about a user defined origin. lon-ion potentials, which model
the crystal structure and the interaction of any foreign ion with it, are read in.
This potential is then used to model the perfect, non-defective lattice. Next,
strains in the unit cell, elastic constants, dielectric constants as well as the
response of the ions to an electric field are calculated. Two spherical regions,
regions | and lla (relaxed using the Mott-Littleton procedure) are defined,

followed by the relaxation of the defect structure using the adopted potential.

The calculation of gradients of the defect energy is the most expensive part in
terms of computer time because they are calculated at every iteration of the
defect energy minimisation. Fortunately, the E.M. procedure uses a Hessian
update algorithm so that the second derivative matrix need only be calculated
and inverted once. Another taxive step in terms of time is the perfect lattice
relaxation option, which in any case is only suitable for small unit cells close
to equilibrium. A more detailed discussion is found in Leslie and Smith

(1989).
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(b) THBREL

The THBREL code works in the same way as CASCADE except that in this
case defect energies are not calculated. The code is used for perfect lattice
calculations and as such yields values for elastic constants, as well as both

high and low frequency dielectric constants.

(c) THBFIT
The THBFIT code is very much similar to THBREL. The only difference is the
use of the FITE directive in THBFIT to indicate that empirical fitting procedures

will be carried out.

(d) FUNGUS

This is a general purpose molecular dynamics program that may be applied to
crystals of any symmetry, and it incorporates the Ewald procedure for
electrostatic summations and the equipartition of kinetic and potential
energies (Walker 1982). The periodic boundary conditions are always
explicitly implied and the program uses the Born-Mayer form (equation
2.2.2.4) for the short range potentials in the evaluation of the Madelung
sums. Its special advantage is that the entire package may be controlled from
one driver routine, allowing a great deal of flexibility to the parameters used in
the simulations while modifications can be made with the minimum of

difficulty.
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CHAPTER 3
STATIC LATTICE CALCULATIONS

In this chapter results from ZrO2( x mol% Y203}, with x = 9.4, 15, 21 and 24,
and obtained from static lattice calculations are presented. Two sets of results are
reported. First, the formation, migration and activation energies are presented,
followed by results of defect associates. These associates are believed to be
responsible for the observed ageing phenomenon in stabilised cubic zirconia. The
defect energies and processes are discussed in section 3.3.1. Secondly, the elastic
constants, dielectric constants and the associated thermodynamic quantities such as
the bulk modulus B = (C11 + 2C12)/3, the anisotropy ratio A = 2C44/‘(C11 - C12)
and the Cauchy relation failure A = {C12 - C44) are presented. These results are
then compared with those obtained from experiment under discussions.
Furthermore, since the calculations deal with quasi-harmonic aprroximation, only the
linear variations of the thermodynamic quantities with temperature will be taken into
account when comparisons are made with results from experiment. Finally, only
results from configurations that produced acceptable results when compared with

those from experiment are presented in this chapter.

3.1 CALCULATION OF DEFECT ENERGIES

3.1.1 COMPUTATIONAL PROCEDURE

In brief, the techniques used by the CASCADE program are based on an explicit
simulation of the defect and the surrounding region of the lattice (region I), while the
remainder of the crystal (see figure 2.3.2.1.1) is treated as a continuum using the
Mott-Littleton approximation. Elastic perturbations of the continuum region by the

defect are ignored and Newton-Raphson minimization methods are used. These

64



methods reduce the computer time for a calculation by a factor of about 20
compared with the simpler gradients methods. Calculations were performed with
both C = 0.0 and C = 27.89, and although defect energies obtained from the
latter were generally lower than those obtained when C = 0.0, the results from C
= 0.0 were used in the discussions on the basis of the consistency obtained from

perfect lattice calculations when this short range parameter was excluded.

The perfect lattice of ZrO:2 used in the present investigation contained 16 oxygen
ions and 8 zirconia ions. Table 3.1.1.1 shows the number of different species for
the x = 9.4 and x = 24 concentrations. The lattice was stabilised using
configurations with vacancies located at both NNN (figure 3.1.1.1) and NN (figure
3.1.1.2) sites to the yttria ions. Due to the small lattices used in CASCADE runs,
the procedure for lattice stabilisation was not as straight forward as in perfect lattice
calculations. Consequently, the lattice stabilisation procedure will be discussed in

greater detail under perfect lattice calculations in section 3.2.1.

Table 3.1.1.1 Number of species with x = 9.4 and x = 24 concentrations used in

defect energy calculations.

Number of different species

Yttria content (mol %) 7.4 s Y3+ 0% V(;‘
9.4 6 2 15 1
24 4 4 14 2

The rigid-ion model potential parameters are shown in table 3.1.1.2(a)-(b). The

corresponding shell model potential parameters are listed in table 3.1.1.3(a)-(b).
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Table 3.1.1.2(a) Short range potential parameters used in the rigid-ion model.

A p C0
Interaction (eV) (eV) eV A6
Zr-0 847.562 0.3885 0.0
Y-O 1345.10 0.3491 0.0
0-0 22764.3 0.1490 0.0
Table 3.1.1.2(b) Rigid-ion parameters

Cois Spring gogstant k
lon/Interaction charges Mass eV A7)
Zr(core) 4.000 91.244 —_
Y (core) 3.000 89.906 S
O(core)-O(shell) -2.00 15.990 1000000

Table 3.1.1.3(a) Shell model short range potential parameters.

A p C
(0] 0‘6
Interaction (eV) (A) (eV A" )
Zr-0 985.8692 0.37616 0.0
Y-O 1345.100 0.34910 0.0
0-0 22764.30 0.14900 0.0 or 27.89
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Table 3.1.1.3(b) Shell model parameters

Spring constant k

Interaction Shell charges eV A~ ?)
Zr(core)-Zr(shell) 1.35000 169.617
Y{(core)-Y(shell) -0.25000 145.000
Ol(core)-Ofshell) -2.07719 27.290

As mentioned in section 2.2.2 the shell model of Dick and Overhauser (1958) is
often used in defect studies. This model correctly simulates both the elastic and
dielectric properties of materials; which is an essential requirement for reliable
calculations of defect energies. It is for this reason that all defect energy

calculations reported here were based on the shell model.

Furthermore, ZrO2 can be stabilised in the cubic phase due to the larger size of the

Y3+ ions which substitute for the smaller Zr4+

ions (Dwivedi and Cormack 1990).
Dwivedi and Cormack (1990) have suggested that Y'Zr , because of the larger size
of the Y3+, imposes a cubic symmetry on the anion sub-lattice around it. This
could be the reason for the stabilisation of cubic zirconia on doping with cations
such as Y3, The defect energies reported in this section were obtained from
lattices which were stabilised using the structure in figure 3.1.1.1(a) since this was

the only one that converged at CONV with C = 0.0.

Following computer simulation studies by Jackson et a/. (1986) on uranium oxide,
an attempt was made to have about 200 particles in region | (see figure 2.3.2.1.1).
In the calculation of oxygen migration energies the saddle point was taken to be a

point midway between the oxygen vacancies involved in the migration process. The
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activation energy was calculated from the difference between the respective
migration and formation energies. That is, Eact = Emigr - Eform .

Dwivedi and Cormack (1990) have indicated the existence of interactions between
the dopant impurity cations and the charge compensating defects in calcia-stabilised
cubic zirconia. This is mainly due to the opposite effective charges on the different
defect species. The Kroger-Vink notation, wherein the defect is denoted by a major
symbol signifying the species and a subscript indicating the site occupied by the
species, was used. A vacancy is denoted by V while an interstitial site is
represented by a subscript i. Positive and negative virtual charges are indicated by
dot and prime symbols, respectively, as superscripts while defects with no effective
charge relative to the unperturbed lattice are indicated by a superscript x. Thus, the
interaction between the isolated defects 2Y‘Zr and Vé' yields the neutral aggregate

[Yér . Vc')' : Yér]x whose association energy is given by:

E = E.. . .. . 1x-2E,,, -E,,..
assoc(/) [YZr ; Vo ‘ YZr] YZr Vo
Energies of associates from large defect complexes considered in the present
investigation may be grouped as follows:
1. simple neutral dopant-vacancy pairs of type [Yir . Vc')' . Yé,]x
The association energy with respect to isolated defects is given by

E = By .. , - E,..- 2E,,
assoc(/) [YZr‘ Vo ; YZr] \,’0 YZr

2. clusters involving zirconia vacancies.
The associate of type [Yér : Vc')' ; Y’Zr]x with Vc'}’ at NN sites to the yttria ions

(figure 3.1.2.4(b)) was highly unstable, precluding the existence of such a cluster.

Negative association energies of various clusters indicate the possibility of formation
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of such clusters.

3.1.2 RESULTS FOR DEFECT ENERGIES

Energies of isolated defects in cubic zirconia were calculated from the clusters in
figure 3.1.2.1. The results are recorded in tables 3.1.2.1 and 3.1.2.2 for

x = 9.4 and x = 24, respectively, from both CONV, C = 0.0 and CONV,

C = 27.89 (bracketed values). The position of all interstitial defects was in the

body center of the empty cube of the anion sublattice.

It was observed from tables 3.1.2.1 and 3.1.2.2, on the basis of lower calculated
values, that it was easier to create oxygen vacancies in the x = 9.4 concentration
than in the x = 24 concentration. Furthermore, the oxygen vacancy formation
energies were lower, in both concentrations, when C = 27.89. On the basis of this
observations alone, it was possible to infer that the x = 9.4 mol% doped sample
would have higher oxygen conductivity. As for interstitial formation energies, their
absolute magnitudes seem to suggest a reluctance to interstitial migration in the x
= 9.4 concentration. However, in the x = 24 sample, the propensity was towards
interstitial migration.  Finally, the high absolute values obtained from cations

illustrated the reluctance of migration resulting from these defect species.

The anion vacancy and interstitial migration energies were obtained from the
structures in figure 3.1.2.2 and the energies are listed in table 3.1.2.3(a)-(b). Anion
activation energies were calculated from the difference between the migration and
formation energies. These are also presented in table 3.1.2.3(a)-(b) for x = 9.4
and x = 24, respectively. The variation of the anion vacancy activation energy with

temperature is depicted in figure 3.1.2.3 for x = 9.4,
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On the basis of the lower calculated activation energy in the x = 9.4 sample, it was
inferred that this sample would have higher conductivity than the x = 24 sample.

The results showed clearly that conductivity would be via vacancy migration.

Defect energies of associates of type [Yér 1 Vc'}' : Y'Zr]’< in Zr02(9.4 mol % Y203}
were calculated from the configurations in figure 3.1.2.4 and the results are
presented in table 3.1.2.4(a)-(b) for both C = 0.0 and C = 27.89. This has,
however, not been done in the x = 24 sample because on doping with 24 mol%
Y203 four Zr*™ ions, in a sample with 8 zt** and 16 0% ions, are replaced by
four Y37 ions, making it difficult to investigate energies of defect complexes
involving the interaction of at least two Yir with one or two oxygen vacancies as
was done for Zr02{9.4 mol% YZOS). However, with advances in computer

software larger unit cells would be investigated, permitting the study of larger defect

aggregates in Zr02(24 mol% Y203).

The energies of single dopant-vacancy associates in calcia - stabilised cubic zirconia
were calculated by Dwivedi and Cormack (1990) using the defect clusters shown in
figure 3.1.2.5. The energies are reported in table 3.1.2.5. The highest binding
energy was found when the oxygen vacancy was located at NNN sites to a yttria

ion.
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Table 3.1.2.1 Formation energies of isolated defects in Zr02(9.4 mol% Y203) from
CONV, C = 0.0 and CONV, C = 27.89 (bracketed values). The position of all

interstitial defects was in the body centre of the empty cube of the anion sublattice.

N Defect energy *Zroztx CaO)

Defect type Defect position (eV) (eV)

% Fig 3.1.2.1(a) 13.63 (13.44) 14.77

Zr Fig 3.1.2.1(b) 82.39 (82.06) 86.06

: Fig 3.1.2.1(c) -15.87(-15.14) -9.34
Zee Fig 3.1.2.1(d) -69.53(-70.08) -65.913
yie Fig 3.1.2.1(e) -36.20(—) < 20
¥, Fig 3.1.2.1(f) 34.14 (33.35) 59.86°

*  After Dwivedi and Cormack (1990)

# Formation energy for Cé;

r

@ Formation energy for Ca,,

Table 3.1.2.2 Formation energies of isolated defects in Zr02(24 mol % Y203) from
CONV, C = 0.0 and CONV, C = 27.89 (bracketed values). The position of all

interstitial defects was in the body centre of the empty cube of the anion sublattice.

Defect energy

Defect type Defect position (eV)
i Fig 3.1.2.1(a) 16.58 (15.26)
- Fig 3.1.2.1(b) 83.45 (——)
. Fig 3.1.2.1(c) -10.97(-11.37)
zr Fig 3.1.2.1(d) -68.84(-68.25)
Vi Fig 3.1.2.1(e} -31.56(-31.41)
e Fig 3.1.2.1(f) 35.51 (35.52)
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Key: Vc')' Oxygen vacancy;
Zr Zirconium vacancy;
OI Oxygen interstitial ion;
Zri'” Zirconium interstitial ion;
Y‘Zr Yttrium in a Zirconium position; and
Y: Yttrium interstitial ion.

Following the suggestion by Dwivedi and Cormack (1990), addition of half the
association energy to the calculated activation energy gives a value which should be
compared with results from experiment. This was done for C = 0.0 at T = 300
and T = 1287 K. The calculated values were compared with those from

experiment in table 3.1.2.6.

The positive association energy obtained when C = 27.89 showed that the
formation of such associates was doubtful. On the otherhand, when C = 0.0, the
possibility of formation of the associates, indicated by negative association energies,

is high (table 3.1.2.4(a)).

The experimental values in table 3.1.2.6 were taken from Solier et a/. (1988). It

1
act T 2Eassocm

reasonably well with those from experiment. Interactions involving zirconia

was evident that the calculated energies from E compared

vacancies are shown in figure 3.1.2.6 while the associated energies are given in

table 3.1.2.7. The calculated energies of interactions involving zirconia vacancies

were very high, which precluded any existence of such clusters.
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Table 3.1.2.3(a) Results of migration and activation energies for x = 9.4 from both

C = 0.0 and C = 27.89 (bracketed values).

Defect energy ZrOZ(x Ca0)
Type of energy (eV) (eV)
Anion vacancy migration 14.23 (14.11)
Anion vacancy activation 0.603 (0.670) 0.2-1.37
Anion interstitial migration -14.17( )
Anion interstitial activation 1.670 ( )

Table 3.1.2.3(b) Results of migration and activation energies for x = 24 from both

C = 0.0 and C = 27.89 (bracketed values).

Defect energy

Type of energy (eV)

Anion vacancy migration 17.53 (17.34)
Anion vacancy activation 0.950 (2.080)
Anion interstitial migration -9.323(-12.04)
Anion interstitial activation 1.647 (0.670)

We are not sure about the reliability of the activation energies for x = 24 samples
with C = 27.89 which differ by large amount when compared with those obtained
with C = 0.0. These large differences between activation energies obtained with C
= 0.0 and C = 27.89 were not observed in the x = 9.4 sample. It is possible that

effects associated with complex clusters at high yttria content are taking place.
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Figure 3.1.2.3 The variation of anion vacancy activation energy with
temperature obtained using quasi-harmonic approximation for x = 9.4
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Table 3.1.2.4(a) Results of defect energies of associates of type [Yér . V(‘)' . Yir]’<

in Zr02(9.4 mol% YZOS) from CONV, C = 0.0.

Defect energy Eassoc(i} Eassoc{p,n Defect

Defect type (eV) (eV) (eV) position
LETALK LG 81.04 -0.870 _ Fig 3.1.2.4(a)
[Yir'vc')"Yér]x Did not converge Fig 3.1.2.4(b)

Table 3.1.2.4(b) Results of defect energies of associates of type [Yir ‘ V(‘)' ; Y'Zr]x

in Zr02(9.4 mol% Y203} from CONV, C = 27.89.

Defect energy Eassocm Eassoc(p,i) Defect

Defect type (eV) (eV) (eV) position
’ ] r X 1

[Y, .V5.Ysl 80.93 0.790 _ Fig 3.1.2.4(a)
; .. , X 3 "

[er.VO 'YZr] Did not converge Fig 3.1.2.4(b)
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Figure 3.1.2.5 Defect clusters used for calculating defect energies of single
dopant-vacancy associates in calcia-stabilised cubic zirconia (Dwivedi and
Cormack 1990)
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Table 3.1.2.5 Defect energies of single dopant-vacancy associates in calcia -

stabilised cubic zirconia (Dwivedi and Cormack 1990).

Defect Defect energy Assoc energy
Defect type Position (eV) (eV)
Caz;.\/c‘)']x Fig 3.1.2.5(a) 74.133 -0.495
[Caz;.Vd']x Fig 3.1.2.5(b) 73.951 -0.677
[Caz;.vc')']x Fig 3.1.2.5(c) 74.383 -0.245
[Ca,".V 1*  Fig 3.1.2.5(d) 74.418 -0.210

Table 3.1.2.6 Comparison of the calculated and the experimental anion vacancy

activation energies for x = 9.4 from C = 0.0.

1 1
Temperature Eact 1ZEassoc(i) Bact * ?Eassoc(f) Eact[ Expl.
(K) (eV) (eV) (eV) (eV)
300 0.603( ) 0.438( ) 1.041 () 1.1600
1287 0.439( ) 0.438( ) 0.877 () 0.8400

Table 3.1.2.7 Energies of interactions involving zirconia vacancies with C = 0.0

and C = 27.89 (bracketed values).

Defect Energy Eassc::c (7) Defect
Defect type (eV) (eV) position
Mol T 96.77 (97.10)  0.758 (0.750) Fig 3.1.2.5(a)
Vg Vo, VT 110.6 (109.5)  0.977 (-0.17) Fig 3.1.2.5(b)
[vb-.vz'_,;”.va]" Did not converge Fig 3:1:2.51{c)
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Figure 3.1.2.6 Defect clusters for calculating energies of interactions involving

zirconia vacancies
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3.2 PERFECT LATTICE CALCULATIONS
Results from perfect lattice calculations are presented in this section. These will be

followed by discussions in section 3.3.

3.2.1 COMPUTATIONAL PROCEDURE

In this section the computational procedure followed in the calculation of
thermodynamic quantities is presented. The procedure for the construction of
supercells is discussed first (same procedure was used in the construction of unit
cells used for defect energy calculations). This is followed by a presentation of

results from perfect lattice calculations.

Uncertainity prevails around the nature of the structure of dopant-oxygen vacancy
complexes in stabilised cubic zirconia (section 1.4.1.1). The two cases wherein the
oxygen vacancies were located at NNN and NN sites to the substitutional dopant
cations were investigated. The suggestion by Veal et al. (1988) that at high
concentrations there is a mixture of oxygen vacancies; some at NN and others at

NNN positions to the impurity cations was explored for the x = 24 concentration.

As discussed in the introduction (section 1.3.3) zirconia can be stabilised in the
cubic phase by the addition of appropriate concentrations of Y203. Pure ZrO,'2 was
stabilised in the cubic flourite phase at room temperature by the addition of 9.4, 15,
21 and 24 mol% Y,0, according to the formula Zr, , Y, O, . For instance, for
x = 0.094 the following was obtained:

Z Y 0 = Z Y 0

M1-2(0.094) ' 2(0.094) ~ 2-0.094 f0.812'0.188~1.906"
But originally there were 32 zt** jons and 64 Ox* ions. On doping with 9.4
mol% only 0.812 x 32 z*T » 2598 » 26 2r*" ions remained, implying the

existence of 6 Y3* ions. Charge neutrality was maintained by the creation of 3
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oxygen vacancies, resulting in a defective lattice of 61 oxygen ions. The same
procedure was followed in doping with the other yttria concentrations. Table
3.:2.1:1 shows the number of the different species at various dopant

concentrations.

Table 3.2.1.1 Number of ions at various yttria contents used in perfect lattice

calculations.

Number of different species

Yttria content (mol %) Zr4+ y3+ 0% V(‘)'
9.4 26 6 61 3
15 22 10 59 5
21 18 14 57 7
24 16 16 56 8

Various configurations involving the positions of the dopant cations relative to the
respective oxygen vacancies were tried in order to check the most stable
arrangement of the impurity cations and the charge compensating defects. These
were labelled the x-, /- and y-group of configurations (see figure 3.2.1.1), in line
with the apparent orientation of the dopants with respect to the anion vacancies.
Configurations X, X1, and )(:2 belong to the same x-group and all have the same
orientation of the dopant cations with respect to the oxygen vacancies but with
vacancies sitting at different positions. The positions of oxygen vacancies and yttria
ions, which sit at NNN sites to the vacancies, for the various orientations

considered in the present investigation are the following:
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X-configuration:
Vc')'(O.375 0.375
Vé'(0.375 0.625
Vb'(0.375 0.125

X1-configuration:
Vc‘)'(0.375 0.375
Vd‘(0.375 0.625
Vb‘{0.375 0.125

Xz-configuration:
Vé’(0.625 0.375
V(')'(O.375 0.875
Vb'(0.375 0.125

L - configuration:
Vé'(0.125 0.375
Vé'(0.125 0.625
V{')'(O.375 0:375

L1-com‘iguration:
Vd'(0.375 0.375
V{'}'(O.625 0.625
Vé'(0.375 0.875

Lz-configuration:
V(‘)'(O.375 0.625
Vé'(0.625 0.125

Vé’(0.625 0.3756

0.875)[Y (0.00
0'625)[Yér(0-00
O.625)[Y‘Zr(0.00

0.375}[Y‘Zr(0.00
0.1 25)[Yér(0'00
O.125)[Y’Zr(0.00

0.625)[Y (0.25
O.875)[Yér(0.00
0.125) [Yir(0.00

0.1 25)[Yér{0'50
0'375}[Yir(0'50
0.375)[Y, (0.75

O.375)[Y'Zr(0.00

O.375)[Yér(0.25

0.375)[Y (0.00
r

0.125)[Y (0.00
0.375)[Yér(0.25
0.1 25)[Y’Zr(0.25

0.25
0.50
0.00

0.25
0.50
0.00

0:25
0.75
0.00

0.50
0.75
0.50

0.25
0.50
0.75

0.50

0.00
0.25
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0.75), Yir(0.75
0.50), Y‘Zr(0.75
0.50), Yir(0'75

0.25), Yir(0.75
0.00), Y’2r(0.75
0.00), Yir(0.75

0.50), Yér(1 .00
0.75), Y’Zr(0.75
0.00), Yér(0.75
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0.25), Yér(0.25

0.25), Y, (0.50
0.25), Y, (0.75
0.25), Yér(0.50

0.00), Y'Zr(O.SO
0.25), Yér(0.75
0.00), Y'Zr(0.75

0.50
0.75
0.25

0.50
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0.50
1.00
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0.50
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0.50
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0.50)]
0.50)]

0.25]]
0.00)]
0.00)]
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0.75)]
0.00)]
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0.75)]
0.75)]
0.75)]

0.50)]
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L3-com‘iguration:
V{'J'(O.375 0.125
V{'J'(O.375 0.875
V('}'(O.S'/'S 0.625

L4-configuration:
Vé'(0.375 0.625
Vé'(0.375 0.125
Vd'(0.875 0.625

L5-configuration:
Vb‘{0.875 0.125
V;'(0.625 0.375
V(')'(O.375 0.875

Y-configuration:
V;'(0.875 0.375
Vé'(0.125 0.625
V(')'(O.375 0.3718

Y1-configuration:
Vé‘(0.625 0.625
Vd'(0.625 0.125
Vb'(0.125 0.125

0.625)[\’%(0.00
O.375}[Y2r{0.00
0.125)[Y (0.00

O.625)[Yér(0.00
0.125)[Y (0.00
0.625)[Y (0.50

0.125)[Y, (0.50
0.625)[Y (0.25
0.375)[Y (0.00

0'375)[Yér(0'75
O.S?S)[Yér(0.00
0.375)[Y (0.25

0'375)[Yér(0'50
0'375”Yér{0'50
0'375}[Yér{0'00

0.00
0.75
0.50

0.50
0.00
0.50

0.00
0.25
0.75

0.25
0.50
0.25

0.50
0.00
0.00

0.50), Y’Zr(O.SO
0.25), Yér(O.SO
0.00), Yér(O.SO

0.50), Y’Zr(O.SO
0.00), Y’Zr(O.SO
0.50), Y’Zr(‘I.OO

0.00), Y, (1.00
0.50), Y, (0.75
0.25), Y, (0.50

0.00), Y, (0.75
0.00), Y, (0.00
0.00), Y, (0.25

0.00), Y/ (0.50
0.00), Y/ (0.50
0.00), Yér{0.00

0.00 1.00)]

0.75 0.75)]
0.50 0.50)]
0.50 1.00)]
0.00 0.50)]
0.50 1.00}]
0.00 0.50)]
0.25 1.00)]
0.75 0.75)]
0.50 0.75)]
0.75 0.75)]
0.50 0.75)]
0.75 0.75)]
0.25 0.758)]

0.25 0.75)]

As a way of example, V'(0.375 0.375 O.875}[Y’Zr{0.00 0.25 0.75), Y, (0.75

0.50 0.75)] denoted an oxygen vacancy located at

0.375

0.375 0.875.

Associated with this vacancy there were two yttria ions, sitting at 0.00 0.25 0.75

and 0.75 0.50 0.75.

cations sitting at

positions in a 96 ion supercell for x = 9.4.
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Figure 3.2.1.1(a)-(d) shows the various structures for

NNN positions to the oxygen vacancies, as well as the inoic
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Figure 3.2.1.1(a) The various structures used for lattice stabilisation with Y3+
lons located at NNN distances to the oxygen vacancies: (a) x-, (b) y- and (c) /-
configuration
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3.2.2 RESULTS FROM PERFECT LATTICE CALCULATIONS

Results from perfect lattice calculations are presented in this section. Results from
lattices with unrelaxed coordinates are presented first. However, the failure of the
QHA has lead to the consideration of relaxed coordinates, which greately improved
the linear reduction of elastic constants with temperature. High temperature
Brillouin scattering and refractive index measurements (Botha et al. 1993) were used
to study the behaviour of elastic constants in yttria-stabilised cubic zirconia for both
the x = 9.4 and x = 24 samples, and in the 300 - 1400 K temperature region.
They have compared the behaviour of thermodynamic quantities in these two
samples. In order to compare our results with these experimental observations, we

show comparisons of the thermodynamic properties in these samples in this section.

Experimental thermodynamic properties are presented in table 3.2.2.1. This is
followed by the corresponding calculated values in table 3.2.2.2(a)-(d) from the
various structures, for runs at both constant volume (CONV) and constant pressure
(CONP) and with either C = 0.0 or C = 27.89, for the x = 9.4 concentration.
The elastic constants in table 3.2.2.1 were taken from the ultrasonic work by Hart
et al. (1986) while the static dielectric constant and high frequency dielectric
constants were reported by Lanagan et al. (1989) and Botha et al. (1993),

respectively.
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Table 3.2.2.1 Experimental results for elastic and dielectric constants.

Yttria content (mol%)

Thermodynamic

quant ity 9.4 18 21 24
CH{GPa) 401.4 387.9 367.8 357.2
C12(GPa) 105.6 104.3 105.8 104.8
C44(GPa) 57.46 64.25 71.25 72.16
€ 27.3

€ 2:19 2.17

14

The room temperature calculations in Zr02{9.4 mol% Y203) with impurity cations
located at both NNN and NN positions to the charge compensating defects and at
CONV and CONP for C = 0.0 and C = 27.89 show that in general, the values
for CONV, C = 27.89 and with vacancies located at NNN sites to Y3* ions
agree reasonably well with experimental findings (see tables 3.2.2.2(a)-(d) and
3.2.2.1). This highlighted the role played by the inclusion of the dispersive and the
van der Waals interactions very well. Reasonable thermodynamic values for
vacancies located at NN positions to the dopant cations were also obtained with
CONV, C = 27.89 (see table 3.2.2.4.(b)). Recall that the van der Waals
interactions are occasionally important in ionic systems where they may provide
attraction between NNN ions (section 2.2.2). It was gratifying to see that the
adopted interionic potential model produced an accurate description of the

next-nearest neighbour interactions.
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Table 3.2.2.2(a) Results of elastic and dielectric constants for x = 9.4, for various

configurations, from CONV, C = 0.0 and with Y3 ions located at NNN to the

oxygen vacancies.

Shel | model

Rig i d-ion model

Cii Gy Cas % Civ G2 Cas

Config. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

X Did not converge 402.1 112.9 78.03 22.08
X1 409.1 98.46 82.64 27.65 395.4 117.4 62.23 21.57
X2 430.7 123.6 87.05 26.70 405.2 113.8 82.02 23.15
Y 404.0 116.0 80.32 31.09 382.5 108.8 80.57 19.97
Y1 435.7 116.4 79.64 23.10 396.8 120.7 81.92 20.25
L 432.5 117.6 94.54 26.76 396.4 102.8 77.79 27.20
L1 393.3 103.9 77.44 24.11 352.7 112.6 78.13 22.42
L:2 414.1 108.0 92.25 27.42 334.5 140.6 67.60 28.43
L3 439.0 126.2 95.06 25.80 394.1 1245 72.43 22.84
L4 425.8 118.6 99.23 24.75 382.2 118.3 79.29 24.38
L5 372.0 101.5 80.91 28.38 393.1 112.4 87.58 21.58
XLY 411.6 98.36 87.10 26.26 Did not converge

)(1L1Y1 437.4 127.1 96.67 31.57 347.5 143.2 72.79 26.45
X1L2Y,I 431.5 116.5 88.68 24.87 387.7 114.0 76.59 23.42
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Table 3.2.2.2(b) Results of elastic and dielectric constants for x = 9.4, for various
configurations, from CONV, C = 27.89 and with Y3* ions located at NNN to

the oxygen vacancies.

Shel | model Rig i d-ion model
Civ Coa Cas % Ciiv Ciz Cas %

Config. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
X 402.4 96.72 86.19 28.09 306.1 152.8 61.63- 36.88
X, 325.9 26.19 71.87 33.08 366.0 86.34 70.69 21.30
X, Did not converge 349.5 74.19 60.44 21.66
b 4 384.9 94.87 74.88 27.20 296.0 57.41 44.56 29.09
Y1 Did not converge 373.8 88.13 77.43 20.81
L 383.1 103.7 84.01 33.01 351.7 94.88 92.41 23.44
L1 395.3 87.78 87.75 26.76 Did not converge
L, 407.9 107.9 76.69 28.97 374.5 110.2 66.84 23.86
L, 400.3 84.87 82.25 28.87 408.8 111.3 77.89 23.12
L4 394.5 88.01 79.77 25.43 385.9 119.1 52.45 27.82
L5 417.5 95.44 84.20 25.51 Did not converge
XLY 319.1 24.47 75.71 30.40 366.7 107.2 74.65 20.80
X1L1Y1 399.8 85.89 90.92 24.64 336.5 78.12 69.49 21.84
>'(1L2Y1 406.3 96.53 80.53 27.89 398.9 114.5 69.56 22.45
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Table 3.2.2.2(c) Results of elastic and dielectric constants for x = 9.4, for various

configurations, from CONP, C = 0.0 and with Y3* ions located at NNN to the

oxygen vacancies.

She |l | model Rigid-ion model
Civ Ciz Cas o Civ G2 Cun &

Config. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
X 305.3 109.0 61.85 17.31 279.8 98.44 56.88 12.83
X1 335.8 89.56 71.55 28.05 Did not converge
X, 406.7 101.3 83.58 30.70 201.3 39.71 49.18 14.99
Y 201.1 30.92 51.12 16.93 222.7 52.02 49.45 15.40
Y1 Did not converge 294.4 107.4 63.18 13.20
L 270.6 85.95 70.78 17.11 Did not converge
L1 316.4 65.91 67.72 23.49 Did not converge
L, Did not converge 299.2 91.40 54.73 19.80
Ly 350.3 90.51 64.59 25.25 Did not converge
L4 Did not converge 251.6 117.6 90.53 10.80
L 336.9 95.51 63.09 25.86 279.8 69.83 46.91 21.42
XLY 271.8 115.2 88.45 15.26 Did not converge
XL, Y, Did not converge 266.7 108.6 46.79 13.27
)(1L2Y1 288.7 81.47 64.71 26.40 Did not converge
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Table 3.2.2.2(d) Results of elastic and dielectric constants for x = 9.4, for various
configurations, from CONP, C = 27.89 and with Y3¥ ions located at NNN to

the oxygen vacancies.

Shel | model Rig i d-ion model
Cipv Gy Cas % Ciiv Ci2 Cas &

Config. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
X 393.5 96.33 84.96 27.95 275.6 101.5 51.99 18.52
X, 349.0 62.92 83.80 22.28 312.4 89.19 68.67 18.63
X, 316.4 91.22 68.76 20.78 370.3 108.1 74.90 20.92
Y 394.2 93.36 74.14 30.55 295.8 108.5 58.09 14.00
X5 Did not converge 300.56 117.0 69.98 12.42
L 403.3 113.4 88.70 29.79 281.4 91.58 52.44 16.12
L1 3956.1 90.16 87.59 26.00 271.5 80.18 54.05 17.57
L, 411.1 107.6 78.76 29.02 314.3 61.25 66.67 24.69
L, 391.5 71.21 84.37 26.51 366.9 99.00 63.80 25.49
Ly 392.4 92.92 84.56 23.85 340.6 85.35 67.12 20.74
L 411.4 82.62 83.67 26.32 289.3 79.46 66.39 17.23
XLY 346.0 61.94 70.76 29.89 325.3 92.19 68.01 16.40
X,LY, 397.9 91.25 89.56 24.59 303.3 117.6 63.44 12.22
X,LY, 399.0 90.59 81.87 27.08 288.9 88.71 73.63 14.76

It was evident from tables 3.2.2.2(a)-(d) that it is often difficult to strike a balance
between the elastic constants and the dielectric constants. This affirmed that
indeed these properties originated from different sources (section 2.3.1). The values

of C11 obtained from CONV, C = 0.0 runs were generally high while the
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calculated values of €y were reasonable. Furthermore, the calculated values of €0
obtained from the rigid-ion model agreed well with experimental results. Although
polarizability and short range parameters can be derived consistently for alkali
halides, yielding transferable parameters, a similar approach for oxides has not been
successful. This is ascribed to the fact that the 02 ion does not exist as a stable
free ion, the second electron being bound only by the Madelung potential (Lewis
1985). A strong variation in electronic polarizability with crystalline enviroment is
thus expected. It was found that the inclusion of the dispersive and the van der
Waals interactions lowered the values of the elastic constants while the static
dielectric constants increased. Furthermore, although the elastic and static dielectric
constants were reproduced very well by the shell model, the rigid-ion model
generally failed when C = 27.89. Results obtained from CONP were generally
poor as compared with those from CONV and experiment, with worse values
obtained from CONP, C = 0.0 runs. Furthermore, in contrast to the behaviour with
CONV, C = 27.89 the elastic constants obtained from CONP, C = 27.89 were
higher that those from the CONP, C = 0.0 runs.

It is worth noting that certain configurations were found to be unstable (e.g.
x-configuration, CONV, C = 0.0 in table 3.2.2.1(a)). It is possible that these are
configurations in which the yttria ions were forced to have a sevenfold coordination
leading to the prevalance of strong vacancy-vacancy interactions as reported by

Subbarao and Ramakrishnan (1979) and Dwivedi and Cormack (1990).

In this work different configurations (figure 3.2.2.1) were tried in order to test their
relative stabilities so that the most stable configuration could be used in molecular
dynamics studies. In this respect two approaches were followed: (a) relaxation with

the calculated crystallographic coordinates and (b) relaxation with ‘relaxed’ ionic
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coordinates. Although the calculated thermodynamic properties in the first approach
were reasonable when compared with experimental values (tables 3.2.2.2(a)-(d)),
calculations performed via the quasi-harmonic approximation (QHA) showed large
deviations and scattering from linearity (figures 3.2.2.1), especially when C =

27.89. The variation of C”, for the X_ -, L and Y-configurations with

1 4™
temperature is shown in figure 3.2.2.1 for structures that have not been relaxed
previously. The variation of all elastic constants with temperature for relaxed
coordinates, and for various configurations, are shown in figure 3.2.2.2 from
CONV with (i) C = 0.0 and (i) C = 27.89 for x = 9.4. It must be noted that
only results from those configurations that have reproduced experimental results are
shown in the results. For instance, although six different /-configurations were

tested, the L4—configuration was found to reproduce experimental results

consistently. Consequently, results from this configuration were shown.

The L4-configuration showed some degree of consistency (see figure 3.2.2.1), with
the scatter of points reduced. There appeared to be a softening of C11 above
1000K. This behaviour was not visible in the other configurations. This problem
was overcome through approach (b) wherein the structures were first brought to
equilibrium by relaxation at CONP, C = 27.89 since the runs at CONP, C = 0.0
always yielded poor results (see table 3.2.2.1). Constant pressure calculations were
performed since in this case both the lattice vectors and the ionic coordinates were
relaxed, thus effectively bringing the structure much closer to equilibrium. This was
evidenced by the fact that subsequent runs lasted, on the average, only twenty
minutes as compared with the average two and half hours taken in the initial run on
the ALPHA DEC 300 AXP system. The subsequent runs were done at constant

volume with C = 0.0 since this has reproduced the linear reduction of elastic

constants with increasing temperature from unrelaxed coordinates better.
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The variation of elastic constants with temperature from relaxed coordinates is
shown in figures 3.2.2.3 for the x-, - and y-groups of configurations, with dopant
concentration x = 24 and figure 3.2.2.4 for both x = 9.4 (L4-configuration) and
x = 24 (l-configuration). The /-configuration referred to here is a mixture of L1-,
L2- and L4-configurations. These configurations were used based on the consistent

results obtained in terms of the magnitudes of the thermodynamic quantities (see

table 3.2.2.2).

All the elastic constants in the x = 9.4 sample generally decreased linearly with
temperature in the x = 9.4 sample for the X1-configuration and with C = 0.0, The
linear reductions were observed until about 1100 K, followed by deviations from
linearity. In contrast, no apparent deviation was observed when C = 27.89. Near
constant variation in C12 with increasing temperature was observed up to about
1100 K where a deviation from linearity was observed when C = 0.0. However,
when C = 27.89, this elastic constant increased with increasing temperature with
no sensitivity to Tc' Gradual decreases were observed in the case of C44 with no
visible sensitivity to Tc' The results obtained with C = 27.89 generally showed no

deviation from linearity and sensitivity to Tc'

Deviations from linearity were also observed in the Y-configuration (for x = 9.4),
with C = 0.0, around 800 K, followed by a complete breakdown of the linear
behaviour beyond 950 K. As for the results with C = 27.89, deviations from
linearity were also observed around 800 K in both C11 and C12' This was followed
by a reversal of curvature around 900 K. On the other hand, 044 showed a gradual

decrease with temperature and was insensitive to Tc'

Results from )(1L2Y1 showed linear reduction of all elastic constants with
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temperature, except for C12 with C = 0.0 which increased with increasing
temperature up to about 900 K, followed by a decrease with no sensitivity to Tc'
Deviations from linearity were observed around 800 K. It was not possible to
investigate this configuration in the x = 24 sample because the initial run at CONP,

C = 27.89 failed to converge and hence there were no relaxed co-ordinates.

The elastic constants with the L1-configuration and with C = 0.0 decreased linearly
with temperature up to Tc = 1300 K, in agreement with experimental observations.

However, C44 obtained with C = 0.0 and all elastic constants obtained with C =

27.89 appeared to be insensitive to Tc'

There were marked reductions in both C11 and C12 beyond 1000 K, followed by
reversal of curvatures around TC in the L2-configuration and with C = 0.0 in the x
= 9.4 sample. However, in the case of C = 27.89, erratic behaviour and reversal
of curvature around 1200 K were observed in all elastic constants. As for the
L4-configuration, a linear reduction in all elastic constants was observed, with no

visible deviation from linearity around Tc‘
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The calculated thermodynamic quantities for x = 24 with various configurations are
shown in table 3.2.2.3(a)-(b). The variation in elastic constants is shown in figure
3.2.2.3 for the x-, /- and y-configurations. Unless otherwise stated, the calculations

were performed with yttria ions located at NNN to oxygen vacancies.

Table 3.2.2.3(a) Results of the thermodynamic quantities for x = 24 with the X-,
L-, Y- and X1L2Y1-configurations from CONV, C = 0.0 with yttria ions located at

NNN sites to the oxygen vacancies.

Shell model thermodynamic quantities

Ciy Ci2 Caa ‘o o
Configuration (GPa) (GPa) (GPa)
X 354.8 94.26 89.42 15:71 2,297
L 365.5 117.7 102.8 17.62 2.299
Y Did not converge
)(1L2Y1 Did not converge

Table 3.2.2.3(b) Results of the thermodynamic quantities for x = 24 with the X-,
L-, Y- and X1L2Y1-configurations from CONV, C = 27.89.

Shell model thermodynamic quantities

Ciy Ci2 Caa ‘o ‘o
Configuration (GPa) (GPa) (GPa)
X 330.2 89.67 73.94 18.14 2.297
L Did not converge
Y 328.2 85.02 83.68 17.22 2.300
X, LY, 355.4 112.7 94.73 19.39 2.306
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Figure 3.2.2.3 Temperature variation of all elastic constants for x =
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with both C = 0.0 and 27.89
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There was a complete breakdown of linear reduction in the elastic constants versus
temperature plot with the x-configuration for both C = 0.0 and C = 27.89. The
breakdown occured around 900 K when C = 0.0 and at 600 K, 900 K and 1400
K when C = 27.98. In the y-configuration for the x = 24 sample, there was no
indication of the departure from linearity. However, there was softening of elastic

constants around 1400 K, followed by a reversal of curvature.

As for the /-configuration there was no departure from linearity before Tc = 1050
K. In fact, TC was reproduced and the failure of the quasi - harmonic approximation
was clearly reflected beyond Tc' when C = 0.0. However, when C = 27.89,
there was no departure from linearity and the linear reduction in all elastic constants
with temperature was insensitive to TC. This clearly showed the tendency of the
interionic potential model to be inconsistent when C = 27.89. Furthermore, the
reversal of curvature in the plot of C11 versus temperature in the x = 24 sample
was observed around 1300 K in both the / and y-configurations. This is in

agreement with observations by Botha et a/. (1993).

Results for x = 15 and x = 21 are shown in table 3.2.2.4 from both C = 0.0
and C = 27.89. The corresponding temperature variation of elastic constants is
shown in figure 3.2.2.5 from CONV with both C = 0.0 and C = 27.89. All the
elastic constants in Zr02(15 mol% YZOS)' with C = 0.0, decreased linearly with
temperature up to about 700 K, followed by a sharp decrease and a rapid increase
at about 840 K (see figure 3.2.2.5). As for the C = 27.89 simulation runs, the
deviations from linearity were observed at about 1100 K in both C11 and C12. The

elastic constant C44 did not show any such deviation.
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Table 3.2.2.4(a) Results of elastic and dielectric constants for x = 15 and x = 21

with the /-configurations from CONV, C = 0.0.

Shell model thermodynamic quantities

Yttr i a c ontent C11 C12 C44 € €
(mol% ) (GPa) (GPa) (GPa)

15 399.7 102.0 87.86 21.56 2.394

21 372.7 108.6 88.19 19.63 2.329

Table 3.2.2.4(b) Results of elastic and dielectric constants for x = 15 and x =

21 with the /-configurations from CONV, C = 27.89.

Shell model thermodynamic quantities

Yttr i a c ontent C C C €

10 12 44 (0] ©
(mol%) (GPa) (GPa) (GPa)
15 351.3 103:2 70.03 30.78 2.399
21 354.4 94.01 84.07 18.99 2.333

On the otherhand, a quasi-linear behaviour was observed up to about 740 K from
the x = 21 concentration with C = 27.89 (figure 3.2.2.5). However, with C =
0.0, the variation of elastic constants with temperature was found to be insensitive
to the transition region, but instead, showed a continued linear reduction. This was
not the case for the x = 15 concentration, where significant reductions were

observed around 700 K.
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It is difficult to draw a general conclusion on the effect of the inclusion of the van
der Waals and dispersive interactions (C = 27.89) in the interionic potential model,
but it would appear that the inclusion generally results in an erratic behaviour as
well as departure from linearity. Furthermore, there were no experimental values of
slopes for the x = 15 and x = 21, and as such, no comparisons with experimental
values was made as was done in the case of the x = 9.4 and x = 24

concentrations.

On the basis of the consistency exhibited by the /-configurations, they were
consequently chosen as structural entities on which the lattice stabilisation in the
15, 21 and 24 mol% concentrations were based. These clusters were

subsequently used in molecular dynamics studies.

The temperature variation of the bulk moduli (B), the Cauchy relation failure (A or C
in the graphs) and the anisotropy failure (A) for x = 9.4 and x = 24 are compared in
figure 3.2.2.6. The bulk moduli for both the x = 9.4 (with the L4-configurati0nj
and x = 24 (with the /-configuration) concentrations decreased linearly with
temperature, with no obvious strange behaviour around TC = 1300K in Zr02(9.4
mol % Y203)' In the x = 9.4 concentration, the magnitude of B was found to be
large while the slope of B versus temperature plot was high compared with that from
experiment (see table 3.2.2.8). Nonetheless, the behaviour of B was comparable

with that from experiment (Botha et al. 1993) at high temperatures.
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In Zr02(24 mol% Y203), and with C = 0.0, the bulk modulus showed a rapid
decrease with temperature above about Tc' This was different from the behaviour
from experiment (Botha et a/. 1993) where a small increase followed by a decrease
was observed. When C = 27.89 was used, only slight deviations from linearity in
the behaviour of B occured above Tc' This was expected since the elastic
constants were found to be insensitive to Tc and higher temperatures. However,
the slope of B versus temperature compared very well with that from experiment

(see table 3.2.2.8).

The corresponding Cauchy relation failure for x = 9.4 only began to slightly increase
above about 800 K (figure 3.2.2.6) but continued to drop in Zr02(24 mol%
Y203}. However, the magnitudes of A were worse as compared with those from
experiment when C = 27.89. Furthermore, experimental trends were not
reproduciable. Comparing the behaviours of A for x = 9.4 and x = 24,
coincidences at low temperatures were observed. However, separate behaviours
were observed at high temperatures, wherein changes in A from the x = 9.4

concentration exceeded those from the 24 mol % yttria content.

The anisotropy ratio (figure 3.2.2.6) showed similar variations with those from
experiment (Botha et a/. 1993) in the high temperature region. When C = 0.0 then
A24 o> A9_4, and both these ratios decreased with temperature up to below TC in
agreement with experiment (Botha et a/. 1993). The magnitudes were comparable
with those from experiment as well. However, when C = 27.89, the x = 24
reproduced experimental observation very well, and showed sensitivity to TC. As
for the 9.4 mol% vyttria content, the linear reduction in A was found to be better

than that observed in the case when C = 0.0.
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Simulation runs were also made for oxygen vacancies sitting at NN distances for
yttria cations. The various configurations that were used are shown in figure
3.2.2.7 while the results for the elastic and dielectric constants were calculated
from CONV with both C = 0.0 and C = 27.89, and are given in table
3.2.2.5(a)-(b), respectively.

Following the suggestion by Veal et al. (1988) the structures with vacancies sitting
at both NN and NNN positions to the yttria ions in the x = 24 concentration were
investigated. The calculated values are reported in table 3.2.2.6(a)-(b). Slopes from
the plots of the variation of all elastic constants with temperature for x = 9.4 and
X = 24 are listed in table 3.2.2.7(a)-(d). The experimental values were determined

from plots obtained from Brilluoin scattering experiments (Botha et a/. 1993).
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Table 3.2.2.5(a) Results of elastic and dielectric constants for x = 9.4 with various
defect positions from CONV, C = 0.0 and with Y3" ions located at NN to the

oxygen vacancies.

Shell model thermodynamic quantities

Cia Ci2 Cia ‘o ‘o

Cluster type (GPa) (GPa) (GPa)

Fig 3.2.2.8(a) 428.3 119.6 96.44 24.24 2.458
Fig 3.2.2.8(b) 448.5 131.2 89.54 24.47 2.473
Fig 3.2.2.8(c) 420.9 112.4 87.37 25.26 2.466
Fig 3.2.2.8(d) Did not converge

Fig 3.2.2.8(e) 3953 136.1 85.36 26.13 2.468
Fig 3.2.2.8(f) 357.1 79.56 86.71 26.46 2.464

Table 3.2.2.5(b) Results of elastic and dielectric constants for x = 9.4 with
various defect positions from CONV, C = 27.89 and with Y3* ions located at

NN to the oxygen vacancies.

Shell model thermodynamic quantities

Ciy Ci2 Cas ‘o ‘o

Cluster type (GPa) (GPa) (GPa)

Fig 3.2.2.8(a) 426.7 105.4 -44.5 98.27 2.473
Fig 3.2.2.8(b) 398.6 91.54 81.38 28.00 2.473
Fig 3.2.2.8(c) Did not converge

Fig 3.2.2.8(d) 396.2 85.04 74.14 26.58 2.463
Fig 3.2.2.8(e) 401.6 87.50 77.20 30.31 2.473
Fig 3.2.2.8(f) 373.0 90.34 86.52 23.64 2.472
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Table 3.2.2.6(a) Results of elastic and dielectric constants for x = 24 with various
defect clusters from CONV, C = 0.0 and with Y®* ions located at both NNN

and NN to the oxygen vacancies.

Shell model thermodynamic quantities

i 12 Cas ‘o ‘0
Configuration (GPa) (GPa) (GPa)
NNN(7L), TNN 366.5 119.3 97.82 18.22 2.303
NNN(6L), 2NN 367.7 113.2 97.99 18.70 2.306
NNN(5L), 3NN 332.0 94.17 91.90 20,78 2.306
NNN(4L), 4NN 365.9 114.1 91.54 20.51 2.306
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Table 3.2.2.6(b) Results of elastic and dielectric constants for x = 24 with various
defect clusters from CONV, C = 27.89 and with yot ions located at both NNN

and NN to the oxygen vacancies.

Shell model thermodynamic quantities

Ci4 Ci2 Cas ‘o ‘o
Configuration (GPa) (GPa) (GPa)
NNN(7L), TNN 335.5 93.60 86.79 19.29 2.306
NNN(6L), 2NN 346.8 108.2 84.02 19.74 2.309
NNN(5L), 3NN 219.5 63.18 81.00 21.62 2.309
NNN({4L), 4NN 348.5 114.3 85.13 22,07 2312

Table 3.2.2.7(a) Experimental slopes from the variation of all elastic constants with

temperature (taken from plots by Botha et a/. 1993).

Experimental slopes of variation of Cf'f with temp. (GPa/K)

Yttria content (mol%)

9.4 24
Elastic constant (GPa) Elasticconstant (GPa)
C11 C12 C44 C11 C12 C44
0.050 0.024 0.012 0.055 0.036 0.020

Temperature gradients with random clusters for all the elastic constants were
calculated by Hlungwani (1996) to be 0.125, 0.010 and 0.033 for the x = 9.4

sample. The corresponsing values in the x = 24 concentration were 0.036, 0.015

and 0.019.
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Table 3.2.2.7(b) Calculated slopes from the variation of all elastic constants with

temperature for x = 9.4 and with both C = 0.0 and C = 27.89.

Calculated slopes of variation of Cf.. with temp. (GPa/K)

/
9.4 mol%
C = 0.0 C = 27.89
Elastic constant (GPa) Elastic constant (GPa)
Config. C,, Ciz Cas Cia Ciza Cu
X1 0.030 0.010 0.015 0.010 0.020 0.020
Y 0.091 0.017 0.022 0.012 0.039 0.026
X1L2Y,l 0.036 0.015 0.012 0.099 0.029 0.019

Table 3.2.2.7(c) Calculated slopes from the variation of all elastic constants with
temperature for x = 9.4 and with both C = 0.0 and C = 27.89 with the /-shape

configuration.

Calculated slopes of variation of C;.. with temp. (GPa/K)

9.4 mojlr%
C = 0.0 C = 27.89
Elastic constant (GPa) Elastic constant (GPa)

Config. Cy, Ciza  Cu Cia Ci2 Cu

L - - -

L, 0.050 0.013 0.016

L, 0.066 0.004 0.022

L 0.108 0.047 0.035

L, 0.051 0.021 0.015 0.059 0.029 0.019

L 0.089 0.024
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Slopes of variation of elastic constants with temperature for calculations with C =

27.89 were only determined for the L4-configuration.

Table 3.2.2.7(d) Calculated slopes from the variation of all elastic constants with

temperature for x = 24 and with both C = 0.0 and C = 27.89.

Calculated slopes of variationof C!. with temp. (GPa/K)

j
24 mol%
C = 0.0 C = 27.89
Elastic constant (GPa) El astic constant (GPa)
Config. C,, Ci2 Cas Cia Ciz2 Cu
X 0.037 0.025 0.013 0.056 0.034 0.024
/ 0.055 0.032 0.024 0.056 0.028 0.028
y 0.031 0.017 0.0091 0.028 0.019 0.009

Calculations of slopes in the x = 24 sample with the X-cluster were carried over a
short linear region and hence the results shown in table 3.2.2.7(d) are not over the

same range of linear regions used in the other clusters.

Comparison of experimental slopes from temperature dependences of elastic
constants with the calculated slopes (table 3.2.2.7(a)-(c)) showed that slopes from
the L4-configuration were closest. It was for these reason that in figure 3.2.2.4 only
the behaviour of the elastic constants obtained from the L4-configuration was
compared with that from the 24 mol% Y203 concentration. It was found that
experimental slopes agreed reasonably well with slopes from the present computer

simulation studies for x = 24 with the /-configuration, especially when C = 0.0.
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Slopes of variation of bulk modulus with temperature were compared with those
from experiment (Botha et a/. 1993) in table 3.2.2.8. This was done only in the

linear region (T = 452 - 678K) in the x = 9.4 concentration.

Table 3.2.2.8 Comparison of experimental and calculated slopes of variation of

bulk modulus (B) with temperature for x = 9.4 and x = 24.

Quantity(GPa/K) Calculated Experimental
dB 0.028 0.033
HTBA

dB 0.040 0.042
a‘r24

The results from the x = 24 concentration were generally comparable with those

from experiment.
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3.3 DISCUSSIONS

In this section the various results obtained from static lattice simulation methods are
discussed. Results from defect energy calculations are discussed first, followed by
those from perfect lattice calculations. This section is ended with a brief summary

of the major observations made.

In view of the fact that various configurations with different orientations of oxygen
vacancies with respect to the yttria ions were used, a holistic approach for picking
on the best configuration was adopted. In terms of the approach the following
criteria had to be met: (a) both the rigid-ion and shell model had to reproduce the
elastic and dielectric constants, (b) the linear reduction of the elastic constants with
increasing temperature had to be both consistent and obvious, (c) the slopes from
the plots of the variation of elastic constants with temperature had to agree with
those from the experimental work by Botha et a/. (1993) and (d) the model had to
yield defect energies that agree with experimental values. The configuration that
yielded the best results was subsequently used in the construction of supercells for

molecular dynamics calculations.

3.3.1 DEFECT ENERGY CALCULATIONS

The calculated anion interstitial and vacancy formation energies (table 3.1.2.1)
were comparable with those obtained by Dwivedi and Cormack (1990) in
calcia-stabilised cubic zirconia. Furthermore, the anion interstitial formation energy
was found to be larger than the corresponding anion vacancy formation energy.
This seems to suggest that anion vacancies would be readily formed as compared to

interstitial defects.

The anion vacancy activation energy was found to be smaller than the anion
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interstitial activation energy for both x = 9.4 and x = 24, indicating the preference
for vacancy motion. This observation will be used to explain molecular dynamics
results in the next chapter. Activation energies with C = 0.0 appear to be more
reasonable. Our values agreed with those from experiment (Solier et a/. 1988) in the
x = 9.4 concentration, as well as comparable to results by Dwivedi and Cormack
(1990) on calcia-stabilised cubic zirconia. The results by Dwivedi and Cormack
(1990) contained a contribution from the association energy, as was the case in the
present work. Further studies need to be undertaken to understand the defect

interactions in high yttria content samples.

The calculated anion activation energies were greater than those in fluorine

conducting solids (Can, SrFZ, BaF_, and SrCIz} reported by Catlow et al. (1977)

2!
and UO2 (Walker and Catlow 1981). Their values were around 0.2 eV while the
calculated values in the present investigation were in excess of 0.6 eV. This seems
to suggest that it is easier to generate defects in fluorine ion conducting materials

than it is in oxygen conducting systems such as yttria-stabilised cubic zirconia.

Furthermore, the anion vacancy activation energy was observed to decrease linearly
with temperature up to about 800 K, followed by a more dramatic decrease up to
about 1300 K, which is the transition temperature to the fast-ion phase in the 9.4
mol % Y203 concentration (Ngoepe 1987, Botha et a/. 1993). Further pronounced
decreases in the anion vacancy activation energy was observed beyond TC = 1300
K. High temperature ionic conductivity measurements show an anomaly near Tc
(Tien and Subbarao 1963, Suzuki et a/. 1981). These results suggested rapid
diffusion accompanied by a reduction in activation energy at Tc' The deviation from
linearity above 800 K is attributed to the fact that 9.4 mol% is at the lower

extreme of the minimum amount of Y203 required to fully stabilise pure zirconia in
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the cubic phase, then there could be tendencies for cubic-tetrahedral transitions to
occur, as observed by Andersen et al. (1993). The above results are in agreement
with experimental results on a range of yttria-stabilised cubic zirconias (Suzuki et al.
1981) and calcia-stabilised samples (Tien and Subbarao 1963) where the activation

energies were found to decrease at high temperatures.

The energies of isolated defects in Zr02(24 mol% Y203) were generally higher than
those in Zr02(9.4 mol % Y203). This may be related to the formation of larger
defect aggregates in the former, in which the various isolated, ionic species were
strongly bound to the aggregates, thus requiring higher energies of dissociation. It is

possible that such high energies of isolated defects, especially EV"' together with
0

the fact that the anion vacancy activation energy when x = 24 is higher than that
for x = 9.4 (table 3.1.2.3(b)), would be responsible for poor anionic conduction in
the x = 24 concentration. However, based on the lower calculated value for
interstitial activation energy in the x = 24, it is possible that interstitials could be

contributing to the conduction process as well.

The association energies with the yttria ions at NNN positions to the oxygen
vacancy were found to be negative indicating the possibility of formation of the

[Yir ‘ VL;" : Yér]x associate. This preferential sitting of the dopant cations at NNN
sites to the oxygen vacancies is consistent with previous EXAFS studies by Veal
et al. (1988) and Catlow et a/. (1986) as well as computer simulation studies on
calcia-stabilised cubic zirconia (Dwivedi and Cormack 1990). The association
energy for clusters of type [Y'Zr ; V(‘J‘ : Yér]x, with the charge compensating defects
in NN positions to the dopant cation (figure 3.1.2.4(b)), could not be calculated

because this structure failed to converge. This seems to suggest that the existence
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of such a cluster in yttria-stabilised cubic zirconia is doubtful, in agreement with

results from the computer simulation studies by Dwivedi and Cormack (1990).

The activation energy has been found to be the sum of the saddle-point energy and
half the association energy (Dwivedi and Cormack 1990). Using this argument the
low and high temperature activation energies were calculated to be 1.0413 and
0.887 (see table 3.1.2.6), respectively, which were close to the corresponding
experimental values of about 1.1 eV (Etsell and Flengas 1970, Suemoto and
Ishigame 1986, Oishi and Ando 1984, Solier et a/. 1989) and 0.84 eV (Solier et
al. 1989), respectively. Based on the magnitudes of the activation energies, it was
inferred that rapid diffusion would occur at high temperatures while low oxygen

migrations occur at low temperatures.

It is generally accepted (Etsell and Flengas 1970, Dwivedi and Cormack 1990, Tien
and Subbarao 1963, Suemoto and Ishigame 1986, Hutchings et a/. 1983, 1985)
that highly mobile oxygen vacancies are responsible for conductivity in doped
zirconia. Although the addition of 12 mol% CaO to ZrO2 produces 6% anion
vacancies compared with only 4.1% upon addition of 9 mol% Y203 to ZrOz, the
latter electrolyte is twice as conductive at 1000°C (Etsell and Flengas 1970). This
may be understood in terms of lower binding energies obtained with C = 0.0 (table
3.1.2.4(a)) for Yér - V{;' - Yir associates as compared with that of Ca;r - V(‘J'

associates (see table 3.1.2.5) reported by Dwivedi and Cormack (1990).

Following computer simulation studies on calcia-stabilised cubic zirconia (Dwivedi
and Cormack 1990), in which the intrinsic disorder was found to be of Schottky
type, the defect clusters involving zirconia vacancies in yttria-stabilised cubic

zirconia were investigated. Defect clusters with C = 0.0 were found to be
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unbound with respect to isolated point defects but bound when C = 27.89 though
only for the neutral cluster. However, because of the high formation energy of VZr

(table 3.1.2.7), the existence of these type of clusters in pure zirconia is doubtful.

3.3.2 PERFECT LATTICE CALCULATIONS

The temperature variations of the complete set of elastic constants were determined
for ZrOz(x mol % YZOS), with x = 9.4 and x = 24. These concentrations are near
the extremes of the range normally encountered in yttria-stabilised cubic zirconia.
The x = 9.4 is close to the minimum yttrium concentration (x = 8) required to
stabilise pure ZrO2 from tetragonal to cubic phase. For the x = 24, the cubic phase
is quite stable, and strong defect repulsive interactions were reported, particularly at
high temperatures (Ngoepe and Comins 1987). In the current studies extensive
calculations of temperature dependence of elastic constants were carried out on
these two dopant concentrations in order to make comparisons with the

experimental results by Botha et a/. (1993) and Hart et a/. (1986).

The experimental temperature dependence of elastic constants has two regions of
interest: the linear decrease in all elastic constants up to a characteristic transition
temperature TC (region 1) followed by anomalous behaviour in certain elastic
constants (Botha et a/. 1993, Ngoepe and Comins 1987, Ngoepe 1987)
characterised by deviations from linearity (region 2). The quasi-linear decrease in all
elastic constants below TC is ascribed to lattice anharmonicity associated with
thermal expansion (Garber and Granato 1975). Although calculated results from
some configurations do not exhibit the expected experimental behaviour, particularly
in region 2 where the quasi-harmonic approximation fails, the interest in the present

investigation is in region 1.
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Firstly the results of ZrQ,(9.4 mol% Y203] will be discussed and three categories of
cluster configurations will be considered. The first category represents all those
configurations that least reproduced the linear temperature variation of elastic
constants (i.e. X-, XZ-, L-, L3- and Ls-configurations), while configurations that
reproduced the linear behaviour up to about 800 K (i.e. X1" L2- and
Y-configurations) belong to the second category. The third category comprise all
those configurations that reproduced the linear reduction in all elastic constants up
to below Tc‘ i.e. L1 and L4-configurations. Configurations in these categories will
further be assessed on how closely they reproduce magnitudes of experimental
temperature gradients of elastic constants and prediction of elastic constants

behaviour above Tc'

The first category of configurations failed to reproduce experimental linear reduction
of elastic constants well below 800 K, and this rendered accurate determination of
the temperature slopes of elastic constants difficult (except for the L-configuration
which did not show any observable deviation from linearity). In certain
configurations this linear behaviour was observed after a slight increase at lower
temperatures, particularly in C11' Also, in certain instances C12 and C44 failed to
decrease as expected. The temperature gradients of elastic constants, where
calculated, differed to a large extent with those from experiment. Schematic
diagrams of supercells with 93 ions, representing configurations in this category,
show an even distribution of dopant vacancy clusters throughout the cell, hence
suggesting minimal cluster cluster interaction. Furthermore, the failure of the first
category to reproduce the linear reduction of elastic constants could be ascribed to
cubic tretragonal distortions at low yttria concentrations and also explained in terms
of the results from the high temperature coherent diffuse neutron scattering work by

Hull et al. (1988) where two distinct regions were identified: a relatively vacancy
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free tetragonally distorted region and a region in which there are vacancies and

aggregates of vacancy pairs with a range of sizes, suggesting that cubic stabilisation

is associated with the existence of the two regions.

The second category of configurations generally yields a linear variation of elastic
constants up to about 800 K, well below Tc which occurs at 1300K. The
magnitude of temperature gradients of elastic constants are closer to experimental
values than in the first category. A closer examination of schematic diagrams of
associated supercells indicates uneven distribution of defect clusters. Certain regions
within the cell contain aggregates of clusters while others are almost defect free. A
similar behaviour involving termination of a linear variation of elastic constants well
below TC was noted in LaF3 (Ngoepe and Parker 1992) and was ascribed to failure
of interatomic potentials to predict such changes. However, in LaF3 the slope of the
temperature variation of elastic constants was accurately reproduced below 800K,
which is not the case in configurations of the second category. Hence a different
mechanism, perhaps cubic-tetragonal transitions and structural instabilities

(Andersen et al 1986) could account for this failure.

In the third category, made up of L1- and L4-configurations, the linear decrease of
elastic constants with temperature was well reproduced up to Tc' The temperature
gradients of elastic constants compared favourably with experimental results of
Botha et al. (1993). Since the L4-configuration provides best agreement with
experimental observations on all elastic constants, it warrants a closer attention. It is
surmised, from the schematic diagram of its supercell, that the arrangement of
defect clusters play a crucial role: two clusters, each consisting of one oxygen
vacancy and two yttria ions, were positioned close to each other and spanned one

"plane"”, located a third way from the top of the supercell. A third cluster was almost
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at the bottom of the cell. This arrangement tends to optimise Y3+-Y3+ interactions
of adjacent clusters. The onset of deviation of elastic constants from linearity above
Tc was consistent with observations from experiment (Botha et a/. 1993, Ngoepe
1987). However, magnitudes of changes were inaccurate since the quasi-harmonic
approximation is inadequate for predicting large changes of elastic constants
associated with the fastion phase. The reproduction of experimental observations in
L4-c:onfiguration could be explained in terms of the experimental results from neutron
scattering (Hull et a/. 1988) where two distinct regions, one defect free and the
other comprising vacancies and aggregates of vacancy pairs, were observed. It was
infered that the presence of the two regions suggested the stabilisation of the cubic
phase. These two regions are noted in the L4 - configuration. The failure of other L
- shaped configuration to reproduce the experimental results (see table 3.2.2.7(c))
could be ascribed to the absence of such regions. Thus, it appears that when
supercells are constructed such that two distinct regions are created, following the /
- shape cluster, experimental observations are reproduced. However, as mentioned
earlier these observations are still speculative and systematic investigation needs to

be carried out.

We now discuss the magnitudes of the thermodynamic quantities. The magnitudes
of elastic constants, particularly with C = 0.0 in shell model simulation runs and
with the rigid-ion model, show deviations from from experimental values. However,
experimental results were better reproduced when the dopant cations were located
at NNN sites to the oxygen vacancies. This preferential sitting of yttria ions at NNN
to the vacancies is consistent with EXAFS studies (Veal et a/. 1988) and computer
simulation studies (Dwivedi and Cormack 1990). The best results were also
obtained with CONV, when C = 27.89, showing the role played by the dispersive

forces when magnitudes of elastic constants are sought. This inclusion tended to

129



lower the magnitudes of the elastic constants, thereby bringing the calculated values

in close agreement with those from experiment.

Elastic constants in certain configurations could not be determined as these
structures failed to converge. It is possible that these are configurations in which
the yttria ions were forced to have a sevenfold coordination, leading to the
prevalence of strong vacancy-vacancy interactions. This is in agreement with
observations by Subbarao and Ramakrishnan (1979) and Dwivedi and Cormack

(1990).

We now consider behaviour of elastic properties associated with high concentration
of yttrium oxide (x = 24 mol%). For the x-shaped cluster configurations, the linear
decrease of elastic constants occurred up to 800K well below Tc (~ 1050K).
Although temperature gradients of elastic constants were reasonable, they differed
from experimental values. A similar behaviour was noted in configurations of the
second category for x = 9.4 mol%. The reasonableness of such results were partly
attributable to cluster-cluster interactions, which could be applicable to the x = 24
mol % compounds where such interactions are enhanced by a higher dopant
concentration. The configuration associated with the y-shaped clusters, reproduced
the linear region well, but overestimated Tc' Furthermore, the magnitudes of
temperature gradients were significantly underestimated. Since the cubic phase is
stable at x = 24 mol%, failure to predict accurate temperature gradients of elastic
constants and Tc’ by related configurations, could be inherent in the nature of the x

and y-shaped clusters.

Finally, the /-shaped configuration yielded linear changes of elastic constants, the

transition temperature {TC:1050KJ and the temperature slopes of elastic constants
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were consistent with experimental results (Botha et a/ 1993). Although T, was
accurately predicted, the temperature gradients in the fastion phase were not well
reproduced. A similar behaviour was also reflected by the third category of
configurations with /-shaped clusters, in the x = 9.4 mol% sample, and mechanisms
suggested there are equally applicable. The agreement further suggests that
configurations with /-shaped clusters, where such clusters interact strongly, are
preferable at both extreme concentrations of yttrium concentration, i.e. 9.4 and 24

mol%.

In order to broaden the scope of our studies, calculations were also carried out on
configurations with different types of clusters. Firstly configurations with mixed
types of clusters (X, Y, and L clusters in one supercell) were considered for both the
x = 9.4 and x = 24 mol% concentrations. These clusters reproduced the linear
reduction of elastic constants but failed to reproduce the magnitudes of the elastic
constants. The recent studies by Hlungwani and Ngoepe (1996) have shown that
configurations in which the orientation of clusters are disregarded, i.e. where
dopants and oxygen vacancies are distributed randomly, give results that differ

substantially from experimental values.

The magnitudes of the thermodynamic properties and temperature gradients with
l-shaped clusters in x = 9.4 and x = 24 generally agreed with those from
experiment for all the three elastic constants. The model further reproduced
increased slopes of all elastic constants at 24 mol% YZO3 very well. Results
emanating from the other clusters deviated significantly from experimental values,
the extreme case being where vacancies and dopants are randomly distributed in
supercells as evidenced by computer simulation results on random clusters

(Hlungwani 19986).
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The lack of experimental temperature gradients of elastic constants for intermediate
concentrations, x = 15 and x = 21, restricted objective validation of the associated
types of clusters. However, on account of the good results obtained from the
l-configurations, simulation runs were consequently performed only with the
I-configuration. The reproduction of the linear region was also ascribed to lattice

anharmonicity associated with thermal expansion.

Results from perfect lattice calculations with oxygen vacancies located at NN sites
to yttria ions, with x = 9.4, showed that in general C = 0.0 yielded more
consistent values of both the elastic and dielectric constants. As for the x = 24
concentration with a mixture of vacancies, some at NNN while others at NN to
the dopant cations, the results seemed to suggest that a high proportion of
vacancies at NNN sites was unfavourable but failed to show an optimum
concentration (see table 3.2.2.5(a)-(b)). Thus, it is possible that a mixture of such
clusters could yield favourable results as suggested by Veal et a/. (1988). However,

more calculations have to be done.

A comparison of the calculated high temperature dependence of the thermodynamic
quanties, Bulk Modulus (B), Anisotropy Ratio (A), and Cauchy Relation Failure (A), in
X = 9.4 and x = 24 with experimental results appears reasonable. This is

particularly the case with the bulk moduli results.

The following were the major observations made in this chapter:

(a) Anion vacancy motion was found to be preferable on account of the lower
calculated activation energy.

(b) Negative association energies were found in the case where the oxygen

vacancies were located at NNN sites to the yttria ions. These association
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(c)

(d)

(f)

(g)

(h)

energies show the possibility of formation of the clusters.
The /-configuration yielded better results in general, and showed that the
charge compensating oxygen vacancies were preferentially located at NNN
sites to the dopant cations. This is consistent with the observation
highlighted in point (b) above.
Better thermodynamic quantities were consistently obtained when
C = 27.89, highlighting the importance of the van der Waals and dispersive
interactions when only the magnitudes on the elastic constants are sought.
The temperature gradients of the elastic constants generally agreed with
those from experiment for certain types of clusters. The differences at the
9.4 mol% concentration among various clusters is attributed to instabilities
associated with the minimum stabilisation of the cubic phase.
The linear reduction of elastic constants with temperature occurred up to the
respective transition temperature only in certain configurations. This could be
related to the types of defect orientations in these configurations.
There appears to be a relationship between the orientation of the defects and
reproduction of experimental results and properties. The optimal situation
seemed to be the location of two pairs of dopant cations in one plane and the
third pair positioned in the alternate "plane", as in the L4-configuration.
However, more work needs to be done before a conclusive argument can be
advanced.

The bulk moduli results were reasonable when compared with experimental

results for both the x = 9.4 and x = 24 mol%.
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CHAPTER 4
MOLECULAR DYNAMICS CALCULATIONS

In previous molecular dynamics (MD) studies dopant charge compensating vacancy

complexes in yttria stabilised cubic zirconia were chosen more randomly. Our

energy minimisation calculations in Chapter 3 (section 3.4.2) have shown that the

I-shaped vacancy dopant clusters yields better results of themodynamic quantities.

Consequently, this type of configuration was used as the structural entity on which

supercells for MD calculations were based. The key reasons for adopting the

l-shaped cluster are the following:

1. Reproduction of the magnitudes of the thermodynamic quantities

2. The linear reduction of all elastic constants with temperature, below TC, was
reproduced

3. The temperature gradients of the elastic constants generally compared well
with experimental results

4., The reproduction of experimental results is valid for the two extreme

concentrations, x = 9.4 and 24.

In this chapter results from molecular dynamics studies are presented. MD allows
for the calculation of properties of the material above TC, which is not possible in
perfect lattice or defect energy calculations. Results of anion transport and
structural properties in ZrOZ(x mol% Y203), with x = 9.4, 15, 21 and 24, are
presented for various temperatures. The structural properties were obtained from

the radial distribution functions. The various results are discussed in section 4.3.
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4.1 COMPUTATIONAL PROCEDURE
The FUNGUS (see section 2.3.3) computer program was used for the simulation of
ion transport properties reported in this chapter. This is a general purpose program

that may be applied to crystals of any symmetry.

Although a conventional fluorite-structured unit cell contains 96 ions, supercells
containing 8 unit cells were used for adequate statistics. Calculations were
performed on systems containing 744, 728, 712 and 704 ions, corresponding to
the four concentrations x = 9.4, 15, 21 and 24. The number of species are

shown for the four concentrations in table 4.1.1.

The rigid-ion potential parameters used in molecular dynamics simulations were
similar to those used in perfect lattice and defect energy calculations (table
3.1.1.2(a)-(b)). The rigid-ion potentials can reliably model structural and ion
transport mechanisms and the idea of their validity is seen in tables 3.2.2.1(a)-(d)
and 3.2.2.6 where the calculated elastic and dielectric constants were compared

with experimental values.

Table 4.1.1 Number of ions in 8-unit cells supercells

Number of different species

Yttria content (mol %) Zr4t y3+ 0% Vé‘
9.4 208 48 488 24
15 179 7 474 38
21 148 108 458 54
24 133 123 451 61
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A time step of 5 x 10° s and potential cutoff of 1.89 x 10%m were used. The
time step is sufficiently shorter than any important process in the system such as
the period of ionic vibration. Coordinates corresponding to crystallographically
determined structure were assigned to particles. A problem inherent in this
approach is that the ions gain potential energy and loses kinetic energy when drifting
away from the lattice sites, resulting in about 1000 time steps taken in achieving a
correct distribution of energy between potential and kinetic energy terms. The
equilibration of kinetic and potential energies was attained after about 1000 time
steps, and was followed by a simulation run of 7000At, corresponding to 35 ps.

This time is sufficiently long for noting diffusion in yttria-stabilised cubic zirconia.

The particular value of MD methods is that they allow direct calculation of diffusion
coefficients. The anion diffusion coefficient Df. was obtained from the equation

< Ariz(t)> = 6D/[t| + B, where B;~+0 where [t| o for an infinitesimally small
time step. Thus, D;. is obtained directly from the slope of the mean-square
displacement versus time graph. However, the mean-square displacement tells us
about the rate of diffusion and little else. Self-correlation functions, on the other
hand, provide a means of capturing the diffusion process by giving the full
probability distributions of the displacements. The radial distribution function (RDF),
g!.j.(r), is the simplest positional correlation function that gives the probability of
finding an ion of type j from an ion of type / situated at the origin (see section

2.4.2.1(b) for further details).

It was established in Chapter 3 that in general the /-group of configurations were
most stable as compared to the x- and y-groups. It was for this reason that only
clusters based on the /type (L4- and a combination of L1-, L2- and
L4-configurations for x = 9.4 and x = 15, 21 and 24, respectively) were taken
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as structural entities on which transport and structural properties in cubic zirconia
were calculated. It was also established (Chapter 3) that results obtained with the
short range parameter C = 0.0 were broadly consistent. Consequently, MD
calculations were performed with C = 0.0. Nonetheless, some calculations were

also performed with C = 27.89 for completeness sake.

4.2 RESULTS

Results from molecular dynamics studies are presented in this section. The variation
of the mean-square displacements (MSD) with both temperature and yttria content
are investigated. Next, results from ion trajectories are presented, which reveal the
type(s) of migration processes involved in yttria-stabilised cubic zirconia. The nature
of the defect structure is shown using radial distribution functions. The results are

discussed in section 4.3.

The runs were made at temperatures ranging from 300 K to 1600 K, at 100 K
intervals, but only results obtained from T = 1600 K, 1500 K, 1300 K, 1000 K,
700 K and 300 K are used in the results and discussions. Furthermore, since the
transition temperatures in the concentrations x = 9.4 and 24 are 1300 K and
1050 K (Ngoepe et al. 1990), respectively, the range of temperatures considered in
the present investigation spanned the regions above and below the respective

transition temperatures.

Plots of the mean-square displacements versus time (35 ps) for the anions in

ZrOz(x mol!% YZOS)' with x = 9.4, 15, 21 and 24, for T = 1600 K, 1500 K,
1300 K, 1000 K, 700 K and 300 K are shown in figure 4.2.1(a)-(b), respectively,
for calculations performed with both C = 0.0 and C = 27.89. It appears from the

plots that inclusion (exclusion) of the van der Waals and dispersive interactions has
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an influence on the mean-square displacements in the lower concentrations,
particularly the x = 9.4 and x = 15 samples. Figure 4.2.1(c) illustrates the
variation of MSD with time for Zr* and Y3 ions. This is only shown for the x

= 9.4 concentration since the behaviour is the same for all concentrations.

Figure 4.2.2(a)-(b) shows the variations of mean-square displacements with
temperature for the various concentrations. Anion diffusion coefficients at various
concentrations and temperatures are reported in table 4.2.2(a) for both (i) C = 0.0
and (i) C = 27.89, while experimental values are reflected in table 4.2.2(b). The
variation of anion diffusion coefficients with yttria content are shown in figure 4.2.3
for T = 1500, 1300, 1000, and 700 K. It is apparent from this plot that the

maximum in conductivity will occur somewhere between 9.4 and 15 mol%.

Plots of ion trajectories for ion 507 are shown in figure 4.2.4 for x = 9.4 at

T=1600K, T = 1500 K, 1300 K and 1000 K, for the periods of 35 ps. These
are shown for both C = 0.0 and C = 27.89. The idea was to demonstrate the
effects of temperature on ion mobility; on those ions that have been identified as
highly mobile at T = 1600 K. In a similar manner, these effects were shown for
ions 470, 329 and 439 for x = 15, 21 and 24, respectively, in figure 4.2.5, figure
4.2.6 and figure 4.2.7, respectively. lon motion appears to be occuring

predominantly along the [100] direction.
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Table 4.2.2(a) Anion diffusion coefficients at various yttria contents and

temperatures.
C = 0.0 C = 27.89

D, (x 10°° cm?/s) D, (x 107° em?/s)
Temperature  Yttria content (mol%) Yttria content (mol %)
(K) 9.4 15 21 24 9.4 15 21 24
1600 0.297 0.332 0.136 0.196 0.250 0.290 0.120 0.130
1500 0.290 0.255 0.071 0.060 0.270 0.270 0.100 0.070
1300 0.158 0.185 0.075 0.020 0.190 0.130 0.040 0.080
1000 0.094 0.038 0.022 0.027 0.040 0.060 0.020 0.010
700 0.007 0.033 0.009 0.011 0.030 0.020 0.010 0.000
300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4.2.2(b) Experimental values for diffusion coefficients in yttria-stabilised cubic

zirconia.

Yttria content (mol%) Temperature (K) Di{x 10'50m2fs)
12 1000 1.4%
10.2 2073 0.19"
10 1040 0.42@

# Perry and Feinberg (1980), @ Suemoto (1990), * Shimojo et al. (1992). Note
that there were no experimental values of diffusion coefficients for the

concentrations considered in the present investigation.
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1000K, C=0.0

1600K, C =27.89

Figure 4.2.4 Plots of ion trajectories for ion 507 from x = 9.4 at various

temperatures and with both C = 0.0 and C = 27.89
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Figure 4.2.5 Plots of ion trajectories for ion 470 from x = 15 at various
temperatures and with both C=0.0 and C = 27.89
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Figure 4.2.6 Plots of ion trajectories for ion 329 from x = 21 at various
temperatures and with both C = 0.0 and C = 27.89
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Figure 4.2.7 Plots of ion trajectories for ion 493 from x = 24 at various
temperatures and with both C = 0.0 and C = 27.89
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Partial pair distribution functions, gg.{r), for all pairs of ions at 1600K and 1000K,
for x = 9.4, 15, 21 and 24, are shown in figure 4.2.8(a)-(b) with C = 0.0 only.
These temperatures span the various transition temperature regions, the highest
being TC = 1300K, for x = 9.4 and the lowest being TC = 1060K, for x = 24
(Ngoepe 1987). Furthermore, only radial distribution functions obtained when C =
0.0 were used since those obtained when C = 27.89 were similar. The
corresponding heights of the first peaks are listed for T = 1600 K, 1500 K, 1300
K, 1000 K, 700 K and 300 K in table 4.2.3(a)-(c) while NN distances are

presented in table 4.2.4(a)-(c).
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Table 4.2.3(a)-(c) The heights of the first peaks for the various concentrations and

temperatures with C = 0.0.

Heights of the first peaks (‘IO'mm)

Zr - Zr Zr -Y
H [s) 1 0,
Temp. Yttria content (mol %) Yttria content (mol%)
(K) 9.4 15 21 24 9.4 156 21 24
1600 0.356 1.22 3.44 5.01 5.04 4.35 3.65 4.02
1500 0.38 1.27 3.45 5.16 5.12 4.49 3.87 4.03
1300 0.38 1.33 3.64 5.35 5.67 4,77 4.04 4.21
1000 0.43 1.37 3.82 5.90 6.00 5.06 4.24 4.54
700 0.48 1.64 4.41 6.10 7.06 5.36 4.55 4.85
300 0.67 1.87 5.46 6.75 8.567 5.99 b5.27 5.57
(a)

Heights of the first peaks (10™ '%m)

Zr - O Y - Y
Thii. Yttria content (mol %) Yttria content {mol%)
(K) 9.4 15 21 24 9.4 15 21 24
1600 0.79 1.62 2.76 3.46 99.60 25.45 8.88 4.02
1500 0.80 1.62 2.78 3.50 103.7 25.63 9.03 4.03
1300 0.86 1.69 2.86 3.60 107.1 25.88 9.23 4.21
1000 0.93 1.81 2.99 3.83 113.2 28.29 9.82 4.54
700 1.02 1.84 3.22. 4.07 123.9 30.90 10.43 4.85
300 1.20 2.02 3.2 4.71 136.7 32.74 10.89 5.57

(b)
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Heights of the first peaks (10" "%m)

Y -0 0O -0
; o )
Temp. Yttria content (mol %) Yttria content (mol%)
(K) 9.4 15 21 24 9.4 15 21 24
1600 15.15 8.03 5.07 4.20 2.03 1.98 1.92 1.94
1500 15.40 8.04 5.11 4.35 2.05 1.97 1.93 1.99
1300 15.89 8.46 5.35 4.41 2.14 2.01 2.01 1.93
1000 16.47 8.73 5.63 4.67 2.25 2.15 2.06 2.02
700 17.61 9.51 5.89 4.95 2.38 2.19 2.16 2.13
300 20.79 10.6 7.06 5K.22 2.71 245 2.12 2.22

(c)

Table 4.2.4(a)-(c) Nearest neighbour distances for various concentrations and

temperatures with C = 0.0.

Nearest neighbour distances (10~ 0m)

Zr - Zr Zir v N
Temp: Yttria content (mol %) Yttria content (mol%)
(K) 9.4 156 21 24 9.4 15 21 24
1600 3.61 3.57 3.67 3.57 3.60 3.69 3.58 3.63
1000 3.64 3.61 3.566 3.58 3.59 3.58 3.58 3.58
(a)
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Nearest neighbour distances (10" 10m)

Y -0 Y - Y
Temp. Yttria content (mol %) Yttria content (mol%)
(K) 9.4 15 21 24 9.4 15 21 24
1600 2.25 2.24 2,22 2.17 3.61 3.61 3.61 3.61
1000 2,27 2.24 2,22 2.2 3.61 3:61 3.62 3.64

(b)

Nearest neighbour distances (10 '%m)

Zr - O O -0
Temp. Yttria content (mol %) Yttria content (mol%)
(K) 9.4 15 21 24 9.4 15 Z1 24
1600 2.02 1.99 1.98 1.95 2.60 2.63 2.70 2.72
1000 2.02 1.98 1.96 1.95 2.62 2.65 2.74 2.72

(c)
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4.3 DISCUSSIONS

In this section results obtained from molecular dynamics studies are discussed. lon
transport and structural properties in yttria-stabilised cubic zirconia are explained in
terms of results obtained from static lattice simulation methods (Chapter 3) as well
as observations by other workers, be experimental or computational. Where
previous complementary results are lacking, possible suggestions and explanations

of observed phenomena are advanced.

The range of concentrations used in the present investigation (9.4, 15, 21 and 24
mol % Y203) is at extremes of the minimum and maximum amount of yttria content
required to fully stabilise pure zirconia in the cubic phase (Ngoepe 1987, Botha et al.
1993). We have also covered the temperature range from 300 K to 1600 K.
Shimojo and Okazaki (1992) investigated oxygen migrations in systems containing
4.85, 10.2 and 22.7 mol% Y203. The x = 4.85 and x = 22.7 concentrations
are clearly below the extremes of the yttria contents normally encountered in cubic
zirconia. In particular, the x = 4.85 yttria content is lower than the minimum value
(8 mol%) required to fully stabilize zirconia in the cubic phase (Duwez et a/. 1951).
The maximum yttria content is usually 24 mol%. Hence, the calculations in the

present investigation should produce better results.

In the current work, the mean-square displacement versus time plots show that
diffusion is almost negligible at room temperature but increases with temperature on
the oxygen sub-lattice in ZrOz(x mol% Y203), with x = 9.4, 15, 21 and 24.
Furthermore, cation mobility is significantly small at all temperatures. This is in
agreement with previous molecular dynamics studies in oxygen (Li and Hafskjold
1995, Khan et al/. 1998) and fluorine ion conductors (Netshisaulu 1996). The

presence of the fast - ion phase has been well established in yttria stabilised cubic
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zirconia (Li and Hafskjold 1995); and transition temperatures to this phase, at
different yttria contents, were determined by Brillouin scattering studies (Ngoepe
and Comins 1987). They were found to be about 1300 K, 1200 K, 1100 K and

1050 K for the x = 9.4, 15, 21 and 24 concentrations, respectively.

A notable feature, in the current study, is the enhanced oxygen diffusion below the
respective transition temperatures in all the doping concentrations. This is in
contrast to diffusion trends in pure fluorine ion conductors with the flourite structure
(Ngoepe and Catlow 1991) and (Netshisaulu et al. 1992) as well as in pure oxygen
jion conductors (Islam et al. 1996). However, substantial oxygen diffusion was
reported by MD studies (Ngoepe and Catlow 1991) on CaF2(1O mol% LaF3) and
Brillouin and Raman scattering (Anghel and Comins 1997) in LaF3{5 mol% BaF2).
Hence, some of the mechanisms responsible for enhanced anion diffusion below TC
in doped oxygen and fluorine ion conductors could account for the observed high

oxygen mobhility at lower temperatures in ZrOZ(x mol% Y203].

Generally, significant increases in oxygen diffusion is noted above Tc in almost all
the yttria concentrations considered in the present investigation. This is in
agreement with high temperature ionic conductivity measurements (Tien and
Subbarao 1963, Suzuki et al/. 1981), wherein anomalous increases in ionic
conductivity were mentioned above Tc' This was also observed in doped oxygen ion

conductors (Islam et al. 1996).

In the current work, oxygen diffusion was found to decrease with increasing yttria
content. Generally, the diffusion arises essentially from the migration of oxygen ions
through the anion vacancies (Tien and Subbarao 1963), and as such the relationship

between conductivity and vacancies might be expected to lead to an increase in
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conductivity with increasing yttria content. Results of our work are in agreement
with MD studies on fluorine ion conductors (Ngoepe and Catlow 1991) where
fluorine ion diffusion was found to be very rapid in pure CaF2 and reduced on
doping. This retarded motion was ascribed to defect repulsive interactions. A
similar behaviour was also observed (Li and Hafskjold 1995) in Zr02(x mol% Y203)
from MD studies. This was attributed to an increasing number of Y . 7
neighbour pairs, which tend to trap oxygen vacancies. It would seem that large
defect aggregates, which form as the doping level increases (Dwivedi and Cormack
1990), trap the oxygen vacancies, resulting in a decrease in diffusion coefficient.
Thus, at low concentrations, small dynamic clusters prevail and the highest mobility
occurs through the tetrahedrally distorted regions (Andersen et a/. 1986a). The
presence of considerable dopant concentrations affects oxygen diffusion as
observed from figure 4.2.1(a). Futhermore, as the yttria content was increased, the
number of charge compensating defects also increased, giving rise to a highly
defective system. Under these conditions, the charges tend to cancel themselves
locally, thus increasing the probability of the formation of Y3+ ion-anion vacancy
complexes and even larger defect complexes. The formation of such clusters has
been evidenced by the negative association energies observed in section 3.4.1.
However, with increasing doping level the lattice becomes gradually filled with static
defects and the paths of least activation energy through which the oxygen ions
percolate become blocked and the ions are trapped at strongly bound sites (Catlow
1991). This explains why the diffusion coefficients generally decrease with

increasing yttria content (figure 4.2.2(a)-(b)).

We now compare the magnitudes of oxygen diffusion at high temperatures with
those from experiment. There are marked differences among oxygen diffusion

coeffients from previous experimental studies (see table 4.2.2(b)). Our value is of
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the same order of magnitude as that from quasielastic light scattering (Suemoto
1990) and Shimojo and Okazaki (1992) although the latter measurements were
carried out at a much higher temperature. The experimental value obtained by Perry
and Feinberg (1980) is very high compared to the other measurements. Our value is
a reasonable estimation to be given by molecular dynamics calculation based on rigid

ion potential.

It has been shown (section 1.4.2.2) that a maximum in conductivity occurs around
10.2 mol% Y203 by Shimojo et al. (1992). Although there is an increase in the
diffusion coefficient between x = 9.4 and x = 24 samples, it is difficult, given the
largely spaced concentrations, to say exactly where the maximum occurs in figure
4.2.5. However, it is possible that the curve could reach a maximum anywhere
between x = 9.4 and x = 15. More calculations need to be done, especially
around the x = 10 region, before a firm conclusion can be reached. However, it
can be said with certainty that the rate of diffusion decreases substantially beyond

the x = 15 concentration.

One of the important features of molecular dynamics studies has been the
determination of atomistic mechanisms controlling bulk transport properties. The
pictures of ion trajectories derived from molecular dynamics simulations illustrate
anion migration processes very clearly. The oxygen ions spend most of their time at
lattice sites and only hop to the nearest-neighbour positions (satisfying tdwe > tsp :
section 1.1) via vacancy mechanisms along the <100> directions. It may be
concluded that whereas oxygen diffusion is negligible at room temperature, it
proceeds predominantly by a hopping vacancy mechanism at higher temperatures.

This type of motion is consistent with the lower calculated oxygen vacancy as

compared to interstitial activation energy, for both x = 9.4 and x = 24
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concentrations (Chapter 3). The prevalence of the anion vacancy motion was
reported in pure alkaline-earth fluorides (Ngoepe and Catlow 1991). On the
contrary, interstitialcy motion appears to be dominant in rare-earth doped alkaline -
earth fluorides (Ngoepe and Catlow 1991) and mixed metal fluorides (Netshisaulu
1996) and on RbBiF4 (Cox and Catlow 1994) . Differences in migration
mechanisms between our current ZrOz(x mol% Y203) and doped rare-earth flourides
may suggest that the nature of disorder responsible for the fast-ion phase in these

systems is different.

An important feature also observed from the trajectories is that the dwell-time differs
at various lattice sites. This phenomenon was investigated in relation to the locality
of the anion vacancies to the migrating 0% ions. In general there is very little
backward-forward migrations in the vicinity of the oxygen vacancies (away from the
dopant cations) indicating that indeed the vacancies facilitate rapid migration and
hence were responsible for the observed high ionic conductivities. Furthermore, the
dwell-time around a vacancy was very short while that away from the vacancy was
generally very long. It is possible that the mobile ions experienced strong coulombic
repulsions from other oxygen ions at large distances from the vacancy. In this
region the ions came into close encounter with the larger Y3* ions which
effectively slowed them down, prolonging the dwell-time. There were instances
where the vacancies were remote to the anions but limited dwell-time was observed.
In this case the vacancy at NNN position shifted towards the mobile ion during the

equilibration period to be in the NN position to the particular lattice position.
We now discuss results from the radial distribution functions (RDFs) in Zr02(x mol %

Y203) for x = 9.4, 15, 21 and 24. RDFs provide more definite information on the

local structure in this system. The cation-cation RDFs have well shaped, sharp

160



peaks corresponding to successive NN distances. This is normal for an order solid
and is in agreement with results from the recent MD studies (Islam et a/. 1996,
Shimojo et al. 1992). In contrast, the anion-anion RDFs show a weak, diffuse
structure for separations larger than NN. Thus, the anions form a weakly correlated
subsystem and point to the loss of long range order on the oxygen sub-lattice.

Similar results were obtained by Islam et al. (1996).

In the current work, the first peaks decrease in size while the general profile
broadens away from the first peak when the temperature increases. This behaviour
was also observed in previous MD studies (Islam et a/. 1996) in yttria-stabilised
cubic zirconia and was ascribed to increasing level of disorder emanating from
increased temperature.  Thus, as the temperature was increased, thermally
generated defects and hence disorder, increased as expected. The longest peaks
were obtained from the Y-Y, Y-O and Zr-Y interactions, indicating a large disorder

Y3+

accompanying the introduction of the ions. This was also observed by

Shimojo et al. (1992).

Increasing the yttria concentration also had an opposite effect on the first peak: it
increased in size. However, the profile further away from the first peak also
widened. This is in agreement with other MD results (Shimojo et al. 1992). The
height of the subpeak in go_o(r) gradually decreased and disappeared at x = 24.
This is attributed to local deformation on the anion sublattice and was also observed

by Shimojo et al. (1992) in yttria-stabilised cubic zirconia using MD techniques.
Our results also show that the magnitudes of the cation-anion distances are in the

same order of magnitude as MD results on the same system (Shimojo et a/. 1992).

Furthermore, in general the Y - O nearest neighbour distances are larger than the
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corresponding Zr - O distances. This is in agreement with MD (Shimojo et a/. 1992)

and experimental (Catlow et a/. 1986, Roth et al. 1986, Veal et al. 1988) results.

In conclusion, the /-shaped cluster identified in the previous chapter was used as the
structural entity on which supercells used in MD calculations were formed. The
calculations were performed at various dopant concentrations and at different
temperatures. The calculated mean-square displacements, diffusion coefficients and

radial distribution functions are generally in agreement with previous MD results.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The objectives of the research were to understand elastic properties, defect and

transport mechanisms in yttria-stabilised cubic zirconia. These properties have been

extensively investigated using computer simulation techniques. The major

conclusions and recommendations for future work are advanced in this chapter.

The unique features of the current investigation are the following:

1.

51

Different dopant clusters were systematically investigated to identify the
configuration that will yield the best thermodynamic properties

We have presented for the first time a full set of elastic properties, and their
temperature dependences, in yttria-stabilised cubic zirconia using computer
simulation techniques

The MD calculations were carried on supercells designed from the cluster that
reproduced thermodynamic properties. In contrast, the dopant charge
compensating vacancy complexes were randomly chosen in previous MD
studies.

We have covered the full range of concentrations (9.4, 15, 21 and 24 mol%
Y203), which includes the extremes of the minimum and maximum amount of
yttria content required to fully stabilise pure zirconia in the cubic phase; as well
as the temperature range (300K to 1600K) which covers the transition

temperatures to the fastion phase.

CONCLUSIONS

The calculated anion vacancy activation energies were found to be smaller than the



anion interstitial activation energies for both x = 9.4 and x = 24, indicating the
preference for vacancy motion in yttria-stabilised cubic zirconia. The activation
energy values agreed with those from experiment (Solier et a/. 1988) in the x = 9.4
concentration, and are in the range of results by Dwivedi and Cormack (1990) on
calcia-stabilised cubic zirconia. However, the calculated anion activation energies
were greater than those in fluorine ion conducting solids (Can, Ser, Ban, and
SrCIzl reported by Catlow et al. (1977) and UO2 (Walker and Catlow 1981). This
seems to suggest that it is easier to generate defects in fluorine ion conducting
materials than it is in oxygen conducting systems such as yttria-stabilised cubic

zirconia.

Different clusters involving the oxygen vacancies and dopant cations were
systematically investigated to identify the configuration that will yield the best
thermodynamic properties. The /-group of clusters reproduced the experimental
elastic constants and their temperature gradients results very well and was
subsequently used as the structural entity on which supercells for MD calculations

were based.

In general, a linear decrease in all elastic constants up to a characteristic transition
temperature Tc followed by anomalous behaviour in certain elastic constants was
observed. This is in agreement with results from Brillouin scattering from Botha et
al. 1993, Ngoepe and Comins (1987) and Ngoepe (1987). The quasi-linear
decrease in all elastic constants below Tc is ascribed to lattice anharmonicity

associated with thermal expansion (Garber and Granato 1975).

The oxygen vacancies are preferentially located at NNN sited to the dopant cations.

This is consistent with previous EXAFS studies (Veal et a/. 1988, Catlow et al.
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1986) as well as computer simulation studies on calcia-stabilised cubic zirconia

(Dwivedi and Cormack 1990).

Substantial oxygen diffusion was observed below the respective transition
temperatures in all the dopant concentrations. This is in contrast to diffusion trends
reported in studies on pure fluorine ion conductors with the flourite structure
(Ngoepe and Catlow 1991, Netshisaulu et al. 1992) as well as in pure oxygen ion
conductors (Islam et al. 1996), but agrees with MD results on CaF2(1 0 mol% LaF3)
reported by Ngoepe and Catlow (1991) and Brillouin and Raman scattering (Anghel
and Comins 1997) in LaF3(5 mol% Ban). It is suggested that some of the
mechanisms responsible for enhanced anion diffusion below Tc in doped oxygen and
fluorine ion conductors could account for the observed high oxygen mobility at lower

temperatures in ZrOZ(x mol% Y203).

Oxygen diffusion was found to decrease with increasing yttria content, in agreement
with MD studies on fluorine ion conductors (Ngoepe and Catlow 1991) as well as in
yttria-stabilised cubic zirconia (Li and Hafskjold 1995, Shimojo et a/. 1992). The
observed retarded motion is ascribed to an increasing number of yiE . oy
neighbour pairs, particularly in large defect aggregates, which tend to trap oxygen

vacancies. This is in agreement with results from defect energy calculations on

calcia stabilised cubic zirconia (Dwivedi and Cormack 1990).

MD was also used to determine atomistic mechanisms controlling bulk transport
properties. The pictures of ion trajectories show that the oxygen ions spend most of
their time at lattice sites and only hop to the nearest-neighbour positions via vacancy
mechanisms along the < 100> directions. This type of motion is consistent with

the lower calculated oxygen vacancy activation energy (Chapter 3) as well as the
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results from pure alkaline-earth fluorides (Ngoepe and Catlow 1991) but differed
with results from rare-earth doped alkaline - earth fluorides (Ngoepe and Catlow
1991), mixed metal fluorides (Netshisaulu 1996) and Cox and Catlow (1994) on
RbBiF4 where intersticialcy motion was preferred. Differences in migration
mechanisms between our current ZrOZ(x mol % YZOS) and doped rare-earth flourides
may suggest that the nature of disorder responsible for the fast-ion phase in these

systems is different.

The cation-cation radial distribution functions (RDFs) have well shaped, sharp peaks
corresponding to successive NN distances. This is normal for an ordered solid and
is in agreement with results from the recent MD studies (Islam et a/. 1996, Shimojo
et al. 1992). In contrast, the anion-anion RDFs show a weak, diffuse structure for
separations larger than NN. Thus, the anions form a weakly correlated subsystem
and point to the loss of long range order on the oxygen sub-lattice. Similar results

were obtained by Islam et al. (1996) on doped oxygen ion conductors.

5.2 RECOMMENDATIONS
In this section recommendations for further study in those aspects which will help

clarify the underlying mechanisms, suggestions and observations identified in this

work are presented.

The dependence of defect energies on the size of region |, the centering mechanism
as well as the effect of the host lattice after the removal or introduction of an ionic
species in the system on defect energies require a systematic investigation. Pursuit
of these thoughts may lead to a better understanding of the apparent relationship
between the ageing phenomenon, and decrease in ionic conductivity with increasing

doping level, and formation of larger defect clusters. The information obtained will
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be valuable in MD studies which will provide further clarifications on some of the

observations made in this work.

The relationship between the various configurations and elastic constants must be
explored much further, particularly since certain configurations were found to be
unstable while others did not show the expected behaviour in accordance with
experimental observations. In this regard, it might be worthwhile to even consider

larger unit cells for better statistics.
MD calculations were performed using the /-shaped cluster only. Different

configurations should be investigated to check whether previous MD results will be

reproduced.
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