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ABSTRACT 

 

The purpose of the study is to explore the effectiveness of Annual National 

Assessment (ANA) in monitoring the standard of mathematics education and to 

assess the mathematical proficiencies tested and exhibited by Grade 9 learners in 

South Africa. The research problem was premised on the dearth of data that justifies 

ANA as an evaluative assessment. As such, the study utilised five strands which 

were; procedural fluency, conceptual understanding, strategic competence, adaptive 

reasoning and productive dispositions as a theoretical framework to assess 

mathematics that was tested and exhibited by learners. To explore the research 

problem, the study used mixed methods in the context of exploratory sequential 

design. Document analysis was used first to capture mathematics content and 

cognitive levels examined by ANA. Second, learner responses were explored using 

four variables of achievement levels; no response, correctly answered, incorrectly 

answered and partially answered. 

 

First, the results from the analysis of ANA questions indicated that ANA mostly 

tested questions of low complexity. Second, the results from the learners’ responses 

revealed that the majority of learners were not proficient to ANA irrespective of low 

complexity testing. Third, the Porter’s alignment index for ANA and TIMSS was 

between moderate and perfect. Subsequently, content and cognitive levels were 

misaligned in the three consecutive years of ANA testing. It implies that learners were 

most likely to show a deficit of higher order problems solving skills which are a 

prerequisite of courses in advanced mathematics. Additionally, the results suggest 

that ANA had challenges of reliability and validity as an evaluative assessment due 

to inconsistency in the testing. As such, it is recommended that the complexity of ANA 

be addressed, the content areas where learners are not proficient be addressed and 

the alignment of ANA must be frequently calculated to monitor the standard of 

mathematics education in South Africa effectively. 

 

Keywords 

Alignment index, mean deviation, strands of mathematical proficiency, systemic 

assessment. 
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1. CHAPTER ONE 

ORIENTATION TO THE STUDY 

 

1.1  Introduction 

 

In the release statement of the 2013 Annual National Assessments results, the 

Minister of Basic Education labelled the Grade 9 (ANA) for mathematics as a ‘missing 

link’ and urged researchers to inform the Department of Basic Education (DBE) about 

causes of the low achievement of 13%, 14% and 11% in 2012, 2013 and 2014 

respectively (DBE, 2012a, 2013a, 2013b, 2014). Such a low achievement poses 

serious concern to the DBE which has recently implemented the use of ANA to 

monitor the education system. The introduction of ANA in South Africa has seen both 

positives and negatives; with challenges in: epistemology, psycho-genetic and 

didactical obstacles (Association for Mathematics Education of South Africa AMESA, 

2012; Bantwini, 2010; Graven & Venkatakrishnan, 2013). 

 

This study is an epistemological analytical inquiry concerning the use of ANA in 

South Africa to monitor the education system. Firstly, the inquiry began with an 

analytical review of the Grade 9 mathematics ANA question papers to document 

strands of mathematical proficiencies (SMP) that were questioned (Kilpatrick, 

Swafford & Findell, 2001). Second, three questions in the 2014 Grade 9 ANA learners’ 

responses were analysed to examine SMP that were exhibited by learners in the ANA 

test. Lastly, the study verified the alignment of ANA and the Trend in International 

Mathematics and Science Study (TIMSS) (Porter, 2002). Through this inquiry the 

study contributes an alternative way of reporting of ANA results in South Africa that 

aims to convey a meaningful message to all stakeholders now that ANA is being used 

to monitor the South African Education system (DBE, 2013b). 

 

Mathematics knowledge, skills and values in this study are regarded as SMP, a 

theoretical framework used to examine mathematical content skills intended by the 

curriculum. These skills must be portrayed in the ANA questions, and experienced by 

learners as exhibited in their scripts. Kilpatrick et al., (2001) outlined the SMP as: 
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conceptual understanding, procedural fluency, strategic competence, adaptive 

reasoning and productive disposition (Dhlamini & Luneta, 2016). Some significant 

studies contextualise the existence of SMP in mathematics classroom discourse 

(Hiebert & Lefevre, 1986; Groves, 2012; Schoenfeld, 2007; Suh, 2007) although there 

is a dearth of literature on studies that use the SMP in document analysis. Through 

literature that informs each SMP, this study advances SMP to be examinable through 

document analysis. 

 

1.2 Background Context in National Systemic Assessment 

Testing 

 

There are three policy issues that national assessments must address and these are, 

Quality, Equity and Provision. Issues relate to: Quality teaching and learning referring 

to what mathematical knowledge learners’ exhibit. Equity the national assessment 

can help to determine how the education system is responding to gender, socio-

economic diversities, ethnic groups and school governance (public or private). 

Provision a national assessment must provide evidence on the provision of education 

such as the challenges of curriculum reform, learner retention rate and its effect on 

teaching and learning. (Department for International Development DFID [Sa]). This 

study is located in the first policy issue, issues relating to quality. Subsequently, the 

DBE pronounced that ANA is premised on three roles, namely: 1) as a measure for 

achievement for every three years of study, that is, Grade 3, 6 and 9; 2) ANA is used 

to assess the suitability of the curriculum at specific intervals in order to determine 

where to improve. ANA plays a role in providing valuable data that achieves sound 

levels of reliability; and 3) In addition to ANA, formative and summative assessment 

are used to provide validity and reliability of assessment processes (DBE, 2012. 

Additionally, the effective implementation of the curriculum in terms of making sure 

that the intended outcomes are addressed during teaching, learning and assessment 

is vital in the success of ANA (DBE, 2014). Hence it is vital that ANA testing that has 

been paused, continues to enhance quality education through assessment.  
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South Africa under-performed in the 2003 TIMSS, but contrary to that, South 

African learners indicated that they enjoyed mathematics. The poor achievement by 

South African learners did not imply a total revamp of the education system but rather 

focused on diverse cultural factors that might have negatively affected teaching, 

learning and learners’ achievement, (Leung, 2005).  

 

South African learners performed poorly in mathematics in all TIMSS and other 

Southern and Eastern Africa Consortium for Monitoring Education Quality (SACMEQ) 

studies (Leung, 2005; 2014; Howie, 2003; 2004; Kotze & Strauss, 2006; Reddy, 

2006). These results focused on socio-economic obstacles and not epistemological, 

psycho-genetic and didactical obstacles, and the omission of these represents a 

serious knowledge gap. These studies have compared achievement amongst the 

participating countries and revealed mostly South Africa’s socio-economical 

obstacles. The implementation of ANA has compared learner aggregated scores in 

the provinces, districts and schools, and also revealed socio-economical obstacles 

(DBE, 2012a & 2013b). This is not supposed to be the only focus of a national 

assessment. As such, it is a replica of what the international and regional systemic 

assessments have revealed where South Africa has participated (DFID, [Sa]; Howie, 

2003, Kotze & Strauss, 2006).  

 

Graven and Venkatakrishnan (2013) outline unfolding issues in the 

implementation of ANA: 

 

“The introduction of the Annual National Assessments began in 2011. The ANA was explicitly 

focused on providing system-wide information on learner performance for both formative 

purposes, such as providing class teachers with information on what learners were able to do, 

as well as summative purposes, such as providing progress information to parents and allowing 

for comparisons between schools, districts and provinces…Assessments such as ANAs of 

course have an influence on what happens in schools and in classrooms.” (Graven & 

Venkatakrishnan, 2013: 12). 

 

As some means of providing an alternative to policy makers, this study examines 

issues of quality in the ANA testing. There are other equally important issues, such 
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as provision and equity which cause a dilemma in this discourse and still need to be 

researched to provide worthwhile data. 

 

What follows below is an outline of the research problems that prompted this 

researcher to undertake this study.  

 

1.3 The Research Problem  

 

Assessment is a fundamental component that drives teaching and learning. In 

schools, teachers use different assessment instruments to gauge learners’ 

achievements (Gonzales & Fuggan, 2012). In addition, teachers are expected to do 

evaluative assessment of the curriculum in use. Several countries use systemic 

assessments to monitor the functionality of their systems and South Africa is not an 

exception (Kanjee & Moloi, 2014) because it uses ANA, which started in 2012 the 

DBE for Grades 3, 6 and 9 to monitor the performance of the curriculum (Graven & 

Venkat, 2014). In the past, there has been no instrument to gauge how well the 

curricula in use were doing. ANA as an instrument was introduced to address that 

gap. ANA as an evaluative instrument was envisaged to gauge how well the 

curriculum is succeeding.  The problem is that since the introduction of ANA, there 

has been no information as to whether it has been able to monitor the standard of the 

curriculum in schools (Kanjee & Moloi, 2014). Since 1994, post-apartheid, South 

Africa has changed curricula from NATED 550, to Outcomes Based Education (OBE), 

the National Curriculum Statement (NCS), the Revised National Curriculum 

Statement (RNCS) and finally, to the Curriculum and Policy Statement (CAPS) (DBE, 

2012a; DoET, 2002a; 2002b). In line with such drastic changes in the curriculum it is 

most likely that teachers would face challenges to catch up and this was supported 

by Leung (2005) who contends that any curriculum change must be as a result of 

evidence from classroom practice and other relevant issues. The challenges that 

teachers face due to curriculum changes are most likely to affect learners’ 

achievements (Bansilal, 2012). However, learner achievement is not the focus of this 

study, as Kanjee and Moloi (2014) point out that ANA is an evaluative assessment 

which focuses on providing information for purposes of improving teaching and 

learning (Graven & Venkat, 2014). The expected outcome of curriculum change would 
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be high quality education if the standard is monitored and maintained (Volante & 

Cherubini, 2010). There are still questions concerning the desirable mathematics that 

need to be learned in schools (Maoto, Masha & Maphutha, 2016). 

 

Some studies have focused on challenges on the implementation of ANA in 

Grade 3 and 6 (Graven & Venkat, 2014; Kanjee & Moloi, 2014) and there are no 

studies on Grade 9, which presents a knowledge gap. In both studies, teachers 

suggested that there were challenges as a result of implementation. However, 

teachers were positive with the usefulness of ANA to their teaching. Another study by 

Long and Wendt (2017) raised that systemic assessments, and ANA is not an 

exception, lack studies on what learners can and cannot do, a knowledge gap in this 

discourse. Only after three consecutive ANA testing in Grade 9 mathematics that were 

marred by poor performance, there were disagreements between the DBE and 

teacher Unions that halted ANA testing. Some issues raised by the teacher unions 

were that ANA was no longer serving its purpose of improving teaching and learning. 

Instead DBE used it to name and shame low performing schools and provinces (South 

African Teachers’ Democratic Union SADTU, [Sa]).  

 

An analysis of the 2012 Grade 9 mathematics ANA by AMESA (2012) points to 

obstacles posed in the implementation of ANA that need to be researched to inform 

policy-makers on the effectiveness of ANA. To address the knowledge gap in Grade 

9 ANA testing, this study examines the evaluative instrument, ANA, and assesses 

whether it serves its purpose. Currently, the success of the existing curriculum has 

not yet been documented. Therefore, this study assesses the effectiveness of ANA 

as an instrument that monitors the standard of mathematics education and the 

success of the curriculum in use in South African schools. 

 

Below, I outline the purpose and the research questions of this study. 

 

1.4  Purpose of the Study and Research Questions 

 

To respond to the research problem, the purpose and research questions of the study 

are outlined. 
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1.4.1 The Purpose of the Study 

 

The purpose of the study is to explore the effectiveness of Annual National 

Assessment in monitoring the mathematics education standard in South Africa 

through assessing the SMP tested by ANA and exhibited by Grade 9 learners in South 

Africa. This is achieved by reviewing cognitive demands of Grade 9 mathematics ANA 

in relation to SMP and viewing learners’ scripts to analyse levels of mathematical 

proficiencies exhibited. To achieve this purpose, the study responded to the following 

research questions. 

 

1.4.2 Research Questions 

 

The inquiry undertaken in this study responded to the following research 

questions: 

 

 How are cognitive levels of mathematics tested by ANA reflective of SMP? 

 What levels of mathematical proficiency do learners exhibit in response to 

the ANA tests?  

 How do the content and cognitive levels tested by ANA compare with 

TIMSS? 

 

The next section focuses on the importance of embarking on this study. 

 

1.5  Significance of the Study 

 

To address the knowledge gap outlined in the research problem, the current study 

examines the effectiveness of ANA in monitoring the standard of mathematics in three 

ways. Firstly, this study adapts SMP to be compatible for document analysis, and 

addresses a knowledge gap in this discourse. Second, the analysis of ANA question 

papers and learners’ scripts, is a methodological alternative that reports ANA results 

on proficiency levels instead of aggregated scores (DoET, 2002a). Third, the 
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calculation of Porter’s alignment between ANA and TIMSS, content standards may 

be maintained to prepare South African learners for effective participation in 

international systemic assessment testing. This will go a long way in enhancing quality 

education through assessment. Although, during the course of this study, there has 

been a pause in ANA testing, the significance of the study noted here is of paramount 

importance for future consideration of ANA testing. 

 

Below is an outline some key concepts that are used throughout this study. 

 

1.6 Key Concepts 

 

An early discussion of concepts serves as a reference in organising the structure of 

a thesis as well as providing a tool for metacognition in a doctoral study (Berman, 

2013). Bordage (2009) explains that the discussion of key concepts of a study 

supports the explanation of discursive multiple theoretical frameworks, literature base 

and the organisation of the professional educational context of a study. Below are 

some key concepts of the study.  

 

1.6.1 Strands of Mathematical Proficiency 

 

Kilpatrick et al. (2001) introduced the SMP as being intertwined, interconnected and 

inseparable. These SMP are: procedural fluency and conceptual understanding 

(knowledge); strategic competence and adaptive reasoning (skills); and productive 

disposition (values). (Groves, 2012; Luneta & Dhlamini, 2012). 

 

The concept of a rope that Kilpatrick et al. (2001) used to represent each 

strand symbolises a component of mathematical proficiency. When the strands are 

intertwined the resultant rope is stronger than each strand, which symbolises strong 

mathematical knowledge, skills and values. This study used the SMP as theoretical 

framework to explore the mathematics cognitive levels examined by ANA tests and 

subsequent learners’ responses. This researcher used SMP because they include 

mathematical knowledge, skills and values, and hence they address mathematics 

holistically, (Ally & Christiansen, 2013; Schoenfeld, 2007).  
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Figure 1.1: Intertwined SMP (Kilpatrick et al., 2001: 117) 

 

1.6.2 Systemic Assessments  
 

Systemic assessment is a way of externally evaluating the education system by a 

comparison of learners’ performance against nationally set indicators of learner 

achievement (DoET, 2002a&b). Systemic assessments provide policy makers with 

evidence on students learning in an education system, (Kellaghan, Greaney & 

Murray, 2009). This implies that systemic assessment can be done internationally, 

regionally and nationally. Dunne, Long, Graig and Venter (2012) argue that systemic 

assessment must assess current performance and variability within a group of 

learners of a certain age using externally set standards that outline required 

proficiency levels that monitor progress over a certain period of time. Additionally, 

Dunne et al. (2012) pointed out that the results of systemic assessment must be 

interpreted in conjunction with other forms of assessment such as assessment for 
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learning. Another important question is: to what extent are the ANA achieving what a 

national systemic assessment ought to achieve?  

 

1.6.3 The Alignment Index  

 

To calculate the alignment index, matrices are formed which match assessments and 

curriculum in cells and the alignment index is calculated per cell.  

Alignment index = 1 - 
∑ │𝑋−𝑌│

2
 where x and y stand for cells in corresponding matrices. 

(Porter, 2002). The alignment index ranges from 0 to 1, 0-0.50 which depicts no 

alignment to moderate alignment, 0.51 to 1.0 range from moderate to perfect 

alignment (Ndlovu & Mji, 2012; Porter, 2002; Porter, McMaken, Hwang & Yang, 

2011). 

 

1.6.4 South Africa’s Cognitive Levels for Mathematics 

 

The following percentage levels cognitive levels are expected when formulating 

assessments in the senior phase (Grades 7-9) for mathematics in South African 

schools:  knowledge (25%); routine procedure (45%); complex procedures (20%; and 

problem solving (10%) (AMESA, 2012). The cognitive levels were adopted from the 

TIMSS 1995 study with no alterations (Berger, Bowie & Nyaumwe, 2010; DoET, 2007; 

Reddy, 2006). The use of similar cognitive levels standardises the South African ANA 

examination with international assessments.  

 

1.7 Research Methodology 

 

The current study used mixed methods in the context of the transformative paradigm. 

First, a review of SMP that had been examined by the ANA tests was done. Second, 

this study used document analysis to identify SMP that learners’ exhibit in their 

responses to the ANA test questions. Lastly, the 2012, 2013 and 2014 Grade 9 

mathematics ANA tests were aligned with the TIMSS 2011 Grade 8 mathematics test 

items by calculating the Porter’s alignment to measure the content message that 

these document relate. 
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1.7.1  Research Design 

 

The study combined both qualitative and quantitative design features which was in 

the context of the QUAL-quan, normally called the exploratory sequential design. 

According to Creswell (2014), this design is dominated by the collection of qualitative 

data that is followed by quantitative analysis. The research design was divided into 

three phases.  

 

Part one Phase one was the development of themes and subthemes using the 

SMP to analyse the ANA Grade 9 question papers with special attention on identifying 

patterns on the SMP tested by the papers. This was preceded by Part one. Phase 

two generation of descriptive statistics, means and standard deviations to explain 

proficiencies examined by ANA in three consecutive years. 

 

Part two, Phase one was to assess learners’ responses to the ANA tests with 

focus on identifying SMP exhibited by learners in response to the ANA tests. Part two 

phase two was the generation of descriptive statistics, means and standard deviations 

to explain proficiencies exhibited by learners in various schools.  

 

Part three, Phase one was the calculation of the Porter’s alignment index in 

matrices of content and cognitive levels preceded by part three phase two, generation 

of descriptive statistics, means and standard deviations compare cells of content and 

cognitive levels of the alignment index of the Grade 9 ANA mathematics 2012, 2013 

and 2014 question papers and 2011 TIMSS Grade 8 mathematics test items.  

 

1.7.2  The Mixed Methods Approach 

 

The study used mixed method research. It was dominated by qualitative document 

analysis, as the data was from a thick description of strands of mathematical 

proficiencies of the Grade 9 ANA test question papers and learners’ responses to the 

test. Calculation of the alignment index for test items was both qualitative and 

quantitative. The description of learner responses from the scripts used proficiency 
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levels (qualitative) and the analytical description of the SMP displayed by learners 

was done using descriptive statistics, means and standard deviations (quantitative).  

 

Mixed methods research is a process of generating theory by researchers 

through integrating qualitative and quantitative techniques (Creswell, 2014). The 

approach is determined by the purpose of the research, the research questions and 

the context faced by the researcher (Johnson & Christensen, 2012). Mixed methods 

research is expanding and gaining popularity due to the variety of topologies it 

employs and an elaborate discussion of many topologies (Harrits, 2011; Luyt, 2012). 

Hence, mixed methods are relevant for this study as it also requires various topologies 

to explore the research problem which has not been explored in previous studies. 

 

1.7.3  Sampling 

 

There are two different samples that the study deals with due to the nature of research 

questions pursued. In relation to learners, the population is all Grade 9 learners in 

South African schools who have participated in the ANA for 2014. Through the 

application of the purposive sample procedures (Creswell, 2014), altogether 1250 

learners in the seven schools in the Capricorn District of the Limpopo Province, were 

selected. In order to engage rigorously with the scripts, the focus for analysis was on 

items 3, 6 and 10. The choice of these items was motivated by their high relative 

frequency or anchoring role as observed in the ANA for 2012 to 2014. In pursuing the 

other purpose of the study, ANA tests for Grade 9 for 2012, 2013, and 2014 were 

selected. In order to benchmark the tests against international practices, the 2011 

TIMSS Grade 8 mathematics paper was selected. 

 

1.7.5  Research Assumptions 

 

The research assumptions in the current study were informed by the transformative 

paradigm in the context of the epistemological transformative assumptions (Mertens, 

2007 & 2010a). The assumptions were: first that assessment tools such as tests 

examine a spectrum of knowledge, skills and attitudes. Tests used in assessment can 

be benchmarked with other tests to reveal their content messages that they demand. 
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Second, tests must be set such that they are coherently balanced in the SMP. Third, 

in response to tests for any form of assessment, learners exhibit only the SMP that 

the test examines. Such tests allow learners to exhibit a variety of mathematical 

proficiencies such that, as learners progress in their schooling, they simultaneously 

acquire a coherent knowledge, skills and attitudes base that allows them to sustain 

learning situations that demand high level cognitive demands. The assumptions were 

informed by the SMP as identified by Kilpatrick et al. (2001) as well as the Porter’s 

alignment index. Furthermore, this philosophical assumption is confirmed by 

Schoenfeld (2007) who states that; “What You Test Is What You Get, (WYTIWUG).” 

(Schoenfeld, 2007: 72). 

 

1.7.4  Data Collection Methods 

 

The Grade 9 ANA 2012, 2013 and the 2014 mathematics question papers were 

accessed from the website of the DBE. The 2011 Grade 8 mathematics TIMSS set of 

questions and were accessed from website of the International Association for the 

Evaluation of Educational Achievement (IEA). Learners’ scripts were accessed from 

seven schools in the Limpopo Province, Capricorn District.  

 

1.7.6  Data Analysis and Interpretation 

 

This study first analysed ANA question papers and learners answers. Question paper 

were analysed first by categorising items into content areas, then the theoretical 

framework, the SMP was used to view each question item. Subsequently patterns 

emerged from the analysis of ANA question and were coded to capture SMP that 

each question examined. Furthermore, patterns were identified from the immerging 

codes and themes finally emerged. Last, the quantitative data was analysed using 

descriptive statistics: means and mean deviations.  

 

Second, I analysed learners’ answers (scripts) that was for their responses to 

question 3, 6 and 9 was categorised according to four variables, correctly answered, 

partially answered, incorrectly answered and no response that described learners’ 

proficiency levels. When analysing available data (McMillan & Schumacher, 2014), 
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researchers often visualise meaning from the documents as the respondents may not 

be accessible.  For quantitative data, learners’ responses across the schools were 

analysed using descriptive statistics: means and standard deviations. 

 

Third, to benchmark ANA and TIMSS, the Porter’s alignment index was 

calculated from Grade 9 mathematics 2012, 2013 and 2014 ANA question papers 

and the Grade 8 mathematics from 2011 TIMSS response items. The following 

formula was used to calculate alignment, Porters Alignment index = 1 - 
∑ │𝑋−𝑌│

2
, where 

x and y stand for proportions which can be written as Xi and Yi, respectively. For 

quantitative data, descriptive statistics mean and standard deviation were used to 

show content and cognitive levels in the cells. 

 

1.7.7  Quality Criteria of the Study 

 

To ensure that this study maintains quality, I ensured that the following three 

principles are upheld, credibility, confirmability and dependability (Creswell, 2014).  

For credibility (Gay et al., 2014), I triangulated (Torrance, 2012) qualitative data 

collected from document analysis during data analysis using descriptive statistics in 

the quantitative paradigm. For dependability (Johnson & Christensen, 2012), 

instruments and theoretical framework were scrutinised against the relevant theories. 

In relation to confirmability (McMillan & Schumacher, 2014) I was not influenced by 

policy makers as this study dealt with available data and the results were given to 

peers to check bias.  

 

1.7.8  Ethical Considerations 

 

For ethical considerations (McMillan & Schumacher, 2014), informed consent, 

confidentiality and safety in participation, trust and, risks and benefits were all 

addressed. To gain informed consent (Creswell, 2014), I sought permission from the 

Department of Basic Education to access question papers and the 2014 mathematics 

ANA scripts. For confidentiality, I concealed the names of the schools and the learners 

by using pseudonyms (Springer, 2010). The school and the learners had the right to 
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withdraw from the study at any time (Fraenkel & Wallen, 2010). To ensure trust (Gay 

et al., 2014). I kept the scripts safe and returned them the schools. Finally, to address 

the risks and benefits, I conformed (Johnson & Christensen, 2012) to copyrights for 

the ANA question papers and the TIMSS response items. 

 

1.8 Scope and Delimitations  

 

The research problem outlined earlier is centred on quality issues within 

epistemological obstacles. However, there are other equally important obstacles such 

as psycho-genetic and didactic issues. This focus poses a serious dilemma as studies 

on systemic assessment report mainly on socio-economic obstacles and disregard 

other pertinent issues that may assist in achieving important goals of national or 

international systemic assessment testing. The dilemma is two-fold. Firstly, there is 

dearth of literature on the quality issue especially within the context of systemic testing 

both national and international. The second challenge is that there are other equally 

important issues that are not the focus of this study such as psycho-genetic and 

didactic issues. The study was restricted to Grade 9 ANA scripts. This number does 

not include other section of ANA such as Grade 3 and 6 and future studies need to 

address those areas. 

 

1.9 Overview of Chapters  

 

This dissertation is divided into five chapters. Chapter One is an introduction to the 

study that includes a concise background of the study. That consists of the South 

African context of the research problem, the purpose of the study which presents the 

objectives and the research questions. The significance of the study is also outlined 

as well as an explanation of key concepts used in the study. A summary of the 

research methodologies followed in this study is given, as well as the quality criteria 

and finally the chapter concludes by an organisational overview of the thesis.  

 

Chapter Two provides a review of the literature relevant to this study, including 

studies that report on regional and international systemic assessments where South 
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Africa has participated. Furthermore, there is a discussion on policy issues on 

conducting a systemic assessment, followed by South Africa’s ANA and issues on the 

calculation of the alignment index of systemic assessments. The literature on South 

Africa’s cognitive levels in mathematics is reviewed and a model for monitoring the 

education system using the ANA is proposed. Lastly, the theoretical framework, SMP 

are adapted to make them compatible to document analysis.  

 

In Chapter Three, the research methodology, mixed methods are described. 

This is followed by the research design, the sampling procedures and the 

assumptions of the study. The research process is outlined, followed by the research 

ethics, and lastly challenges and strengths of this study are presented. 

 

Chapter Four presents the findings of the study which begins by the presentation 

of findings of document analysis of the 2012, 2013 and 2014 ANA question papers. 

Furthermore, the findings of the analysis of learners’ responses to the 2014 Grade 9 

ANA mathematics test are presented. Lastly, the results on the Porter’s alignment 

index between ANA tests and TIMSS response items are presented.  

 

Chapter Five provides a summary of the main findings, highlights the importance 

of the study and how the findings contribute to the existing body of knowledge. It also 

provides suggestions for further research, and presents recommendations and 

conclusions. 

 

1.10 Conclusion  

 

The main purpose of this chapter was to present the background of the study, its 

focus, purpose and the methods. It provided the context of the study, its significance, 

research questions and key concepts used in the entire study. Furthermore, the 

quality criteria, ethical considerations and the structure of the thesis were discussed. 

The next chapter provides the literature review and the theoretical framework. 
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2. CHAPTER TWO 

LITERATURE REVIEW AND THEORETICAL 

FRAMEWORK 

 

2.1 Introduction 

 

The previous chapter presented the background context of national systemic 

assessments in South Africa. Subsequently, it was observed that the history of 

systemic assessment testing has a dearth of literature due to the fact that it is a new 

process that has been recently introduced. On the other hand, South Africa has 

substantial history in the participation in international systemic assessment, TIMSS, 

in the following studies, 1995, 1999, 2003 and 2011 and did not participate in the 2007 

study (Leung 2005; 2014; Howie, 2003; 2004). As such, the results of the 

mathematics TIMSS studies reveal that South Africa performed poorly, actually 

positioned last in all these studies. Although the results of the 2011 study show some 

significant increase in achievement, South Africa still remains last in mathematics 

achievement amongst participating countries (DBE, 2013b).  

 

In a quest to view South Africa’s national systemic assessment, literature in 

TIMSS and SACMEQ is reviewed. In his comparative studies, Leung (2005; 2014) 

warned South Africa that the low performance does not imply a total revamp of the 

education system, but rather issues that have direct impact on the low performance 

must be addressed. Studies have identified that only few learners perform above 

international average, from the minority of the South African population (Howie, 2003; 

Kotze & Strauss, 2006). The current study does not focus on achievement which has 

been widely reported in studies on systemic assessment testing. The focus is on 

finding alternative ways of ANA testing that may justify its use as a worthwhile 

monitoring mechanism (DBE, 2013b). An analysis of the 2012 Grade 9 ANA 

mathematics question paper by AMESA (2012) identified challenges relating to 

epistemological, psycho-genetic and didactical obstacles. Reporting of the ANA 
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results focuses only on socio-economical obstacles which leaves this discourse of 

knowledge with a wide range of gaps in the literature. 

 

The purpose of this study centred on quality issues by Grade 9 ANA now that 

they are used to monitor the education system. This discourse of knowledge seems 

huge for this study, therefore the current study reviews literature on three issues, 

alignment, cognitive levels tested by ANA in relation to strands of mathematical 

proficiency and strands of mathematical proficiency tested by the ANA as well as 

those exhibited by learners in response to the ANA tests. Finally, the SMP are 

adapted to be compatible to document analysis which is used in data analysis. 

 

2.2 Monitoring Mathematics Education 

 

The use of mathematics to monitor the quality of curriculum implementation has been 

widely accepted in various countries and South Africa is not an exception (Kanjee & 

Moloi, 2014). South Africa has changed curricula without data to inform the quality in 

the implementation (Graven & Venkat, 2014). The expectation is that teachers 

grapple with curricula changes and it is problematic when such changes are not 

informed by data. South Africa has engaged in three systemic assessments, TIMSS, 

the regional assessment Southern and Eastern Africa Consortium for Monitoring 

Education Quality (SACMEQ) and the ANA. In all these systemic assessments, 

mathematics achievement is monitored to inform the implementation of the 

curriculum. The assumption is that data gathered through the monitoring of 

mathematics education, this may inform policy makers as to the state of the education 

system (Volante & Cherubini, 2010). Below this section looks at the three levels of 

systemic assessment to gather information on South Africa’s participation. 
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2.2.1 Levels and Importance of Systemic Assessments 

 

There has been a substantial increase in systemic assessment testing in the past 

decades through testing the quality of mathematics education (Drent, Meelissen and 

van der Kleij, 2013). There were 12 countries participating in The First International 

Mathematics Study (FIMS) in 1963 and recently there were 69 countries in the TIMSS 

2011, (Drent et al., 2013; Emmett & McGee, 2013). Such an increase justifies the 

need to monitor the effectiveness of education systems, but the use of aggregated 

scores that compares the achievement of learners has been widely criticised as being 

less informative (Dunne et al., 2012; Suter, 2000). Studies on systemic assessments, 

especially TIMSS, have focused on student achievement, school level factors and 

classroom factors with less attention on the format of the tests (Chen, 2014). More 

attention has been given to mere aggregated scores and rankings of education 

systems irrespective of the substantial time, cost and effort spent on systematic 

testing (Koretz, 2009).  

 

In the current study, the 2011 Grade 8 mathematics TIMSS response items are 

aligned with South Africa’s ANA tests for purposes of benchmarking. The need for 

South Africa’s participation in TIMSS and for it to conduct its own national 

assessments is justified, however, the relevance of using these results remains 

questionable. South Africa has participated in TIMSS 1995, 1995, 2003, and 2011 

and was withdrawn in 2007 (Howie, 2003; 2004). Pressure from stakeholders resulted 

in the Minister of Basic Education reversing the withdrawal of South Africa in 2011. 

South Africa participated in the 2011 TIMSS and some improvement was noticed. 

However, the achievement was still lower than the international TIMSS average. More 

studies have reported challenges in the TIMSS such as sampling and the formats of 

the test items. Research conducted by Sofroniou and Kellaghan (2004) reported 

problems on the TIMSS 1997 mathematics test items that were in eight booklets. 

However, they fail to provide substantial analytic evidence connected with the 

problems posed by the test items. They further noted that stratified sampling was 

used to sample learners while teachers in participating schools were given 

questionnaires without being sampled and this created problems in validating the 
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findings. These issues justify the need for intensive research on South Africa’s Annual 

National Assessments now that it is used to monitor the education system.  

 

Recently, South Africa has been involved in three levels of systemic 

assessment. The first is the TIMSS where South Africa participates with countries 

internationally (Reddy, 2006). Such results benchmark South Africa at an 

international level. Second, there is participation in SACMEQ, a regional systemic 

assessment that involves countries from South and Eastern Africa (Spaull, 2010). In 

this systemic assessment, South Africa benchmarks achievement regionally. Third, 

South Africa has its national assessments which benchmark achievement in schools 

and provinces (DBE, 2011). In this systemic assessment schools and provinces are 

benchmarked to gather data with the aim of improving teaching and learning (Kanjee 

& Moloi, 2014). Below I view the TIMSS and South Africa participation with an aim of 

mapping international testing and the South African context.  

 

2.2.2 International Systemic Assessments 

 

International systemic testing has been justified and it is widely agreed that it provides 

useful information on various educational systems (DFID, [Sa]; Schmidt & McKnight, 

1998). South Africa participation in all the TIMSS, especially in mathematics has 

shown low achievement among participating countries (Howie, 2004). Some studies 

have focused on South Africa’s participation and related factors (Howie, 2003; 2004; 

Leung, 2005; Wang, Osterlind & Bergin, 2012). However, little has been done to 

address concerns the raised from these results as South Africa’s performance still 

remained lower than the international average in the 2011 TIMSS Grade 8 

mathematics (DBE, 2014a). 

 

A report on the 2011 TIMSS Grade 8 mathematics revealed a significant 

improvement on South Africa’s achievement, however South Africa was positioned 

forty fourth out of forty five participating countries. The situation is bad considering 

that South Africa used Grade 9 learners for the Grade 8 response items when a 

majority of countries used Grade 8 learners. South Africa scored an average of 352, 

way below the 500 TIMSS Centre Point Human Sciences Research Council (HSRC) 
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(2013). These results still indicate that South Africa continues to perform poorly in 

mathematics when benchmarked internationally.  

 

Figure 2.1 is an illustration of learners’ performance and domestic economic 

state. There is an indication that in the 2011 TIMSS Grade eight, (32%) of learners in 

the participating schools had more learners from affluent schools’ homes and had the 

highest achievement. Contrary to these results, (36%) of learners in participating 

schools from disadvantaged homes and these learners had the lowest achievement 

(International Association for the Evaluation of Educational Achievement IEA, 2013). 

These results justify that learners from affluent homes achieved better than learners 

from disadvantaged homes. 

 

 
Figure 2.1: International averages for student economic background, (IEA, 2013: 

14) 

 

In their study on four countries and their mathematics achievement levels in the 

TIMSS 2003, Wang et al. (2012) identified two categories of social contextual factors 

and these are: school climate and social-familial influences. The results of this study 

show that in South Africa, schools that are better resourced and well-managed 

showed high mathematics achievement. For parents who have higher educational 
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level, their children had high achievement. These results were consistent in the four 

countries, South Africa, Singapore, United States of America and Russia.  

 

South Africa’s performance in mathematics systemic assessments remain low 

as compared to these countries (HSRC, 2013; DBE, 2013b). Visible change in South 

Africa in recent years has been in the curricula, firstly C2005, then the NCS, followed 

by the RNCS and most recently the CAPS. This has happened irrespective of 

warnings from researchers on systemic assessment such as Leung (2005) that major 

changes must not be implemented in South Africa before identifying factors that might 

have negatively affected teaching and learning. 

 

A comparative study by Reddy (2006) explains that the TIMSS study requires a 

minimum of 150 schools in each participating country with a minimum of one whole 

class participating in one school. South Africa had 225 schools that were randomly 

selected and stratified per province. The results of the 1995 TIMSS showed that South 

African learners achieved 275 points in the National average out of 800 points in the 

mathematics test while the International average was 487. The top Province was 

Western Cape with 381 points (this is below the international average), second and 

third were Gauteng Province and Northern Cape Province both achieving 318 points 

and last was Limpopo Province the lowest with 226 points.  

 

The results of review studies by Howie (2003; 2004) on both TIMSS 1995 and 

1999 revealed that South African learners performed worse than other participating 

countries, including developing and developed countries. The study also revealed the 

following results in South Africa’s participation; (1) Learners Afrikaans and English as 

home languages performed better than African language learners. (2) Learners who 

believed they were strong mentally in mathematics performed better. (3) Learners in 

rural schools performed badly as compared to learners from urban schools. (4) 

Learners with teachers using traditional methods of teaching performed well as 

compared to teachers who used methods of the reformed curriculum. (5) Learners in 

large classes performed badly as compared with those in small classes (large classes 

are those with an average of 50 in a class).  
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A comparative study by Leung (2005) that focused on possibilities that 

mathematics achievement can be attributed to classroom practices showed that 

South African learners performed badly in the 2003 TIMSS study as compared to all 

participating countries. The study revealed the following findings: (1) In countries that 

had high learner achievement like East Asia, learners did not enjoy mathematics due 

to traditional methods of teaching by qualified teachers who argued that their teaching 

taught clear and simple procedures for pedagogical and efficiency reasons at the 

expense of rich mathematics concepts. (2) The quantitative results of the 2003 TIMSS 

video study showed a negative correlation between learner achievement and 

enjoyment of mathematics in East Asia. (3) The qualitative results showed advanced 

mathematics learning practices and relevant reasoning without compromise that 

could see more learners accessing mathematics at the expense of advanced 

mathematics. (4) South African learners were good in terms of enjoyment and self-

confidence in mathematics which had no correlation with the achievement which was 

low. If change is done the positive attitude must be maintained. In his studies Leung 

(2014; 2005) warned that the poor achievement by South African learners did not 

imply a total revamp of the education system but rather a focus on diverse cultural 

factors that may have negatively affected teaching, learning and learners’ 

achievements. 

 

The observation of this researcher is that such results have been consistent in 

all studies on international systemic assessment. A steady increase in achievement 

in South Africa 2011 Grade 9 TIMSS may be a sign of lessons from previous 

participation. However, this still remains below the TIMSS international average 

(HSRC, 2013). A need for studies that focus on international systemic assessment 

from a different lens is eminent if one considers what these assessments were initially 

aimed at doing. Dunne et al. (2012) pointed out two valid reasons why systemic 

assessment are not effective in educational reform. The first point is; 

 

“A fairly recent expectation is that the results of systemic assessment be made available to 

parents. This new access to information may be well intentioned, but the form of the information 

is problematic, precisely because the data from a single and necessarily limited instrument are 

so fragmentary and imprecise. Systemic assessment is generally not fine-grained enough to 

report to teachers, or parents, the results of individual learners, as if these single test 
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performance results, ascertain from an instrument of about an hour’s duration are adequate 

summative insight into a year’s progress in the classroom.” (Dunne et al., 2012: 3). 

 

This is an indication that the structure recently used in systemic assessment is 

deformed and does not necessarily cover all areas for the initial intentions of systemic 

assessments. The second reason is illustrated below; 

 

“On the basis of the systemic test score alone, a learner or parent is given a qualitative 

description that, however well intentioned, is simply arbitrary, invalid and possibly fraudulent, 

until other evidence justifies the descriptions offered. It is arguable that such descriptions are 

generally damaging, but especially when test design has not been informed at all by any criteria 

for item construction and selection that might relate to either the cut-points and the preferred 

10% intervals or the objectives chosen.” (Dunne et al., 2012: 3). 

 

In this instance Dunne et al. (2012) clearly show the insufficient information that 

is contained in the systemic assessment which is aimed at reporting on national or 

international achievement which is vast, and yet is narrowed to aggregated scores. 

The need for coherent means of dealing with information in systemic assessment is 

rather obvious. Kellaghan et al. (2009) argue that the disadvantages of using 

international assessments are: (1) the test is used in more than one country; (2) its 

content may not be representative of the curriculum of a single country; (3) does not 

pay enough attention to contexts of individual participating country, and the 

technology used cannot adapt fully to diverse local cultural and contextual education 

complexities of all participating countries. This is an indication that although South 

Africa has participated in international systemic assessment, there is still a need to 

conduct national systemic assessments that respond to the South African context. 

 

2.2.3 Regional Assessments and South Africa Participation 

 

The (SACMEQ), where South Africa has participated in the past, undertakes research 

in 15 Southern and Eastern African countries with these initial aims: (1) to widen the 

scope of education planners and researchers in these countries; (2) provide relevant 

technical skills for the monitoring of the conditions of their education systems; and, 

(3) to engage in research that processes evidence-based information that education 
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planners can employ in improving their education systems in their respective 

countries (Hungi, Makuwa, Ross, Saito, Dolata, Cappelle, Paviot & Vellien, 2010). 

These studies seem to be a replica of the international systemic assessments. 

 

In their comparative study on contextual factors that affect mathematics 

performance of Grade 6 learners in the SACMEQ studies, Kotze and Strauss (2006) 

acknowledge that South African learners come from a wide spectrum of social, 

political, ethnic, racial, economic and cultural backgrounds and that this factor 

contributes to achievement in mathematics. However, they pointed out that learner 

diversity in mathematics achievement can be attributed to factors intrinsic or extrinsic, 

such as imbalances in socio-economic of schools and learners’ exceptional 

intelligence; mentally impaired, gifted, talented, specific learning disabilities, physical 

challenges, and chronic health problems, and communicative disorders, emotional 

and behavioural disorders. Moreover, these diversities have implications for 

provision, one of the primary goal for national assessments. 

 

Findings from the study by Kotze and Strauss (2006) reveal contextual issues 

that affect mathematics achievement which have a considerable impact on learning 

such as parental education, books at home, possessions at home and to general 

quality of learners’ homes. Their findings are: (1) Western Cape Province and 

Gauteng Province had better general quality of Grade 6 learners’ homes, whilst 

Limpopo and Eastern Cape Province had poor homes. (2) A significant number of 

Grade 6 learners do their homework in conditions that are not favourable to learning. 

(3) On average Grade 6 learners’ parents lacked basic education. (4) Western Cape 

and Gauteng Province had the highest number of books in Grade 6 learner’s 

households. (5) Western Cape Province and Gauteng Province had more Grade 6 

learners’ household possessions that promoted learning such as electronic media, 

radio, television sets and electricity. These results are consistent with those revealed 

earlier by Wang et al. (2012), as well as IEA (2013). 

 

A study by Spaull (2010) on the analysis of the South African Grade 6 

mathematics SACMEQ III revealed the following findings: (1) On average poor 

students perform low academically, (2) Wealthy, functional schools have an 
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enhanced ability to produce numerate students. (3) Most poor and dysfunctional 

schools are unable to produce numerate students. (4) Equal quality education 

remains a myth. (5) Western Cape and Gauteng had fewer quintile 1 (quintile is 

poverty index range 1-5; 1 for poor schools and 5 for affluent schools) schools and 

more quintile 5 schools, whilst Eastern Cape Province, KwaZulu Natal Province and 

Limpopo Province had more quintile 1 and fewer quintile 5 schools. (6) The mean 

score for learners’ achievement in mathematics was higher in urban schools than in 

rural schools. Spaull (2010) also make some recommendations to policy makers in 

South Africa; 

 

“1) ensure all learners have access to at least one year of quality preschool-education, 2) provide 

adequate access to reading textbooks, 3) increase the frequency of homework in poorer schools, 

4) improve school management and discipline, 5) improve the ability of teachers to convey their 

subject knowledge, and 6) learn from other African countries who produce better results with 

fewer resources. These interventions are likely to improve the performance of primary-school 

students, particularly so for those from poorer backgrounds” (Spaull, 2010: 26)  

 

These findings and recommendations from the study on SACMEQ III reveal 

valuable information on the status of education in South Africa that is well documented 

in the TIMSS studies where South Africa has participated. The next section revisits 

the initial aims of systemic assessments. The objective in mind is to look at the 

ontology of the South African context, lessons learnt from participation in systemic 

regional and international assessments, as well as what need to inform the processes 

of Annual National Assessments.  

 

2.2.4 National Systemic Assessments 

 

There are three policy issues that national assessments must address and these are: 

issues relating to quality; these refer to quality teaching and learning that is aligned to 

the implementation of curriculum, what mathematical knowledge learners exhibit as 

a result of engaging with the type of national assessment; issues relating to equity; 

the national assessment can help to determine how the education system is 

responding to issues related to gender, socioeconomic diversities, ethnic groups and 

school governance (public or private); issues related to provision; a national 
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assessment can provide evidence on provision of education such as the challenges 

of curriculum reform, learner retention rate and its effect to teaching and learning, 

restructuring of the education system, and factors associated with achievement (DFID 

[S.a.]). 

 

Reflecting on these policy issues that a systemic assessment must address, the 

studies reviewed points at equity and provision as being the only issues addressed 

by TIMSS and SACMEQ which South Africa is participating. Issues relating to quality 

are partially addressed, like in the TIMSS video studies, however, a lot of challenges 

are encountered here which raises questions on the validity of such results (Leung, 

2014). These are reported by Ferrini-Mundy and Schmidt (2005) that the video studies 

were conducted in three countries out of forty seven countries that participated in the 

2003 TIMSS. This is an indication that the video study did not reflect enough on 

participating countries. The issue on quality remain not addressed by the TIMSS and 

subsequently by SACMEQ studies. The study by Koretz (2009) highlights the fact that 

systemic assessment for student achievement is important and in the context of the 

United States it continues to fail to provide clarity on performance. I observe that the 

same challenge that America is experiencing is also evident in South Africa which 

justifies the need for an alternative way of reporting and interpreting results of national 

systemic assessments. 

 

Now I focus on the South African Annual National Assessments. The principal 

aim of ANA is to monitor learner attainment at regular intervals, using nationally or 

provincially defined measuring instruments (DoET, 2002a). According to DoET 

(2002a) this form of evaluation compares and aggregates information about learner 

achievements so that it can be used to assist in curriculum development and the 

evaluation of teaching and learning. As mentioned in the current study, national 

systemic assessments must address three issues, quality, namely, provision and 

equity (DFID, [S.a.]). As such, the depth in what ANA is addressing as mentioned in 

DoET (2002a) does not cover these three issues. 

 

Reports such as DBE (2012a, 2013b & 2014) presented the following results on 

ANA testing between 2012 and 2014: (1) National average in Grade 9 mathematics 
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of (13%) in 2012, (14%) in 2013 and (11%) in 2014; (2) Western Cape province with 

the highest achievement in Grade 9 mathematics with (16.7%) in 2012, (17%) in 2013 

and (13.9%) in 2014. (3) The second province was Gauteng, (14.7%) in 2012, (15.9%) 

in 2013 and (12%) in 2014. (4) The worst performer, positioned last, was the Limpopo 

Province with 8.5 percent in 2012, (9%) in 2013 and (4%) in 2014. (5) Female learners 

achieved slightly higher results than males nationally and provincially in Grade 9 

mathematics in the 2012, 2013 and 2014 respectively. (6) Analysis of schools in terms 

of the poverty index, called quintiles, indicated that poor schools performed worse 

than affluent schools (DBE, 2012a & 2013b, 2014). Most of these findings are 

consistent with those reported in South Africa’s participation in all TIMSS and 

SACMEQ studies.  

 

The results reported above reveal that there is enough information on issues of 

provision and equity that is at the disposal of the DBE to redress these issues. These 

results only report on mere aggregated scores between provinces on, gender, poor 

and affluent schools (DBE, 2014a). These results have been reported in consecutive 

years and are still consistent. The need to use another lens is pressing and the DBE 

needs to change its’ focus to view other obstacles that the national systemic testing 

must address to respond to the context and the needs of South Africa. To be concise, 

it is evident that rich schools perform better and poor schools perform badly. Rich 

parents provide better education for their children (they send them to rich schools) 

whilst poor parents cannot afford to provide better education for their children (they 

send them to poor schools) and rich provinces are ahead in addressing issues related 

to provision and equity (Dunne et al., 2002; Koretz, 2009). The challenge is now on 

the issue of quality which has not been adequately addressed by systemic 

assessments both at international and national level. 

 

A study by Graven and Venkat (2014) was conducted with 54 teachers in 21 

township and suburban primary schools in Johannesburg and Grahamstown. Their 

focus was on the teachers’ experiences with ANA. The findings revealed the following; 

(1) Learners in Grade 3 had a serious problem reading the test questions and 

interpreting these tests by their teachers compromised their validity. (2) Learners were 

subjected to write content in ANA without being taught that content. (3) Teaching 
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towards ANA at the expense of quality mathematics learning. (4) The marking 

guidelines of ANA did not allow multiple solution strategy which was seen to 

disadvantage learners. Monitoring by district and Provincial Education has revealed 

a need to empower teachers and subject advisors with knowledge and skills needed 

to develop quality learning and assessment materials such as tests, assignments and 

projects (DBE, 2014a). An observation here is that teachers, as well as subject 

advisors, lack skills that are critical in the challenges facing achievement in ANA 

testing.  

 

A qualitative textual analysis carried by AMESA (2012) on the ANA 2012 Grade 

9 mathematics focused on content coverage and cognitive level requirements. The 

findings of the analysis were; (1) only word problems, a small portion of the test in 

question 3 challenged second language speakers and this revealed that mainly the 

test did not pose serious language problems. (2) In some questions, learners 

struggled to answer the questions because the formulae were not given. (3) Some 

content such as transformational geometry, data handling (statistics) and probability; 

15.7% of the test which is taught after September were tested which could have 

disadvantaged some learners. (4) The stakes for the ANA tests were low which made 

learners not take it seriously. The analysis suggested that obstacles that could have 

resulted in low achievement were, psycho-genetic, didactical and epistemological 

obstacles. These results gave direction to the current study hence it took the 

epistemological perspective. 

 

The report on the 2012 ANA testing, DBE (2012b) identified language and 

mathematics knowledge and skills as key challenges to learners who participated in 

the 2012 ANA. Learners’ scripts were randomly collected and remarked and it was 

found that a majority of learners lacked skills and knowledge of the grade in which 

they were placed. This was an indication that as learners progressed there was lack 

of systematic progression in their mathematics knowledge and skills learned in 

consecutive grades. The main challenge here was to locate the origins of the problem. 

To identify the niche of these challenges, the following conceptual questions raised: 

Is the problem in the teaching and learning? Or, Is the problem in the ANA tests 

themselves? This is not mentioned in this report and needs to be researched. It may 
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be important to revisit the aims of national systemic assessment testing and find 

alternatives that are relevant for the discursive educational context of South Africa.  

 

National systemic assessments evaluate an education system, schools, 

students and sometimes teachers in a quest to provide evidence on learners’ 

achievement at a particular stage of education in identified curriculum discourses 

(DFID, [S.a.]). In achieving these aims of national systemic assessment, Kellaghan et 

al. (2009) argue that the testing takes two forms: (1) census-based in which all schools 

and learners at targeted population participate, and (2) sample-based which uses only 

sampled schools. In the DFID [Sa], it is explained that a sample-based has three 

advantages; the cost is less, turn-around time is faster and higher quality of data due 

to possible higher supervision. In the context of South Africa, census-based provides 

information about all school, all districts, all provinces, and the education system in 

general, (DBE, 2012a). The cost is higher, there is low quality of data due to low 

quality of supervision, and the turn-around time must be long (DFID, [Sa]). 

 

If poorly performing schools are sanctioned and results published, the 

assessment become ‘high stakes’ which may have the following negative effects; 

neglect of curriculum main areas in favour of the national systemic assessment, 

teaching that is characterised by rote memorisation and drill for the national systemic 

assessment at the expense of higher order reasoning, rich mathematics and problem 

solving skills; teachers focus on low performing learners to make the school results 

look good, (DFID, [Sa]; Kellaghan et al. 2009). Such challenges are evident in the 

ANA testing in South Africa. For example, aggregated scores reported in provinces 

and districts in Grade 9 mathematics show a downward slide, and this could be a 

reflection of the practices that the DBE performs in the ANA (DBE, 2014a). Such 

challenges may be related to the quality of the data, turn-around time or quality of 

supervision which the current study must address. 

 

2.2.5  The Role of Annual National Assessment in South Africa 

 

The DBE ascertains that there are three basic purposes of ANA as follows: firstly, 

ANA compares aggregated scores yearly to gauge how the education system is 
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performing in phases, in classrooms, districts, provinces and nationally; second, to 

provide diagnosis in terms of areas that need improvement; and, third, to lay a sound 

foundation in terms of good practices in teaching and learning (DBE, 2011). To 

achieve the first purpose, the expectation is that ANA must convey valuable 

information on how the system is performing (Pournara, Mpofu & Sanders, 2015). 

Subsequently, to accomplish the second purpose, it is envisaged that ANA should 

provide data on what learners can or cannot do (Bansilal, 2017). Correspondingly, 

ANA results need to be used to improve learner performance in the identified areas 

of weakness (Sibanda, 2017). I explore the details of these artefacts below. 

 

The three years of implementation of ANA has produced valuable data on the 

performance of learners, in classrooms, within districts and nationally (DBE, 2014). 

Challenges that have emerged in implementation have resulted in ANA being paused 

due to the misuse of data by the DBE (SADTU, [Sa]). Correspondingly, poor ANA 

Grade 9 mathematics results in the year 2012, 2013 and 2014 was used for 

performance instead for improvement (Kanjee & Moloi, 2016). Schools and provinces 

that underperformed in ANA were labelled underperforming schools and provinces 

instead of identifying learner weaknesses in content areas and address them (Spaull, 

2016). As such the purpose of ANA has been inflated to performance instead of 

improvement. 

 

There has been analytical, comparative, longitudinal studies and diagnostic 

reports on ANA that have revealed how the education system is performing in South 

Africa through the provision of data on what learners can or cannot do (AMESA, 2012, 

Kanjee & Moloi, 2016; Long & Wendt, 2017; Modzuka, 2017). An analysis by AMESA 

(2012) identified three important obstacles that could have caused low performance 

in the 2012 Grade 9 mathematics ANA, which are; epistemological, psychogenetic 

and didactical obstacles. First, epistemological obstacles refer to the nature of content 

and how it is pitched at the correct Grade level (AMESA, 2012). In their study 

Pournara et al. (2015) used cognitive levels, knowledge, routine procedures, complex 

procedure and problem solving to analyse the content of the 2012, 2013 and 2014 

ANA Grade 9 mathematics. Their findings revealed that the three tests were relatively 

different and could not produce consistent results. Additionally, some of the content 
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overlapped with Grade 10 which were difficult for learners in Grade 9. 

Correspondingly, Bansilal (2017) pointed out that the ANA was more difficult than 

school assessment prepared by teachers. The main cause of this dichotomy could be 

attributed to teachers’ inability to develop assessments (Bansilal, 2012).  

 

The DBE provided exemplar papers during ANA implementation and teachers 

had the tendency of teaching using the exemplar papers which were relatively 

different from the ANA papers (Graven & Venkat, 2014). As such, teachers 

compromised key concepts that were tested by ANA and a requisite for the 

curriculum, which created misalignment between content that was taught, assessed 

by ANA and intended by the curricula (Kanjee & Moloi, 2016). Second, the 

psychogenetic obstacles refer to fragmented cognitive structures in relation to 

difficulty of test items (AMESA, 2012). The misalignment of what is assessed in the 

classroom and the ANA that was observed in lower grades had high possibility that it 

affected the development of learners’ cognitive structures (Spaull, 2016). Thirdly, 

didactical obstacles refer to the quality of teaching that learners obtain as a result of 

engaging with the present curriculum (AMESA, 2012). The main challenge that were 

observed during ANA implementation were; discrepancy in marking by teachers, 

disjointed preparation for ANA, and teachers’ lack of knowledge of using data from 

ANA to improve teaching, learning and assessment practices (Graven & Venkat, 

2014; Sibanda, 2017; Spaull, 2016). 

 

2.2.6 Alignment of Systemic Assessments 

 

Content of instruction and cognition are vital in determining what students achieve in 

learning (Porter, 2002). Policymakers need information on content of instruction and 

the level at which teaching materials, such as textbooks and assessments, advance 

the content of instruction (Ndlovu & Mji, 2012). Furthermore, Porter (2002) points out 

that content of instruction, teaching and learning materials and standards are 

essential in monitoring curriculum change. Hence, there is a need to align what is 

taught and what is learned (Nazeem, 2010). The absence of alignment between what 

is taught in reference to the curriculum and what is tested, may result in teachers 

focusing their teaching upon what is tested (Graven & Venkat, 2014). Alignment has 
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been described as the extent to which standards and assessments agree. This guides 

the education system on what learners must learn and achieve (Webb, 2007). The 

use of Webb’s alignment procedures was widely documented in the United States of 

America. Researchers such as Martone and Sireci (2009) used Webb’s alignment to 

view how content, instruction and assessment were linked. Other researchers such 

as Porter, Smithson, Blank and Zeidner (2007) have modified the Webb’s alignment 

and justified alignment with a quantitative index. 

 

In an attempt to contribute to the issue of quality, the current study compares 

the ANA tests with the 2011 TIMSS Grade 8 response items using the Porter’s 

alignment index to verify the content message that the ANA relate to the learning and 

teaching of mathematics points as a determinant of student achievement (Porter, 

2002). Studies on systemic assessment in America have shown that low performance 

in America in the 1996 and 2003 was caused by insufficient knowledge of content 

(Ferrini-Mundy & Schmidt, 2005; Suter, 2000). A study by Schmidt and McKnight 

(1998) revealed that American learners performed poorly in the 1995 TIMSS, 

especially in Geometry due to insufficient teaching of content. Furthermore, they 

pointed out that the American curricula lacked coherence and provided students with 

less rigour. Another important consideration by Ferrini-Mundy and Schmidt (2005) 

was that it was significant to compare the richness in message that the NAEP, TIMSS 

and PISA to make sense of some noticeable progress in mathematics education. This 

is the rationale that made this researcher decide to align the Grade 8 TIMSS response 

items and the Grade 9 ANA to compare the content message that these studies are 

posing in the mathematics discourse.  

 

 According to Porter (2002), alignment is a worthwhile tool for measuring content 

message between the content of instruction and content of instructional materials 

such as content standards, textbooks and achievement tests. Similarly, in their 

description of the alignment index, Porter et al. (2011) argued that the alignment index 

defines the contents of intersections of topics and cognitive demands and also 

assesses the extent at which two documents have the same content message. In 

addition, Fulmer (2011) describes the alignment index as the measure of the degree 

to which assessments adequately measure standards to help schools achieve 
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accountability. Finally, Edwards (2010) described alignment as the degree of 

agreement of standards and assessments which further inform one another and 

shape students’ learning, with emphasis on the quality of the relationship between the 

two. 

 

Polikoff, Porter and Smithson (2011) support coherence in tested outcomes and 

the curriculum which can only be visible by calculating the alignment index. They 

argued in the context of systemic assessments and show how aligning assessments 

to state standards in America has been essential: 

 

‘Twenty years on since systemic reform and the state systemic initiatives, instructional 

coherence remains an important part of standards-based reform in its current incarnation, the 

No Child Left Behind Act (NCLB). The text of NCLB echoes the framework for systemic reform 

laid out in the early 1990s, claiming that improving student achievement and ensuring access to 

a high quality education for all will be accomplished first and foremost through ‘‘ensuring that 

high-quality academic assessments, accountability systems, teacher preparation and training, 

curriculum, and instructional materials are aligned with challenging State academic standards 

so that students, teachers, parents, and administrators can measure progress against common 

expectations for student academic achievement’’ (No Child Left Behind Act of 2001, 2002, pp. 

1439-1440). NCLB mentions alignment dozens of times, specifically focusing on the alignment 

of assessments with content standards. States are required to show to the Department of 

Education that their assessments are aligned with the content specified in their standards, and 

they are also required to assist local entities in identifying curricula that support those standards. 

Clearly, the coherence of the system remains of utmost importance in the vision of standards-

based reform under NCLB” (Polikoff et al., 2011: 2). 

 

 In their study Polikoff et al. (2011) tried to address the following question; Are 

state standards and assessments aligned with one another? Their findings led them 

to conclude that the answer was NO. However, they acknowledged that this was 

dependent on how alignment was defined. Such discrepancies in calculating 

alignment made them conclude as follows: (1) when the definition of alignment was 

relaxed in the levels of cognitive demand, alignment increased to 0.5 or even higher. 

(2) Some content is over-tested and other under-tested. (3) State standards and 

assessment in the specimen of states were not aligned as per intentions. (4) Once 

states had been made aware of the low alignment, the alignment between state 

standard and assessments increased. (5) There were many topics that were specified 
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in the state standards that were not tested at all and so in some cases the state 

standards did not agree with the cognitive levels resulting in misalignment.  

 

In their study, Ndlovu and Mji (2012) calculated the alignment between the 

TIMSS and the South Africa’s Revised National Curriculum Statement (RNCS). Their 

findings revealed that there was poor alignment between the RNCS and the TIMSS 

which shows a lack of attention in benchmarking the RNCS and international 

assessments. They suggested that policymakers must engage urgently to align the 

TIMSS and the RNCS to make South Africa’s curriculum reform relevant. This 

however, is an ambitious recommendation that the current researcher does not fully 

agree with in view of the fact that RNCS and TIMSS do not serve the same purpose.  

 

When measuring the alignment index, Porter (2002) aligned of the state 

assessments and the state standards by calculating the alignment index. Cells of 

cognitive demands and topics were formed which were described as tools for 

measuring content and alignment. An example of this is a content matrix shown 

below. 

 

Table 2.1: Content matrix for cognitive demand and topics (Porter, 2002:4). 

 
Topic 

Category of cognitive demand 

Memorise Perform 
procedures 

Communicate 
understanding 

Solve 
nonroutine 
problems 

Conjecture/ 
generalise/ 
prove 

Multiple-step 
equations 

     

Inequalities      

Linear 
equations 

     

Lines/slopes 
and intersect 

     

Operations on 
polynomials 

     

Quadratic 
equations 

     

 

 To calculate the alignment index, matrices are formed which match 

assessments and curriculum in cells and the alignment index is calculated per cell. 

The items are assigned in the cells and, once finished, alignment is calculated where: 

Alignment index = 1 - 
∑ │𝑋−𝑌│

2
 where x and y stand for proportion in cell i for documents 
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x and y respectively. The alignment index ranges from 0 to 1, 0-0.50 range depict no 

alignment to moderate alignment, 0.51 to 1.0 range from moderate to perfect 

alignment (Ndlovu & Mji, 2012; Porter, 2002; Porter, McMaken, Hwang & Yang, 

2011). 

 

2.2.7 Mathematics Cognitive Levels in South Africa 

 

The Subject Assessment Guideline for Mathematics (SAGM) that is outlined in DoE 

(2007) specifies that core mathematics cognitive levels for mathematics at senior 

phase are: knowledge; routine procedures; complex procedures and problem solving. 

According to DoET (2007), the cognitive levels are described as follows: knowledge 

involves knowing and using formulae, or algorithms; routine procedure involves 

automative calculations that involve identifying a known procedure. Complex 

procedures are those that are an unfamiliar, indirect route to the solution, and are 

abstract and involve dealing with complex procedures. Lastly, there is problem 

solving, which involves the solving of non-routine problems, extrapolating from 

unfamiliar contexts, and the analysis of a problem by breaking it down into 

manageable parts. 

 

These cognitive levels were adapted as they are from the TIMSS studies in 1995 

and subsequent studies (DoET, 2002a). Problems were reported in the use of these 

cognitive levels in the TIMSS and most recently they were changed to knowing, 

applying and reasoning (HSRC, 2013; IEA, 2013; Reedy, 2006). However, the SAGM 

in South Africa’s senior phase still remain the same irrespective of challenges 

reported in the TIMSS and the use of the new cognitive levels in the 2011 

mathematics TIMSS (IEA, 2013). 

 

In their critique of the SAGM, Berger et al. (2010) identified two key problematic 

issues of using the South African cognitive levels. (1) The first is that it conflates the 

cognitive levels with the type of mathematical activity which leads to challenges that 

are associated with assessing examinations at varied levels of complexity. (2) The 

SAGM inhibits the development of essential elements of mathematical reasoning 

such as conjecturing and justification. They further advise that this may result in 
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problems associated with weak alignment between the curriculum and examination 

items.  

 

Most studies that associated themselves with cognition in the examination items 

in South Africa have raised concerns related to examination questions not testing 

enough higher order skills, and this confirms observations made by Berger et al. 

(2010). Luneta (2015a) observed that in rural mathematics classrooms in South 

Africa, assessment tasks set by teachers were far below those standards that 

involved learners in higher order and critical thinking. Another study by Luneta and 

Dhlamini (2012) which analysed SMP in Grade 12 examinations pointed out a deficit 

of tasks that examined adaptive reasoning. Another study by Luneta (2015b) that 

analysed Grade 12 geometry examination questions revealed that when 

examinations questions tested level 3 and 4 of van Hiele’s hierarchy of geometric 

thought, most learners were operating at level 2. A study by Ally (2011) in a district 

called UMgungundlovu in KwaZulu Natal South Africa revealed that, the quality of the 

promotion of SMP by teachers was very weak and obscure, especially reasoning 

which was absent in Grade 6 classes. This is a clear indication that the SAGM need 

to be revised by the DBE because the researcher believes in the epistemology that 

was once expressed by Schoenfeld and confirmed by Groves (2012) that ‘what you 

test is what you get (WYTIWYG)’ (Groves, 2012: 124). 

 

Problems associated with the SAGM need urgent attention by policy-makers. I 

will address two issues that are relevant for the current study, first, that the SAGM 

conflates cognitive levels, and second that the SAGM neglects reasoning, 

conjecturing and proof. First, the use of the components in the SAGM which are: (1) 

knowledge, (2) routine procedure, (3) complex procedure and (4) solving problems 

(Berger et al. 2010) do not allow the varying of cognitive complexity in test items. In 

the curriculum document (DoET, 2007), the items appear in this order, here called 

them level 1-4 in this study. The trend in cognitive levels, like the Bloom’s Taxonomy 

(both old and revised), Porter’s Taxonomy, Soho’s Taxonomy, Stein’s Taxonomy and 

NAEP Taxonomy (just to mention a few) is that level 1 is the lowest and level 4 is the 

highest cognitive level. If this context of Taxonomies is applied in the SAGM, problem 
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solving assumes level 4, the highest cognitive levels. Some of the elements of 

problem solving are as follows: 

 

“(1) Non-routine unforeseen, (2) interpreting and extrapolating from solutions obtained by solving 

problems based in unfamiliar contexts, (3) using higher order level cognitive skills and reasoning 

to solve non-routine problems, (4) breaking down problem into constituent parts, (5) non-routine 

real context.” Berger et al. (2010: 39). 

 

The five components of problem solving in the SAGM are actually not cognitive 

levels, except for number 4. The component number 4 may be equated to cognitive 

level 4 (analysis) in the Bloom’s Taxonomy which is not the highest cognitive demand. 

In total contrary this is not a higher order taxonomy level in Bloom’s Taxonomy (Hess, 

2006). The Porter’s Taxonomy identifies three components of reasoning, conjecture, 

generalise and prove as the higher order cognitive level. The taxonomy states the 

following components; 

 

“Determine the truth of a math pattern or proposition, write formal or informal proofs, recognise, 

generate or create patterns, find a mathematical rule to generate a pattern or number sequence, 

make and investigate math conjectures.” (Berger et al., 2010: 39).   

 

The problem with the Porter’s Taxonomy is that is portrays reasoning as the 

highest cognitive demands. Contrary to this, the NAEP taxonomy includes an element 

of problem solving, ‘creative thought’ as higher order cognitive level and the Stein 

taxonomy includes ‘self-regulation’ as the higher order cognitive level. 

 

In this current study, it is essential to use the NAEP Taxonomy adapt it to suit 

the context of the study. The current study focuses on ANA questions and learner 

responses, and so then it is relevant to focus on the complexity of the question items 

to understand if it is low complexity, moderate complexity or high complexity (Hess, 

2006). The NAEP taxonomy outlines the complexity of test items as follows: (1) low 

complexity; recall, recognise concepts, perform mechanical procedures, explain work, 

but no reasoning (2) moderate complexity; flexible choice of procedures, multiple 

representations and explain procedures with no justification and (3) high complexity; 
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reason, plan, judge, analyse, create, reason and justify mathematical statements 

(Berger et al., 2010).  

 

2.2.8 A Model for Monitoring the Mathematics Education   

 

Drent et al. (2013) outlined a model that helps guide the functionality of an educational 

system. The model is outlined in Figure 2.2; 

 

 
Figure 2.2: Basic system model on the functioning of education (Drent et al. 2013: 201) 

 

Drent et al. (2013) named this model an input-process-output that shows the 

functionality of a system from teachers and parents to school and classroom factors 

and how these contribute to students’ achievement.  An important observation on the 

model in is that it does not allow for the system to redress. The relationship between 

the factors is linear and show a one-way process. This model assisted in the 

development of a model that may be used by policymakers to monitor the quality of 

mathematics education in South Africa and elsewhere. 

 

This model may be adopted by policy makers during the implementation of the 

ANAs. It was mentioned earlier that the Minister of Basic Education indicated that the 

Grade 9 mathematics ANA testing posed a serious challenge to the DBE and 

researchers must assist (DBE, 2013b). It was further observed that this area of 
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research has a deficit of literature, therefore a model will assist other researchers with 

areas that need to be researched. 

 

 

Figure 2.3: Model for monitoring the standard of mathematics education in South Africa as 

adapted from Drent et al. (2013; 201) with modifications 

 

The model outlined in Figure 2.3 has four parts, input, processes, outputs and 

redress. The issues in the Cartesian plane are cyclic which shows that there is no 

specific order in which they may occur and it is a continuous process. These issues 

are elaborated below. 

 

 INPUT 

 

The input stage is characterised by discursive teaching practices such as, teacher 

characteristics and parental encouragement (Drent et al., 2013). In the context of 

systemic assessment, both national and international, considerable recent research 

has reported consistent results in this discourse. Affluent schools have the ability to 

produce numerate learners unlike poor schools which grapple to produce numerate 

learners (Spaull, 2010; Wang et al., 2012). Furthermore, rich parents have the ability 
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to send their kids to affluent schools and assist them with school work. Other results 

were reported in the United States of America that effective teaching and substantial 

coverage of content with reference to prior knowledge by teachers had a positive 

effect on learner achievement (Creghan & Creghan, 2013; Koretz, 2009; Tchoshanov, 

2011). A study by Moraa and Nyaga (2015) revealed that parental involvement, 

especially fathers, who frequently monitored their children’s work helped their children 

perform better. They warned that fathers must be directly involved in monitoring their 

children’s’ work instead of just providing money. Additionally, Poyraz, Gulten and 

Bozkurt (2013), as well as Kiwanuka, Van Damme, Noortgate, Anumendem & 

Namusisi (2015) highlighted that students’ success in mathematics is enhanced by a 

high level educational background of their parents and parental support.  

 

In their study that was seeking to find factors that promote effective schools, 

Dobbie and Fryer (2013) as well as Angrist, Pathak and Walters (2013) found that 

class size, teacher certification, per-pupil expenditure, teacher certification and 

teacher training did not correlate with school effectiveness. Contrary, factors that had 

a considerable impact on school effectiveness were: increased teaching time, 

frequent tutoring and high expectations. These results contradict findings from a 

comparative study on Grade 9 mathematics achievement in Botswana, Kenya and 

South Africa by Carnoy, Ngware and Oketch (2015) that reported the following: (1) 

school resources contribute positively to student’s learning gains; (2) and an increase 

in teacher skills and the quality of teaching and learning have a positive impact on the 

attainment of leaning outcomes by students. Kenyan Grade 6 mathematics students, 

from both high performing schools and low performing schools had better 

achievement as compared to South African and Botswana students. This is an 

indication of differences in the quality of teaching and learning in the three countries. 

A study by Phillips (2010) reported that having highly qualified teachers does not imply 

enhanced student achievement, but the findings confirm those by Dobbie and Fryer 

(2013) that quality teaching and learning is the main determinant of high student 

achievement. 

 

Reflecting on the model that the current study contributes, it is important when 

embarking on systemic assessment to be clear on the policy issues that a systemic 
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assessment must address which are mentioned earlier. These are, equity, quality and 

provision as mentioned by the DFID [Sa]. In the context of systemic assessment, 

much has been reported on learner achievement, school resources, benchmarking 

and gender, but this process limits reporting to issues of equity and provision. Less 

has been done on quality, and this justifies that systemic assessments have not done 

enough justice to all these three issues.  In the model, three issues must direct 

systemic assessments in the TIMSS and SACMEQ as well as in the ANA. The 

observation is that these issues must reflect in classroom assessments and National 

examination which should be the intended curriculum. The study by Ferrer-Esteban 

(2016) as well as that by Dieltiens and Meny-Gilbert (2012) reported that educational 

provision is polluted by social segregation in the form of divisions among parents, 

such as rich parents accessing quality schools. This notion is supported by Spaull 

(2010) who suggested that in South Africa, equal quality education remains a myth. 

 

 PROCESSES 

 

In the model by Drent et al. (2013), processes were limited to the school level which 

covered the school leadership and school climate. Some researchers agree, 

especially Halverson, Kelley and Shaw (2014), that when evaluating performance, the 

focus must not only be on learners and teachers, but also on leaders who must as 

well improve. A lot has been done on these two issues, school leadership and school 

climate and most studies reported that schools with effective transformational 

leadership as well as positive school climate contributed positively to learner 

achievement (Adu, Akinloye & Adu, 2015; Hofman, Hofman & Gray, 2015; Naicker, 

2015; Sosibo, 2015). 

 

The model contributed by the current study suggests that processes, which form 

the implemented curriculum; must be driven by the SMP. Various studies have shown 

the importance of using the SMP in mathematics teaching, learning and assessment 

(Ally & Christiansen, 2013. Groves, 2012; Hauserman & Stick, 2013; Maharaj, Brijlall 

& Narain, 2015; Schoenfeld, 2007; Suh, 2007). There is no doubt that these strands 

have been central to mathematics teaching and learning for the past two decades due 

to their coherence in covering core issues in mathematics education (Kepner & 
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Huinker, 2012; Kilpatrick et al., 2001). In the model that is contributed by the current 

study, the intended curriculum, processes are driven by the SMP. This researcher 

used action verbs that are used in some subsequent studies on the strands with one 

aim, that is to bring the drive that these processes ought to bring to the discourse of 

systemic assessment: computing, usually called procedural fluency; applying usually 

called conceptual understanding; solving problems usually called strategic 

competence; reasoning usually called adaptive reasoning; and engaging usually 

called productive disposition (Kilpatrick et al., 2001; Schoenfeld; 2007; Star; 2005). 

 

Figure 2.4 outlines the pentagonal Singapore Mathematics Curriculum (SMC) 

which is driven by the strands of mathematical proficiency. At the core of the 

framework is problem solving which Kilpatrick et al. (2001) call strategic competence. 

Groves (2012) noted Kilpatrick’s comments on the similarity of the Singapore 

Mathematics Curriculum in that they both cover the five strands and that mathematics 

education is not limited to skills and knowledge as earlier pronounced by Skemp 

(1976). Other strands are at the periphery of the framework, to justify their presence 

in driving the framework. According to the SMC, problem solving is characterised by 

learners acquiring mathematical concepts and skills in various contexts (Naroth & 

Luneta, 2015). As a result, Singapore performance in TIMSS has been consistently 

high especially in mathematics amongst participating countries (IAE, 2013; Reddy, 

2006). 

 

A study by Naroth and Luneta (2015) monitored the implementation of the SMC 

in South African foundation phase, which is Grade R to three, and found the following 

results: (1) SMC teacher’s guides were easily accessible to the teacher’s 

mathematical knowledge. (2) Learners grappled with the English language used in 

the tasks. (3) The depth and breadth and time spent on topics was useful during 

learning. (4) The Concept-Pictorial-Abstract approach assisted learners who were 

second language speakers in understanding mathematics concepts. (5) The SMC 

was problematic to learners because teachers had limited pedagogical knowledge of 

problem solving. These findings reveal the nature of the South African curriculum 

which lacks focus on problem-solving, hence the model contributed by the current 

study suggests that the implemented curriculum be driven by the SMP. The policy-
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makers may decide on the strand that drive the curriculum at any given instance and 

such then filters down to the whole education system such as teacher training, 

professional development a curriculum design and classroom practice. A pertinent 

example is shown by Koh, Tan and Ng (2012) who justify the notion of thinking 

schools in Singapore that it emphasised quality over quantity in educational reform. 

 

 OUTPUTS 

 

The model by Drent et al. (2013) portrays output as learner achievement that is 

characterised by students’ abilities and other discursive educational factors. Different 

studies have attributed learner achievement to various factors. A study by Adu and 

Olaoye (2015) revealed that proficiency in the language of instruction is key to 

learner’s success in algebra. Furthermore, they observed that allowing learners to 

make discoveries enhances their performance. Other studies pointed improvement in 

learner achievement to the availability of resources, both human and material (Dobbie 

& Fryer, 2013; Jantjies & Joy; 2015; Kotze & Strauss, 2006). One case study by 

Emmett and McGee (2013) pointed student achievement to extrinsic motivation in 

high stakes large-scale assessments. In the essence of teaching and learning all 

these results confirms that there are multiple and discursive factors that enhance 

student achievement. A study by Froneman, Plotz and Vorster (2015) indicated that 

outcome-based education (OBE) cohort of students lacked procedural algebraic skills 

of algebra. However, learners had an improved conceptual knowledge of algebra. 

Such results indicate the need to have the mathematics curriculum being driven by 

the strands. The deficit of the procedural skills of algebra displayed by the OBE cohort 

is a serious challenge and Kilpatrick et al. (2001) advocated for intertwined, 

interconnected and interdependent SMP which are also evident in the model that the 

current study proposes for the monitoring of the education system.  

 

 REDRESS 

 

The positives and negatives that were reported by Graven and Venkatakrishnan 

(2013) that happened during the administration of the ANA raise a concern about 

what policy-makers do in response to ANA results. Some of the negatives that were 
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reported pointed to the content coverage, validity of the tests and timing of the ANA 

testing. These issues were also noted in other countries that administered National 

systemic assessments. In the study by Klieger (2016) there were different perceptions 

from teachers and principals on the role of large-scale assessments. Subject teachers 

viewed them as formative, while head teachers viewed them as summative due to the 

stakes attached by policy-makers. The initial aim of these assessments was to track 

students’ achievement and monitor how the education system was performing (DFID, 

[Sa]). However, policy-makers used the large-scale assessments to hold schools 

accountable for poor performance hence teachers and principals felt threatened 

(Klieger, 2016). An important observation made by this study is to educate both 

teachers and principals on the role of large-scale assessments, hence the need to 

have curriculum in South Africa driven, either by the SMP is evident. 

 

2.3 Theoretical Framework: Strands of Mathematical 

Proficiency 

 

In this study, the SMP are used as theory and lens to view knowledge, skills and 

values that the ANA tests examine, as well as those exhibited by learners in their 

response to the ANA tests. The notion of mathematical proficiency has been widely 

accepted recently in the mathematics domain and there has been evidence by 

researchers that it is useful and portrays mathematics as coherent (Groves, 2012; 

Khairani & Nordin, 2011; Luneta & Dhlamini, 2012; Schneider & Stern, 2010; 

Schoenfeld, 2007; Suh, 2007; Star, 2005).  

 

In their study, Kepner and Huinker (2012) pointed out four important claims that 

justify the use of the SMP to strengthen mathematical processes that show learners’ 

behaviours and often lead to a mathematically proficient learner.  

 

‘Claim 1. Concepts and Procedures: Students can explain and apply mathematical concepts 

and interpret and carry out mathematical procedures with precision and fluency. 

Claim 2. Problem Solving: Students can solve a range of complex well-posed problems in pure 

and applied mathematics making productive use of knowledge and problem solving strategies. 
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Claim 3. Communicating Reasoning: Students can clearly and precisely construct viable 

arguments to support their own reasoning and to critique reasoning of others.  

Claim 4: Modelling and Data Analysis: Students can analyze complex, real world scenarios and 

can construct and use mathematical models to interpret and solve problems.’ (Kepner & Huinker, 

2012:29).    

 

These claims are what drives this theoretical framework, that the SMP cover a 

wide range of knowledge, skills and values that are essential for mathematics 

learning. Furthermore, such claims elucidate the notion of coherence in mathematics 

learning advocated by Schmidt and Houang (2012) and Venkat and Adler (2012). In 

their study, Schmidt and Houang (2012) conducted analyses to determine the rigour 

and coherence that is outlined by the Common Core State Standards in Mathematics 

(CCSSM). The results of their analysis revealed that, there is substantial similarity 

between the CCSSM and the standards of highest achieving nations in the TIMSS 

and that it was suggested that the CCSSM were coherent and focused. One of the 

highest performing nations in the mathematics TIMSS, Singapore, was noted by 

Kilpatrick (2011) to have the same message that are in SMP, see Figure 2.4 below. 

 

 

Figure 2.4: The Singapore Mathematics Framework (source: Naroth & Luneta, 2015: 3) 

 

Venkat and Adler (2012) analysed mathematical discourses of concepts to show 

coherence which involved representing mathematical relations in a way that make 
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them communicate more relevant information. They gave this example; ‘Find the 

turning point of: 

 

“ 𝑓(𝑥) = 𝑥2 − 8𝑥 + 9 

= 𝑥2 − 8𝑥 + 16 − 16 + 9  

= (𝑥 − 4)2 − 7” 

Venkat and Adler (2012: 1). 

 

The steps on the function examine skills of converting a general form to a perfect 

square so that some features of the function, such as the turning point can be explicit. 

The processes involved, adding and subtracting of 16 on one side of the function, 

introducing brackets, factorisation to a perfect square, justify coherence in this 

mathematical discourses which has intertwined proficiencies. As such, a coherent 

curriculum must provide the following. (1) The contents must be sequenced in such a 

way that concepts develop from previously developed ideas. (2) A selection of well-

structured tasks and representation that enhance coherence. 

 

To view SMP it is important to reflect on constructs mentioned by Schoenfeld 

(2007) on how mathematically proficient learners project themselves and these are; 

 

‘What does it mean for a student to be proficient in mathematics? What should students be 

learning? How can we measure proficiency in mathematics? How can we tell if we are succeeding?’ 

(Schoenfeld, 2007: 59). 

 

When advocating for SMP, Kilpatrick et al. (2001) pointed out that they are 

intertwined, interdependent and interconnected. These are: procedural fluency, 

conceptual understanding, strategic competence, adaptive reasoning, and productive 

disposition. Most studies that use the notion of SMP, uses two (procedural fluency 

and conceptual understanding) and some use four without using the last strand, 

productive disposition (Graven & Stott, 2012; Luneta & Dhlamini, 2012; Schneider & 

Stern, 2010; Suh, 2007). This is contrary to what Kilpatrick et al. (2001) suggest which 

is that SMP are intertwined and interconnected, hence the current study uses all five 

SMP as theory to coherently view knowledge, skills and values examined by the ANA 

tests and exhibited by learners in their response to the tests. In their study, Dhlamini 
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and Luneta (2016) pointed out that procedural fluency and conceptual understanding 

form mathematical knowledge, while strategic competence and adaptive reasoning 

form mathematical skills 

 

For learners to be mathematically proficient they must understand concepts, put 

meaning to learned procedures, use efficient methods to solve mathematical 

problems, justify and defend their reasoning (Cragg & Gilmore, 2014; Groves, 2012; 

Guberman & Leikin, 2013; Stylianides, Stylianides & Shillling-Traina, 2013). However, 

this study must consider the dangers of focusing on proficiency at the expense of 

efficiency which results from discursive challenges that learners face in various 

mathematics classrooms and maybe revealed in baseline assessments (Neal, 2010). 

 

Ally (2011) carried out a study to question the extent at which opportunities for 

developing mathematical proficiency are made available. The study of four 

mathematics Grade 6 classes in South Africa, in the KwaZulu-Natal province, Ally 

looked for empirical evidence in 242 video recordings from 30 lessons. From the 

lessons, 90 percent were opportunities to develop procedural fluency, 17 percent for 

conceptual understanding, close to 2 percent for strategic competence, 8 percent for 

adaptive reasoning and 20 percent for productive disposition. The high frequency in 

procedural fluency was due to the teaching of procedures and in productive 

disposition was due to the inclusion of everyday examples (Ally, 2011:90).  

 

Luneta and Dhlamini (2012) conducted a study on a question by question 

analysis of ninety Grade 12 scripts for learners’ responses to four topics on final 

examination questions. Their focus was to view the SMP that learners exhibited in 

response to the examination questions. The results showed that learners were 

proficient in only one topic, analytical geometry, irrespective of the fact that these 

examination questions did not demand the higher order reasoning that is a pre-

requisite for natural sciences courses at tertiary level such as engineering. 

 

Another study by Sanni (2009) identified forty six verbs in the South Africa’s 

Grade 7 Revised National Curriculum Statements (RNCS) assessment standards that 

were categorised into levels of mathematical practices and SMP. The focus of his 
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study was to discuss the extent to which the South African Mathematics Curriculum 

Statement promotes the development of SMP and mathematics practices. The results 

of the textual analysis revealed that most of the verbs used in the assessment 

standards were ideally suitable for each of the five SMP and the three mathematics 

practices. Most of the assessment standards required learners to exhibit conceptual 

knowledge and adaptive reasoning. Some of the SMP such as adaptive reasoning, 

strategic competence and productive disposition were not promoted by the 

assessment standards. However, this study did not focus on what learners exhibited 

as a result of engaging with the assessment standards. This could have been done 

by analysing learner responses to some tests that were set using these assessment 

standards. Moreover, Sanni (2009) pointed out that some tenets are provided by the 

curriculum and not implemented by teachers as they may be difficult to implement. 

 

The significance of using SMP as a theoretical framework in the current study is 

justified by their coherence and their effect in the teaching and learning of 

mathematics. The following sections focus on making SMP compatible for document 

analysis, a problem reported by Graven and Stott (2012). 

 

2.3.1 Procedural Fluency 

 

Procedural fluency is referred to as the learners’ ability to carry out exact, supple and 

correct procedures (Kilpatrick et al., 2001). In addition, Star (2005) describe 

procedural fluency as computing, which involves performing mathematical 

procedures such as addition, subtraction, multiplication and division of numbers 

flexibly, accurately, efficiently and appropriately. Groves (2012) advises that 

computational fluency is more than just that speed and accuracy which have 

previously been regarded as essential in performing procedures. Kilpatrick et al. 

(2001) stressed that procedural fluency also involves knowing ‘when and how to use 

them appropriately, and skill in performing them flexibly, accurately, and efficiently’ 

(Kilpatrick et al., 2001: 121). Furthermore, Groves (2012) suggests that, while 

accuracy and efficiency are aligned to computations of algorithms it is essential that 

learners exhibit flexibly and fluently their ability to perform mental computations. 

Flowers, Kline and Rubenstein (2003) explained that their experience in teaching for 
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computational fluency implies that classroom activities must be characterised by 

reasoning, problem solving, communicating mathematically and computations that 

are rich and meaningful. Such learning is characterised by students constructing 

meaning through the use of what they know to solve what they do not know, called 

routine and non-routine problems (Naroth & Luneta, 2015). Russell (2000) suggested 

that computationally fluent procedures are accurate, efficient, flexible and 

consolidated. The only difference that Russell brings to the definition of procedural 

fluency is the notion of consolidation. Flowers et al. (2003) pointed out that there are 

challenges in promoting computational fluency where teachers are also not 

themselves computationally fluent which results from how they were taught or an 

over-dependence on one, meaning pencil and paper computations that rely on a 

calculator.  

 

Flowers et al. (2003) illustrate with examples how teachers master 

computational fluency using consolidated computations using subtraction, as the 

authors believed that subtraction offers affluent opportunities for computational 

fluency. The question read as follows: ′𝐻𝑜𝑤 𝑚𝑢𝑐ℎ 𝑖𝑠 1006 − 98? (Flowers et al., 2003: 

332). Teachers shared their reasoning first in small groups and after convincing their 

peers then they shared their computations with the whole class. In one example the 

teacher subtracted as follows; 

 

"1006 − 98 =?  

           98+? = 1006 

 98 + 2 = 100 

 100 + 900 = 1000 

 1000 + 6 = 1006 

 2 + 900 + 6 = 908" p332 

 

According to Flowers et al. (2003) the teacher who carried out this computation 

justified it as follows; 

 

Teacher A: ‘It works because in the beginning you took 6 away from 1006 and added onto 98. 

When you subtract 100 from 1000, you get 900. Now you have to compensate from what you 

did in the beginning. You add 6 back on because you subtracted it from 1006 to get 1000. Then 
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you add 2 on because you added it to 98 to get 100. The reason you add 2 and not subtract it 

is because in subtraction, instead of subtracting in the in the end for compensating, you need 

add it on.’ (Flowers, at al., 2003; 331). 

 

Such computations justify competence in the algorithm followed and the 

confidence displayed by teacher A shows mastery as opposed to pencil and paper 

computations that are calculator based.  

 

An illustrative example given by Groves (2012) to explain procedural fluency in 

a Grade two lesson that was video recorded working on word problems that allowed 

multiple solution strategy while collaborating on their solutions. One of the problem 

was: ‘Sarah’s team scored 49 runs and Jason’s team scored 63 runs. How many more 

runs did Jason’s team score?’ (Groves, 2012: 130). From transcribed data, two girls 

start by counting from 49, 50, 51… until they suggested that they do not have more 

fingers to count and used a calculator to record the remaining numbers. Another boy 

said he worked out 49 plus 11 and got 60 then added another 3 to get 14. This 

problem is not like a written computation that guarantees a single answer. Such 

mental computations allowed the learners to think make sense of the problem. 

 

Ebdon, Coakley and Legnard (2003) give illustrative examples of strategies that 

may enhance computational fluency and efficiency. One example shows Second 

Grade learners adding ’84 + 16’ which results in four strategies; (1) math map; (2) the 

storing strategy; (3) the giving strategy; and (4) the tens-party strategy as shown in 

Figure 2.5. In the math map strategy, the second grader, student A, explained how in 

the brain there are road maps which look like arrows which connect tens and ones 

and this enhanced the student’s ability to join correct numbers. For the storing 

strategy, student B, decided some constituents of the number, place on one side of 

the brain, deal with the remaining numbers and then later retrieve those in the storage 

and compute (see figure 2.5). In the tens- party strategy student C explained that they 

work out tens and units separately then add at the end. The giving strategy, student 

E explained that they give numbers to make all the numbers tens then it became 

easier to add numbers that only had tens. This is one example that promotes multiple 

solution strategy to solve a single problem. 
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Figure 2.5: Reasoning strategies by second grade students (Ebdon et al., 2003: 488) 

 

A study by Graven and Stott (2012) used the SMP of Kilpatrick et al. (2001) as 

a framework to analyse written responses by learners towards test items. These test 

items examined the speed and accuracy of mathematical operations as well as 

mathematical identities and dispositions on procedural fluency. In their attempt to view 

these artefacts in the learners’ responses, the authors admitted that it was not 

possible to use the SMP of Kilpatrick et al. (2001) as they are to analyse documents. 

Therefore, they developed what they called a spectrum of efficiency and fluency in a 

bid to adapt procedural fluency to help assess learner’s proficiency in their response 

to the test items. An example of how they used their spectrum is shown below; 

 

‘By way of an example, for question part ‘a) add 10 to 92’ we found that the learners answered 

the question using these possible methods: 

• Less efficient ways would be to: draw the sum on paper (e.g. concrete representation of the 

number by drawing 10 and 92 dots and recounting), or count on 92 from 10 using fingers (or 

counters). 

• A slightly more efficient way may be to use a standard vertical algorithm such as: 92 +10. 

• More efficient 7 ways would be to count on 10 from 92 in ones or by using fingers. 
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• The most efficient method would be to mentally add 10 to 90 and then add 2 (or 10 to 92 with 

knowledge of the pattern of adding tens) thereby involving conceptual understanding of 

commutativity, patterns and place value. 

Similarly, it can be seen, that the less efficient methods would become even less efficient ways 

of answering Task 10 part b and d ’ (Graven & Stott, 2012;  152) 

 

The findings from this study revealed that the less efficient methods were not 

appropriate when dealing with procedures of bigger numbers and more efficient 

methods were efficient when dealing with bigger numbers. Graven and Stott (2012) 

pointed out that much work needs to be done to adapt the SMP of Kilpatrick et al. 

(2001) to assess learner progression. What I identify as problematic in this study is 

that the codes used by Graven and Stott (2012) did not clearly provide a coherent 

spectrum of all the SMP. Their study was only limited to one SMP, procedural fluency. 

Graven and Stott (2012) ascertained that the spectrum was developed by using 

definitions of the SMP. For an example, Kilpatrick et al. (2001) described procedural 

fluency as follows: 

 

“Procedural fluency refers to knowledge of procedures, knowledge of when and how to use 

them appropriately, and skill in performing them flexibly, accurately, and efficiently” (Kilpatrick 

et al., 2001: 121). 

 

An observation here is that Graven and Stott (2012) used the key words in their 

development of their spectrum of procedural fluency and they used the words, 

‘flexible’ and efficient’ and could not use the word ‘accurately’. In the current study, 

the researcher used all key words that define the SMP to unpack and adapt all the 

five strands to be compatible for textual analysis. There is a need to use all the strands 

because Kilpatrick et al. (2001) suggested that the SMP are intertwined, interlinked 

and interrelated. 

 

The work done by Graven and Stott (2012) suggests that this strand, procedural 

fluency, is composed of the four concepts that are in the definition by Kilpatrick et al. 

(2001) which are, flexibility, accuracy, efficiency, and appropriation. The first part of a 

procedure, flexibility refers to knowing various procedures and relative efficiencies of 

the procedures (Star, 2004). The second part, accuracy often refers to the correct use 

of signs to carry out basic operations that involve addition, subtraction, multiplication 
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and division to reach the required answer consistently (Bass, 2003). The third part, 

efficiency, is often visible in learners who conduct procedures certainly, and use 

intermediate outcomes to execute the problem (NCTM, 2000). The last part, 

appropriation, refers to learners who are conscious of the right time to apply a 

procedure (Sherin & Fuson, 2005).  

 

Figure 2.6, is an example from Grade 9 mathematics ANA exemplar questions 

that are aimed at assisting in preparation for the ANA test. This procedure demands 

that learners have knowledge of definition of these concepts and does not test any 

computational fluency. For learners to respond to these questions, they need 

knowledge of the number concept and must then tick the appropriate box. The 

question does not allow learners to exhibit procedural fluency in these concepts.  

 

 

Figure 2.6: Question 1.8 Grade 9 Mathematics Exemplar (DBE, 2012d) 

 

In adapting procedural fluency to be compatible for document analysis, I reflect 

on work done by Bass (2003) on computational and algorithm fluency. Bass (2003) 

describes a computation as a specialised form of problem solving that involves 

fluency in the four basic operations (+, -, ×, ÷). According to Bass (2003), fluency 

indicates the nature of an algorithm to be efficient, accurate and generalisable. These 

algorithms are described here as a general solution for all related problems which has 

a concise specified series of steps that lead to a coherent solution of a class of 
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problems. Bass (2003) proposed qualities of an algorithm which involves the following 

processes;  

 

 ‘Accuracy or reliability: the algorithm should always produce the correct answer.  

 Generality: the algorithm applies to all instances of the problem, or class.  

 Efficiency (or complexity): This refers to whether the cost (the time, effort, difficulty, or 

resources) of executing the algorithm is reasonably low compared to the input size of the 

problem.  

 Ease of accurate use: use (versus error proneness). The algorithm can be used reasonably 

and does not lead to high frequency of error in use.  

 Transparency (versus opacity): what steps of the algorithm mean mathematically and why 

they advance us towards the problem solution, is clearly visible.’ (Bass, 2003: 32). 

 

Bass (2003) explains that for a procedure to qualify as an algorithm, it must have 

the characteristics of accuracy and generality. The other algorithm checks such as 

ease of accurate use, efficiency and generality are just as important in ensuring that 

student perform procedures fluently. I consider a subtraction example by Bass (2003); 

36 – 19 =17. In trying to solve this problem, learners in elementary mathematics 

performed some procedural errors. Some learners did the following: 36 – 19 = 23, 

whilst common correct solution is performed in this manner;  

 

2 316    

          -  1 9 

  1 7 

 

Bass (2003) explained this algorithm in the context of the American classroom, 

the borrowing method and common practice by teachers explaining this algorithm is; 

(1) you look at the number on the units in the upper number and if it is smaller than 

the one in the second number, (2) you borrow one from three and remain with two. 

(3) Then it is sixteen minus nine to get seven. (4) Then it’s two minus one to get one. 

Thus, an answer of seventeen is obtained.  

 

Checking algorithm usefulness: (1) accuracy (2) generality (3) efficiency (4) 

ease of accurate use (5) transparency, it can be seen that learners have the tendency 



 

55 

 

of subtracting as; 36 – 19 = 23. It shows that the algorithm fails to conform to number 

(2) then it does not fulfil the entire algorithm check. Bass (2003) suggests that if an 

algorithm fails 1 & 2 ‘algorithm usefulness’ then an alternative algorithm must be found 

that will be consistent in all the checks. For example; teachers must use 36 – 19 =? 

(3x + 6) – (x + 9) = (2x – 3), x is the number of tens in both numbers being subtracted. 

Therefore 36 – 19 will be calculated as; (30 + 6) – (10 + 9) = (20 – 3) = 17. Testing 

this algorithm with other numbers; 53 – 38 = ? yields ; 53 – 38 = (5x + 3) – (3x + 8) = 

(2x – 5) = (20 – 5) =15. This is proof that the second procedure is consistent with 

accuracy and generality therefore it qualifies as an algorithm. However, this algorithm 

uses symbols. This is an abstraction, and learners who have not developed proper 

cognitive functions may not perform this algorithm (Breen & O’Shea, 2010). This 

means that learners need to be proficient in this algorithm to fulfil efficiency, ease of 

accurate use and transparency.  

 

These processes coherently address qualities of an algorithm and they bring 

meaning to this SMP, procedural fluency. Bass (2003) explains the use of these 

qualities further below; 

 

‘To qualify as an algorithm, a procedure must be characterized by accuracy and generality. 

Ease of accurate use, efficiency, and transparency also are desirable qualities, although they 

often are in competition with one another. An algorithm that will be used to program a machine 

must be efficient, to achieve computational speed, but does not have to be transparent. If 

humans will learn and use the algorithm, however, transparency and ease of accurate use are 

important’ (Bass, 2003: 324). 

 

These processes outlined by Bass (2003) are relevant to revealing the nature of 

routine and non-routine problems. Reformed mathematics learning demands 

competency in the functionality and coherence of mathematics which implies that 

learners need to create quality connections and representations in the conceptual and 

social aspect of mathematics (Breen & O’Shea, 2010; Chapman, 2013; Greenes, 

2014; Mwakapenda, 2008). 
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2.3.2 Conceptual Understanding 

 

Conceptual understanding is often referred to as the learners’ ability to connect 

mathematical ideas, processes and commonalities and it is evident when learners 

begin to connect new ideas to old ideas, and to reconstruct new ideas once they are 

forgotten, (Kilpatrick et al., 2001). As such, conceptual understanding is ‘knowing how 

and how’ which suggests that this is an extension of procedural fluency (Rittle-

Johnson & Schneider, 2015). Furthermore, a learner with conceptual knowledge can 

easily integrate mathematics ideas, and their knowledge is organised in a coherent 

whole which enables them to recall and reconstruct knowledge once forgotten. 

Additionally, Star (2005) explained conceptual understanding as ‘understanding’ the 

underlying principles of mathematical symbols, diagrams and procedures which is 

done by comprehending them with appropriation. Thus, learners are empowered to 

think generatively with content, select relevant procedures and strategies for steps of 

problem solving (Davis, 2005; Kazemi & Stipek, 2001; Richland, Stigler & Holyoak, 

2012). The DBE (2011) in one of its specific aims for mathematics education is that 

learners must develop ‘deep conceptual understandings in order to make sense of 

mathematics’ (DBE, 2011: 8). However there seems to be a challenge when studies 

such as that of Khashan (2014) reported that teachers have only average distorted 

conceptual and procedural knowledge of rational numbers. Such may have a serious 

consequence for the knowledge that learners exhibit to assessments such as ANA. 

 

I indicated earlier in the preamble on SMP that conceptual understanding and 

procedural fluency form mathematical knowledge (Dhlamini & Luneta, 2016) I noted 

some extensive history in these forms of knowledge. Skemp (1976) introduced 

mathematical knowledge using two concepts, instrumental and relational 

understanding. Firstly, instrumental understanding referred to the functional grasp of 

mathematical rules which process the solution without giving reasons and contrary 

relational understanding was equated to knowledge of both rules and its underlying 

reasons for their use. I note that most researchers in mathematics education often 

and incorrectly equate instrumental understanding to procedural knowledge and 

relational understanding to conceptual understanding. Most specifically, Skemp’s 

view is superficial and reduced to rules, whilst ‘fluency’ as used by Kilpatrick et al. 
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(2001) protrudes beyond rules. In fact, fluency refers to the ownership of efficient, 

accurate and generalisable methods (NCTM, 2000) called algorithms that are used 

to compute number relations. Skemp’s work on understanding was advanced by the 

introduction of two types of knowledge, procedural and conceptual knowledge. 

Knowledge of automation of operators and the setting of their use to achieve certain 

goals is often called procedural knowledge (Davis, 2005; Hiebert, 1986). 

Consequently, automated knowledge is restricted to insufficient cognitive resources 

and may not be converted to higher cognitive thinking processes (Schneider & Stern, 

2010). Conceptual knowledge is abstract and general knowledge coupled with 

interrelations of mathematical processes, procedures and concepts (Hiebert & 

Lefevre, 1986; Tevfik & Ahmet, 2003). Subsequently, this form of mathematical 

knowledge is supple and enhances the transfer of learning and understanding of 

algorithms and procedures (Rittle-Johnson & Alibali, 1999; Star & Stylianides, 2013). 

Accordingly, the suppleness of conceptual knowledge postulates a generic grasp of 

both the abstract and concrete knowledges (McCormick, 1997). 

 

Vigorous deliberations took centre stage (Hallett, Nunes, Bryant & Thorpe, 2012; 

McCormick, 1997; Rittle-Johnson & Alibali, 1999; Schneider & Stern, 2010) on the 

sequencing and blending of procedural and conceptual knowledge, some assertions 

were ‘procedures first then concepts’ and other assertions were vice versa. 

Subsequently, Rittle-Johnson and Schneider, (2015) lately suggested four views on 

the connection between conceptual knowledge and procedural knowledge and 

holding a particular view they hypothesise the connection of conceptual and 

procedural knowledge as follows: (1) Concepts first view, learners often obtain 

concepts first (Tevfik & Ahmet, 2003) which they use to comprehend procedures 

through frequent practice. (2) Procedures first view, means that learners grasp 

procedures exploratively, (Siegler & Stern, 1998) which is followed by generalisations 

that lead to conceptual knowledge. (3) Inactivation view posits that conceptual and 

procedural knowledge progress parallel to each other (Haapasalo & Kadijevich, 

2000). (4) The iterative view elucidates that the frequent increase in procedural 

knowledge concurrently escalates conceptual knowledge (Baroody, Feil & Johnson, 

2007) and vice versa. Most recently, studies (Rittle-Johnson & Schneider, 2015) have 

revealed worthwhile quantitative results that validate the iterative view as being 
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effective in the acquisition of coherent mathematics knowledge. Hence, I pronounce 

my subscription to the iterative view of knowledge. 

 

Furthermore, the iterative view is explained by Star (2005) in the concept of re-

conceptualising of procedural and conceptual knowledge, as quality knowledge. A 

relevant view is the critique argued by Baroody et al. (2007), that procedural 

knowledge is either superficial or deep. In contrast quality mathematical knowledge 

is often associated with connections (Hiebert & Lefevre, 1986) which proposes that 

quality knowledge is always conceptual (Star, 2005). Ironically, my adherence to the 

iterative view clashes with this point of view and proposes the existence of quality in 

both procedural knowledge and conceptual knowledge. In addition, Star (2004) and 

Schneider, Rittle-Johnson and Star (2011) posed conflicting views on learners’ prior 

conceptual or procedural knowledge. Some assertions were that learners with limited 

procedural knowledge enhances conceptual development and vice versa. As such, 

much debate is still essential to confirm this view and other numerous assertions that 

remain untested on the debate on conceptual and procedural knowledge. 

 

Since this study is informed by SMP, Kilpatrick et al. (2001) advise that SMP are 

interconnected, inseparable and interwoven. Subsequently, my view is that using the 

iterative view posits a useful simultaneous grasp of both procedural and conceptual 

mathematical knowledge (Cragg & Gilmore, 2014; Khashan, 2014) and when in the 

perspective of SMP, it enhances coherent mathematics learning. The incorporation 

of procedural and conceptual knowledge into SMP by Kilpatrick, et al. (2001) hinges 

on five coherently combined categories, three of which are, strategic competence, 

adaptive reasoning and productive disposition that are used in this study. These are 

discussed in the next sections. Next, I explore studies on procedural and conceptual 

knowledge. Below I explore studies in this discourse. 

 

Tevfik and Ahmet (2003) conducted a study on the comparison of the equality 

between the levels of conceptual and procedural knowledge of 182 students in the 

Grade 10 attending one school. Data was collected from two tests, 1st test on 

procedural knowledge given to 42 students and the 2nd test on conceptual knowledge 

given to 40 students. A total of five students were interviewed about their acquisition 
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of procedural and conceptual knowledge.  A t-test was used to analyse the data from 

the tests. The results revealed that there is a significant difference between 

procedural and conceptual learning. The results also revealed that, even though both 

procedural and conceptual knowledge were both important in mathematics learning, 

procedural learning was more important. According to this study, the emphasis was 

on performing correct computations at the expense of understanding (Schoenfeld, 

2007). 

 

A study by Niemi (1996) focused on students’ ability to represent their 

conceptual knowledge in a variety of task contexts and formats while comparing their 

performance across these tasks. A total of 540 students in the fifth Grade across 22 

schools from the Washington State participated in the study. Various tasks were used 

to collect data. Data was analysed structurally to view mathematical understanding in 

terms of conceptual fields and schemas which had a series of relations to these 

elements: symbols, concepts and operations. Results from this study were as follows: 

(1) representational knowledge, justification and explanation tasks provide worthwhile 

information on students’ knowledge of mathematical representations that assessed 

conceptual knowledge. (2) Students need to be exposed to a variety of 

representations and the use of a single representation cannot lead to learner’s 

mastery of other representations. (3) Assessment items used to test understanding 

should include incorrect and misunderstood representations. Such results justify the 

importance of conceptual understanding over procedural fluency contrary to the study 

by Tevfik and Ahmet (2003). 

 

Kaulinge (2012) carried a study that focused on the analysis of two tasks on the 

relationship of procedural and conceptual knowledge of Grade 3 learners from a 

numeracy workbook. Results from tasks analysis revealed that: (1) Learners required 

both conceptual and procedural knowledge to get correct responses in both tasks. (2) 

Conceptual and procedural knowledge co-exist and cannot exist in isolation. (3) 

Conceptual and procedural knowledge are equally essential for learner’s success in 

mathematics learning. Emphasis here is a balance in conceptual and procedural 

knowledge is contrary to results by Niemi (1996) as well as those of Tevfik and Ahmet 

(2003). However, Hallett et al. (2012) pointed out that there are individual learner 
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differences of Grade 9 mathematics learners on their conceptual and procedural 

knowledge of fractions. This may be attributed to the rate at which learners grasp the 

different conceptual and procedural knowledge of fractions. Gardee and Brodie 

(2015) suggested that if teachers probe and embrace errors made by learners, this 

may enhance the conceptual knowledge of the learners.  

 

To adapt conceptual understanding for document analysis, the current 

researcher reviewed how Kilpatrick et al. (2001) defined conceptual understanding: 

 

‘Conceptual understanding refers to an integrated and functional grasp of mathematical ideas. 

Students with conceptual understanding know more than isolated facts and methods. They 

understand why a mathematical idea is important and the kinds of contexts in which is it useful. 

They have organized their knowledge into a coherent whole, which enables them to learn new 

ideas by connecting those ideas to what they already know. Conceptual understanding also 

supports retention. Because facts and methods learned with understanding are connected, 

they are easier to remember and use, and they can be reconstructed when forgotten’ 

(Kilpatrick et al., 2001:118). 

 

Looking closely to this definition, there are some key constructs that explore the 

meaning of conceptual understanding; integration of or connecting, known isolated 

facts and methods, mathematical ideas and coherence. Earlier the notion of 

coherence is explained as the sequencing of content in such a way that concepts 

develop from previously developed ideas, and a selection of well-structured tasks and 

representation (Goldman, 2006; Schmidt & Houang, 2012; Venkat & Adler, 2012; 

Watanabe, 2007). In trying to justify the importance of connections, Mwakapenda 

(2008) navigates into the curriculum statements and identify how mathematics is 

perceived in the South African curriculum as shown below:  

 

‘Mathematics enables creative and logical reasoning about problems in the physical and social 

world and in the context of mathematics itself. It is a distinctly human activity practised by all 

cultures. Knowledge in the mathematical sciences is constructed through the establishment of 

descriptive, numerical and symbolic relationships. Mathematics is based on observing patterns; 

with rigorous logical thinking, this leads to theories of abstract relations. Mathematical problem 

solving enables us to understand the world and make use of that understanding in our daily lives. 

Mathematics is developed and contested over time through both language and symbols by social 

interaction and is thus open to change (DoE, 2003:9). 



 

61 

 

 

Mwakapenda (2008) pointed out that making connections involves the following: 

(1) Begin with everyday practices that make sense to the learner while identifying the 

development of sound mathematical notions. (2) Focus on what is taught then find a 

relevant everyday practice of student that links well with the development of the 

concept. Such connection of procedures enhances conceptual understanding that is 

coupled with sense making (Lee, 2012; Mhlolo, Venkat & Schafer, 2012).  

 

In considering the definition by the DoET, I reflect on work done by Russell 

(2008) with teacher colleagues. They connected concepts and themes in such a way 

that their students made meaning with shapes such as, square, rectangle, triangle, 

circle, quadrilaterals and polygons. These shapes were put in wall charts together 

and mapped their properties in trying to connect them. Students made sense of this 

activity and their learning of concepts and facts was no longer isolated.  Such learning 

activities show coherence and logic in the connections made on the content that need 

to be learned. Such activities made enabled this researcher in the current study to 

identify key features of connections that are relevant, and these are; (1) conceptual 

connections, (2) everyday connections, (3) algorithmic connections, and (4) symbolic 

connections. 

 

Communication is vital in assisting students to make meaningful connections in 

the physical, pictorial, graphic verbal and mental conceptions of mathematical ideas 

(Capps & Pickreign, 1993). These authors proposed that clear and correct 

mathematical words would help students connect informal, intuitive notions as well as 

abstract symbolism of mathematics. Furthermore, they also pointed out that in 

everyday connections, mathematics operations are not explicit in problem solving. 

They gave this example: 

 

 ‘Jesse and his dad are making cookies. The recipe calls for two eggs for a single batch of 

cookies. If they plan to make a triple batch, how many eggs will they need?’’ (p11).  

 

In response to this question, most student gave an answer, 3×2=6. This puzzled 

Capps and Pickreign (1993) on how the learners came with the algorithm, and through 

semi-structured interviews it was revealed that the secret is in the connective words, 
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such as triple which means ‘3’ and the context of the problem leads to multiplication. 

This shows how language in a task connects symbols, in this instance, (2 & 3), 

concepts (multiplication) as well as the everyday (cookies, recipe, eggs, and triple 

batch).  

 

Kalchman (2011) warned that, due to the high stakes attached to assessments, 

there is a growing need to prepare test items that use routine practices of learners 

without compromising the depth and breadth of the mathematics curriculum. The 

argument was that connecting mathematics to everyday life enhanced the student’s 

ability to communicate, recognise as well as apply mathematical ideas with 

competence in functional mathematical situations. Kalchman (2011) outlined the 

impact of fifth grade students’ authentic experience they experienced outside the 

school setting that required them to use mathematics. The students showed how the 

situations demanded mathematics and their approach to solve the problems. 

Reflecting on the case of Hannah who was developing fluency in addition, subtraction, 

multiplication and division of whole numbers using the following example: Hannah 

wanted to know how much her babysitter earned per hour if she earned $75 for 

working six hours. Hannah divided $75 by six and got twelve remainder three. She 

was confused about the remainder and decided to say that the babysitter earned $12, 

03 per hour, meaning that the remainder of three was equal to three cents. Hannah 

did not realise the results of division and her teacher had to intervene and show her 

how to apply division to get the required answer. 

 

 
Figure 2.7: Student B2’s solution in the quoits game (Groves, 2012: 126) 
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Considering the circle lesson (Figure, 2.7) that Groves (2012) video recorded in 

a Japanese Grade 3 class of eight children, Mr J. wanted to teach the concept of a 

circle and decided to engage students in a meaningful exercise that involved them in 

an activity that resulted in the learning of integrated concepts of a circle. The teacher 

then placed students in positions so that they could throw rings, in a pole. The teacher 

began by placing the students B2, G1 and B1 in three positions.  

 

 

Figure 2.8: Paper representations of children’s positions (Groves, 2012: 127) 

 

Student B2 (Figure 2.8) drew this diagram and noted that it was unfair because 

some were closer to the pole and were advantaged. Then the teacher asked them 

about what needed to be done to make it fair and the students positioned themselves 

equidistant from the pole. In the transcripts provided by Groves (2012) the teacher 

then helped them arrange themselves in various ways until they realised that a circle 

had been formed and there were actually infinite ways in which they could arrange 

themselves. This activity assisted learners to learn various concepts of a circle 

simultaneously and these were; the radii, the circumference, and the definition of the 

concept of a circle. Such learning was connected to this social experience; when 

learners argued about being unfair in the positioning and repositioned themselves 

equally they were actually forming the radii, when moving to multiple positions they 

were coming up with the definition of a circle as a locus and at the same time coming 

up with the circumference. This was a Grade 3 class and this example illuminates the 

idea that conceptual understanding can take place in all grades. 
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2.3.3  Strategic Competence 

 

Strategic competence is the learners’ ability to frame, symbolise and solve 

mathematical problems, and this is better known as problem solving and problem 

formulation (Kilpatrick, et al., 2001). Learners who see themselves as having the 

ability to formulate mathematical problems, devise problem solving strategies using 

mathematical concepts and procedures appropriately are known to be applying (Star, 

2005). Below I explore some detail on the three components of strategic competence. 

 

First, problem formulation is associated to task organisation or problem posing 

(Kontorovich, Koichu, Leikin & Berman, 2012; Land, 2017) which is classified into 

three types, which are, structured tasks, semi-structured tasks and free problem 

posing. It has been established that ANA questions are tasks (Stein, Grover & 

Henningsen, 1996) designed for evaluative purposes as stipulated in curricular and 

policy documents (Amit & Fried, 2002; DBE, 2011). Although the three types of task 

posing as used by Kontorovich et al. (2012) were in the context of teaching and 

learning of mathematics, I observe that most of its contents are also relevant to posing 

tasks for evaluative purposes. The first class, structured tasks, as outlined by Silver, 

Mamona-Downs, Leung and Kenney (1996) are mathematical tasks that test novel 

problems resulting from known problems and familiar solution strategies. Contrary, 

semi-structured tasks are those that pose a mathematical question based on a 

contextualised story normally called word problems (Kontorovich et al., 2012).  

Ironically, a free problem posing task is used in mathematical competitions to appeal 

to the competitors and differs from the other two as it is not confined to specific 

mathematical content (Stoyanova, 1998). I observe that for ANA purposes, only 

structured and semi-structured tasks may be used.  Most importantly, formulation of 

tasks in the context of structured or semi-structured, examiners must ponder if a task 

stimulate the most of following: (1) Formulating data that links with known or unfamiliar 

problems; (2) locating a useful hypothesis; and (3) sketching a plan to answer the 

problem (Guberman & Leikin, 2013) as vital mathematical problem solving abilities. 

Moreover, problem formulation is reliant on the aesthetics of the mathematical 

problem (Singer & Voica, 2013) which may be in the form of a discovery or a process. 

Therefore, formulating a problem in the context of a discovery, tests learners’ 
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capability to be invent, innovate and persevere (Guberman & Leikin, 2013). By 

contrast, a process task requires learners to conceptualise pertinent hypotheses 

using deep knowledge to solve the problem and additionally monitor, assess and 

modify their thought processes during problem solving (Kim, Park, Moore & Varma, 

2013) which postulates metacognition. 

 

Second, problem representation needs to consider, (Stein et al., 1996) the 

presence of multiple solution strategies and a range of problem solving methods. 

Consequently, (Schoenfeld, 1985) observed that learners often follow a sequence of 

stages during mathematical problem representation as follows: (1) sketch figures; (2) 

discover related problems; (3) re-articulating problems, working back; and (4) 

assessing and validating procedures. Shapes are often drawn to signify geometric 

problems (Hsu & Silver, 2014). Consequently, diagrams are necessary when solving 

geometric problems (Kramarski, Mevarech & Arami, 2002) to explore the dynamics 

of the problem. In addition, the testing and verifying procedures, which are often 

exhibited by metacognitive learners, are all vital when ratifying the validity of solution 

strategies (Schoenfeld, 1985).  

 

Third, solving mathematical problems relies on the aesthetics of particular 

mathematical questions, which may either be familiar or non-familiar (Guberman & 

Leikin, 2013; Roth, Ercikan, Simon & Fola; 2015; Sigley & Wilkinson, 2015; Sullivan, 

Borcek, Walker & Rennie, 2016). Consequently, the former posits reproductive 

thinking because the learner only needs to recall and use familiar procedures of 

solving those mathematical problems (Kilpatrick et al., 2001). However, the latter 

demands productive thinking as learners are required to invent procedures of problem 

formulation, problem representation and problem solving.  

 

Lately, research (Granberg, 2016; Schoenfeld, 1985) has focused attention on 

the following four problem solving attributes: 1) understand the problem; 2) devising 

a plan; 3) acting; and 4) reflection that were adapted from Polya (1945). Such problem 

solving attributes were regarded as aiming on the situation of the problem by 

Schoenfeld, (1985) who explored them further to serve for the cognitive aspect 

through the use of five steps, which are; (1) reading a given problem, (2) exploration 
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of prior knowledge, (3) drawing a suitable plan for solving the problem, (4) 

implementing the plan by solving the problem; and (5) verifying the correctness of the 

answer. Consequently, when solving mathematical problems, learners often spend 

time reading the problem, revisiting their previous knowledge, adjusting their previous 

knowledge to suit the present knowledge and re-doing the problem in instances where 

learners make errors or where they use wrong methods for their solution strategies 

(Granberg, 2016). Subsequently, a metacognitive learner is able to modify erroneous 

solution strategies to get the correct solution (Hsu & Silver, 2014). A non-

metacognitive learner will reach a dead end due to failure to modify erroneous 

mathematical problem solving strategies (Kramarski et al., 2002). This researcher 

believes that proficiencies and in-proficiencies of solving mathematical problems are 

also reliant productive thinking skills that learners exhibit. The next section 

concentrates on studies that addressed this strand. 

 

Guberman and Leikin (2013) worked on a study with twenty seven prospective 

teachers who were in their third and fourth year of Bed program in elementary school 

mathematics in a University in Israel. Their study focused on views of prospective 

teachers’ perceptions on the difficulty of mathematical problems. Prospective 

teachers worked with mathematical tasks that integrated various topics and 

demanded knowledge of various mathematical concepts. The tasks were structured 

such a way that they produced multiple solutions with a variety of representations. 

Mathematical problems that were in the post-test were more complex as compared 

to those in the pre-test. They indicated that problem solving is regarded as a powerful 

means of developing robust and connected mathematical knowledge. They also 

pointed out that challenging mathematical problems must be included in the 

curriculum in a spiral way across the hierarchy of elementary and high school 

education and that the tasks must provide the following: (a) motivate students; (b) 

exclude known procedures; (c) initiate students into the problem solving activity; and 

(d) provide multiple approaches to the solution. The results of the study revealed that 

as prospective teachers participated in the problem solving course, their problem 

solving ability improved for both high and low achievers. It was observed that there 

was a significant shift from the use of trial and error methods that prospective teachers 

used in the pre-test towards the use of systemic strategies in the post-test. There was 
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also an improved fluency and flexibility among the prospective teachers in their ability 

to exhibit multiple solution tasks to a particular problem. 

 

A study by Thanheiser (2014) was conducted with fourth year prospective 

teacher’s conceptions when working with well-designed tasks, documenting their 

successes and carrying out an analysis of their conceptual difficulty. Two tasks were 

developed, the first being one to determine the prospective teachers’ conceptions at 

the beginning of the study and the other task to advance conceptual knowledge of 

working with multi-digit numbers. The findings of this study revealed that engaging 

prospective teachers with the two tasks improved their conceptions of multi-digit 

numbers, especially their conceptual knowledge and sense making. Another 

observation was that when prospective teachers access students’ mathematical 

thinking through, helping them with the tasks helped address the prospective 

teachers’ conceptions.  

 

Prochazkova (2013) conducted a study with teacher trainees who worked on 

teaching experiments with 13 -14 year old students in high schools. The teacher 

trainees prepared lesson plans that took into consideration the content and language 

integrated into learning mathematics. They did micro-teaching before working with 

students. The focus of the study was to evaluate the effectiveness of lesson plans as 

well as monitor the development of content and language of mathematics with 

intensified exposure of students. Prochazkova (2013) argued that students’ low 

proficiency in the language of tasks and learning the mathematical language 

enhances the following skills: (1) looking at the mathematical content of problems 

from multiple perspectives; (2) acquisition of the mathematical language of the task; 

(3) the creation of bridge between the student’s mother tongue and the language of 

the task assist in expanding the expression of mathematical concepts and 

mathematical processes; and (4) changing the language of the task increases 

procedural fluency, motivates students and enhances higher order thinking skills. 

Results of the study revealed that mathematics students opted for more complicated 

concepts that were in conjunction with the development of the language of the task. 

Mathematics teacher trainees improved lesson plans to be more innovative after 

reflecting on their effectiveness. 
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Greenes (2014) conducted a study with Grade 5 to 8 students on problem 

solving with nine tasks that demanded a variety of problem solving strategies. The 

focus of the study was to initiate students into tasks that promoted hard thinking. The 

study was also aimed at stimulating students’ curiosity, perseverance and flexibility to 

collaboratively solve problems for which their answers were not immediately known. 

The study came up with the following findings: (1) students developed confidence in 

the mathematics language of the tasks; (2) developed some innovative and creative 

skills in approaching their solutions; and (3) students developed an awareness of 

using mathematical representations as aids in their problem solving.  

 

Kilpatrick et al. (2001) explained strategic competence as shown below: 

 

‘There are mutually supportive relations between strategic competence and both conceptual 

understanding and procedural fluency, as the various approaches to the cycle shop problem 

illustrate. The development of strategies for solving nonroutine problems depends on 

understanding the quantities involved in the problems and their relationships as well as on 

fluency in solving routine problems. Similarly, developing competence in solving nonroutine 

problems provides a context and motivation for learning to solve routine problems and for 

understanding concepts such as given, unknown, condition, and solution.’ (Kilpatrick et al., 

(2001: 127). 

 

Kilpatrick et al. (2001) explained that there are routine and non-routine problems. 

Routine problems are problems that can be solved by learners using their previous 

experience on methods by applying known procedures to solve the problem. Kilpatrick 

et al. (2001) argue that routine problems require reproductive thinking where learners 

only reproduce and apply known problem solving strategies. Non-routine problems 

require productive thinking where learners form new schema in inventive ways to 

become familiar with the problem and hence solve the problem. Schoenfeld (2007) 

argued that a learner who performs routine problems has generative skills and one 

who performs non-routine problems has evaluative skills. Generative skill is explained 

as the ability to generate known procedures to solve a problem and evaluative skills 

require learners to deduce correct procedures to solve the problem. Schoenfeld 

(2007) explained that learners with the ability of solving mathematics problems limited 
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to ‘how’ the problem is solved have procedural fluency and learners who solve 

problems showing ‘how and why’ have conceptual knowledge. 

 

‘Strategic competence refers to the ability to formulate mathematical problems, represent 

them, and solve them. This strand is similar to what has been called problem solving and 

problem formulation in the literature of mathematics education and cognitive science, and 

mathematical problem solving, in particular, has been studied extensively’ (Kilpatrick et al., 

2001: 124). 

 

These features of problem solving are essential and assist the current study to 

advance this SMP and they are: problem formulation, representing the problem and 

solving the problem. However, Kilpatrick et al. (2001) failed to show a clear problem 

solving structure of the routine and non-routine problems. In developing some 

structure in problem formulation, problem solving as well as problem formulation, the 

researcher in the current study makes use of Guberman and Leikin (2013) demands 

of problem solving.  

 

‘problem solving requires mathematical knowledge that facilitates (1) semantic understanding 

of the problem, (2) ability to connect the given problem with appropriate pieces of information 

learnt in the past, (3) use of multiple representations in solving the problems, (4) ability to 

recognize similarities in the structure of different problems, (5) metacognitive analysis of a 

problem and its solution; and (6) meta-mathematical awareness of the esthetics of the problem 

and its solutions’ (Guberman & Leikin, 2013: 34)  

 

From these demands of problem solving, as well as the other literature reviewed 

in the current study on this SMP, five constructs emerge that assist the researcher 

adapt this strand and they are: (1) readability or semantics; (2) multiple 

representations; (3) reproductive thinking; (4) meta-cognition; and (5) productive 

thinking. The next sections review these constructs in detail. 

 

  READABILITY OR SEMANTICS 

 

Proficiency in language of learning and teaching is essential for thinking and 

communication in mathematics education (Gough, 2007; Morgan; 1996; Riordain & 

O’Donoghue, 2008; Roth, Ercikan, Simon & Fola, 2015). Hoffert (2009) suggested 
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that problems in standardised tests should be structured in a language that is 

accessible to students. Furthermore, she pointed out that, even though mathematics 

is considered a universal language, second language speakers of English struggle to 

do mathematics in English. In South Africa, in a majority of mathematics classrooms, 

learners are taught mathematics in English, where for some of them English is their 

second, third or fourth language, (Jantjies & Joy, 2015). Importantly, Jones, Hopper, 

Franz, Knott and Evans (2008) as well as Wium and Louw (2012) conceptualised 

mathematics as a language that is used by people to become numerate in 

communicating, solving, reasoning and justifying mathematical relations, algorithms, 

computations and conjectures. Furthermore, Greenes (2014) and Prochazkova 

(2013) stressed that, for students to have the desire to attempt unfamiliar problems, 

they need language proficiency that will enable them to learn subject-specific 

terminology to be able to articulate and express their mathematical thinking. 

 

Research (Bailey, Blackstock-Bernstein & Heritage, 2015; Roth, Ercikan, Simon 

& Fola, 2015; Sigley & Wilkinson, 2015) has shown that students often share their 

mathematical ideas and conjectures with their peers as well as teachers to make 

sense and further justify their thinking. Mathematical communication in problem 

solving often takes the form of symbols, drawings, graphs and manipulatives which 

results in a complex linguistic structure of mathematics (O’Halloran, 2015; Sigley & 

Wilkinson, 2015). Qualities of mathematical language make it unique to the English 

language and hence mathematics proficiency and English proficiency are not linked 

(Bailey et al., 2015). Most importantly, Prochazkova (2013) pointed out that learning 

mathematics in a different language provides access for students to a variety of 

perspectives of the content and different epistemological dimensions of mathematical 

knowledge. This author gave an example of the formula for calculating the area of a 

triangle in learning mathematics in English and learning mathematics in Czech: 𝑆 =

𝑎.𝑣

2
  ;and 𝐴 =

1

2
𝑏. ℎ. In these two instances Prochazkova (2013) pointed out that the 

labels and dimensions of the objects change, allowing students to explore the new 

meaning in English with added rigour.  

 

Sigley and Wilkinson (2015) suggested three important features of the 

mathematics register which were: (1) mathematics lexicon this refers to unique usage 
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of ordinary language and technical words found in mathematics such as, cosine, sine, 

trigonometry (technical) and length, prove, value (ordinary). The technical words are 

not accessible in ordinary language and the ordinary words contain contradictory 

meaning in mathematics and in ordinary language. An example is the word prove, in 

ordinary language, this means give evidence whilst in mathematics it means use 

either logic, analogies or empirical evidence. (2) Mathematics syntax refers to a 

specialised use of words in mathematics as connectors or to relate an idea such as, 

‘product of’ in mathematics means multiply and in ordinary language it has a different 

meaning. (3)  Mathematics discourse features refers to linguistic features, 

sequencing, procedures and justifications during mathematics teaching and learning. 

Sigley and Wilkinson (2015) pointed out that teachers often switch their modes as 

follows; for explanation teachers often use explicit inferences directed at students’ 

understanding of mathematical concepts, and for justification they use logical 

inferences that justify the appropriateness of the explanation.  

 

To explore the mathematics register, Bailey et al. (2015) reflected on how 

students evolve their conceptions when engaging with mathematics tasks at various 

levels of their schooling years. Students seem to use simple sentences in their lower 

grades which apparently become more complex in higher grades. However, the 

challenge still remains concerning proper attention that teachers afford learners in 

their mathematical conversation as well as written responses. One way of bridging 

such a challenge is to connect mathematics to learners’ everyday experiences 

(Mwakapenda, 2008).  

 
 MULTIPLE REPRESENTATIONS 

 

The significance of the use of multiple representations in the teaching and learning of 

mathematics as well as in research is widely acknowledged (Hyde, George, Mynard, 

Hull, Watson & Watson, 2006; Perry & Atkins, 2002; Tsamir, Tirosh, Tabach & 

Levenson, 2010; Wong, Yin, Yang, & Cheng, 2011). Students navigate mathematics 

concepts and relations by creating, comparing and using a variety of representations 

(NCTM, 2000:280). Such representations are objects, pictures, symbols, charts and 

graphs which reveal to students that there are various ways of representing and 

solving a problem. 
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Researchers have shown that successful problem solvers have the ability to use 

a variety of representations to solve a problem. However, this depends on various 

factors such as, type of test, type of context, and type of learning aids provided 

(Hwang, Su, Huang & Dong, 2009; Jonassen, 2001; Wong et al. 2011). The notion of 

representations in mathematics is outlined in Figure 2.9 that is proposed by Stephen, 

Pape and Tchoshanov (2001) in their description of the role of representation in 

enhancing mathematical understanding.  In this synopsis, learners navigate through 

representations such as numerals, graphs, equations, tables and diagrams referred 

to as ‘written five’. These are called external representations, where learners use their 

mental imagery of counting and numeracy. 

 

 

Figure 2.9: The relationship between internal and external representations in developing 

the child’s understanding of the concept of numeracy (Stephen et al., 2001: 

119) 

 

A pertinent classroom example that shows a teacher giving students 

opportunities to present a mathematical idea is shown in Figure 2.10, in the ‘taking 

the stock’ by Tripathi (2008: 440). “A farmer had 19 animals on his farm-some 
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chickens and some cows. He also knew that there were a total of 62 legs on the 

animals on the farm. How many of each kind of animal did he have?” (Tripathi, 2008; 

440). Figure 2.10 shows three different representations that helped students get the 

answer.  

 

 

Figure 2.10: Visual strategies for solving the Taking stock problem (Tripathi, 2008: 440) 

 

 REPRODUCTIVE THINKING 
 

In explaining the meaning of reproductive thinking, the current study, reflects on 

learners’ cognition, memory and computational fluency. Research on mathematics 

cognition has indicated that learners have the tendency of expecting computations 

that are familiar where they have already acquired their solution strategy (Foster, 

2011; Kramarski, Mevarech & Arami, 2002; Stanic, Silver & Smith, 1990). What is 
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referred to as reproductive thinking in this study are features of a task that require a 

recall of mathematics procedures and it is clear that such are embedded in both 

computations as well as complex procedures. The procedure may be complex but 

there are elements in it of pieces of knowledge that constitute the computations 

(Flowers et al., 2003; Russell, 2008). 

 

Teachers have the tendency of funnelling students which gives the impression 

that that tasks must have known answers (Brodie, 2007; Luneta, 2015a). As such, 

this has an influence on learners’ cognition which, according to Tchoshanov (2011), 

results in learners having what is called ‘type 1’ knowledge, ability to recall and apply 

basic mathematics facts, rules, algorithms and procedures. This is what is referred to 

as reproductive thinking in the current study. Such learners have procedural 

knowledge and Tchoshanov (2011) gives the following example; “if a teacher is able 

to recall a rule for fraction division or to solve simple fraction division problem such as 

1
3

4
÷

1

2
=, we say that she has procedural knowledge of fraction division” 

(Tchoshanov, 2011: 142). This implies that reproductive thinking is limited to 

procedural knowledge in routine procedures. 

 

 METACOGNITION 

 

In various studies, metacognition is often described as knowledge control of personal 

cognition as well as regulation, monitoring and modification of behaviours as learners 

navigate through mathematical tasks (Callahan & Garofalo, 1987; Fagnant & Crahay, 

2011; Kim et al., 2013). In their study, Kim et al. (2013) pointed out that there are 

three levels of metacognition: individual level, which is reflection, monitoring and 

regulation of personal cognition; social level; when individuals get stuck during a 

complex problem solving, they often seek external assistance such as collaborating 

with other people and sources of information; environmental level means that in some 

cases, learners seek empirical evidence from the environment to justify their 

conceptions. A balance in these three levels is essential for learners when solving 

non-routine, complex and authentic problems. Answers to these problems are not 

readily available and learners often need to regulate their thinking when they get 

stuck, make errors, reflect on their mistakes, hence, they engage in productive 
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thinking which is discussed in the next section (Kramarski et al., 2002; Neuenhaus, 

Artelt, Lingel, Schneider, 2011; Yilmaz-Tuzun, & Topcu, 2010; Veloo, Krishnasamy & 

Abdullah, 2015). Research has proved that there is an achievement of optimal 

learning where mathematical tasks always foster high-level student thinking coupled 

with reasoning and proof (Koichu & Leron, 2015; Levenson, 2013; Pedemonte & 

Balacheff, 2016; Sullivan et al., 2016) 

 

 PRODUCTIVE THINKING 
 

Non-routine problems are those that are not readily accessible to the learner in terms 

of solution strategy, hence the learner needs to invent a particular way to manipulate 

and solve the problem (Kilpatrick et al., 2001). Guberman and Leikin (2013) pointed 

out that, when learners experience non-routine problems, they require the ability to 

connect the problem with relevant pieces of information. Hence, productive thinking 

refers to inventive ways of solving a problem that does not have a pre-conceived 

answer. Similarly, Tchoshanov (2011) argued that non-routine procedures require an 

accelerated quantity and quality of connecting mathematical procedures and relations 

which is conceptual in nature. In the fraction division problem, learners in this instance 

are required to connect various procedures to solve the problem as shown here; 

“Solve the following fraction division problem 1
3

4
÷

1

2
=, in more than one way (e.g., 

draw a diagram or illustrate it with manipulatives)” (Tchoshanov, 2011: 142). 

 

2.3.4 Adaptive Reasoning 

 

Adaptive reasoning is the learners’ ability to exhibit logical thought, reflection, 

explanation, conjecturing and justification (Kilpatrick et al., 2001; Komatsu, Jones, 

Ikeda & Narazaki, 2017). This gives an indication that the SMP are paramount in 

making sense of procedures, connecting them and showing the mastery of problem 

solving processes. However, most research has revealed the gap between classroom 

learning activities that promote and the type of learning that allows deeper 

understanding of complex reasoning processes (Bergqvist & Lithner, 2012; Blanton 

& Stylianou, 2014; Brodie, 2010; Palha, Dekker, Gravemeijer & van Hout-Wolters, 

2013; Sumpter & Hedefalk, 2015; Zazkis, 2015). Furthermore, it has been reported in 
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other studies that teachers’ limited knowledge of proof as well as constrained 

opportunities that they make available to their students inhibit constructive 

mathematical reasoning at the expense of imitative reasoning (Jonsson, Norqvist, 

Liljekvist & Lithner, 2014; Ramful, 2014; Samkoff & Weber, 2015; Savic, 2015; Soto-

Johnson & Troup, 2014; Yopp, 2015; Zandieh, Roh & Knapp, 2014). Other studies 

such as Bleiler-Baxter (2017) reports that student teachers lack important elements 

of proof, a key element of reasoning, which are: presenting, discussing, conjecturing 

and critiquing. This is despite inferences mentioned by Kilpatrick et al. (2001) on the 

importance of adaptive reasoning as mentioned below:  

 

“In mathematics, adaptive reasoning is the glue that holds everything together, the lodestar that 

guides learning. One uses it to navigate through the many facts, procedures, concepts, and 

solution methods and to see that they all fit together in some way, that they make sense. In 

mathematics, deductive reasoning is used to settle disputes and disagreements. Answers are 

right because they follow from some agreed upon assumptions through series of logical steps. 

Students who disagree about a mathematical answer need not rely on checking with the teacher, 

collecting opinions from their classmates, or gathering data from outside the classroom.” 

(Kilpatrick et al., 2001: 129). 

 

According to this explanation by Kilpatrick et al. (2001), in all the SMP, adaptive 

reasoning holds them together. This implies that the strength in mathematical 

knowledge base, skills and values depends on the ability to think logically. One of the 

specific aims for Curriculum and Assessment Policy Statements, DBE (2011) is ‘learn 

to listen, communicate, think and apply the mathematical knowledge gained’ (p9). 

This is possible when learners have fully developed this strand of mathematical 

proficiency. Communication of mathematical reasoning is essential to the confidence 

that learners show to their classmates, to stand in front of them and justify their 

mathematical thoughts (Cantlon, 1998; Whitacre, Azuz, Lamb, Bishop, Schappelle, & 

Philipp, 2017). However, such efforts are fruitless when considering the findings of 

the TIMSS Video Study which was conducted in eight countries and in 87 Australian 

lessons which reported that there were no signs of formal or informal reasoning 

(Stacey & Vincent, 2009). These results are consistent with those reported by Ally 

(2011) who found that there was an absence of reasoning in some Grade 6 

mathematics classrooms in South Africa. 
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Star (2005) argued that adaptive reasoning is ‘reasoning’ which describes the 

learners’ ability to use logic to explain and justify problem solving strategies and 

furthermore expand reasoning from known procedure to those not yet known. 

Schoenfeld (2007) pointed out that adaptive reasoning is seen when learners justify 

the use of concepts, procedures, and algorithms and justify solving a problem in a 

particular way. Proof (Hanna, 2000) is not limited to justifying an argument but rather 

includes promoting conceptual understanding, acting as an automated machinery in 

problem solving and justifying the authenticity of the solution as well as the solution 

strategy. In mathematics education, reasoning means a clear procedure of axiomatic 

reasoning, coherence deductions and formal inferences (Reid, 2002). 

 

Knuth (2002) found that a proof in its utility by Grade twelve students enables 

them to do the following: (1) identify reasoning and proof as important aspects of 

mathematics; (2) construct and explore mathematical conjectures; (3) exhibit and 

scrutinise mathematical arguments and proofs; and (4) select and utilise several kinds 

of reasoning and methods of proof. In the current study, the researcher considers 

adaptive reasoning as a glue to the other SMP if learners exhibit these traits in their 

mathematical reasoning. According to the researcher’s understanding, reasoning and 

justification of the use of mathematical concepts and procedures as well as the 

problem solving strategies must be a valid, reliable piece of knowledge and be 

applicable to learning transfer. Hanna (2000) suggested some significant functions of 

proof as shown below; 

 

“• Verification (concerned with the truth of a statement) 

• Explanation (providing insight into why it is true) 

• Systematisation (the organisation of various results into a deductive system of axioms, major       

concepts and theorems) 

• Discovery (the discovery or invention of new results) 

• Communication (the transmission of mathematical knowledge) 

• Construction of an empirical theory 

• Exploration of the meaning of a definition or the consequences of an assumption 

• Incorporation of a well-known fact into a new framework and thus viewing it from a fresh 

perspective.” (Hanna, 2000: 8) 
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A true statement needs to be verified against mathematical knowledge. One 

must become aware of it and structure it in a logical way (Hanna, 2000). Furthermore, 

it must show innovations, convey mathematical knowledge, experiential theory, and 

a search for meaning as well as conjecturing. However, Quinn, Evitts and Heinz 

(2009) observed that a majority of students found that proofs are very challenging and 

teachers had problems in helping their students write proofs. What seems a challenge 

is that that teachers themselves struggled to structure tasks that tested higher order 

and critical thinking skills (Luneta, 2015a). In their study on reasoning, Lachmy and 

Koichu (2014) as well as Zazkis et al. (2015) pointed out that students’ mathematical 

reasoning often reflected on the structure of the proof and that students fail to make 

a distinction between empirical and deductive reasoning, as well as the power 

associated with deductive inferences.  

 

Tillema and Hackenberg (2011) used multiplicative notation with fractions to 

explain reasoning. Their illustrations are shown in Figure 2.11.  

 

The Ribbon Problem: 

 

 “I have 
3

4
  of a yard of ribbon. My friend needs 

2

5
 of that amount. Draw a picture of how much of a yard 

she needs. Then, write mathematical notation to represent your reasoning” (Tillema & Hackenberg, 

2011: 29). 

 

The student first wrote 
2

5
×

3

4
=

6

20
. The authors argue that, although this notation 

is correct, it ignores that uses notation as traces student’s reasoning. The response 

in Figure 2.11 helps the student to be aware of the traces of reasoning on the ribbon 

problem by reflecting on the abstraction of the problem and make the solution visible. 

The use of the representation in Figure 2.11 acts as an aid for the student and gives 

meaning to the solution (Tillema & Hackenberg, 2011).  
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Figure 2.11: Illustration of distributive reasoning (Tillema & Hackenberg, 2011: 29) 

 

Richardson, Carter and Berenson (2010) conducted a study using teaching 

experiments with Grade 5 students. The paramount goal of the study was to 

encourage mathematics teachers to use connected tasks in their mathematics 

teaching as means of promoting reasoning. There were three tasks, the tower task, 

pizza task and taxicab task. The results showed that the connected tasks provided 

students with the opportunity to make discursive predictions and conjectures about 

patterns that they observed from the tasks. The use of information from tables and 

pattern blocks enhanced students’ justification of their own conjectures in an attempt 

to validate their conjectures. Connected tasks were key in providing students multiple 

representations, making known their ideas and linking their previous knowledge. 

 

A case study by Bieda (2010) of seven middle-school experienced teachers on 

the implementation of tasks that enhanced the production of mathematical proofs 

came up with the following findings: (1) Students attempted these tasks by formulating 

conjectures and half of which were proved. (2) Teachers provided insufficient 

feedback to justify attempts from students to prove the tasks. (3) Most of the students’ 
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proofs used empirical means to justify their inferences. (4) Students attempts to prove 

were inhibited by the teacher’s lack of ample time to review proof attempts by 

students. (5) Irrespective of a curriculum that encouraged the formulation of proofs, 

the instruction that was carried out by experienced teachers was too shallow in 

providing reasoning opportunities. These findings revealed that teachers’ knowledge 

of proofs was insufficient. 

 

Boesen, Lithner and Palm (2010) conducted a series of studies with the focus 

on analysing discursive learning environments to view students’ opportunities of 

learning different types of mathematical reasoning. Two types of tasks were used 

based on the reasoning opportunities they provided: imitative reasoning which was 

suitable for routine tasks and allowed students to exhibit memorised reasoning and 

algorithmic reasoning. Memorised reasoning required students to recall through 

memory an answer and strategy to reason an argument. Algorithmic reasoning 

demanded recall of a sequence of rules used to solve a task through mathematical 

reasoning. The second type of tasks demanded what they called Creative 

Mathematically Founded Reasoning. Such tasks were identified as having three 

properties: (1) novelty, which was a new (to the problem reasoned) sequence of 

reasoning exhibited by students or a recreated sequence to a forgotten reasoning; (2) 

plausibility, these were statements that supported why arguments were true; and (3) 

mathematical foundation arguments that exhibit key elements that are embedded in 

properties of the reasoning. In the context of their study Boesen et al. (2010) 

described an argument as a substantial explanation that convincingly shows that a 

reasoning is appropriate. The results of this study and the study by Bergqvist and 

Lithner (2012) revealed that a majority of students exhibited imitative reasoning and 

lacked creativity in constructing correct reasoning. Furthermore, students could easily 

exhibit creative mathematically founded reasoning. However, this was their 

alternative when they had forgotten algorithmic reasoning or memorised reasoning. 

Lastly, students had a tendency to use mathematical foundations to justify their 

imitative reasoning. Such results reveal that learners preferred imitative reasoning 

rather than creative reasoning. 
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Stylianides et al. (2013) focused on teachers’ knowledge and their challenges 

with reasoning and proving in their prospective classrooms. Teachers engaged their 

students with tasks that demanded the formulation of generalisations that were in 

form of conjectures and the development of arguments created for the truth or falsity 

of the generalisations. They worked closely with three prospective teachers who 

developed tasks and lesson plans on reasoning and proving. The findings of the study 

were as follows. (1) Teachers faced difficulty in figuring student’s prior knowledge on 

reasoning and proving when engaging them with new topics. (2) Implementation of 

high level tasks was a serious challenge even to experienced teachers. (3) As 

students got used to working with tasks on reasoning and proving, they shifted from 

being passive recipients of knowledge to active constructors of knowledge. (4) 

Teachers had the tendency of funnelling students to a particular direction, instead of 

allowing them to develop their own conjectures.  

 

Kilpatrick et al. (2001) described adaptive reasoning as shown below: 

  

‘Adaptive reasoning refers to the capacity to think logically about the relationships among 

concepts and situations. Such reasoning is correct and valid, stems from careful consideration 

of alternatives, and includes knowledge of how to justify the conclusions. In mathematics, 

adaptive reasoning is the glue that holds everything together, the lodestar that guides learning. 

One uses it to navigate through the many facts, procedures, concepts, and solution methods 

and to see that they all fit together in some way, that they make sense. In mathematics, 

deductive reasoning is used to settle disputes and disagreements.’ (Kilpatrick et al., 2001: 

129).  

 

Kilpatrick et al. (2001) shows that mathematics learning is grounded in deductive 

reasoning and failed to show that other forms of proofs are essential in mathematics 

reasoning. In expanding this SMP, adaptive reasoning, and this study examined how 

Amir-Mofidi, Amiripour and Bijan-zadeh (2012) explained mathematical reasoning. 

The authors say mathematical reasoning is divided into three parts; (1) Inductive 

proof, (2) Deductive proof, and (3) Analogical proof. However, Kilpatrick et al. (2001) 

explained that mathematical reasoning is not confined to formal proof but also 

informal proof. In the current study the researcher identified these three forms of 

reasoning formal proof. The fourth type of reasoning was extracted from an analytic 
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framework by Stylianides (2008), especially the mathematical component of the 

framework as shown in Figure 2.12. 

 

 
Figure 2.12: Analytic framework (Stylianides, 2008:10) 

 

The mathematical component of the framework yields the four components of 

mathematical reasoning. Under the component making mathematical generalisations, 

conjecturing is there and also analogical reasoning which is identifying patterns, and 

in providing support to mathematical claims, an empirical argument is inductive and 

lastly, generic examples are deductive.   

 

In this instance, clarity is provided on informal proof and put it in the perspective 

of the South African education context. DoET (2007) explained informal reasoning as 

conjecturing, and this is the fourth reasoning. To bring clarity to what adaptive 

reasoning entails, the researcher focuses attention towards how Stylianides et al. 

(2013) described a proof, and this clarifies the qualities of a mathematical proof. 

 

‘According to this conceptualization, a proof in the context of a classroom community at a given 

time is a mathematical argument with the following three characteristics: (1) It uses statements 

accepted by the classroom community (set of accepted statements) that are true and available 

without further justification; (2) It employs forms of reasoning (modes of argumentation) that 

are valid and known to, or within the conceptual reach of, the classroom community; and (3) It 

is communicated with forms of expression (modes of argument representation) that are 
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appropriate and known to, or within the conceptual reach of, the classroom community. 

(Stylianides et al., 2013: 1466). 

 

  INDUCTIVE PROOF 

 

Inductive proof in the context of mathematics education refers to proving from 

observable characteristics that can be generalised from facts. This is essential for 

students when they reason with contextual tasks (Amir-Mofidi et al., 2012; Baroody, 

2005; Simon, 1996). According to Yopp (2010) inductive proof takes the form of a 

process that learners undergo to form conclusions from examples. He argues with 

illustrative examples that not all inductive arguments generate formal proof. In 

addition, Klauer and Phye (2008) argues that the paramount aim of inductive 

reasoning is to detect generalisations, rules and regularities. Morris (2002) focuses 

her definition of inductive proof on a premise that provides some feasible actions, not 

necessarily evidence for the conclusion. She argues that an inductive inference 

begins with a particular phenomenon leading towards a generalisation. She outlines 

the following example:  

 

‘e.g., X and Y are qs: X and Y have property p; therefore all qs have property p)’ (Morris, 2002: 

80.  

 

Knuth (2002) acknowledges that the key aspect of a proof is to find the truth of 

a result. He gives an example of a problem that has been proved by induction as 

shown in below:  

 

‘Prove: the sum of the first n positive integers is 
𝑛(𝑛+1)

2
. 

For n=1 true since 1 =
1(1+1)

2
= 1 

Assume it is true for some arbitrary k, that is, 𝑆(𝑘+1)  = 𝑆𝑘 + (𝑘 + 1) 

  =
𝑘(𝑘+1)

2
+ 𝑘 + 1 

  =
𝑘(𝑘+1)

2
+ 𝑘 + 1 

  =
𝑘(𝑘+1)

2
+ 𝑘 + 1 

  =
(𝑘+1)(𝑘+2)

2
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Therefore, the statement is true for k+1 if it is true for k. By induction, the statement is true for 

all n’ (Knuth, 2008:487). 

 

The proof above is considered a valid proof because it proves the opening 

statement. This proof tests if the statement holds for all positive integers, from ‘1’ to 

‘k’ and finally ‘k+1’ then it is from these tests that a generalisation is reached that the 

initial statement is true.  

 

Figure 2.13 is a proof by induction. However, it is too abstract and may not 

convey substantial meaning to learners (Knuth, 2002; McLeod & Briggs; 1980). There 

is a suggestion by Knuth (2002) that the use of representations in a proof enhances 

sense-making why the sum must be equal to 
𝑛(𝑛+1)

2
 as shown in Figure 2.13 above.  

Learners are able to see that the ′𝑛2′ results from the area then dividing by two gives 

two congruent triangles. This proof is described by Knuth (2002) as a ‘proof that 

explains as well as proves’, which can be used to cater for the diversity in learning 

abilities in mathematics classrooms. 

 

Klauer and Phye (2008) conducted a study to detect various thinking processes 

of 3600 kindergarten and pre-primary children on seventy four training experiments 

dealing with procedural inductive problems. The results of the study indicate that the 

use of procedural inductive proof enhances both learners’ molten intelligences and 

improved educational opportunities concerning the content of mathematics for 

learners with diverse learning abilities. These results do not concentrate on how 

inductive reasoning affect learner’s fluid intelligence. 

 

In another study on inductive proof, Tomic and Klauer (1996) conducted training 

experiments with 34 Dutch students and 23 German students in primary schools. A 

pre-test which was an intelligence test, was first administered to the students before 

training them on inductive proof strategies. The study indicated the following results; 

(1) Training on inductive proof on both cases seemed to be effective in improving the 

intelligence of the students. (2) In the Dutch case, the improvement was not 

transferred to mathematics achievement and it was argued that this may be as a result 

of the cultural learning differences in both countries, inexperience of the trainers on 
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inductive proof as well as the limited time spent on the training. (3) In the German 

case, the improvement was transferred to mathematics achievement and this was 

attributed to the experienced trainers on an inductive proof. 

 

Figure 2.13: A proof that explains as well as proves (Knuth, 2002: 487) 

 

A study by Kagan, Pearson and Welch (1966) on 155 first-graders on the 

conceptual impulsivity and inductive proof was conducted in Newton, Massachusetts. 

Findings of their study revealed that: (1) impulsive learners make many errors in their 

inductive proof because they reflect on the accuracy of their conclusions; (2) impulsive 

learners do not seem too wary about errors and mistakes; (3) reflective students are 

keen to identify their errors because they evaluate their inferences before voicing 

them in the public domain; and (4) teachers contribute to the failure of impulsive 

students because they always view them as having insufficient knowledge and fail to 
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assist them to become reflective learners. Such findings show a need for professional 

development of teachers’ ability to handle these diverse cases. 

 

It is imperative to assist students to bridge the gap between inductive and 

deductive reasoning. Quinn et al. (2009) observed that inductive proof alone is not 

enough and that some instances students may reach incorrect conclusions. They 

showed that some students revealed that deductive arguments were more convincing 

than just giving examples. This statement prompted the researcher to look at 

deductive proofs below. 

 

 DEDUCTIVE PROOF 

 

Deductive proof disregards empirical evidence and is reasoning that takes into 

cognisance the derivation of facts drawn from a logical chain of reasoning, ideas or 

theories based on formal truth that have been accepted for their accuracy (Amir-Mofidi 

et al., 2012; Baroody, 2005; Simon, 1996). Additionally, Morris (2002) argues that 

deductive proof is not a mere derivation of facts, but is a logical argument that is true 

and valid followed by a true conclusion as shown below.  

 

e.g., ‘X is p or q; X is not p; therefore, X is q)’ (Morris, 2002: 80). 

 

Furthermore, deductive proof is rigorous abstract logical proof of a mathematical 

argument to reach a valid and true conclusion, considering the underlying structure 

of mathematical reasoning (Ayalon & Even, 2008; Baroody, 2005; Markovits & Doyon, 

2011). Proving deductively remains essential in mathematics classrooms, especially 

in reformed curriculum where sense-making originates from real-world problems 

(Lee, 2016; Stalvey & Vidakovic, 2015). Amir-Mofidi et al. (2012) illustrated deductive 

proof with an example that required them to show that the addition of two odd numbers 

always results in an even number as shown below.  

 

‘Solve: suppose that (2m+1) and (2n+1) are odd numbers that m and n are natural numbers.     

Then its addition is following as;(2𝑛 + 1) + (2𝑚 + 1) = 2𝑚 + 2𝑛 + 2 = 2(𝑚 + 𝑛 + 1)’ Amir 

(Mofidi et al., 2012: 2918). 
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The argument shown above leads to a conclusion that when adding two odd 

numbers the result is always an even number. This is shown by the co-efficient of 

two. Any number multiplied by two the answer is an even number. The 

conclusion,2(𝑚 + 𝑛 + 1)  is generic to all cases and is therefore a true and valid 

argument. This proof is a process of generating a generic statement that will generate 

an even number for the sum of any two odd numbers. This is a deductive proof and 

does not necessarily need to use an infinite sum of odd numbers to generalise. 

 

Reflecting on the problem that was proved inductively by Knuth (2002), the same 

problem can be proved deductively as shown below. 

 

′𝑃𝑟𝑜𝑣𝑒: 𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑖𝑠 
𝑛(𝑛 + 1)

2
 

𝐿𝑒𝑡 𝑆𝑛 = 1 + 2 + 3 + ⋯ + 𝑛 

𝑇ℎ𝑒𝑛 𝑆𝑛 = 𝑛 + (𝑛 − 1) + (𝑛 − 2) + ⋯ + 1 

𝑇𝑎𝑘𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑡𝑤𝑜 𝑟𝑜𝑤𝑠. 

2𝑆𝑛 = (1 + 𝑛) + [2 + (𝑛 − 1)] + [3 + (𝑛 − 2)] + ⋯ + (𝑛 + 1) 

2𝑆𝑛 = (𝑛 + 1) + (𝑛 + 1) + (𝑛 + 1) + ⋯ + (𝑛 + 1) 

2𝑆𝑛 = 𝑛(𝑛 + 1) 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑆𝑛 =
𝑛(𝑛+1)

2
’ (Knuth, 2002: 488). 

 

 In this problem Knuth (2002) shows deductively that the sum of two positive 

integers will always be 
𝑛(𝑛+1)

2
 and this approach uses only to sums to generate the 

conclusion instead of testing infinite sums then generalise. 

 

Ayalon and Even (2008) conducted a study to examine the perceptions of twenty 

one professionals who were involved with deductive proof. The group of the 

professionals were made up as follows: four researchers in mathematics education 

with 2 PhD in mathematics education and 2 PhD in mathematics, six curriculum 

developers, teacher educators with 6 PhD in mathematics education and 1 MEd in 

mathematics education, 4 senior and junior school teachers with 2 BSc & MA 

mathematics, 1 MSc mathematics education & 1 Bed mathematics education, 3 

mathematicians with PhD in mathematics, two Logicians of philosophy with PhD in 
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Philosophy, and two researchers in Science Education with 1 PhD in biology, 1 PhD 

science education. This indicates that seventeen of these professionals were directly 

involved in mathematics and the remaining four were not directly involved in 

mathematics’ but rather in some form of logic and deductive proof. The study revealed 

two approaches towards the nature of deductive reasoning: the systematic approach, 

and the logic approach. The systematic approach was more concerned with the utility 

of deductive proof outside mathematics in step-by-step problem solving and the 

logical approach concerned with deductive reasoning as rules of formal logic. The 

rigour in the usefulness of logic was associated with the background of the 

professionals. Thus, the mathematicians were concentrating more on logic than the 

philosophy logisticians who were interested in onto the utility of more flexible 

deductive reasoning outside mathematics. This study indicates that rigour in 

deductive reasoning is associated with professional’s content knowledge of 

mathematics. 

 

In his study, Morris (2002) examined 30 pre-service elementary and middle 

school teachers’ ability to extricate essential deductive and inductive features of a 

mathematical inference. Results of the study revealed that a majority of the pre-

service teachers failed to differentiate between a deductive and inductive inference 

from statements of proof. There were a few pre-service teachers who were able to 

distinguish between deductive proof and inductive proof from mathematical proofs. 

This was as a result of their experiences with the two forms of reasoning. These 

findings may have negative effects to pre-service teaching of mathematical 

reasoning. Markovits and Doyon (2011) pointed out that deductive proof is difficult for 

adults who are well educated, hence this may have negative effects upon classroom 

practice.  

 

 ANALOGICAL PROOF 

 

Analogical reasoning is described by researchers (Amir-Mofidi et al., 2012; Lee & 

Sriraman, 2011) as the students’ ability to reason about contrasting corresponding 

commonalities between mathematical relations to gather integral components such 

as equality and proportionality. In trying to review the definition of an analogy, Lee 
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and Sriraman (2011) analysed the task used and revealed that it had assisted 

learners to identify three types of commonalities, surface, transitional and relational 

similarities. Surface similarity allowed learners to recall concepts that are common in 

the base object and the target object. Transitional commonality involves relating 

properties of the base object with the target object, and relational commonality is the 

construction of new concepts of the target object in form of a conjecture. 

 

 
Figure 2.14: Analogical reasoning-mathematical (Amir-Mofidi et al., 2012: 2919) 
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In Figure 2.14, above, conceptualises an analogy as shown in Amir-Mofidi et al. 

(2012), which begins with students’ calculations of the height of the school building. 

This exercise leads students to the use of the Thale’s law on similarity, 
𝐴𝐵

𝐴′𝐵′ =
𝐵𝐶

𝐵′𝐶′ =

𝐴𝐶

𝐴′𝐶′.  Students used the concept of congruent triangles to identify analogies such as;  

 

‘∠C is common in two angles; Δ ABC and Δ A'B'C' and ∠B and ∠B' are equal and right. Then 

∠A, ∠A' are equal too. Also two angles; Δ ABC and Δ NMP are congruent triangles therefore 

angles of two respected triangles are equal too. On the other hands (MN = A’B’), (MP = B’C) 

and (NP = A’C)’ (Amir-Mofidi, et al., 2012; 2920). 

 

In their study Amir-Mofidi et al. (2012) investigated the effectiveness of 

analogical reasoning skills as means of improving learning in a mathematical context. 

Two mathematics examinations were used with thirty eight high school students, one 

exam as a pre-test and the other as a post-test with word problems on analogies. 

Findings from this research showed the following: (1) analogical reasoning improved 

creativity in students; (2) there was an improvement in student’s abstract thinking that 

related to real life of students; (3) analogical reasoning developed student’s reasoning 

ability and enhanced motivation in problem solving; (4) the use of analogical 

reasoning examples improved students’ learning transfer; and (5) long-term retention 

of mathematical concepts was enhanced. 

 

A study by Lee and Sriraman (2011) investigated eighth graders ability to 

generate conjectures using analogies of geometric figures. The study revealed four 

useful findings as follows. (1) Classical analogy was essential to make possible the 

transition from surface similarity to transitional as well as relational similarity. (2) 

Learners were able to generate a handful of transitional similarities. (3) The task used 

allowed learners to apply processes to base objects and target objects. (4) 

Pedagogical content knowledge of the instructor on analogies was essential in 

assisting learners to build worthwhile analogical conjectures that were acceptable. 

These results indicate that analogical reasoning of teachers is better as compared to 

their inductive and deductive proof. 
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Markovits and Doyon (2011) conducted a study on how to use analogies as the 

bridge between known content and abstract reasoning. The first study was carried 

with 256 university students with an average age of 23. The second study was carried 

with 102 adults with an average age of 19 college students. The results from both 

studies indicated the following: (1) Concrete problems does not necessarily enhance 

abstract reasoning. (2) Students failed to reason abstractly because they have not 

mastered this form of reasoning. (3) Students who reasoned better with analogies did 

not necessarily transfer that to abstract reasoning. These results highlight the fact that 

analogical proof does not enhance abstract reasoning.  

 

Figure 2.15 is an example that is based on analogies and in the marking 

guideline such answers were suggested as possible solutions. Learners needed to 

prove that triangles are congruent by identifying analogous sides and angles as in 

question 7.1; SQ (common side), Q1 and S1, and P2 and R2.  

 

 
Figure 2.15: ANA mathematics Grade 9 question 7 exemplar 2012 (DBE, 2012d)  

 
 CONJECTURING 

 

The NCTM (1989), Curriculum and Evaluation Standards for School mathematics 

argues as follows; ‘Conjecturing and demonstrating the logical validity of conjectures 
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are the essence of the creative act of doing mathematics’ (NCTM, 1989: 81). Cantlon 

(1998) describes a conjecture as conclusions that are derived from inconclusive 

evidence. Alcock and Inglis (2008) add that conjecturing is the process of writing 

conceived hypotheses that are yet to be justified. Cantlon (1998) suggested that 

conjectures are useful for making connections, promoting of sense-making, providing 

students with opportunities to construct mathematical knowledge and promotion of 

conceptual knowledge. Furthermore, conjecturing makes learner’s respect and value 

students thinking as they are open to scrutiny and other learners may refute or confirm 

their conjectures (Aaron & Herbst, 2015; Alcock & Inglis, 2008).  Reid (2002) 

suggested that conjecturing involves testing a rule, exploring its usefulness, and then 

modifying it or rejecting it. 

 

In trying to explain a conjecture, Reid (2002) reflect on work done by Lakatos on 

fallibility and stated the following: (1) Mathematical activity is characterised by proofs 

and refutation. (2) Mathematics education is not as it used to be portrayed as a purely 

deductive science of accepted truth and theorems. (3) Rather, mathematics education 

is a human activity of providing examples to prove conjectures as well as 

counterexamples to refute conjectures. Reid (2002) also reflects on work done by 

Polya that in a mathematical activity, there is rigorous reasoning which generates 

conjectures that are formalised using logical inferences.  

 

Cantlon (1998) suggested three useful uses of conjectures that she employed 

in her classroom; conjecturing to demonstrate mathematical power, conjecturing to 

make connections and conjecturing to develop the learning community. 

 

 ‘empower students by promoting ownership and inquiry,  

 provide a means for students to construct mathematical knowledge, and 

 foster opportunities for students to make connection.’ (Cantlon, 1998:108). 

 

In her quest to show the power that conjectures give to students Cantlon (1998) 

shows some conjectures from her fourth graders as they responded to the following 

questions on fractions: ‘(1) What are fractions? (2) How can you represent fractions? 

(3) When do you use fractions in your own life?’ (Cantlon, 1998: 110). In response to 

these questions, classroom discussions came with conjectures such as this one that 
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was prompted by one student called Cody: 5 ÷ 10 =
1

2
; 10 ÷ 20 =

1

2
𝑎𝑛𝑑 20 ÷ 40 =

1

2
.  

When asked to explain this, Cody came up with more examples: 2 ÷ 4 =
1

2
 ;  3 ÷ 6 =

1

2
; 4 ÷ 8 =

1

2
𝑎𝑛𝑑 5 ÷ 10 =

1

2
 and finally he wrote the conjecture: ‘any number divided 

by twice itself equals
1

2
 except 0’ (Cantlon, 1998: 111). This conjecture prompted other 

learners to use other examples to extend this conjecture, such as Bob, Nick and Kelly. 

Finally, learners had the following conjectures: 

 

‘(1) any number divided by twice itself equals 
1

2
 except 0. 

(2) Any number divided by three times itself equals 
1

3
  except 0. 

(3) Any number divided by four times itself equals 
1

4
 except 0. 

(4) Any number divided by five times itself equals 
1

5
 except 0. 

(5) Any number divided by six times itself equals 
1

6
 except 0. 

(6) Any number divided by seven times itself equals 
1

7
  except 0.’ (Cantlon, 1998: 111). 

 

According to Cantlon (1998), these examples given by her students justified the 

fact that, conjectures demonstrates mathematical power, and this allows students to 

extend, accept or rebuke conjectures developed by their peers. This confirms that 

conjectures are powerful to stimulating reasoning in mathematics education.  

 

Reid (2002) conducted a study with Grade five students where they conjectured 

general rules, tested the rules, explored the rules, rejected some of the rules and 

modified some of the rules. The study came up with the following findings: (1) through 

rigorous observation of patterns, students were able to come up with conjectures. (2) 

When testing these conjectures, students either rejected or confirmed the conjectures 

based on sufficiency of mathematical justifications. (3) Conjectures were generalised 

into logical inferences and further explored. These results confirm that conjecturing 

can act as a bridge for formal reasoning.  

 

A study by Alcock and Inglis (2008) reviewed literature on the use of examples 

in proving conjectures made on abstract mathematics, which they called syntactic and 
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semantic reasoning strategies. They used examples which were of the following 

kinds: (1) examples that were called start-up which provoke basic definitions and 

illuminate essential insights; (2) examples called reference examples, because in their 

nature they are basic and extensively pertinent in connecting findings and theories; 

(3) model examples, which are universal examples that propose and summarise 

findings and theories; and (4) counterexamples, which refute a conjecture and refine 

merits between theories.  

 

These examples took two forms, semantic and syntactic reasoning. A semantic 

statement is when a single symbol is used to represent some class of objects which 

may require an individual to use a set of examples to be applicable in in generic 

situations (this is inductive). In syntactic reasoning, a proof is generated by using logic 

to provide systematised definitions of concepts which need to be proved or refuted 

using logic and definitions, ′𝐼𝑓 𝑝1 𝑎𝑛𝑑 𝑝2 𝑎𝑟𝑒 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑡ℎ𝑒𝑛 𝑝1𝑝2 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡. ′  

(p115). Such a conjecture needs to be proved using logic and the knowledge of the 

definition of the term abundant (this is deductive). 

 

2.3.5 Productive Disposition 

 

Productive disposition is when learners are seen to be valuing mathematics as useful, 

rational and valuable, (Kilpatrick et al., 2001). Furthermore, if learners fully develop 

all the first four SMP, to these learners mathematics makes sense and they value 

mathematics because they are proficient in the procedures (Mellone, Verschaffel & 

Van Dooren, 2017). They produce quality connections between concepts and 

procedures. They have the ability to solve problems beyond the routine ones, and 

furthermore, they can produce a series of justifications that are valid and reliable 

(Karakoc & Alacaci, 2015; Groves, 2012). In their description of the SMP, Kilpatrick 

et al. (2001) describe productive disposition as follows: 

‘Productive disposition refers to the tendency to see sense in mathematics, to perceive it as 

both useful and worthwhile, to believe that steady effort in learning mathematics pays off, and 

to see oneself as an effective learner and doer of mathematics. If students are to develop 

conceptual understanding, procedural fluency, strategic competence, and adaptive reasoning 

abilities, they must believe that mathematics is understandable, not arbitrary; that, with diligent 

effort, it can be learned and used; and that they are capable of figuring it out. Developing a 
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productive disposition requires frequent opportunities to make sense of mathematics, to 

recognize the benefits of perseverance, and to experience the rewards of sense making in 

mathematics.’ (Kilpatrick et al., 2001: 131). 

 

Various studies have focused on attitudes, anxiety and mathematics 

achievement (Cheung, 1988; Gierl & Bisanz, 1995; Hannula, 2002; Thomas, 2000), 

and these shed some light in some key issues that are raised by Kilpatrick et al. (2001) 

on this strand. Moreover, one of the specific aims of CAPS outlined by DBE (2011) is 

that learners must develop ‘a spirit of curiosity and love for mathematics.’ (DBE, 2011: 

8). How then do learners develop the necessary dispositions that make them value 

and make sense of mathematics? Below are some studies that show how learners 

have developed dispositions.  

 

Gierl and Bisanz (1995) carried out a study to determine the existence of 

mathematics anxiety and attitudes among Grade 3 and 6 learners. The findings of 

their study revealed that learners become more anxious as they progress through 

their schooling. Furthermore, the researchers found that older learners show more 

positive attitudes towards mathematics. Another study by Cheung (1988) which was 

carried out in Hong Kong revealed that, if students perceive mathematics as useful in 

their daily lives, this enhanced learners’ consideration of mathematics as a creative 

subject. However, the study warned that positive attitudes cannot always determine 

mathematics achievement.  

 

A study conducted by Thomas (2000) determined the influences of educational 

productivity factors on mathematics achievement and attitudes among Grade 8 ethnic 

groups. There were eight productivity factors investigated: ability, motivation and 

attitude, quantity, quality, classroom, home, peers and use of out-of school. Some 

comprehensive results emerged from this study. (1) Asians and whites performed 

better in mathematics as compared to African Americans. (2) Optimisation of the 

productivity factors enhanced mathematics achievement and had little effect on 

attitude towards mathematics. (3) Quantity and quality, which focused on engaging 

learners with many tasks for problem solving had a significant effect on concept 

building. Such findings reveal that the time spent on mathematics tasks enhances 

their conceptions and hence stimulates their dispositions. 
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Hannula (2002) conducted an analysis of a case study of a lower secondary 

mathematics learner, Rita, to develop a framework on emotions, associations, 

expectations and values related to mathematics. The results of the study revealed 

that the framework was useful in describing attitudes towards mathematics and how 

it changes over time. This confirmed the findings by Gierl and Bisanz (1995) that, as 

learners progress in their schooling, their attitude towards mathematics improves. 

Other key findings were that a negative attitude can be a defence mechanism for 

positive self-concept and can be used as a coping strategy. This was seen when Rita 

kept on referring to a mathematics problem as being not useful to her life when she 

failed to solve it. 

 

Mueller, Yankelewitz and Maher (2011) carried out a study that examined 

commonalities in learning environment, classroom interactions and cognitive tools 

that enhanced positive dispositions. Their framework observed that key mathematical 

practices that developed positive disposition were, problem-solving, reasoning and 

proof, real-world connections, multiple representations and mathematics connections. 

Most of these are elements are the SMP which Kilpatrick et al. (2001) urged should 

be developed in order to support productive disposition. In their study, Mueller et al. 

(2011) justified the need to develop intrinsic motivation which they said it originates 

from learners’ interests and autonomy to a given task that allows them to be self-

reliant and make sense of their solution strategy. Such tasks allowed learners to 

demonstrate sense-making through higher order reasoning and to defend 

mathematical solutions. 

 

The results from the study by Mueller et al. (2011) revealed the following: (1) 

Learners developed confidence as they justified their solutions especially in the 

presence of their peer without the authority of the teacher. (2) Students developed 

some sense of ownership of such justifications (3) Motivation that was coupled with 

positive dispositions towards mathematics resulted in mathematical reasoning which 

enhanced understanding. (4) Learners relied on reasoning as opposed to memory of 

facts to convince their conceptions and that of other learners about what made sense. 



 

97 

 

Some important constructs emerge from this study, sense-making, confidence as well 

as enhanced understanding as key features of dispositions. 

 

Martin and Kasmer (2010) advocated for reasoning as a way of making sense. 

This justifies the view of Kilpatrick et al. (2001) that to develop productive disposition 

the other SMP must be fully developed. Martin and Kasmer (2010) described 

reasoning as a process of reaching a conclusion through evidence or preconceived 

assumptions. Furthermore, reasoning allows learners to formulate conjectures, justify 

their claims, make predictions and reach a meaningful generalisation. They described 

sense-making as the development of understanding of a mathematical concept or 

context through connecting that with existing knowledge. This is an element of 

conceptual understanding, and is one of the SMP. Reflecting on the strands of 

mathematical proficiency, Martin and Kasmer (2010) insist that for learners to make 

sense in mathematics, they must master conceptual understanding and adaptive 

reasoning.  

 

Lee and Chen (2015) carried a study with one hundred Grade 5 mathematics 

learners in Taipei. The purpose of the study was to investigate how manipulatives 

enhanced learning performance as well as attitude of fifth Grade learners towards 

mathematics. They referred to the attitude towards learning mathematics as: (1) 

learner’s perceptions of mathematics resulting from experimental teaching; (2) 

learner’s enjoyment of mathematics; (3) learner’s motivation to do mathematics; and 

(4) learners’ anxieties that resulted from studying mathematics. These were 

measured against basic flexible thinking skills and advanced thinking skills. The 

findings of their study revealed that learning with virtual manipulatives had the same 

learning effect on mathematics as physical manipulatives. Virtual manipulatives can 

increase learning enjoyment more effectively than physical manipulatives.  

 

Jones et al. (2008) discussed the utility of mathematics in the context of viewing 

mathematics as a second language. Although they acknowledged that mathematics 

is more than just a language, mathematics involves meaning-making of symbols that 

do not have the same flexible meaning as ordinary language. Jones et al. (2008) 

equated proficiency in the language of mathematics to the acquisition of the Polya’s 
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framework of problem solving: (1) understanding the problem; (2) devising a plan; (3) 

carrying out a plan; and (4) looking back. For the first step Jones et al. (2008) saw it 

as a stage where a novice learner the rules of the language (in this case mathematics 

language), the structure, definitions, reading of sentences in relation to a context. 

Jones et al. (2008) also suggest some proficiency levels that come as a result of 

learning mathematics language. These are: zero level of mathematics; at these level 

learners struggle to articulate basic mathematical conventions such as naming 

objects, mathematical argumentation and mathematics anxiety. The second is very 

limited mathematics; learners attempt conversations with fear, seldom initiate 

mathematical arguments and answer short phrased questions. Limited mathematics; 

learners easily respond to short phrased questions, cannot elaborate answers in 

thought provoking questions and seldom initiate mathematical conversations. Limited 

fluency in mathematics; here learners articulate mathematical phrases with ease, 

often initiate conversations and switch freely between languages used in 

conversations. Furthermore, fluency in mathematical language develops positive 

dispositions when learners freely articulate mathematics meaningfully.  

 

This section on SMP concludes by reflecting on a narrative by Wheeler (2001) 

on a concept of ‘Mathmatisation as a Pedagogical tool’. This is a relevant determinant 

of the notion of Kilpatrick et al. (2001) on productive disposition that it develops as a 

result of a mastery of the other four SMP. Wheeler (2001) refers to mathematisation 

as the processes that exist mentally and its product is mathematics and this comes 

with an understanding of these processes. The author located a mathematics activity 

within mental operations and took cognisance of some useful discursive practices 

within the process of mathematisation. Mathematisation is described as ‘putting a 

structure on a structure’.  The structure consists of holistic mathematics processes to 

mention a few; ‘language, notation, graphical representation and imagery.’ This is a 

process that involves awareness of the structure, getting along with the structure, 

formulating hypotheses concerning the structure, proving hypotheses of the structure 

as well as generating new ideas about the structure. Finally Wheeler (2001) 

summarises this concept as follows; 
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“1. The educator must be able to reorganise substantial portions of the content of the 

mathematics curriculum so that they can be mathematized. Anyone who has tried to make a 

mathematical film knows how the mathematical content has to be detached from its normal 

context and considered afresh to see how it might be apprehended 'from scratch'. 2. The 

educator must be able to select suitable 'proxy' experiences which indicate to the students how 

certain situations have been or could be mathematised. The example of the cube given earlier 

in this paper is an instance. History provides another resource- the teacher might reconstruct, 

for example, how Leibniz mathematised the problem of finding the sum of an infinite geometric 

series. 3. The teacher must be able to take advantage of the spontaneous events of the 

classroom that will occur when students are given the freedom to employ their own 

mathematising abilities. Indeed, this is a function that only the classroom teacher can perform. 

One of the best descriptions of the process by an aware teacher is given in Mathématiques sur 

mesure by Madeleine Goutard” (Wheeler, 2001: 52). 

 

Although this narrative by Wheeler (2001) is in the context of teaching, which is 

not the focus in the current study, it shed a great deal of light to the dispositions that 

may be observed in textual analysis of test questions as well as learners’ mathematics 

responses to those questions. Using this perception on pedagogy is useful for a 

critical analysis of learners’ responses that they exhibit in response to mathematics 

tests. 

 

Schoenfeld (2007) gave an illustration of what he called beliefs and dispositions 

by using an arithmetic problem from the 1983 National Assessment of Educational 

Progress (NAEP) as shown below: 

 

‘An army bus holds 36 soldiers. If 1128 soldiers are being bussed to their training site, how many 

buses are needed?’ (Schoenfeld, 2007: 69).  

 

According to Schoenfeld (2007), the solution to this problem is clear, dividing 

1128 by 36 the answer is 31 with a remainder of 12. This implies that 32 buses are 

needed to carry all soldiers. In 45000 students that responded to this problem, the 

results were as follows: 

 

‘29% gave the answer 31 remainder 12, 18% gave the answer 31, 23% gave the correct answer, 

32, 30% did the computation incorrectly’ (Schoenfeld, 2007: 69).  
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Reflecting on these results, it means that (70%) of all the students calculated 

correctly, however (23%) of the students rounded up correctly. The question that 

arises here is, how can (29%) of the total students (which is 10350 students) give an 

answer that the number of buses needed a remainder? What does a remainder mean 

when the context of the problem is buses? The experience of the researcher in school 

mathematics education both as a teacher and head of department, in the past gives 

an idea about the causes of this problem. Learners often believe that mathematics 

does not make sense to them and mathematics involves only working with symbols, 

then learners will always produce responses that do not make sense such as the 

remainder of buses. Hence learners’ beliefs about mathematics is essential and such 

believes are developed by learners in n their classroom learning experiences 

(Schoenfeld, 2007).   

 

The review of literature on productive disposition illuminates some constructs 

that the current study explores for data analysis and these are: (1) sense-making 

(using context, representations and reasoning to make sense of mathematics); (2) 

utility of mathematics (using mathematics to solve real-life problems; (3) valuing 

mathematics (usefulness of mathematics to solve complex problems); and (4) 

enhanced understanding (problems that need learners to persevere characterised by 

creativity and innovation). 

 

2.4 Conclusion 

 

In this chapter, the literature on systemic assessment, nationally, regionally and 

internationally was reviewed. Also, policy issues on systemic assessments have been 

set out as well as the cognitive levels in South African mathematics. Literature on 

calculating the Porter’s alignment index was reviewed. The SMP are adopted to be 

compatible with document analysis. The next chapter outlines the research methods, 

data collection, research process and data collection which have been done to 

respond to the purpose of the study. 
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3. CHAPTER THREE 

RESEARCH METHODOLOGY AND 

PROCEDURE 

 

3.1 Introduction 

 

The previous chapter reviewed the literature on systemic assessments and adapted 

a theoretical framework, the SMP. This chapter presents the research methods and 

design used to collect and analyse data. It begins with a comprehensive discussion 

of the research methods, followed by the sampling procedure and a narrative of the 

data collection and analysis process. The qualitative data collection and mixed 

methods data analysis within the exploratory sequential paradigm are explained. The 

research ethics, validation and verification of data are set out. Finally, the challenges, 

strengths and limitations of this study are presented. 

 

3.2 Research Methodology 

 

This study used a mixed methods research approach within the transformative 

paradigm (Creswell, 2014) to document epistemological obstacles that ANA poses to 

systemic testing in South Africa (AMESA, 2012; Graven & Venkatakrishnan 2013). 

The mixed methods approach integrates quantitative and qualitative approaches by 

simultaneously using both qualitative and quantitative data (Gay et al., 2014). The 

mixed methods approach was appropriate for this study to coherently address the 

epistemological obstacles posed by the Grade 9 ANA mathematics systemic tests as 

well as document learners’ responses to these tests (Harrits, 2011; Luyt, 2012). As 

described by Creswell (2014) mixed methods has a variety of designs, in this study I 

used the exploratory sequential design which begins with the process of gathering 

qualitative data to explore a phenomenon, followed by the collection of quantitative 

data that examines the patterns found in the qualitative data (Gay et al., 2014; 

McMillan & Schumacher, 2014). The research process in mixed methods happens in 

two phases (Creswell, 2014). 
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In the context of this study, the Grade 9 mathematics ANA question papers, the 

Grade 8 TIMSS 2011 question items as well as the learners’ responses to the 2014 

ANA test provided documents for an initial qualitative analysis. According to McMillan 

and Schumacher (2014), documents are records of events of the past which are either 

written or printed. In this study the documents took the form of the Grade 9 ANA 

mathematics question papers, Grade 8 TIMSS 2011 mathematics test items and the 

learners’ scripts.  

 

Firstly the Grade 9 ANA mathematics question papers were analysed using a 

theoretical framework developed from the SMP (Kilpatrick et al., 2001). These results 

were used to generate qualitative results. Secondly, the learner’s responses were 

analysed using codes and themes that came from the developed theoretical 

framework and were classified in four categories: correct, partially correct, no 

response and incorrect. Last, the qualitative results from the matrices of content and 

cognitive demands were analysed further to yield quantitative results.  

 

Document analysis approach was selected to develop coherent insight in the 

SMP that the Grade 9 ANA mathematics question papers examined as well as those 

that learners exhibited in response to ANA testing (Gay et al., 2014). The data from 

the aligning of the ANA with the TIMSS (Howie 2003), together with the data from the 

analysis of the question paper as well as the data from the learners’ responses 

allowed presented different perspectives of viewing epistemological obstacles that 

could have been experienced in the ANA testing. These were also viewed as 

alternative ways of reporting results of national systematic assessment results. 

 

3.3 Exploratory Sequential Design 

 

An exploratory sequential design was used (Creswell, 2014), where the first phase of 

collected qualitative data is followed by a second phase which collects quantitative 

data (Creswell, 2014). Gay et al., (2014) also explain that this design weights 

qualitative data more than quantitative data (Table 3.1). The exploratory sequential 

design is appropriate for this study because of the following. First, qualitative data 
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was generated from a thick description of SMP examined by ANA. Subsequently, the 

analysis of generated quantitative data, frequencies, means and mean deviations. 

Secondly, qualitative data came from learners’ responses to ANA questions. 

Subsequently, the analysis generated quantitative data, frequencies, means and 

standard deviations. Lastly, qualitative data was from a description of content and 

cognitive levels of ANA tests and TIMSS response items. Subsequently, the analysis 

generated Porter’s alignment index, means and mean deviations. The design is 

summarised in Table 3.1 

 

Table 3.1: A summary of the research design 

RESEARCH DESIGN 

Qualitative  Quantitative 

Part one Phase one 

From ANA questions code SMP 

tested, themes emerge.  

Builds 

to 

Part one Phase two 

Generate descriptive statistics, means and mean 

deviations to explore SMP examined by ANA and 

mathematics cognitive levels in three consecutive 

years. 

Part two Phase one 

Assess learners’ responses to find 

proficiency levels. 

Builds 

to 

Part two Phase two 

Generate descriptive statistics, means, mean 

deviations and standard deviations to explain 

proficiencies exhibited by learners in their 

responses to ANA. 

Part three Phase one 

Using content and cognitive levels 
in ANA and TIMSS develop 

matrices.  

Builds 

to 

Part three Phase two 

Calculate the Porter’s alignment index of ANA and 

TIMMS, generate descriptive statistics, means and 

mean deviations to explain content and cognitive 

levels in corresponding cells.  

 

3.4 Sampling Procedure 

 

The following sampling procedures were applied to address each research questions 

of the study: The first research question for the current study is: How are cognitive 

levels of mathematics tested by ANA reflective of SMP? Convenience sampling is a 

procedure that focuses on those who are available at a certain time (Springer, 2010). 

The 2012, 2013 and 2014 ANA Grade 9 mathematics test papers were available data 

(McMillan & Schumacher, 2014) hence the question papers were conveniently 
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sampled due to their availability. More specifically, the suggested answers in the 

marking guidelines were used as they provided various SMP tested by ANA. 

Subsequently, the suggested answers in the content areas were used as follows: 1) 

numbers, operations and relations (n = 48); 2) patterns, functions and algebra (n = 

73); 3) space and shape (n = 52); and 4) measurement n = 18 and data handling and 

probability (n = 22) The second research question; what levels of mathematical 

proficiency do learners’ exhibit in response to the ANA tests? When setting up the 

time lines for this study, the analysis of learners’ scripts was planned for the year 

2014. During this period the available learners’ scripts were the 2014 scripts hence I 

used convenience sampling. According to Creswell (2014), convenience is when a 

researcher samples respondents that are accessible at that time. Seven schools, in 

the Limpopo Province, Capricorn District, were accessible due to their location and 

so these schools were conveniently sampled. Among the seven schools that were 

sampled, n = 1250 scripts that had responses to most questions and were 

conveniently sampled for the purpose of analysis (Springer, 2010). Finally, three 

questions, i.e., question three, question six and question ten in the 2014 learners’ 

scripts, were purposively sampled, (Gay et al., 2014), due to their representativeness 

of the content in the 2014 ANA. The third research question for the current study is: 

How does the content and cognitive levels tested by ANA compare with TIMSS? Test 

papers that were readily available were the 2012, 2013 and 2014 (DBE, 2012a) and 

conveniently sampled. The TIMSS 2011 Grade 8 response items were conveniently 

sampled due to access having been granted (Creswell, 2014, McMillan & 

Schumacher, 2014). Table 3.2 provides a summary of the profile of the schools. 
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Table 3.2: Profiling of participating schools 

Profiling of schools accessed for the 2014 Grade 9 mathematics ANA scripts 

Schools School settings Script 
numbers 

Number 
of scripts 
sampled 

School A The school is in a suburb in Polokwane city, Limpopo Province. It 
is a government school formerly private school before1994. Staff 
members are predominantly black, with a few white and Indian.  

 
SA1-215 

 

   
215 
 

School B The school is in the Mankweng circuit 40km east of Polokwane 
City, Limpopo Province. 

 
SB1-212 

 

 
212 

 

School C The school is in the Bahlaloga circuit 40km west of Polokwane 
City, Limpopo Province. 

 
SC1-50 

 

 
50 

 

School D The school is in the Mankweng circuit 30km east of Polokwane 
city, Limpopo Province. The majority of the learners are Sepedi 

speaking with a few Tsonga. The staff is all black. 

 
SD1-189 

 

 
189 

 

School E The school is in the Mankweng circuit 34km east of Polokwane 
city, Limpopo Province. 

 
SE1-349 

 

 
349 

School F The school is in a suburb of Polokwane city, Limpopo Province. It 
is a government school built after 1994 during the democratic 

government.  

SF1-163 163 

School G The school is in the Koloti circuit 45 km east of Polokwane City, 
Limpopo Province.  

SG1-72 72 

Total   1250 

 

3.5 Assumptions of the Study 

 

Epistemologically and philosophically the researcher accepts that research is 

subjective and needs to be experienced, deduced and described, hence the current 

study adoption of the mixed method for this study. The current study is informed by 

the transformative paradigm in the context of the epistemological transformative 

assumptions. A transformative paradigm is a framework that allows researchers to 

prioritise addressing inequalities in society and the promotion of social justice 

(Mertens, 2010b). The epistemological assumptions are that, the relationship 

between the researcher and stakeholders is centred on the need to create accurate 

knowledge (Mertens, 2010a). Within the transformative paradigm, the epistemological 

assumptions are that this study must contribute substantially to change in national 

systemic assessment (Mertens, 2007). 
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Various studies on systemic assessments have reported that in South Africa, 

rich schools have the ability to produce numerate learners and rich parents afford 

quality education whilst poor schools struggle to produce numerate learners and this 

is where poor parents can afford to send their children (Howie, 2003 & 2004; Kotze & 

Strauss, 2006; Spaull, 2010). Furthermore, rich provinces such as Gauteng and 

Western Cape perform well in systemic assessments, internationally, regionally and 

nationally (DBE, 2012a, 2013b & 2014a; Howie, 2004; Spaull, 2010).  

 

This study proposes a different approach in reporting the results of national 

systemic assessment testing in South Africa. These issues are: (1) the use of SMP; 

(2) analysing the SMP that learner’s exhibit in response to the ANA tests; and (3) 

aligning the ANA with other systemic assessments such as the TIMSS, to view the 

content message that ANA pose. The assumptions of this study is that ANA examine 

a spectrum of knowledge, skills and values. These assumptions originate from 

philosophical assumptions on what mathematical proficiency is and how it can be 

tested as suggested by Schoenfeld (2007).  

 

3.6 The research Process 

 

The consideration of the research questions was planned systematically and 

according to the anticipated data.  

 

3.6.1 Data Collection  

 

Three sets of data were collected to respond substantially to the research problem. 

First, ANA question papers were available from the website of the DBE Three 

consecutive papers were accessed, the 2012 (n=59 questions), 2013 (n=62 

questions) and the 2014 (n=61 questions) Grade 9 ANA mathematics question papers 

(total N=182 questions). Second, the TIMSS 2011 Grade 8 mathematics test that had 

90 questions were accessed from the internet. Thirdly, the 2014 ANA mathematics 

learners’ scripts (n=1250) were accessed from sampled high schools in the Capricorn 

District, Limpopo Province. Only question three, six and ten were used in the analysis, 

as these were representative of the content covered in 2014 ANA (DBE, 2014a). The 
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exploratory design employed in this study meant the data was predominantly 

qualitative. Hence, in the context of the qualitative paradigm, there is a particular way 

of ensuring reliability and validity of instruments (Springer, 2010). Qualitative 

researchers often approach research in a consistent manner with other researchers, 

to ensure reliability (McMillan & Schumacher, 2014). In contrast, when ensuring 

validity, qualitative researchers use certain research procedures to ensure the 

accuracy of their findings (Creswell, 2014). One of those is triangulation which 

involves the use of a variety of procedures to explore a single phenomenon (Zohrabi, 

2013). Consequently, first, the data collected was secondary data and in addition, 

theory, SMP, had to be used to justify the conceptual analysis (Kimberlin & 

Winterstein, 2008).  

 

Researchers often select existing instruments that measure the current 

phenomenon that is being researched (Gay et al., 2014). As such, in the context of 

this study, secondary data was collected, and so most of the reliability and validity 

focused on the analysis. First, the table used to capture the codes of SMP in ANA 

questions were adapted from a study by Dhlamini and Luneta (2016). Second, the 

table used to capture learners’ responses to ANA was adapted from Luneta (2015b). 

Third, the tables used to document content and cognitive levels during the calculation 

of the alignment index were adapted from Porter (2002). To ensure validity, qualitative 

researchers often triangulate data from a variety of sources to confirm findings with 

similar results (Zohrabi, 2013). As such, in this study, data from the ANA questions, 

learners’ responses and the Porter’s alignment were triangulated. 

 

3.6.2 Data Analysis Strategies 

 

The process of data analysis started soon after the 2012, 2013 and 2014 ANA Grade 

9 mathematics tests and 2011 Grade 8 mathematics TIMSS response items were 

accessed. Firstly, the analysis of the 2012, 2013 and 2014 ANA question papers 

started after accessing the question papers. Secondly, data analysis continued when 

scripts were accessed from the schools. Lastly, the alignment index was calculated 

between the 2012 Grade 9 ANA mathematics test and the Grade 8 mathematics 

TIMSS response items, the 2013 Grade 9 ANA mathematics test and the Grade 8 
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mathematics TIMSS response items and the 2014 Grade 9 ANA mathematics test 

and the Grade 8 mathematics TIMSS response items. Documents as records of 

events were reproduced either by individuals or groups (Cohen, Manion & Morrison, 

2011). The trends and patterns that exist in documents are interpreted in a process 

called document analysis (Creswell, 2014). 

 

 ANALYSIS OF ANA QUESTION PAPERS 

 

The analysis of the ANA question was to generate data that responded to the 

following research question: How are cognitive levels of mathematics tested by ANA 

reflective of SMP? First, the ANA questions for 2012, 2013 and 2014 were organised 

into five content areas as stipulated in the CAPS document (DBE, 2011) and these 

were: 1) Numbers, operations and relations; 2) Patterns, functions and algebra; 3) 

Space and shape; 4) Measurement; and 5) Data handling and probability.  

 

Second, SMP were explored in the ANA questions and subsequent questioning 

was coded as per the emerging SMP from each question (see Table 3.3 for codes). 

Consequently, Table 3.3 is a synopsis of the generic codes that emerged. 

Subsequently, specific codes that emerged from the content areas of ANA and how 

these emerged are outlined in the next chapter.  

 

Third, these codes were documented in strands which was informed by the 

theoretical framework, SMP, that they are intertwined, interconnected, inseparable 

and interwoven (Kilpatrick et al., 2001). Axial coding was followed which allowed this 

researcher to categorise the emerging codes in strands that outline coherent 

mathematical activity in each question item (Gibbs, 2012). 

 

Last, the codes were categorised according to their relationship into themes. 

Subsequently, axial coding allows emerging codes to be matched against some 

hypotheses, in this case SMP. Hence, the codes in Table 3, the code SP captured 

interconnected codes for categories of the following themes: simple procedures, SP 

for coding of categories for procedures that neither tested computations nor 

algorithms (Schoenfeld, 1985) for the theme; procedural fluency, PF1-2 denoted 

coding for categories of fluency in computations and sequence of steps (NCTM, 2000)  
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for the theme, procedural fluency, CU1-2 for categories of comprehending concepts, 

computations and algorithms the theme, conceptual understanding, SC1-3 categories 

for problem formulation, problem representation and problem solving (Granberg, 

2016; Land, 2017; Stein, Grove & Henningsen, 1996), for the theme (strategic 

competence), AR1-3 categories for logical thought, explanation and justification for 

the theme adaptive reasoning. Most studies (Dhlamini & Luneta, 2016; Graven & 

Stott, 2012; Maharaj et al., 2015) used the first four SMP except for one study 

(Graven, 2012). However, that study was limited to mathematics questions that 

resulted in the development of dispositions. This study closes that gap by using 

learners’ responses to examine productive dispositions that learners develop as they 

respond to sampled ANA question. The categories of sense making, utility of maths 

and valuing mathematics emerged from the analysis of ANA question and were coded 

as PD1-3, for the theme productive disposition. Subsequently, these categories were 

coded separately for the identified content areas due to the conceptualisation by 

Kilpatrick et al. (2001) conception that the strand productive disposition results from 

learners’ proficiency from the other strands. Conversely, learners who are not 

proficient in the other strands do not develop productive disposition (Graven, 2012). 

To respond succinctly to the first research question, the emerging themes were 

matched with the NAEP to show clearly the mathematics cognitive levels and levels 

of complexity (Berger, et al., 2010) posed by the ANA testing in the three consecutive 

years.  
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Table 3.3: Generic codes for mathematical proficiency 

Code Meaning 

SP The question requires the learner to write the procedure which requires no 
calculations (simple procedure). 

PF1  The question requires some systematic computations to reach the required answer 
(computation).  

PF2 The question requires a sequence of steps of computations, procedures and relations 
(algorithm).  

CU1 The question requires learners to comprehend a variety of mathematical concepts to 
reach the required answer (conceptual connections). 

CU2 The question comprises of two computations, first compute a value that is 
subsequently used in the computation required by the question (computational 
connections)  

SC1  The question used familiar problems for learners in the grade (routine procedures). 

SC2 The question used a diagram or context to represent concepts, procedures and 
relations (provision of multiple representations).  

SC3 The question requires learners to recall already known procedures, concepts and 
relations to solve the problem (reproductive thinking). 

AR1  The question allows learners to give reasons for their answers, which gives them the 
opportunity to reflect on their solutions and navigate through concepts procedures 
and relations (mathematical reasoning). 

AR2 The question allows learners to make inferences that are subject to acceptance or 
rejection (conjecturing). 

AR3  The question allows learners to invent suitable commonalities of mathematical 
relations to make a proof (an analogy). 

PD1  A mathematical problem is useful to make sense through the use of diagrams and 
representations (sense making). 

PD2 Using mathematics to solve real life problems (utility of mathematics). 

PD3 A mathematical problem is useful and important in solving a reasoning or thought 
provoking problem, which is regarded as a complex problem (valuing mathematics). 

 

 SCRIPT ANALYSIS 

 

The three questions that were sampled from the 2014 Grade 9 ANA mathematics 

questions were analysed using document analysis and the instrument used was 

adapted from Luneta (2015). There were a total of n=1250 scripts that were analysed 

by exploring SMP exhibited by learners and categorising them in the following four 

variables; correctly answered, partially answered, incorrectly answered and no 

response. The assumption of the current study was as follows. (1) A correct response 

in line with the marking guidelines is enough to justify that the learner was proficient 

in the question and the learner fully exhibited the SMP that the ANA posed. (2) A 

partially answered question only justifies that a learner still requires additional 

assistance in the SMP that the ANA examined. (3) An incorrect response is enough 

to justify the fact that the learner is not proficient in the SMP that the ANA examined. 

(4) A no response may mean that the learner skipped the question because of lack of 
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proficiency in the SMP that the ANA examined but on the other hand, a no response 

might also be as a result of not finishing answering the questions which may be the 

result of time allocated for the test or slow pace of a learner.  

 

The current study uses the standard deviation, mean bar graph and radar to 

present findings. The use of these descriptive statistics to present and interpret data 

has been widely accepted in research (Gorard, 2005; Lathrop, 1961; Saary, 2008). 

Bar graphs are often limited to displaying frequencies (Saary, 2008). However, the 

standard deviation is useful in instances where there is a need to measure variance 

of data from a comparable point (Lathrop, 1961). The use of mean deviations has 

more advantages than the standard deviation (Gorard, 2005) as it easier to 

understand and suitable for distributions that may have minute errors. As such, the 

trustworthiness of using radar has been documented and justified in terms of its 

competence, popularity, recency, corroboration and proximity (Nurse, Agrafiotis, 

Creese, Goldsmith & Lamberts, [Sa]). Additionally, radar are useful in presenting 

multivariate data (Feldman, 2013; Saary, 2008). 

 

 CALCULATING THE ALIGNMENT INDEX 

 

In calculating the Porter’s alignment index, firstly, there was a need to analyse the 

cognitive levels as well as the content messages conveyed by the Grade 9 

mathematics ANA test papers and the 2011 Grade 8 mathematics TIMSS test 

response items. Secondly, matrices were formed and the hits in the cells were 

documented using a protocol. This was done to calculate the Porter’s alignment index. 

The question totals in the ANA papers were: cell Xi the 2012 matrix with n=59 

questions; cell Xj the 2013 matrix with n=62 questions; cell Xp the 2014 matrix with 

n=61 questions; and cell Yi, the TIMSS matrix with n=90 questions. These matrices 

are shown in Chapter 4, the presentation of findings. 

  



 

112 

 

3.7 Ethical Considerations 

 

Research that engages human participants has some methodological as well as 

ethical challenges (Creswell, 2014). The current study involved schools and learners, 

and so procedures used to collect and analyse data had to be ethical. Permission was 

sought and received from the Limpopo Department of Basic Education (Appendix C). 

The sampled schools were approached before accessing the learner’s scripts, four 

principles of research ethics were discussed with the principals, informed consent, 

confidentiality, trust and, risks and benefits (McMillan & Schumacher, 2014). Detailed 

information on these principles is outlined below. 

 

3.7.1 Informed Consent 

 

In addressing ethical issues, Bournot-Trites and Belanger (2005) pointed out that 

participants need to be informed about the nature of the study so that they decide on 

their participation (DuBois, 2002). Firstly, in the current study, the question papers 

were available on the website of the DBE, hence copyrights were upheld. One of the 

copyrights was to use the question papers for educational purposes and not for 

business purposes (McMillan & Schumacher, 2014). The current study is educational 

and not meant for business. Secondly, when accessing learners’ scripts from schools, 

I first met with the principal in each school and explained that the analysis of learners’ 

responses to ANA was meant to view learners’ responses to the test and that the 

school had the right to withdraw from participation. 

 

3.7.2 Confidentiality, Anonymity and Safety in Participation 

 

Participants in a research study expect that information given to the researcher must 

be treated with confidentiality (Gay et al., 2014). To ensure confidentiality, it is 

essential to keep names of learners in the scripts concealed throughout the study to 

ensure their anonymity in participating in the study (McMillan & Schumacher, 2014). 

In the current study, fictitious names of schools as well as learners were used. 

Furthermore, I notified the participants about the research ethics that the University 

of Limpopo uphold. 
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3.7.3 Trust 

 

Researchers often have the obligation to treat participants with respect and the 

expectation is that the researcher exercise intrusiveness (Creswell, 2014). In the 

context of the current study, I should build trust with the principals of participating 

schools that the scripts were safe during the analysis. Furthermore, I communicated 

the research process and the reporting of the anticipated results to the principals.  

 

3.7.4 Risks and Benefits 

 

The participants in a study have reasonable expectation that they must be safe and 

not be harmed as a result of participation (DuBois, 2002). Additionally, participants 

expect to benefit from the results of a research study (Bournot-Trites & Belanger, 

2005). Subsequently, the results of this study are not meant to name and shame 

participating schools. Consequently, the results will assist the DBE with data on the 

effectiveness of ANA. Finally, I informed the schools that after the study has been 

finished, the final research report will be available at the Limpopo Department of 

Education. 

 

3.8 Quality Criteria of the Study  

 

Various measures were undertaken in the current study to ensure that the results 

would be trustworthy. In this instance, I used several measures to such as, using 

available data, adopting research instruments and maintaining the required ethical 

standards for carrying research with humans. All these elements of the current study 

are contained in what Creswell (2014) calls approaches to qualitative study and these 

are, credibility, transferability, confirmability and dependability. Below, I elaborate on 

these approaches and how the current study engaged within its context. 

 

When ensuring credibility, the researcher determines rich accounts of the 

research process by gathering different types of data for the purposes of triangulation 

(Morrow, 2005). A series of processes were undertaken to triangulate 
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methodologically to ensure that the data were valid. Firstly, through the use of SMP, 

qualitative data was generated in both the analysis of ANA questions and learners’ 

responses. Secondly, the qualitative data was explored further using descriptive 

statistics, means, mean deviations and standard deviations. Lastly, when calculating 

the Porter’s alignment index, a question by question analysis of the ANA question 

papers as well as the Grade 8 TIMSS question paper was undertaken to generate 

qualitative data. Subsequently, the qualitative data was explored to calculate the 

Porter’s alignment index that was interpreted using descriptive statistics, means and 

mean deviations (Porter, 2002).  

 

Transferability refers to strategies followed by the researcher follow to ensure 

that generalisations are made on a subject (Krefting, 1991). The current study, 

followed mixed methods in the context of the exploratory design, meaning it is 

dominated by qualitative data. Qualitative research uses a small sample. 

Generalisation is not the focus and in-depth understanding of the phenomenon is 

paramount (Creswell, 2014). Therefore, it is safe to report that the current study is 

more descriptive in nature and the small sample used, especially the learner’s scripts 

did not warrant generalisations. Hence the current study does not ensure 

transferability. 

 

Dependability refers to the succinct research process to make it consistent over 

time and with various researchers (Morrow, 2005). This study ensured dependability 

by the application of the audit trail through rigorous explanation of the coding of data 

and the emerging categories and themes using SMP. As such, the process ensured 

that the findings maintained internal validity due to the low inference descriptors 

shown in the coding process. 

 

Confirmability refers to the inference that research is never objective but rather 

subjective in terms of the situation under inquiry and avoidance of researcher bias 

(Hofstee, 2015) as the means of maintaining internal validity. One way of avoiding 

bias (Gay et al., 2014) is to be impartial as much as possible during the data collection, 

analysis and interpretation. In the context of this study, first, most of the instruments 

were adapted from previous studies (Dhlamini & Luneta, 2016; Luneta, 2015b, Porter, 
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2002). Second, there was rigorous use of SMP, the theoretical framework, in the 

instrumentation and when coding question papers and learners’ responses to make 

the findings acceptable.  

 

3.9 Challenges and Strengths of this Study 

 

There were various challenges faced that I faced in the current study. Firstly, in terms 

of the research methods, the challenge was on the development of instruments for 

document analysis. Secondly, data collection was characterised by many problems. 

Most schools that were initially sampled could not give the current researcher access 

to the ANA scripts, citing reasons of scripts being lost or disposed of already. In some 

of these cases, it was obvious that the schools were simply refusing access. Thirdly, 

during data analysis some learners’ responses required further information from the 

learners. Since the ANA was written in 2014, it was impossible to locate and interview 

learners who wrote the test. Lastly, the topics examined in Grade 9 mathematics ANA 

have not been researched which means there is dearth of literature. 

 

The strength of the study lay in the contribution in the topic as follows; the model, 

adapting the SMP, reporting using proficiency levels and the methodologies used. 

Also, the current study adapted SMP and made them to be compatible with document 

analysis. Additionally, the current study reported learner achievement in Grade 9 ANA 

using proficiency levels instead of mere aggregated scores. Finally, the current study 

interpreted its findings from two mixed methods (Creswell, 2014). According to Luyt 

(2012) and Harrits (2011), mixed methods research is gaining popularity due to the 

variety of topologies it employs. 
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3.10 Conclusion 

 

The research methodology, research design, data collection, sampling and research 

process have all been addressed in this chapter. Additionally, the chapter outlined 

research ethics that the researcher upheld during the research process. Finally, the 

quality criteria as well as challenges and strengths of the current study have been 

ascertained. The next chapter presents the findings of the current study and 

furthermore, the results are interpreted.  
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4. CHAPTER FOUR 

PRESENTATION AND INTERPRETATION OF 

FINDINGS 

 

4.1 Introduction 

 

The previous chapter outlined the research process, design and methodology. 

Additionally, a detailed account of data collection and analysis was also outlined. 

Subsequently, this chapter presents the findings of the current study and its 

interpretation. The literature is used to discuss findings. 

 

4.2 Results and Discussion for ANA Question Papers  

 

The question papers were arranged in content areas for the purpose of exploring SMP 

that the questions examined. Such content areas were: 1) Numbers, operations and 

relations; 2) Patterns, functions and algebra; 3) Space and shape (geometry); 4) 

Measurement; and 5) Data handling and probability. Mathematical content is the core 

of all assessment, testing what the students learn (Greenleess, 2011). Subsequently, 

mathematical content forms the fundamental basics for what learners are taught 

throughout their schooling and this is often regarded as standards used by parents to 

determine progress of their children achievement (NCTM, 2000). In this analysis, the 

suggested answers in marking guidelines were used to explore SMP coherently in 

answers and alternative answers. The SMP that emerged from the suggested 

answers to ANA questions were coded (see Table 3.3) and from the resultant codes, 

categories of SMP were clustered to document themes of SMP that were reflective of 

mathematics cognitive levels. Subsequently, axial coding was employed to classify 

the emerging codes in strands that outline coherent SMP in each ANA question 

(Gibbs, 2012). To manage the coding, and abide by the notion on SMP raised by 

Kilpatrick et al. (2001), that SMP are intertwined, interconnected and interwoven, the 

codes were first categorised as procedural and conceptual. Further, classification of 
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the codes yielded themes. Below the findings are presented for the analysis of 

question papers and the succinct discussion using literature and the theoretical 

framework, i.e. the SMP. 

 

4.2.1 Numbers, Operations and Relations 

 

This content area, numbers, operations and relations focuses on mathematical 

representation and the use of models for quantity, tallying, magnitude, order and 

approximation of calculations (Greenleess, 2011). As an evaluative assessment, ANA 

must provide useful data to gauge how curricula implementation is succeeding in this 

discourse (DBE, 2012a; Graven & Venkat, 2014). The results below on the analysis 

of ANA question papers provide an outline on basic numeracy proficiencies. 

 

The use of SMP in the analysis of ANA points out that SMP are intertwined, 

interconnected and interwoven as claimed by Kilpatrick, et al. (2001). Earlier, 

research (Dhlamini & Luneta, 2016) pointed out that SMP are divided into three 

categories which are: 1) Knowledge (procedural fluency and conceptual 

understanding); 2) skills (strategic competence and adaptive reasoning; and 3) values 

(productive disposition). First, in this analysis I categorise the emerging SMP using 

knowledge, procedural and conceptual (Table 4.1). Second, skills required to answer 

the questions are coded with the relevant knowledge as pointed out by Khashan 

(2014) that skills are normally embedded in the knowledge. As such the codes appear 

in strands for example, PF1-SC1-SC3 (see Table 4.1). The code PF1 (as explained 

in Table 3.3) depicts procedural knowledge posed by the question and the 

subsequent codes (SC1 & SC3) this explain the nature of the problem and the 

problem solving strategy required to solve the problem. These codes were placed as 

chains to show that they are connected and intertwined. In following this trend in the 

analysis, three categories emerged in the exploration of SMP in this content area, and 

these were: 1) simple procedures, 2) computations, and 3) algorithms 
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 SIMPLE PROCEDURES (SP) 

 

Some mathematics questions require learners to write procedures that neither 

demand computations nor algorithms, just recall and write the procedure (NCTM, 

2000). Such procedures lack fluency. The NCTM (2000) describes fluency as the 

ability to execute procedures and algorithms accurately, appropriately and efficiently. 

Consequently, in this analysis, procedures that emerged with these qualities in this 

content area, were categorised as simple procedures (see Table 4.1).  

 

Table 4.1: Codes of SMP in Numbers, Operations and Relations 

ANA examination 
questions 

Codes of SMP in Numbers, Operations and Relations 

 Procedural Total 

2012 ANA 2SP-SC1-SC3 
1PF1-SC1-SC3 

5PF1-SC1-SC2-SC3 
4PF2-SC1-SC2-SC3 

12 

2013 ANA 2SP-SC2-SC3 
3PF1-SC1-SC3 

4PF2-SC1-SC2-SC3 

9 

2014 ANA 3SP-SC1-SC3 
1SP-SC1-SC2-SC3-AR1 

6PF1-SC1-SC3 
7PF1-SC1-SC2-SC3 

17 

Totals 
Percent 

48 
100 

48 
100 

 

There were two categories of simple procedures in the ANA questions in this 

content area which were: 1) those coded SP-SC1-SC3; and 2) SP-SC1-SC2-SC3-

AR1. An example of a simple procedure in the first category of ANA questions is 

question 2.1 in the 2012 ANA. The question is as follows: “write 0.00000356 kl in 

scientific notation” (DBE, 2012c: 5), one of the two coded SP-SC1-SC3 in the 2012 

ANA (Table 4.1). The code ‘SP’ entails that this question required the use of the rule 

of writing numbers in scientific notation as “3.14×10-6” which does not require a 

computation or algorithm. The two additional codes, SC1 & SC3, for the code ‘SC1’, 

the question requires familiar knowledge to Grade 9 of converting to scientific notation 

(DBE, 2011). Subsequently, the code ‘SC3’ depicts that the question tested a 

reproduction of number conversion to scientific notation (DBE, 2011). 
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An example of a question coded in the second category of simple procedure is 

question 8.4 in the 2014 ANA. The question is as follows; 

 

“Study the table below 

The length of a side of a square in cm 2 3 4 

Area of the square in cm3 4 9 16 

Is this an example of a direct or indirect proportion? Give reasons for your answer” 

(DBE, 2014b: 12) 

 

This question was coded SP-SC1-SC2-SC3-AR1 (Table 4.1), a simple 

procedure, which, additionally to the first category, are the codes, “SC2 and AR1”. 

The code ‘SC2’ refers to the use of the table to assist in sense making. However the 

table does not affect the difficulty of the question. The code ‘AR1’ refers to inferences 

that need to be made regarding the proportion (a conjecture). These inferences and 

reasons may require approval for confirmation as true (Amir-Mofidi et al., 2012). 

 
 COMPUTATIONS (PF1) 

 

Computational fluency refers to accurate, efficient, and flexible consolidated 

mathematical computations (Russell, 2000). Subsequently, fluency in computations 

involves being fluent in basic operations such as addition, subtraction, multiplication 

and division, using rules and procedures in a particular content area (Schoenfeld, 

1985). According to Kilpatrick et al. (2001), computational fluency is a category of 

procedural fluency. 

 

There were two categories of computations that emerged from the analysis of 

ANA questions. First, there was a computation that was coded PF1-SC1-SC3 (Table 

4.1). An example was question 2.2.3 in the 2014 ANA as follows: “
3×59

57
”, source (DBE, 

2014b: 5). The question needed computation using laws of exponents (PF1), the code 

‘SC1’, depicted that the question was familiar to Grade 9 and the code ‘SC3’ coded 

the recall of known laws of exponents. 
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 Second, there was a category of computations that were coded PF1-SC1-SC2-

SC3 for routine computations. An example of category question 6.1 was as follows; 

“How long will it take to travel 432 kilometres at an average speed of 96 kilometres 

per hour?” (DBE, 2013c: 10). The code ‘PF1’ refers to the computation of time using 

the given distance and speed. The code ‘SCI’ shows that the question is familiar in 

the grade and subsequently, the code ‘SC3’ shows that the question demands the 

recall of knowledge and the formula for calculating speed, then substitute given 

values. The additional code ‘SC2’ shows that the question used the context of 

distance, speed and time for the utility of mathematics to solve a real life problem as 

it allowed learners to extract mathematics from a, situation (Lee & Chen, 2015) and 

this did not have an effect on the complexity of the problem.  

 

 ALGORITHMS (PF2) 

 

An algorithm must be characterised by accuracy and generality (Bass, 2003). For 

accuracy, the algorithm must always produce the solution when correctly used. 

Subsequently, for generality, the question must be generic, meaning it must compute 

any class of the problem (Bass, 2003). There are other desirable qualities of an 

algorithm as follows: for the algorithm to be used by a machine it keep track with 

computation speed, which posits efficiency. However, since most mathematical 

problems are solved by humans, algorithms need to be less prone to error when used 

effectively (easy to use) (Russell, 2000). Additionally, they need to be transparent, 

meaning, the steps involved in solving the problem must advance calculations of the 

required solution (Bass, 2003). There was one category of algorithms coded PF2-

SC1-SC3 that emerged in the 2012 and 2013 ANA questions during the analysis 

using SMP (Table 4.1). An example is question 6.3 which was as follows; “Calculate 

simple interest on R3500 invested at 6% per annum for 3 years.” (DBE, 2013c: 10).  

This question requires substitution in the formula for simple interest to compute the 

value of the simple interest (PF2). This formula is generic such that it may compute 

any value of simple interest (generality). Subsequently, the problem is routine (SC1) 

and requires the reproduction of knowledge of calculating simple interest (SC3). As a 

consequence, when simple interest is computed correctly (Bass, 2003), the desired 

solution will always be reached (accuracy). Hence this question meets the first two 
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qualities for it to be an algorithm and test procedural fluency (Kilpatrick et al., 2001). 

Additionally, other desired qualities of an algorithm, the computational speed must be 

fast, as is in this algorithm (efficiency), and then it may be programmed in machines 

(NCTM, 2000). And, since the algorithm must be used and learned by humans, (Bass, 

2003) its effective use of calculating simple interest does not lead to high frequency 

of error (ease of use), and the steps of the problem advance calculations of simple 

interest (transparency).  

 

4.2.2  Patterns, Functions and Algebra 

 

This content area refers to functions and relations applied to routine and mathematical 

figures, patterns in numerical and spatial, and overall forms (procedures, formulae, 

tables, graphics, equations and equivalences) conveyed using words, symbols or 

figures (Greenleess, 2011; Harel, 2017). 

 

Again, the analysis in this content area focused on the exploration of SMP that 

the ANA tests examined in three consecutive years, 2012, 2013 and 2014. 

Subsequently, in this content area the mathematics tested by ANA as explored, was 

coded in strands. The use of SMP points out that SMP are intertwined, hence the 

codes appear in strands (Table 4.2). Using knowledge to manage the analysis, three 

categories, 1) simple procedures, 2) computations and 3) algorithms, as coded, 

emerged from the exploration of SMP from the ANA questions. 

 
 SIMPLE PROCEDURES (SP) 

 

In this content area, simple procedures have emerged from the analysis of ANA 

questions. As stated in the previous content area, simple procedures tested only a 

quick recall and mention of procedures without computations or algorithms, hence 

again they were categorised as simple procedures. In patterns, functions and algebra, 

there were three categories of simple procedures that emerged from the analysis and 

were coded, SP-SC1-SC3, SP-SC1-SC2-SC3 and SP-SC1-SC3-AR1 (Table 4.2). 

For the first category, an example of that was coded SP-SC1-SC3 is question 3.1 

from the 2013 ANA. The question was as follows; “Factorise fully 6𝑎3 − 12𝑎2 + 18𝑎” 
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(DBE, 2013c: 7). The question is a familiar factorisation (SC1) which required the 

recall of knowledge of algebraic factors (SC3). There were no computations in finding 

the factors or the use of an algorithm (SP).  

 

Table 4.2: Codes of SMP in Patterns, Functions and Algebra 

ANA examination 
questions 

Codes of SMP in Patterns, Functions and Algebra  

 Conceptual Procedural Total 

2012 ANA 2CU1-SC1-SC3 13SP-SC1-SC3 
1SP-SC1-SC2-SC3 
12PF1-SC1-SC3 
1PF2-SC1-SC3 

29 

2013 ANA 3CU1-SC1-SC3 
 

 

6SP-SC1-SC3 
1SP-SC1-SC2-SC3 
1SP-SC1-SC3-AR1 
1SP-SC1-SC3-AR2 
7PF1-SC1-SC2 
2PF1-SC1-SC2-SC3 
1PF2-SC1-SC3 

22 

2014 ANA 8CU1-SC1-SC3 14SP-SC1-SC3 
1SP-SC1-SC3-AR1 
2SP-SC1-SC2-SC3 
8PF1-SC1-SC3 
1PF1-SC1-SC2-SC3 
1PF2-SC1-SC3 

35 

Totals 
Percent 

13 
15.1 

73 
84.9 

86 
100 

 

For the second category, an example that was coded SP-SC1-SC2-SC3 is 

question 7.1.1 which had an additional ‘SC2’ code and was as follows; “Write down 

the coordinates of the points A,B and C in the table.”   DBE, 2013c: 11). The table 

and the graph were given (SC2), but no computations were required, just reading 

from the graph (SP) and the graph was familiar to the grade (SC1) which required 

learners to recall of knowledge of linear functions (SC3). 

 

For the third category, an example was question 5.2 from the 2013 ANA, coded 

SP-SC1-SC3-AR1 (Table 4.2), which was as follows: “Write down the general term 

Tn of the above sequence.” (DBE, 2013c: 9). For learners to write the general term of 

the sequence, they do not need computations (SP), the question is routine (SC1) and 

requires recall of knowledge of sequences (SC3). However, writing the general term 

needs learners to base reasoning on the given sequence (AR1). 
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 COMPUTATIONS (PF1) 

 

Again in this content area computations emerged in ANA questions, a category for 

procedural fluency (Kilpatrick et al., 2001). Consequently, these computations are in 

number patterns, algebraic expressions, equations and graphs. There were two 

categories of computations that emerged during the analysis of ANA questions and 

were coded PF1-SC1-SC3 and PF1-SC3-SC2-SC3 (Table 4.2). An example of the 

first category is question 5.2.2 in the 2012 ANA which was coded PF1-SC1-SC3 and 

the question was as follows: “The lines intersect at T. Show by calculation that the co-

ordinates of T are 𝑥 = 1 and 𝑦 = 1 or (1; −1).” (DBE, 2012c: 12). This question is a 

follow-on from the graph drawn in question 5.2.1 (SC2). The solution requires learners 

to compute the co-ordinates of the point of intersection (PF1) by equating given 

equations (SC1) to show knowledge of intersecting lines (SC3) 

 

An example of the second category is question 7.2.1 in the 2013 ANA which was 

as follows: “Draw the graphs defined by 𝑦 = −2𝑥 + 4 and 𝑥 = 1 on the given set of 

axes. Label the graph and clearly mark the points where the lines cut the axes.” (DBE, 

2013c: 12). The solution to this problem requires learners to write the domain (x co-

ordinate) for both functions then compute (PF1) the range (y-co-ordinates) of the 

given equations (SC1) using knowledge of linear equations (SC3). Subsequently, 

using those values, draw the graphs (SC2). 

 

 ALGORITHMS (PF2) 

 

In patterns, functions and algebra, there were questions that had a sequence of steps 

with specialised qualities of an algorithm (Bass, 2003). An example was question 4.4 

in the 2012 ANA which was coded PF2-SC1-SC3. This question follows on from the 

conjecture in question 4.3 and using that conjecture is generic in computing any 

number of terms (generality). When correctly used it will always produce the desired 

number of terms (accuracy), then it qualifies as an algorithm (PF2). In addition, 

effective use of the conjecture may not lead to high frequency of error (ease of use) 

because it requires the reproduction of known calculations of required term (SC3). 

The familiar steps (SC1) advance calculations of the required term (transparency). 
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Hence it may be used by humans. Last, the algorithm is easy and fast to compute the 

required term (efficiency) then it may be programmed in machines.  

 

 CONCEPTUAL CONNECTIONS (CU1) 

 

In this content area, conceptual connections that emerged from the analysis refers to 

a connection of concepts in a single ANA question (NCTM, 2000). Concepts are 

discursive meanings that learners ascribes to a mathematical term (Khashan, 2014). 

As a consequence, for learners to be proficient in mathematical concepts, they need 

to exhibit quality connections and in the conceptual aspect of mathematics (Mhlolo et 

al., 2012; Mwakapenda, 2008). There was one category of conceptual connections, 

coded CU1-SC1-SC3 (Table 4.2) that emerged from the analysis of the 2012, 2013 

and 2014 ANA questions in this content area and an example is question 3.3 from the 

2014 ANA which was as follows: “Simplify each of the following expressions. The 

denominators in the fractions are not equal to zero. 
𝑥2−4𝑥

𝑥2−2𝑥−8
.” (DBE, 2014b: 6). The 

solution to this question required learners to factorise (SC3) a familiar (SC1) 

numerator which was a binomial, factorise a familiar denominator to Grade 9 (DBE, 

2011) which is a trinomial and divide like terms, three distinct concepts comprehended 

(CU1) in one problem (Kilpatrick et al., 2001). 

 

4.2.3 Space and Shape (Geometry) 

 

This content area, geometry requires the ability to analyse features of geometric 

figures and make mathematical inferences about the geometric relationship, and use 

visualisation, spatial reasoning, and geometric modelling to solve related problems 

(DBE, 2011; NCTM, 2000). Geometry is a regular area of mathematics for the 

advancement of learners’ reasoning and proof skills (Greenleess, 2011: Otten, 

Bleiler-Baxter & Engledowl, 2017). 

 
In this content area, again there is the use of SMP which posits that SMP are 

intertwined (Kilpatrick et al., 2001) hence, the codes are represented in strands (Table 

4.3). Two categories of SMP emerged: 1) simple procedures, and 2) computations. 

These are explored with illustrations below. 
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Table 4.3: Codes of SMP in Geometry 

ANA examination questions Codes of SMP in Space and Shape (Geometry) 

 Procedural Total 

2012 ANA 2SP-SC1-SC3 
2SP-SC1-SC2-SC3 

1SP-SC1-SC2-SC3-AR2 
1SP-SC1-SC3-AR1 

6SP-SC1-SC2-SC3-AR3 
3PF1-SC1-SC2-SC3 

7PF1-SC1-SC2-SC3-AR1 

22 

2013 ANA 6SP-SC1-SC2-SC3 
5SP-SC1-SC2-SC3-AR1 
2SP-SC1-SC2-SC3-AR3 

1PF1-SC1-SC3 

14 

2014 ANA 5SP-SC1-SC3 
4SP-SC1-SC2-SC3-AR1 
4SP-SC1-SC2-SC3-AR3 
3PF1-SC1-SC2-SC3-AR1 

16 

Totals 
Percent 

52 
100 

52 
100 

 

 SIMPLE PROCEDURES (SP) 
 

In this content area, simple procedures have emerged from the analysis of ANA 

questions. As stated in the previous content areas, simple procedures tested only a 

quick recall and mention of procedures without computations or algorithms, hence 

again they were categorised as simple procedures. There were six categories of 

simple procedures in geometry. The first category is coded SP-SC1-SC3, and an 

example is question 9.1.1 from the 2014 ANA which was as follows; “𝐷̂ and 𝐹̂ are 

complementary angles if_______” (DBE, 2014b: 13). The question requires learners 

to recall knowledge of complementary angles (SC1) and state that their sum is 900 

(SC3) without computations (SP). 

 

The second category is coded SP-SC1-SC2-SC3 An example is question 9.2 

from the 2013 ANA and phrased as follows; “Write down the coordinates of 𝐵′, the 

image of B” (DBE, 2013c: 17). This question required learners to read from the graph 

(SC2), using basic knowledge of the Cartesian plane (SC1) the coordinates of the 

image (SC3). 

 

The third category is coded SP-SC1-SC3-AR1, with an example, question 6.2 

from the 2012 ANA and was as follows: “State which triangle is congruent to ∆𝐴𝐵𝐶.” 
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(DBE, 2012c: 14). The question required learners to use their basic knowledge of 

congruency to state (SP), giving reasons and infer (AR1), using given triangles (SC2) 

that the triangles are congruent (SC3).  

 

The fourth category is coded SP-SC1-SC2-SC3-AR1. An example is question 

8.1.1 from the 2013 ANA which was phrased as follows; “Calculate with reasons: The 

size of 𝑇̂1.” (DBE, 3013c: 13). The question required learners to state the size of the 

angle (SC1), without calculations (SP), and giving reasons recalling the knowledge 

(SC3) of the relationship of angles of an isosceles triangle (AR1) with the aid of the 

given diagram (SC2). 

 

The fifth category of simple procedures is coded SP-SC1-SC2-SC3-AR2. An 

example is question 6.3.4 from the 2012 ANA, which questioned as follows; “Hence, 

state the relationship between AE and BC.” (DBE, 2012c: 16). The question required 

learners to infer (AR2) on how two lines relate in a given diagram (SC2) based on 

proofs (SC3) in prior questions (SC1).  

 

 The last category of simple procedures in geometry is coded SP-SC1-SC2-

SC3-AR3. An example was question 8.3 from the 2013 ANA, which was as follows; 

“Prove with reasons that ∆𝐾𝑁𝑄 ≡ 𝑀𝑃𝑄” (DBE, 2013c: 15). The question required 

learners to use knowledge of congruency (SC3) to identify (SP) with reasons, 

relations of corresponding angles and sides (AR3), in a given (SC1) pair of triangles 

(SC2) to prove that they are congruent. This was an analogy, and analogical 

reasoning refers to the ability to identify similar structural commonalities of objects 

(Amir-Mofidi et al., 2012; Lee & Sriraman, 2011; Whitacre et al., 2017) and mostly it 

is regarded as moderate reasoning strategy due to the low level of rigour that is 

without computations. Analogical reasoning (Markovits & Doyon, 2011) is an essential 

recipe for bridging the gap between concrete and abstract reasoning. Proving is an 

essential part of mathematics to convince oneself that inferences when made when 

solving mathematical problems, such as proving that theorems are in fact true (Bleiler-

Baxter, 2017).  
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 COMPUTATIONS (PF1) 

 

In this content area, as in the previous content areas, there were three categories of 

computations that emerged from the analysis of the ANA questions coded PF1-SC1-

SC3, PF1-SC1-SC2-SC3 and PF1-SC1-SC2-SC3-AR1 respectively.  

 

An example for the first category is question 1.9, coded PF1-SC1-SC3 and from 

the 2013 ANA which was as follows: “In the figure below, side 𝐷𝐹 of ∆𝐸𝐷𝐹 is produced 

to 𝐶. Calculate the size of 𝐸̂ in terms of 𝑥.” (DBE, 2013c: 4). The question required 

learners to compute (PF1) using the given diagram (SC2) and the recall of knowledge 

of properties of a triangle (SC3) the value of 𝑥 (SC1). 

 

An example for the second category is question 7.3, coded PF1-SC1-SC2-SC3 

and from the 2012 ANA which was as follows: “The length of each side of figure P is 

halved. Calculate the perimeter of the new figure.” (DBE, 2012c: 18). The question 

required learners to divide each side (SC1) of a given figure (SC2) and compute (PF1) 

the perimeter using their knowledge of perimeter (SC3). 

 

 An example for the third category is question 9.3 coded PF1-SC1-SC2-SC3-

AR1 and from the 2014 ANA was as follows; “In ∆𝐴𝐵𝐶, 𝐴𝐵 = 𝐴𝐶 and 𝐶̂ = 𝑥0. 

Determine the size of 𝐴̂ in terms of 𝑥.” (DBE, 2014b). The question required learners 

to compute (PF1) the size of an angle in terms of a variable, giving reasons (AR1), 

using a given diagram (SC2) and recall of knowledge of properties (SC1) of an 

isosceles triangle (SC3).  

 

4.2.4 Measurement 

 

This content area teaches learners qualities, units, structures, and processes of 

measurement and to apply techniques, tools, and formulae to determine 

measurements (NCTM, 2000). Subsequently, measurement can serve as a system 

that coherently comprehends various SMP because it affords learners the opportunity 

to learn and apply other areas of mathematics such as: Numbers; Space and Shape; 

Functions; Statistics and Probability (DBE, 2011; Greenleess, 2011). 
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In this content area, again the use of SMP which posits that SMP are intertwined 

(Kilpatrick et al., 2001) hence the codes are represented in strands (Table 4.4). 

Subsequently, four categories of codes emerged: 1) simple procedures, 2) 

computations, 3) algorithms, and 4) computational connections. These are explored 

with illustrations below. 

 

Table 4.4: Codes of SMP in Measurement 

ANA examination 
questions 

Codes of SMP in Measurement 

 Conceptual Procedural Total 

2012 ANA  1SP-SC1-SC3 
1SP-SC1-SC2-SC3 
3PF2-SC1-SC2-SC3 

5 

2013 ANA  4PF1-SC1-SC2-SC3 
3PF1-SC1-SC2-SC3-AR1 

7 

2014 ANA 1CU2-SC1-SC3 1SP-SC1-SC3 
5PF1-SC1-SC2-SC3 

7 

Totals 
Percent 

1 
5.3 

18 
94.7 

19 
100 

 

 SIMPLE PROCEDURES (SP) 
 

In this content area, there were procedures that did not need computations or 

algorithms that emerged from the analysis of ANA question papers (see Table 4.4). 

There were two categories of SMP coded SP-SC1-SC3 and SP-SC1-SC2-SC3 

respectively (Table 4.4). For the first category, an example is question 1.7, a multiple 

choice question from the 2012 ANA and the question was as follows; “The volume of 

a cube with side of length 7 cm is, A) 49cm3, B) 28cm3, C) 343cm3, D) 14 cm3.” (DBE, 

2012c: 3). The question does not necessarily require learners to compute the volume 

(SP). Learners must recall known formula (SC1) and identify the value of seven cubed 

(SC3).  

 

 For the second category, an example is question 8.1 from the 2012 ANA which 

was as follows: “Complete the table by filling in the name of the 3-D figure, the number 

of faces, the number of vertices, the number of faces and the shape of the faces.” 

(DBE, 2012c: 19). A table was provided with the shape with ‘SC2’ and required 

learners to recall knowledge of a cylinder and use this to identify its properties (SP).  
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 COMPUTATIONS (PF1) 

 

Again, from the analysis of question papers using SMP, there were computations that 

emerged and were in two categories. The first category of computations was coded, 

PF1-SC1-SC2-SC3. An example is question 10.2.3 from the 2013 ANA phrased as 

follows: “Hence calculate the area of PQR.” (DBE, 2013c: 19). The question requires 

learners to calculate the area of a triangle (PF1) using already calculated values 

(SC3) and knowledge of calculating area (SC3) with the aid of a given triangular prism 

(SC2). 

 

The second category of computations in measurement was coded PF1-SC1-

SC2-SC3-AR1. An example is question 10.1.1 from the 2013 ANA which was as 

follows: “Show that the area of the shaded ring is equal to 𝜋(𝑅2 − 𝑟2).” (DBE, 2013c: 

18). The question required learners to derive (PF1) the known conjecture (SC1) with 

the aid of a given diagram (SC2). Subsequently, the question required learners to 

show that the area of the shaded is equal to the difference of the area of the outer 

circle and the inner circle (SC3) using the formulae (AR1). 

 

 ALGORITHMS (PF2) 

 

In this content area, there was one category of algorithms that was coded PF2-SC1-

SC2-SC3. An example is question 8.2 from the 2012 ANA which was as follows: 

“Calculate the total surface area of the rectangular prism with length= 7.2m breath = 

5m and height = 3.32m. Give your answer correct to 2 decimal places.” (DBE, 2012c: 

20). In the marking guideline, they use the formula, 2(𝑙 × 𝑏) + 2(𝑙 × ℎ) + 2(𝑏 × ℎ) to 

substitute the given values to compute the surface area. The formula is generic and 

may be used to calculate the surface area for any given dimensions (SC1) of a prism 

(generality). Subsequently, the formula, when correctly used, yields the desired 

surface area (SC3) of a prism (accuracy). Additionally, the use of a diagram enhances 

sense making and does not affect the complexity of the question (SC2). Hence, it is 

an algorithm because it qualifies for generality and accuracy (PF2). Furthermore, 

substituting given values advances calculation of the desired surface area 
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(transparency). Since the formula is aimed to be used by learners, its effective use of 

results in reduced error proneness (ease of use). Additionally, computational speed 

of using the algorithm is low, then it may be programmed in machines.  

 
 CONCEPTUAL CONNECTIONS (CU2) 
 

In measurement, one category of conceptual connections emerged from the analysis 

of ANA questions using SMP coded, CU2-SC1-SC3. An example is question 11.3 

from the 2014 ANA which was as follows: “The circumference of a circle is 52 cm. 

Calculate the area of the circle correct to 2 decimal places.” (DBE, 2014b). The 

question required learners to compute the area of a circle by first computing the 

radius, then use it compute the area of the circle (CU2). The question required recall 

of familiar knowledge (SC1) of calculating area of a circle and circumference (SC3). 

 

4.2.5  Data Handling and Probability 

 

In this content area, thinking statistically is necessary to educate citizens and 

consumers to be informed (NCTM, 2000). Subsequently, data handling and 

probability content standard requires learners to articulate questions and gather, 

organise, analyse and present pertinent data to respond to particular questions (DBE, 

2011). In addition, it stresses knowledge of relevant statistical systems to analyse 

data, make inferences and appropriate predictions based on the data, and understand 

the use of fundamental concepts of probability (Greenleess, 2011). 

 

In this content area, again there is the use of SMP which illustrates that SMP 

are intertwined (Kilpatrick et al., 2001) hence the codes are represented in strands 

(Table 4.5). Subsequently, two categories of SMP emerged: 1) simple procedures, 

and 2) computations. These are explored with illustrations below. 
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Table 4.5: Codes of SMP in Data Handling and Probability 

ANA examination 
questions 

Codes of SMP in Data Handling and Probability 

 Procedural Total 

2012 ANA 4SP-SC1-SC2-SC3 
3PF1-SC1-SC2-SC3 

7 

2013 ANA 10SP-SC1-SC2-SC3 
5PF1-SC1-SC2-SC3 

15 

2014 ANA 
  

Totals 
Percent 

22 
100 

22 
100 

 

 SIMPLE PROCEDURES (SP) 

 

In Probability and Data Handling, there were procedures that did not require 

computations nor algorithms. There was one category of simple procedures coded 

SP-SC1-SC2-SC3 that emerged from the analysis of ANA questions. Consequently, 

all simple procedures in statistics and probability had the code ‘SC2’ which means 

that contexts and diagrams were used to help in explaining statistical and probability 

questions. However, the use of the diagrams and contexts enhanced dispositions 

such as sense-making and the utility of Statistics and Probability in solving routine 

problems (Suurtamm, 2012) without affecting the complexity of the questions. An 

example is question 11.1 which was as follows: “The histogram below illustrates the 

mathematics test marks, out of 10, obtained by a Grade 9 class.” (DBE, 2013c: 21). 

The question required learners to use a given histogram (SC2) to fill in missing values 

of the frequency table. This required routine knowledge (SC1) of reading values from 

a statistical graph (SC3).  

 

 COMPUTATIONS (PF1) 

 

In this content area, there were computations that emerged from the analysis of ANA 

questions using SMP. There was one category of computations coded PF1-SC1-SC2-

SC3 and an example is question 11.3 from the 2013 ANA which was as follows: 

“Calculate the mean test mark.” (DBE, 2013c: 22). The question required learners to 

calculate the mean (PF1) using routine statistical knowledge (SC1) by finding the 

quotient of the total data set and the total frequency (SC3), using the given marks in 

a histogram (SC2).  
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4.2.6 Themes of Strands of Mathematical Proficiency in ANA 

Questions 

 

From the analysis of ANA questions, three themes explicitly emerged, simple 

procedures, procedural fluency and conceptual understanding. As such, these 

themes were explicit in that, as I explore SMP tested by ANA, they emerged from the 

questioning. Subsequently, from the analysis, another theme implicitly emerged, and 

that is productive disposition. According to Kilpatrick et al. (2001), productive 

disposition emerges as a result of learners’ proficiency in a particular strand, which is 

why they were implicit. Most of the dispositions emerged from questions that tested 

reasoning, used context and figures to promote sense making, the utility of 

mathematics and valuing mathematics. The data in Table 4.6, illustrates the themes 

that emerged from the analysis of ANA questions using SMP. The frequencies came 

from categories of the themes in Table 4.1, 4.2, 4.3, 4.4 and 4.5. 

 

Table 4.6: Themes in ANA Questions 

ANA 
Examination 

Simple 
Procedures 

Frequency (%) 

Procedural 
Fluency 

Frequency (%) 

Conceptual 
Understanding 
Frequency (%) 

Mean  
Frequency 

(%) 

Total 
(%) 

2012 34(45.33) 39(52) 2(2.67) 25(33.33) 75(100) 

2013 34(57.63) 22(37.29) 3(5.08) 19.67(33.33) 59(100) 

2014 34(45.95) 31(41.89) 9(12.16) 24.67(33.33) 74(100) 

 

The data in Table 4.6 is explored in the discussion of the themes below. I use 

the data in Table 4.6, the percent, to generate the chart shown in Figure 4.1. The data 

in Figure 4.1 is explored in the discussion of the themes in the next sections. 
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Figure 4.1: Themes in ANA questions 

 

From the data in Table 4.6, mean deviations are generated from the frequencies 

and the resultant data is shown in Table 4.7. I use the data in Table 4.7 to explore the 

themes in the next sections. 

 

Table 4.7: Mean discrepancies with direction 

ANA 
Examination 

Simple 
Procedures 

Frequency (%) 

Procedural 
Fluency 

Frequency (%) 

Conceptual 
Understanding 
Frequency (%) 

Mean  
Frequency (%) 

2012 9(12) 14(18.67) -23(-30.67) 0(0) 

2013 14.33(24.3) 2.33(3.96) -16.66(-28.26) 0(0) 

2014 9.33(12.62) 6.33(8.56) -15.66(-21.18) 0(0) 
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From the frequency in the data in Table 4.7, I generate data in Figure 4.2, a 

synopsis of mean deviations in the ANA questions which is use in the next sections 

to explore the emerging themes. 

 

 

Figure 4.2: Mean Deviations for ANA Questions 

 

THEME 1: SIMPLE PROCEDURES 

 

The exploration of SMP in ANA questions using the knowledge strand, procedural 

fluency to categorise the codes, has seen various categories of procedures, one of 

them is named simple procedures. A simple procedure requires learners to state the 

procedure without computations (Schoenfeld, 1985). The data in Figure 4.1 illustrates 

that in the three consecutive years of ANA testing questions were characterised with 

simple procedures, an indication that the tests were of lower order thinking (Stein et 

al., 1996). Additionally, there was no consistency in the testing of these simple 

procedures in 2012, 2013 and 2014 (Figure 4.2), which poses reliability concerns in 

ANA testing (DFID, [S.a.]). National assessment with such qualities may not give a 

clear indicator of how the system is performing (Koretz, 2009).  
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There were seven categories of simple procedures that were coded as follows: 

1) SP-SC1-SC3, 2) SP-SC1-SC2-SC3, 3) SP-SC1-SC3-AR1, 4) SP-SC1-SC2-SC3-

AR1, 5) SP-SC1-SC3-AR2, 6) SP-SC1-SC2-SC3-AR2, 7) SP-SC1-SC2-SC3-AR3. 

The use of both SMP and the NAEP Taxonomy resulted in a dichotomy in matching 

the codes with emerging themes and mathematics cognitive levels (Berger et al., 

2010; Kilpatrick et al., 2001). First, the dichotomy as observed pointed to contradictory 

mathematics cognitive levels when exploring further the simple procedures. Contrary 

to SMP, the NAEP Taxonomy stated that the use of justification meant a question 

may be categorised as high complexity. However, all ANA questions that required 

learners to justify, only demanded analogical reasoning (AR3). Research (Amir-Mofidi 

et al., 2012; Yopp, 2015; Zazkis, 2015) has indicated that analogical reasoning is a 

weaker form of proof. There are other forms of proof that were indicated when I 

adapted SMP, deductive and inductive reasoning (Stalvey & Vidakovic, 2015). The 

absence of such questions in the ANA questions deprived learners of the opportunity 

to use logic and evidence to make sense and reason at a higher order (Lee, 2016; 

Quinn et al., 2009). These involve the use of logic and empirical evidence to prove. I 

categorised analogical reasoning (AR3), mathematical reasoning (AR1) and 

conjecturing (AR2) as moderate complexity. 

 

As a consequence, there were simple procedures that required learners to 

navigate through concepts, procedures and relations and give reasons for their 

answers (mathematical reasoning AR1) (Brodie, 2010). Additionally, there were 

simple procedures that required learners to make inferences (conjecturing AR2) 

(Aaron & Herbst, 2015). However, such simple procedures were few, with analogical 

reasoning emerging only from geometry. This discrepancy in questioning is 

worrisome, and the question is: Is geometry the only content area that uses 

analogies?  Ironically, there are other content areas that use shapes, such as, 

measurement, graphs statistics that may be enhanced in their complexity through the 

use of proofs. 

 

A strength is observed in simple procedures and procedural fluency, (Figure 4.2) 

which has questions that test recall of known procedures and reproductive thinking 

which are limited to low complexity and moderate complexity, as outlined by Berger, 
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et al. (2010). A challenge for policymakers is that ANA questions did not have 

questions that examine metacognition and productive thinking (Roth et al., 2015). 

Such questions examine: (1) the effective use of knowledge of the problem to reach 

the required solution (Kim et al., 2013; Veloo et al., 2015); and (2) the use of inventive 

and creative ways to reach a solution to a problem (Guberman & Leikin, 2013). Both 

1 and 2 are (high complexity). This is an indication that ANA did not focus on higher 

order questions, a pre-requisite for tertiary mathematics and tertiary natural sciences 

(Luneta, 2015b). 

 

 THEME 2: PROCEDURAL FLUENCY 

 

The analysis of ANA questions using SMP revealed two categories of procedural 

fluency: 1) computations; and 2) algorithms. For learners to exhibit procedural fluency, 

they must be proficient in either computational fluency or algorithmic fluency (Bass, 

2003). During the analysis using SMP, there were various categories of procedural 

fluency and first, for computational fluency the emerging categories were coded as 

follows; 1) PF1-SC1-SC3, 2) PF1-SC1-SC2-SC3, and 3) PF1-SC1-SC2-SC3-AR1. 

Computational fluency refers to fluency in computation of mathematical procedures 

and relations (NCTM, 2000).  

 

As explained during the explanation of codes, the code ‘SC2’ did not affect the 

complexity of the questions, instead, it assisted the development of dispositions such 

as sense making, valuing and utility of mathematics (Groves, 2012). The codes SC1 

and SC3 refers to questions that required learners to recall knowledge of routine 

procedures (Sigley & Wilkinson, 2015). Such a structure of questions promoted lower 

order thinking (Land, 2017). Ironically, there was an absence of non-routine problems, 

those that required learners to perform lengthy steps of problem solving (Sullivan et 

al., 2016). Consequently, such absence of complex problems deprived learners of the 

opportunity to exhibit higher order reasoning such as metacognition and reproductive 

thinking (Guberman & Leikin, 2013). Learners may not exhibit higher order thinking 

justifying my assumptions, “What You Test Is What You Get, (WYTIWUG).” 

(Schoenfeld, 2007: 72). This state of ANA poses challenges to its validity, hence, ANA 

at its present state is not a valid form of systemic assessment (Kanjee & Moloi, 2014).  
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Second, for algorithmic fluency, two categories emerged that were coded as 

follows: PF2-SC1-SC3, and 2) PF2-SC1-SC2-SC3. (Graven & Venkat, 2014). An 

algorithm refers to questions that are generic and may compute any class of a 

particular problem (NCTM, 2000). Ironically, the computations were routine (SC3) and 

required productive thinking (SC3) which could not pose higher order thinking. In the 

second category, the additional code ‘SC2’ enhanced dispositions only and not the 

complexity of the question (Khashan, 2014). The qualities of an algorithm as shown 

in the explanation of codes, show that such questions are well-structured (Stein et al., 

1996). Subsequently, a few algorithms emerged from the analysis of ANA questions 

using SMP (Table 4.1-5). A suggestion is that, ANA must test more computational 

and algorithmic fluency (Bass, 2003) to gauge how the system is performing (Graven 

& Venkat, 2014). 

 

 THEME 3: CONCEPTUAL UNDERSTANDING 

 

The analysis of ANA questions using SMP showed two categories of SMP as follows; 

1) CU1-SC1-SC3 and 2) CU2- SC1-SC3. As explained in the previous section the 

codes ‘CU1’ and ‘CU2’ referred to questions that required learners to comprehend 

concept and computations in one solution strategy (Kilpatrick et al., 2001). Such 

questions afforded learners the opportunity to relate various concepts and 

computations meaningfully (Mwakapenda, 2008). Hence the data (Figure 4.2) justify 

the dearth of conceptual understanding and inconsistent testing of this theme in the 

three consecutive years. This presents serious reliability concerns in ANA testing, 

which is aimed to gauge how the system is performing (Kanjee & Moloi, 2014). 

 

 THEME 4: PRODUCTIVE DISPOSITION 

 

Productive disposition refers to the learners’ ability to view mathematics as valuable, 

useful, sensible and worthwhile (Kilpatrick et al., 2001). To develop this SMP, the 

other four need to be fully developed (Groves, 2012). This means that this strand is 

made up of observable traits that learners exhibit as a result of being proficient in the 

other strands (Maharaj et al., 2015). During the analysis dispositions were captured 
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from the code ‘SC2’ and in systemic assessment it is paramount to gauge 

dispositions. Most importantly, the use of SMP categorises dispositions as not being 

limited to learners’ feelings about mathematics (Khashan, 2014). It reveals how 

questions advance sense making, valuing and the utility of mathematics (Groves, 

2012). During the analysis of question papers using SMP, the code ‘SC2’ emerged, 

depicting dispositions that learners develop as a result of engaging with such 

questions (Groves, 2012). Most of these were coded as strands and there were three 

categories of productive dispositions that emerged which were: sense making, utility 

of mathematics and valuing mathematics. These are explored in detail below. The 

dispositions that emerged were documented in Table 4.8. 

 

First, sense making, involves mastery of situations, contexts and concepts by 

comprehending with existing knowledge (Suurtamm, 2012). Furthermore, 

conjecturing that is coupled with reasoning and proof enhances sense-making (Martin 

& Kasmer, 2010; Mueller et al., 2011). The ANA example is question 8.1.1 from the 

2013 ANA which was as follows;  

“In ∆𝑃𝑅𝑇 below, M is the midpoint of PR and MR = MT.  

 

If 𝑃̂ = 250, calculate with reasons the size of 𝑇1̂.” (DBE, 2013c: 13) 

 

This question uses a diagram for learners to make sense of the question being 

posed. Subsequently, learners need to give reasons for inferences they will make in 
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their solution strategy. Learners develop sense making when solving questions of this 

nature. More than, half of the questions (Table 4.8) provided opportunities for sense-

making and hence, from the results it is safe to pronounce that the ANA questions in 

the three consecutive years promoted sense-making. However, the inconsistency in 

the frequency (Figure 4.3) as observed poses reliability concerns now that ANA is 

used as systemic assessment (DFID, [Sa]). 

 

Second, the utility of mathematics, as coded, referred to questions that allowed 

learners to solve real life problems using mathematics (Groves, 2012). Learners see 

mathematics as useful and applicable to everyday experiences as opposed to static 

and meaningful rules (Kilpatrick et al., 2001). The ANA example is question 3.3 from 

the 2012 ANA which was as follows; “Bongiwe invests R12 000 in a savings account 

at 6.5% per annum compound interest. Calculate how much there will be in the 

savings account after 5 years.” (DBE, 2012c: 8). This question uses mathematics to 

teach learners processes of savings in banks. Learners see mathematics as a 

powerful tool to solve everyday problems (Schoenfeld, 2007). A smaller number of 

questions emerged in this category of productive disposition (Table 4.8), an indication 

that most questions were not connected to contexts and were perceived as static 

rules (Schoenfeld, 2007). Hence the effectiveness of the ANA in this instance is 

questionable. 

 

Thirdly, valuing mathematics, when learners achieve in using mathematics to 

solve complex problems, they then value mathematics as powerful in problem solving 

(Lee & Chen, 2015). Additionally, such problems enhance perseverance that is 

coupled with creativity and innovation enhances well developed cognitive tools and 

promotes conceptual understanding (Mueller, et al., 2011). ANA example is question 

11.3 from the 2014 ANA which was as follows: “The circumference of a circle is 52 

cm. Calculate the area of the circle correct to 2 decimal places.” (DBE, 2014b: 20). 

Learners to answer this question they need to compute the radius using the concept 

of the circumference. Next, they use the computed radius to calculate the area. The 

question is not explicit and requires learners to figure out such a solution strategy 

(Guberman & Leikin, 2013). The analysis has revealed a deficit in complex problems 
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(Table 4.8). The inconsistency observed (Figure 4.3) poses reliability challenges to 

ANA as a systemic assessment. 

 

Table 4.8: Subthemes for Productive Disposition 

ANA 
Examination 

Sense Making 
Frequency (%) 

Utility of 
Mathematics 

Frequency (%) 

Valuing 
Mathematics 

Frequency (%) 

Mean  
Frequency 

(%) 

Total 
(%) 

2012 23(57.5) 12(30) 5(12.5) 13.33(33.33) 40(100) 

2013 20(62.5) 9(28.13) 3(9.37) 10.67(33.33) 32(100) 

2014 16(72.73) 5(22.73) 1(4.54) 7.33(33.33) 22(100) 

 

The data in Figure 4.3 was generated using the percentages in Table 4.8. The 

analysis of ANA questions using SMP revealed that sense-making was mostly visible 

in ANA questions in the three consecutive years. In contrast, the utility of mathematics 

and valuing mathematics were less respectively. This raised concerns in the structure 

of ANA (Stein et al., 1996). Ironically, the inconsistent testing (Figure 4.3) presents 

reliability issues in ANA as a systemic assessment (Graven & Venkat, 2014).  

 

 

Figure 4.3: Productive Disposition in ANA Questions 

 

Table 4.9 outlines the mean discrepancies for productive disposition by 
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dispositions tested by the Grade 9 ANA mathematics tests. The direction indicates 

the strength of the disposition. Positive means strong dispositions while negative 

means weaker dispositions. Such dispositions are a result of the ANA testing of the 

first four SMP as tested in 2012, 2013 and 2014 (Kilpatrick et al., 2001). This is an 

indication that ANA tests were weak in the use of mathematics to solve real life 

experiences (Karakoc & Alacaci, 2015). There is no doubt that mathematics is 

regarded as an essential commodity to solve real life experiences (Mueller et al., 

2011). This implies that the ANA deprived learners the opportunity to use 

mathematics to get answers of real life experiences (Lee & Chen, 2015). This is an 

indication that ANA in general did not support the usefulness of mathematics in 

solving complex problems (Mueller et al., 2011). 

 

Table 4.9: Mean discrepancies with direction 

ANA Examination Sense Making 
Frequency (%) 

Utility of 
Mathematics 

Frequency (%) 

Valuing 
Mathematics 

Frequency (%) 

Mean  
Frequency (%) 

2012 9.66(24.16) -1.33(-3.33) -8.33(-20.83) 0(0) 

2013 9.34(29.16) -1.67(-5.17) -7.67(-23.96) 0(0) 

2014 8.66(39.39) -2.33(-10.6) -6.33(-28.79) 0(0) 

 

The data in Figure 4.4, is a synopsis of mean deviation of productive disposition 

of in ANA testing. These results confirms those in Figure 4.3 which is an indication 

that ANA was not consistent in testing dispositions in the three consecutive years. 
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Figure 4.4: Mean Discrepancies for Productive Disposition 

 

4.2.7 Implications of Strands Not Tested By ANA 

 

Deductive reasoning refers to the ability to derive facts from logical inferences as well 

as processes involved in validating the argument and finally reaching a true 

conclusion (Lee 2016; Morris, 2002). The ANA does not provide these opportunities. 

Deductive reasoning is essential for advanced natural science courses such as 

advanced mathematics (Stalvey & Vidakovic, 2015; Sullivan et al., 2016) due to the 

high level of rigour. It implies that learners are most unlikely to succeed in advanced 

tertiary courses if they do not access logical reasoning in their early years of 

schooling.  

 

According to Yopp (2010), inductive reasoning refers to learners’ ability to 

reach conclusions from examples. Such reasoning enhances sense making and 

promotes the development of complex problem solving strategies (Koichu & Leron, 

2015; Yopp, 2015). The implication in this instance is that, if systemic assessments 

such as ANA do not test inductive reasoning, then it justifies the suggestion made 
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earlier that it is most likely that learners struggle in advanced courses in natural 

science as well as mathematics.  

 

According to Alcock and Inglis (2008) and Cantlon (1998), conjecturing refers 

to learners’ ability to write and conceive hypotheses that are yet to be conceived. 

Conjectures are powerful as they stimulate reasoning and proof (Aaron & Herbst, 

2015). The results in the current study pose a serious challenge to the mathematics 

reasoning and they also confirm those made by Ally (2011) that there is an absence 

of reasoning in Grade 6 mathematics classrooms in South Africa. It implies that the 

ANA did not provide opportunities for learners to conjecture. 

 

It seems that the absence of reasoning in earlier schooling years like Grade 9 

and Grade 6 that was identified by Ally (2011) has a serious consequence for learners’ 

success in advanced mathematics and natural sciences in tertiary. The need to 

introduce mathematical reasoning and proof in earlier grades of schooling is essential 

in mathematics education in South Africa. Some studies justify the importance of 

engaging students with mathematical reasoning at lower grades such as: Grade 5 

learners using connected tasks (Richardson et al., 2010); study on inductive 

reasoning with primary school students (Tomic & Klauer, 1996); and a study with first 

graders on inductive reasoning (Kagan et al., 1966). Hence, it is safe to say that 

mathematical reasoning is essential in the Grade 9 mathematics ANA and its absence 

may pose serious challenges for learners in advanced mathematics. 

 

Additionally, the absence of problem solving questions deprived learners of the 

opportunity to solve higher thinking such as productive thinking and metacognition 

(Roth et al., 2015). For productive thinking, questions require learners to use their 

knowledge with innovation and perseverance to reconstruct solution strategies 

(Guberman & Leikin, 2013) .As such, learners become metacognitive, which involves 

assessing and reconstructing their solution strategies (Veloo et al., 2015). Such 

questions did not emerge from the analysis of ANA using SMP. From the results it is 

also safe to say that the ANA 2012, 2013 and 2014 questions were low in demanding 

high cognitive demand which Sullivan, et al. (2016) regarded as key to advanced 

mathematics. It implies that the ANA questions did not support high cognitive thinking, 
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and so these results confirm findings from studies like that of Luneta (2015b) who 

found that learners were operating at low cognitive thinking even in situations where 

the Grade 12 examinations were requiring them to operate at high cognitive thinking. 

 

4.2.8 Synopsis: Mathematics Cognitive Levels in ANA Questions 

 

The theoretical framework for this study, SMP identified five SMP and these were: 

procedural fluency, conceptual understanding, strategic competence, adaptive 

reasoning, and productive disposition. Subsequently, procedural fluency and 

conceptual understanding are forms of mathematical knowledge while strategic 

competence and adaptive reasoning are mathematical skills (Dhlamini & Luneta, 

2016). While productive disposition cannot be classified as mathematical knowledge 

or skill, this strand represents dispositions that learners display as they become 

proficient in the first four strands (Kilpatrick et al., 2001). Identifying cognitive levels in 

the ANA that are reflective of SMP, I use the themes that emerge from the analysis 

of ANA using SMP, simple procedures, procedural fluency and conceptual 

understanding and adaptive reasoning and not productive disposition. Most 

specifically, I use the codes as their composition, especially, AR1-3, had an effect on 

the complexity of the ANA questions. The use of the NAEP Taxonomy has also been 

justified in this study, which implies that for mathematics cognitive levels in the ANA, 

I will focus on three aspects, low complexity, moderate complexity and high 

complexity (Berger et al., 2010). Table 4.10 outlines the summary of the NAEP 

Taxonomy which is used to classify codes in the three categories of complexity. 
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Table 4.10: NAEP Taxonomy (Berger et al., 2010: 40)  

Levels of Complexity NAEP TAXONOMY 

Low Complexity - Students to recall or recognise concepts or procedures. 

- Items typically specify what the student is to do, which is often to carry 
out some procedure that can be performed mechanically. 

- The student does not need to use an original method or to 
demonstrate a line of reasoning. 

Moderate Complexity -Items involve more flexibility of thinking and choice among alternatives 
than do those in the low complexity category. 

-Students are expected to decide what to do and how to do it, bringing 
together concepts and processes from various domains. For example, 
student may need to represent a situation in more than one way, to 
draw a geometric figure that satisfies multiple conditions, or to solve a 
problem involving multiple unspecified operations. 

-Students might be asked to show explain their work, but would not be 
expected to justify it mathematically. 

High Complexity - Students are expected to use reasoning, planning, analysis, judgment, 
and creative thought. 

- Students may be expected to justify mathematical statements or 
construct a mathematical argument. Items may require students to 
generalise from specific examples. 

- Items at this level take more time than those at other levels due to the 
demands of the task, not due to the number of parts or steps. 

 

From the results from Table 4.1, 4.2, 4.3, 4.4 and 4.5, I generate Table 4.11 

which outlines the levels of complexity in the 2012, 2013 and 2014 ANA tests. The 

questions from the sub-themes are classified as low complexity, moderate complexity 

and high complexity. This classification is informed by the NAEP Taxonomy and SMP. 

This gives an indication of the complexity of the Grade 9 mathematics ANA in 2012, 

2013 and 2014 respectively. Subsequently, there exists some dichotomy in the 

classification. The two notions, NAEP Taxonomy and SMP were contradictory, for 

example, the SMP classified analogical proof as a weaker form of reasoning (Berger 

et al., 2010). In contrast, the NAEP Taxonomy pointed out that the use of proofs 

depicts high complexity. Hence this study integrated both conceptions and regarded 

the additional code ‘AR3’ as an extension of cognition and categorised all questions 

with this code as moderate complexity. Other subsequent codes were categorised in 

complexities as per the NAEP Taxonomy. 
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Table 4.11: Complexity of 2012, 2013 and 2014 ANA questions 

Complexity of ANA questions 

ANA 
Examinations 

Low complexity code 
(Frequency) 

Moderate complexity code 
(Frequency) 

High complexity 
code (Frequency) 

2012 ANA SP-SC1-SC3 (18) 
SP-SC1-SC2-SC3 (8) 

 
 

 
 

Total (26) 

SP-SC1-SC3-AR1 (1) 
SP-SC1-SC2-SC3-AR2 (1) 
SP-SC1-SC2-SC3-AR3 (6) 

PF1-SC1-SC3 (13) 
PF1-SC1-SC2-SC3 (11) 

PF1-SC1-SC2-SC3-AR1 (7) 
Total (39) 

CU1-SC1-SC3 (2) 
PF2-SC1-SC3 (1) 

PF2-SC1-SC2-SC3 (7) 
 

 
 

Total (10) 

2013 ANA SP-SC1-SC3 (8) 
SP-SC1-SC2-SC3 (17) 

 
 
 
 
 

Total (25) 

SP-SC1-SC3-AR1 (1) 
SP-SC1-SC2-SC3-AR1 (5) 

SP-SC1-SC3-AR2 (1) 
SP-SC1-SC2-SC3-AR3 (2) 

PF1-SC1-SC3 (11) 
PF1-SC1-SC2-SC3 (7) 

PF1-SC1-SC2-SC3-AR1 (3) 
Total (30) 

CU1-SC1-SC3 (3) 
PF2-SC1-SC3 (1) 

PF2-SC1-SC2-SC3 (4) 
 
 

 
 

Total (8) 

2014 ANA SP-SC1-SC3 (23) 
SP-SC1-SC2-SC3 (2) 

 
 
 

 
Total (25) 

SP-SC1-SC3-AR1 (2) 
SP-SC1-SC2-SC3-AR1 (5) 
SP-SC1-SC2-SC3-AR3 (4) 

PF1-SC1-SC3 (14) 
PF1-SC1-SC2-SC3 (13) 

PF1-SC1-SC2-SC3-AR1 (3) 
Total (41) 

CU1-SC1-SC3 (8) 
Cu2-SC1-SC3 (1) 
PF2-SC1-SC3 (1) 

 
 
 

Total (10) 

 

Figure 4.5 is a synopsis of the complexity of the 2012, 2013 and 2014 Grade 9 

mathematics ANA. The longer bars signify that in 2012, 2013 and 2014 most of the 

questions were of moderate complexity in the three consecutive years, lower in low 

complexity and low in high complexity. Mathematics assessment tasks does not have 

to be too weak or too strong (Hsu & Silver, 2014). In the case of the ANA tests in the 

three consecutive years, most of the test items are moderate and less in high 

complexity which is contrary to assessment protocols (Gysling, 2016). For example, 

the SAGM for mathematics in South Africa suggested that questions in mathematics 

assessments must be as follows: knowledge (25%), routine procedure (45%), 

complex procedures (20%) and problem solving (10%) (DBE, 2011). Surprisingly, 

ANA tests were not compliant with these demands, where there was absence of 

complex procedures and problem solving. Hence this condition of ANA pose validity 

issues as systemic assessment which are as follows; how can ANA test if the system 

is producing learners who think at a higher level, if it does not test at that level? The 

assumption I made earlier which is “What You Test Is What You Get, (WYTIWUG).” 

(Schoenfeld, 2007: 72) is true for ANA testing.  
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Figure 4.5: Complexity of ANA Questions 

 

 4.3 Results and Discussion for Learners’ Responses to 

ANA Questions 

 

In Chapter Three, I explained and justified the three questions in the learners’ 

responses that were sampled and analysed from the 2014 Grade 9 mathematics 

ANA. Below, I explore the learners’ responses to the sampled questions. 

 

4.3.1 Learners’ Responses to Question Three 

 

In question three, the focus is on algebra and algebraic fractions. Learners struggle 

with algorithms of fractions due to the conceptual nature of fractions (Boyce & Norton, 

2016). Learners in Grade 9 often confuse algorithms of fractions with those of natural 

numbers (Dhlamini & Kibirige, 2014). Hence, they perform a range of errors and 

misconceptions which may lead to difficulty in performing procedures and relations 

that involve all four basic operations on fractions (Ramful, 2014).  

 

Table 4.12 is a synopsis of learners’ responses to question 3 in seven schools. 

The analysis classified learner’s responses into four categories: correctly answered, 
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partially answered, incorrect response and no response. Detail on how these 

categories reflect to SMP that were exhibited by learners in response to the questions 

has been described in chapter three. These categories depicted the proficiency levels 

of learners for a variety of questions in various schools. Table 4.12 is a synopsis of 

how in seven schools’ learners responded to question 3  

 

The third column in Table 4.12 shows results for School A, with the highest 

number of correctly answered responses in all questions except question 3.3; which 

was 6.51% for question 3.1, followed by 26.05% for question 3.2, then 3.72% for 

question 3.3, further 9.3% for question 3.4 and lastly 11.63% for question 3.5.  Slight 

increase in numbers of learners who were classified as partially answered in question 

3.1, 3.2 and 3.4, with 31.16%, then 20.47% and 25.58% respectively with low 

numbers for question 3.3 and 3.5 which was 3.26% and 7.91%. A bulk of learners for 

school A were in the category incorrectly answered, 61.4 % for question 3.1, followed 

by 46.97% for question 3.2, then 87.44% for question 3.3, a further 55.35% for 

question 3.4 and lastly 69.76% for question 3.5. There were lower numbers in the 

category no response. A total of 0.93% for question 3.1, followed by 6.51% for 

question 3.2 then 5.58% for question 3.4, a further 9.77% for question 3.4 and last 

10.7% for question 3.5. 

 

Column four of Table 4.12 illustrates the results for School B. Significantly low 

number of learners were classified in the category correctly answered. No learners 

answered correctly for question 3.1, 3.3 and 3.4. Only 0.94% for question 3.2 and 

(0.5%) for question 3.5. A low number of learners partially answered the questions. 

There were 1.4% for question 3.1, followed by 0.47% for question 3.2 and 0.9% for 

question 3.5. No learners partially answered question 3.3.and 3.4. Most learners 

incorrectly answered all the questions. There were 93.9% for question 3.1, followed 

by 91.51% for question 3.2, a further 92% for question 3.3, then 87.7% for question 

3.4 and last, 87.7% for question 3.5. There were lower numbers for the category no 

response. There were 4.7% for question 3.1, then 7.08% for question 3.2, followed 

by 8% for question 3.3, a further 12.3% for question 3.4 and last 10.9% for question 

3.5. 
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In column five of Table 4.12 are results for School C for question three. For the 

category, correctly answered, there were no learners for question 3.1, 3.2, 3.3 and 

3.4. Only two learners correctly answered question 3.5. For the category, partially 

answered, no learners partially answered question 3.3 and 3.5. A small number of 

learners, only 2% for question 3.1, with 10% for question 3.2, and 2% for question 

3.4. A bulk of learners incorrectly answered all the questions for school C. There were 

98% for question 3.1, followed by 90% for question 3.2, then 100% for question 3.3, 

a further 98% for question 3.4 and last, 96% for question 3.5. There were no learners 

that fell in the category no response for all the questions. 

 

Column six of Table 4.12 summarises learners’ results for School D for question 

three. In the category, correctly answered, there were no learners who correctly 

answered question 3.1, 3.3 and 3.5. For question 3.2 and 3.4 there were 0.53% and 

0.5% learners who correctly answered respectively. For the category partially 

answered, no learners partially answered question 3.2 and 3.5. There were low 

numbers for the other questions, 0.5%, 1.05% and 2.1% for question 3.1, 3.3 and 3.4 

respectively. Most learners incorrectly answered all the questions. There was 97.4% 

for question 3.1, then 94.8% for question 3.2, plus 96.3% for 3.3, further 95.3% for 

question 3.4 and last 93.1% for question 3.5. There were low numbers in the category 

no response. For question 3.1 there were no learners, question 3.2 had 0.53%, 

question 3.3 had 1.05%, then question 3.4 was 2.1% and last, question 3.5 with 1.1%.  

 

Column seven in Table 4.12 outlines results for School E for question three. For 

the category correctly answered, no learners correctly answered question 3.1, 3.3, 

3.4 and 3.5. Only 0.6% correctly answered question 3.2. In the category, partially 

answered, a few learners partially answered all questions. For question 3.1 there was 

1.7%, question 3.2 had 2.3%, question 3.4 there was 0.57% and last question 3.5 

there was 1.2%. No learners partially answered question 3.3. A bulk of learners 

incorrectly answered all the questions. There was 97.4% for question 3.1, followed by 

94.8% for question 3.2, then 96.3% for question 3.3, further 94.27% question 3.4 and 

last 93.1% for question 3.5. There were low numbers for the category no response. 

Only 0.9% for question 3.1, then 2.3% for question 3.2, followed by 3.7% for question 

3.3, a further 5.16% for question 3.4 and last, and 5.52% for question 3.5. 
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In column eight on Table 4.12 are results of School F for question three. In the 

category correctly answered, no learners correctly answered question 3.1, then 

4.91% for question 3.2 and 3.3, further 3.68% for question 3.4, last, 5.52% for 

question 3.5. For the category partially answered, there was 1.84% for question 3.1 

and 3.4, followed by 2.45% for question 3.2 and 3.3, last 5.52% for question 3.5. In 

the category incorrectly answered, the bulk of learners were in this category, 95.09% 

for question 3.1, and 87.12% for question 3.3 and 3.3, followed by 82.82% for 

question 3.4 and last 85.89% for question 3.5. 

 

Column nine on Table 4.12, shows results for School G for question three. In 

the category correctly answered, there were 2.78% for question 3.1, followed by 

5.55% for question 3.2, and no learners correctly answered question 3.3, then 4.17% 

for question 3.4 and last, 2.78% for question 3.5. For the category partially answered, 

11.11% for question 3.1, followed by 15.28% for question 3.2, then 4.17% for question 

3.3, further 12.5% for question 3.4 and last 6.94% for question 3.5. In the category 

incorrectly answered, 86.11% for question 3.1, followed by 79.17% for question 3.2, 

then 95.83% for question 3.3, then 83.33% for question 3.4 and last, 90.28% for 

question 3.5. For the category no response, there were no learners who had no 

responses. 

 

In column ten, Table 4.12, shows means and standard deviations for learners’ 

responses to the five levels of question three in four categories. The standard 

deviation is useful in instances where there is a need to measure variance of data 

from a comparable point (Lathrop, 1961). The range in standard deviation (Table 

4.12) shows the degree of variance from the mean which may be positive or negative 

or zero (Saary, 2008). A zero range means an item is placed at the mean, followed 

by a negative range which depicts that an item is below the mean (Gorard, 2005). The 

last range, a positive range depicts that the item is above the mean (Lathrop, 1961). 

As such, for question 3.1, category ‘correctly answered’, the mean is 1.33 and the 

standard deviation is 2.51. Schools B, C, D, E and F are in the range,−1𝜎 < 𝑥 < 0, 

school A is in the range, +2𝜎 < 𝑥 < +3𝜎 and school G is in the range, 0 < 𝑥 < +1𝜎. 

In the category ‘partially answered’, the mean is 7.1 and the standard deviation is 
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11.21. Schools B, C, D, E and F are in the range, −1𝜎 < 𝑥 < 0, school A is in the 

range, +2𝜎 < 𝑥 < +3𝜎, and school G is in the range, 0 < 𝑥 < +1𝜎. School B, C, D, E 

and F are in the range, 0 < 𝑥 < +1𝜎, school A is in the range,−3𝜎 < 𝑥 < −2𝜎, and 

School G is in the range,−1𝜎 < 𝑥 < 0. In the category ‘incorrectly answered’, the 

mean is 90.2 and the standard deviation is 13.43. In the category ‘no response’, the 

mean is 1.37 and the standard deviation is 1.83. Schools B and F are in the 

range,+1𝜎 < 𝑥 < +2𝜎, and Schools A, C, D, E and G are in the range,−1𝜎 < 𝑥 < 0. 

 

For question 3.2, in the category ‘correctly answered’, the mean is 6.65 and the 

standard deviation is 9.72. Schools B, C, D, E, F and G are in the range, −1𝜎 < 𝑥 <

0, and school SA is in the range, +1𝜎 < 𝑥 < +2𝜎. In the category ‘partially answered’, 

the mean is 4.99 and the standard deviation is 8.16. Schools B, D, E and F are in the 

range, −1𝜎 < 𝑥 < 0, school A is in the range, +1𝜎 < 𝑥 < +2𝜎, and School B and G 

are in the range,0 < 𝑥 < +1𝜎. In the category ‘incorrectly answered’, the mean is 

83.11 and the standard deviation is 13.43. Schools B, C, D, E and F are in the 

range, 0 < 𝑥 < +1𝜎, school A is in the range,−3𝜎 < 𝑥 < −2𝜎, and school G is in the 

range, −1𝜎 < 𝑥 < 0. In the category ‘no response’, the mean is 3.04 and the standard 

deviation is 3.09. School C, D, E and G are in the range, −1𝜎 < 𝑥 < 0, School A and 

B are in the range, +1𝜎 < 𝑥 < +2𝜎, and schools F is in the range, 0 < 𝑥 < +1𝜎. 

 

For question 3.3, in the category ‘correctly answered’, the mean is 1.23 and the 

standard deviation is 2.13. Schools B, C, D, E and G are in the range,−1𝜎 < 𝑥 < 0, 

schools SA and SF are in the range,+1𝜎 < 𝑥 < +2𝜎. In the category ‘partially 

answered’, the mean is 1.56 and the standard deviation is 1.73. Schools B, C, D and 

E are in the range, −1𝜎 < 𝑥 < 0, schools SA, and SF are in the range,0 < 𝑥 < +1𝜎, 

and school G is in the range, +1𝜎 < 𝑥 < +2𝜎. In the category ‘incorrectly answered’, 

the mean is 93.8 and the standard deviation is 5.07. School SA and SF are in the 

range, −2𝜎 < 𝑥 < −1𝜎, school B is in the range,−1𝜎 < 𝑥 < 0, school C is in the 

range,+1𝜎 < 𝑥 < +2𝜎, and Schools D, E and G are in the range, 0 < 𝑥 < +1𝜎. In the 

category ‘no response’, the mean is 3.41 and the standard deviation is 3.14. School 

A, E and F are in the range, 0 < 𝑥 < +1𝜎, school B is in the range, +1𝜎 < 𝑥 < +2𝜎, 

Schools C and G are in the range, −2𝜎 < 𝑥 < −1𝜎, and school D is in the 

range, −1𝜎 < 𝑥 < 0. 
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For question 3.4, in the category ‘correctly answered’, the mean is 2.52 and the 

standard deviation is 3.49. School A is in the range, +1𝜎 < 𝑥 < +2𝜎, schools B, C, D 

and E are in the range,−1𝜎 < 𝑥 < 0, and schools F and G are in the range,0 < 𝑥 <

+1𝜎. In the category ‘partially answered’, the mean is 6.37 and the standard deviation 

is 9.48. School A is in the range,+2𝜎 < 𝑥 < +3𝜎, schools A, B, D, E and F are in the 

range,−1𝜎 < 𝑥 < 0, and school G is in the range,0 < 𝑥 < +1𝜎. In the category 

‘incorrectly answered’, the mean is 85.25 and the standard deviation is 14.46. School 

A is in the range,−3𝜎 < 𝑥 < −2𝜎, and schools B, C, D and E are in the range,0 < 𝑥 <

+1𝜎, and schools, F and G are in the range,−1𝜎 < 𝑥 < 0. In the category ‘no 

response’, the mean is 5.86 and the standard deviation is 5.38. School A is in the 

range,0 < 𝑥 < +1𝜎, schools B and F are in the range,+1𝜎 < 𝑥 < +2𝜎, schools C and 

G is in the range,−2𝜎 < 𝑥 < −1𝜎, D and E are in the range,−1𝜎 < 𝑥 < 0. 

 

For question 3.5, in the category ‘correctly answered’, the mean is 3.49 and the 

standard deviation is 4.17. School A is in the range,+1𝜎 < 𝑥 < +2𝜎, schools B, D, SE 

and G are in the range,−1𝜎 < 𝑥 < 0, and schools C and F are in the range,0 < 𝑥 <

+1𝜎. In the category ‘partially answered’, the mean is 2.86 and the standard deviation 

is 3.3. Schools A and G are in the range,+1𝜎 < 𝑥 < +2𝜎, schools B, C, D and E are 

in the range,−1𝜎 < 𝑥 < 0, and school F is in the range,0 < 𝑥 < +1𝜎. In the category 

‘incorrectly answered’, the mean is 88.8 and the standard deviation is 9.55. School A 

is in the range,−2𝜎 < 𝑥 < −1𝜎, schools B and F are in the range,−1𝜎 < 𝑥 < 0, 

schools C, E and G are in the range,0 < 𝑥 < +1𝜎, and school D is in the range,+1𝜎 <

𝑥 < +2𝜎. In the category ‘no response’, the mean is 4.85 and the standard deviation 

is 4.71. Schools A and B are in the range,+1𝜎 < 𝑥 < +2𝜎, schools C and G are in the 

range,−2𝜎 < 𝑥 < −1𝜎, school D is in the range,−1𝜎 < 𝑥 < 0, and schools E and F 

are in the range,0 < 𝑥 < +1𝜎. 
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Table 4.12: Learners’ responses to question 3 

 

Key: SA, school A; SB, school B; SC, school C; SD, school D; SE, school E; SF, school F; SG, school G; %, percent; F, frequency. 

 

ANA 2014 GRADE 9 MATHEMATICS LEARNERS’ RESPONSES IN VARIOUS SCHOOLS  
Question 3 
Algebra and algebraic 
fractions 

Learners’ responses SA 
 

(F)  % 

SB 
 

(F) % 

SC 
 

(F)  % 

SD 
 

(F) % 

SE 
 

(F) % 

SF 
 

(F) % 

SG 
 

(F) % 
 

Standard Deviations 
& Means 

 

(𝑥̅)𝜎 

3.1 Simplify 

 𝟐(𝒙 + 𝟐)𝟐 − (𝟐𝒙 − 𝟐)(𝒙 + 𝟐) 
(n=1250) 

Correctly answered 
Partially answered 

Incorrectly answered 
No response 
Total scripts  

(14)6.51 
(67)31.16 
(132)61.4 
(2)0.93 
(215) 

(0)0 
(3)1.4 

(199)93.9 
(10)4.7 
(212) 

(0)0 
(1)2 

(49)98 
(0)0 
(50) 

(0)0 
(1)0.5 

(188)99.5 
(0)0 

(189) 

(0)0 
(6)1.7 

(340)97.4 
(3)0.9 
(349) 

(0)0 
(3)1.84 

(155)95.09 
(5)3.07 
(163) 

(2)2.78 
(8)11.11 

(62)86.11 
(0)0 
(72) 

(1.33)2.51 
(7.10)11.21 
(90.2)13.43 
(1.37)1.83 

(178.57)99.77 

3.2 Simplify 

𝟏𝟓𝒙𝟐𝒚𝟑 − 𝟗𝒙𝟐𝒚𝟑

𝟖𝒙𝟐𝒚𝟑
 

  (n=1250) 

Correctly answered 
Partially answered 

Incorrectly answered 
No response 
Total scripts 

(56)26.05 
(44)20.47 

(101)46.97 
(14)6.51 

(215) 

(2)0.94 
(1)0.47 

(194)91.51 
(15)7.08 

(212) 

(0)0 
(5)10 

(45)90 
(0)0 
(50) 

(1)0.53 
(0)0 

(187)98.94 
(1)0.53 
(189) 

(2)0.6 
(8)2.3 

(331)94.8 
(8)2.3 
(349) 

(8)4.91 
(4)2.45 

(142)87.12 
(9)5.52 
(163) 

(4)5.55 
(11)15.28 
(57)79.17 

(0)0 
(72) 

(6.65)9.72 
(4.99)8.16 

(83.11)17.49 
(3.04)3.09 

(178.57)99.77 

3.3 Simplify 

𝒙𝟐 − 𝟒𝒙

𝒙𝟐 − 𝟐𝒙 − 𝟖
 

(n=1250) 

Correctly answered 
Partially answered 

Incorrectly answered 
No response 
Total scripts  

(8)3.72 
(7)3.26 

(188)87.44 
(12)5.58 

(215) 

(0)0 
(0)0 

(195)92 
(17)8 
(212) 

(0)0 
(0)0 

(50)100 
(0)0 
(50) 

(0)0 
(2)1.05 

(185)97.9 
(2)1.05 
(189) 

(0)0 
(0)0 

(336)96.3 
(13)3.7 
(349) 

(8)4.91 
(4)2.45 

(142)87.12 
(9)5.52 
(163) 

(0)0 
(3)4.17 

(69)95.83 
(0)0 
(72) 

(1.23)2.13 
(1.56)1.73 

(93.80)5.07 
(3.41)3.14 

(178.57)99.77 

3.4 Simplify 

𝒙𝟐

𝟐
+

𝟐𝒙𝟐

𝟑
−

𝟕𝒙𝟐

𝟔
 

(n=1250) 

Correctly answered 
Partially answered 

Incorrectly answered 
No response 
Total scripts  

(20)9.3 
(55)25.58 

(119)55.35 
(21)9.77 

(215) 

(0)0 
(0)0 

(186)87.7 
(26)12.3 

(212) 

(0)0 
(1)2 

(49)98 
(0)0 
(50) 

(1)0.5 
(4)2.1 

(180)95.3 
(4)2.1 
(189) 

(0)0 
(2)0.57 

(329)94.2
7 

(18)5.16 
(349) 

(6)3.68 
(3)1.84 

(135)82.82 
(19)11.66 

(163) 

(3)4.17 
(9)12.5 

(60)83.33 
(0)0 
72 

(2.52)3.49 
(6.37)9.48 

(85.25)14.46 
(5.86)5.38 

(178.57)99.77 

3.5 Simplify 

𝟔𝒙𝟐

𝟕𝒙𝒚
×

𝟑𝒚𝟑

𝟐𝒙
 

(n=1250) 

Correctly answered 
Partially answered 

Incorrectly answered 
No response 
Total scripts  

(25)11.63 
(17)7.91 

(150)69.76 
(23)10.7 

(215) 

(1)0.5 
(2)0.9 

(186)87.7 
(23)10.9 

(212) 

(2)4 
(0)0 

(48)96 
(0) 
(50) 

(0)0 
(0)0 

(187)98.9 
(2)1.1 
(189) 

(0)0 
(4)1.2 

(325)93.1 
(20)5.7 
(349) 

(9)5.52 
(5)3.07 

(140)85.89 
(9)5.52 
(163) 

(2)2.78 
(5)6.94 

(65)90.28 
(0)0 
(72) 

(3.49)4.17 
(2.86)3.30 

(88.80)9.55 
(4.85)4.71 

(178.57)99.77 
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Table 4.13 is an outline of mathematical activities that were examined by 

question 3. There are also codes of SMP that these questions demanded. For more 

detail on the coding of learners’ SMP see Table 3.3. Both Table 4.13 and 4.14 show 

codes of SMP that were exhibited by learners in response to question 3. 

 

Table 4.13: SMP required by question 3 

SMP in question 3 

Question Mathematical activity Codes 

3.1 Simplify 

 2(𝑥 + 2)2 − (2𝑥 − 2)(𝑥 + 2) 
 

Apply BODMAS rule, evaluate a square of a 
binomial, multiply binomial, add and subtract like 

terms. 

PF1-SC1-SC3 

3.2 Simplify 
15𝑥2𝑦3 − 9𝑥2𝑦3

8𝑥2𝑦3
 

Adding like terms and dividing through. CU1-SC1-SC3 

3.3 Simplify 
𝑥2 − 4𝑥

𝑥2 − 2𝑥 − 8
 

 

Factorisation of numerator and denominator, 
dividing through. 

CU1-SC1-SC3 

3.4 Simplify 
𝑥2

2
+

2𝑥2

3
−

7𝑥2

6
 

 

Multiply each term by  
6

6
 , to make every 

denominator 6 and add numerators. 

CU1-SC1SC3 

3.5 Simplify 

𝟔𝒙𝟐

𝟕𝒙𝒚
×

𝟑𝒚𝟑

𝟐𝒙
 

Divide through and multiply like terms. CU1-SC1-SC3 

 

Table 4.14 explains with codes of SMP that are likely to be exhibited by learners 

as they respond to the five parts of question three. The codes are divided into four 

categories for each part of the question. These codes are key to the analysis and 

categorising of learners’ responses to question three. The codes were derived from 

the general codes of SMP shown in Table 3.3 and the suggested answers for the ANA 

test. 
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Table 4.14: Explanation of learners’ SMP to the five parts of question 3 

SMP analysis key on Question 3 

SMP3.1A 
No response 

SMP3.1B 
Incorrect procedures for 

squaring a binomial, 
multiplication of brackets and 

simplification 
 

SMP3.1C 
One or two of these  

were incorrect, 
squaring a binomial 
or  multiplication of 

brackets or 
simplification 

SMP3.1D 
Correct squaring 

of binomial, 
multiplication of 

brackets and 
simplification 

SMP3.2A 
No response 

SMP3.2B 
Incorrect procedures for 

adding like terms and dividing 
like terms 

SMP3.2C 
Either incorrect 

addition of like terms 
or division of like 

terms 

SMP3.2D 
Correct addition 
of like terms and 
division of like 

terms 

SMP3.3A 
No response 

SMP3.3B 
Incorrect procedures for 
factoring the numerator, 
denominator and division 

by ′𝑥 − 4′ 

SMP3.3C 
Either incorrect 

factoring numerator 
or factoring trinomial 
or division by′𝑥 − 4′ 

SMP3.3D 
Correct factoring 
of common factor 

in numerator, 
factorisation of a 

trinomial and 
dividing by ′𝑥 − 4′ 

SMP3.4A 
No response 

SMP3.4B 
Applying incorrect procedure 

e.g. that of equation 

SMP3.4C 
Either incorrect use 

of LCD or 
subtraction or 

division 

SMP3.4D 
Correct use of 

LCD, addition and 
subtraction 

SMP3.5A 
No response 

SMP3.5B 
Incorrect procedures of 

multiplication and division of 
like terms 

SMP3.5C 
Either, incorrect 
multiplication or 

division of like terms 

SMP3.5D 
Correct 

multiplying and 
division of like 

terms 

 

 LEARNERS’ RESPONSES TO QUESTION 3.1 

 

In this question, learners were required to simplify an algebraic expression. The 

simplification required learners to apply the BODMAS rule, multiply binomials, and 

finally add and subtract like terms, (Grade 8 work) or factorise common factors (Grade 

9 work) as shown in the curriculum (DBE, 2011). Question 3.1 examined SMP 

according to the codes that emerged as shown in Table 3.3, and the analysis, as 

shown in Table 4.13 summarises the proficiency levels in the question. 

 

Figure 4.6 summarises the trend of learners’ responses to question 3.1 using 

the radar charts. The use of radar charts has been prevalent in presenting 

observational data (Saary, 2008). Subsequently, the radar charts measure the area 

of a polygon in multivariate data (Feldman, 2013). A regular polygon depicts 

maximum frequency in all variables (Nurse et al., [Sa]). In contrast, when a vertex of 
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the polygon is centred towards zero, shows that the variable is minute (Saary, 2008). 

In the current study, the use of seven schools make the data multivariate. 

Subsequently, the use of four levels of proficiency (incorrectly answered, no 

response, moderate proficient and partially answered) confirms the multivariate 

nature of the data. For the category, correctly answered, the distribution is almost 

centred for all schools. As such it shows that a small number of learners answered 

question 3.1 correctly. For the category incorrectly answered, the distribution is almost 

a regular heptagon showing that most learners incorrectly answered question 3.1. 

The obvious irregular in the polygon is in School A. This shows the 61.4% of learners 

who incorrectly answered question 3.1. For the category partially answered, there is 

an irregular heptagon with only school A (31.16%) and School G (11.11%). The 

remainder of the schools were almost centred in the distribution showing that the 

numbers were either too low or zero. The category no response, is almost centred, 

showing that the values are too small or zero. 

 

Figure 4.6: Trend in learners’ responses to question 3.1 

 

Figure 4.7 are vignettes of two learners’ responses to question 3.1. Earlier, in 

the analysis of ANA questions, question 3.1 was coded PF1-SC1-SC3 which 

indicated that this was a routine procedure for Grade 9, for simplification of an 

algebraic expression. This question was a computation that requires procedural 
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fluency, described by Kilpatrick et al. (2001) as the skill of performing procedures 

flexibly, accurately, efficiently and appropriately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Learners’ responses to question 3.1 

 

Part one of the procedure, flexibility refers to knowing various procedures and 

relative efficiencies of the procedures (Star, 2004). Here, Learner A and Learner B 

were limited to one procedure, which is to simplify by expanding brackets, then group 

like terms and finally make the solution simple. According to DBE (2011) this is a 

Grade 8 procedure which test the use of BODMAS to simplify algebraic expressions 

and in Grade 9 learners must factorise to simplify algebraic expressions. Ironically the 

two learners were not wrong to apply the Grade 8 procedure as the question did not 

specify a procedure and the question that provided flexibility. It could be said that 

these learners were operating procedurally at Grade 8 level.  

 
Learner A 

 
Learner B 
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Part two, accuracy often refers to the correct use of signs to carry out basic 

operations that involve addition, subtraction, multiplication and division to reach 

consistently the required answer (Bass, 2003). Learner A computes (𝑥 + 2)2 into 

be 𝑥2 + 4 which shows incorrect use of an algorithm of exponents, which applies to 

monomial terms and not binomials. The second expansion, (2𝑥 − 1)(𝑥 + 2) results 

to 2𝑥2 − 4𝑥 − 𝑥 + 2 which has wrong signs for ‘−4’ and ‘+2’ respectively. This justifies 

that the learner lacked accuracy. In contrast, Learner B, expanded and grouped like 

terms correctly; however there was a mistake in writing ‘(+4)’. This mistake could 

have been caused by lack of flexibility. The use of another procedure such as 

factorisation could have avoided too many signs which make learners less error 

prone. 

 

Part three, efficiency is often visible in learners who conduct procedures 

certainly, and use intermediate outcomes to execute the problem (NCTM, 2000). 

Since the problem allowed flexibility, and the learners opted for BODMAS, a grade 

eight outcome, Learner B showed efficiency in this procedure and it is worrisome that 

the marker penalised for a slip when procedurally the learner seemed fluent. This is 

an indication that the marking focused on the product at the expense of the procedure. 

Learner A incorrectly introduced the equal sign, an algorithm for solving equations not 

simplification. Hence the marking correctly penalised the learner. 

 

Part four, appropriation refers to learners who are conscious of the right time of 

applying a procedure (Schoenfeld, 1985). Learner A seemed to lack appropriation by 

using two irrelevant algorithms in this procedure. In Contrast, Learner B correctly 

applied the procedure in all steps only to be let down by a slip. In both cases the 

cause was lack of flexibility, which was, choice of procedure that was error prone. The 

response by Learner A was coded (SMP3.1B, see Table 4.14) which was common, 

learners who were not proficient amongst the seven schools (90.2%). Subsequently, 

the response by Learner B was coded SMP3.1C, one of the 7.7% learners who were 

moderately proficient to question 3.1. 
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 LEARNERS’ RESPONSES TO QUESTION 3.2 

 

In Figure 4.8 shows the distribution of learners’ responses to question 3.2. The 

category incorrect responses is almost a regular heptagon, except in school A. This 

irregular distribution in School A shows 46.97% learners who incorrectly answered 

question 3.1 in school A. Other schools that distort the regular heptagon are School 

G (79.17% incorrectly answered), School F (95.09% incorrectly answered), School C 

(98% incorrectly answered) and School B (91.51% incorrectly answered). For the 

category partially answered is almost centred for most of the schools except for 

School SA (20.47% partially answered). School SC (2% partially answered) and 

School SG (15.28% partially answered). This shows schools with low numbers or zero 

in this category. In the category correctly answered the distribution shows an irregular 

shape that is almost centred in some of the schools. The distribution shows that shows 

that for correctly answered, there were very low number of learners and in some 

schools it was zero. The exception was in School A, (26.05% correctly answered), 

School F (4.95% correctly answered) and School G (5.55% correctly answered). The 

category no response is an irregular distribution with some school centred. The 

exception was in three School A (6.51% no response), School B (7.08% no response) 

and School F (5.52% no response). 

 

Figure 4.8: Trend in learners’ responses to question 3.2 
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Figure 4.9 sets out learners’ responses to question 3.2. This question was earlier 

coded CU1-SC1-SC3 (see Table 4.13) which shows that this question was routine 

conceptual connections (see Table 3.3 for explanation of coding). Kilpatrick et al. 

(2001) pointed out that conceptual understanding is visible when learners 

comprehend mathematical concepts, operations and relations. Similarly, conceptual 

understanding is knowing how and why (McCormick, 1997). Ironically, the use of the 

word ‘comprehend’ by Kilpatrick et al. (2001) allows categorising questions that 

connects mathematical ideas, concepts and relations to be conceptual. Additionally, 

another assertion made is that conceptual understanding and procedural fluency are 

inseparable (Schneider et al., 2011). These inferences highlights that the ‘how’ part 

is procedural knowledge and the extension to ‘how and why’ makes a question 

examines conceptual understanding (Star, 2004). Additionally, another extension of 

the procedure comprehending a variety of concepts in one question. In question 3.2, 

concepts that were connected were addition of algebraic and division of algebraic 

expressions.  

 

Figure 4.9: Learners’ responses to question 3.2  

 
Learner A 

 
Learner B 
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I view the learners’ responses from the way the question was coded, conceptual 

understanding, which comprehends two concepts addition and division, and 

factorisation and division. First, flexibility: Learner A and Learner B chose addition in 

the numerator, a procedure for Grade 8. The question did not state the procedure to 

follow, meaning it was flexible. However, simplifying through factorisation is a Grade 

9 procedure (DBE, 2011). Second, accuracy: adding the numerators both learners 

followed the procedure correctly to get 24𝑥2𝑦3. In the other procedure, division, 

Learner A, incorrectly divided both the numerals, by writing the inverse and the 

variables by applying an algorithm of addition and subtraction, which says keep the 

variables unchanged. Mistakenly, Learner A missed 𝑥2 which confirms that this 

learner lacked accuracy. The marking focused on the answer and disregarded the 

procedure by not awarding any mark to Learner A. On the other hand, Learner B 

accurately performed division to confirm that the learner exhibited accuracy. Third, 

efficiency: Learner A was not efficient due to the two observed mistakes and yet, 

Learner B was efficient by the consistency in both concepts, addition and division. As 

such Learner A was coded SMP3.2B for being not proficient which was common in 

90.2% on learners’ responses, amongst the seven sampled schools. Subsequently, 

Learner B was coded SMP 3.2D, 5.51% for learners’ who were proficient in question 

3.2 in the sampled schools. Fourth: for appropriation, although the question was 

flexible, both learners were operating at Grade 8 level (DBE, 2011) and could not use 

factorisation an outcome for Grade 9 (DBE, 2011). It is safe to infer that Learner A did 

not show appropriation to pre-knowledge and Learner B only showed appropriation in 

pre-knowledge, Grade 8. 

 

 LEARNERS’ RESPONSES TO QUESTION 3.3 

 

In Figure 4.10 shows the trend of learners’ responses to question 3.3. The category 

no response is centred which shows that in most of the schools there were low or 

zero learners that did not respond to question 3.3. For the category incorrectly 

answered, the distribution is almost a regular heptagon. This shows that most of the 

learners incorrectly answered question 3.3 in almost all the schools. In the category 

correctly answered is a distribution that is irregular, School A (3.72% correctly 
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answered), School F (4.91% correctly answered) and the other schools have no 

learners who correctly answered question 3.3.  The category partially answered has 

an irregular shape which is centred in three schools (zero partially achieved) and a 

few learners for School A (3.26% partially achieved), School D (1.05% partially 

achieved) School F (2.45% partially achieved) and School G (4.17% partially 

achieved). 

 

 

Figure 4.10: Trend in learners’ responses to question 3.3 

 

The vignettes in Figure 4.11 are learners’ responses to question 3.3. This 

question was earlier coded CU1-SC1-SC3 (see Table 4.13) which shows that this 

question required routine conceptual connections. The concepts that were 

comprehended in this question were: (1) factorisation of a binomial (the numerator), 

(2) factorisation of a trinomial (the denominator) and division to make the expression 

simple. Phase one, flexibility, Learner A and Learner B chose to factorise the 

numerator which was the only procedure meaning that the question did not posit 

transparency. In Phase two, accuracy, in the numerator, Learner A used the wrong 

algorithm, which is difference of two squares instead of factoring a common factor. 

By contrast Learner B correctly factored the common factor. In the denominator, 

Learner A reduced the trinomial to 8 and it is not clear how that was computed to 

show lack of accuracy. By contrary, Learner B correctly factorised the denominator to 

confirm accuracy. 
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Figure 4.11: Learners’ responses to question 3.3 
 

In Phase three, efficiency, in Learner A, the factorisation is wrong which shows 

the learner has not yet achieved the learning outcome for Grade 9. Similarly, Learner 

B, incorrectly factored 𝑥 − 4 to (𝑥 + 2)(𝑥 − 2). Here the learner applied the algorithm 

of the difference of two squares. Ironically the factors are; 𝑥 − 4 = (𝑥
1

2 + 2)(𝑥
1

2 − 2). If 

the learner could have reached this step, the question could have not factorised 

unless the same was done to the denominator. Here the learner was not efficient by 

the failure to divide 𝑥 − 4. In Phase four, appropriation the response by Learner A 

posits some deficiencies in the procedures, and the conclusion ‘𝑥 = 2, is for equations 

not algebraic expressions, and justifies lack of appropriation. By contrast, learner B 

failed to realise common factors that divide, and this posits lack of appropriation. As 

such, Learner A was one of 93.8% for learners who were not proficient in question 

 
Learner A 

 
Learner B 
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3.3 and coded SMP3.3B. Subsequently, Learner B was coded SMP3.1C, partially 

answered category which had 7.7% of learners’ responses amongst the sampled 

seven schools. 

 

 LEARNERS’ RESPONSES TO QUESTION 3.4 

 

In Figure 4.12 is a distribution for learners’ responses to question 3.4. In the category 

correctly answered, the distribution is centred which indicate that there were either 

low numbers or no learners who correctly answered question 3.4. For school A, there 

were 9.3%, school F had 3.68%, school D had 0.5% and school G had 4.17%. The 

other schools, which are school B, school C and school E had no learners who 

correctly answered question 3.4. In the category incorrectly answered, the distribution 

is almost a regular heptagon, showing that most learners incorrectly answered 

question 3.4, with an exception of School A, (55.35% incorrectly answered). For the 

category partially answered, the distribution shows an irregular shape centred for 

most of the schools, showing low numbers for this category in most schools except 

for School A (25.58% partially answered) and School G (6.94% partially answered). 

The last category, no response, shows a distribution that is irregular with some 

schools centred to show that they had low numbers of learners who had no responses 

to question 3.4. There is an exception in four schools, which are School A (9.77% no 

response), School B (12.3% no response), School E (5.16% no response) and School 

F (11.66% no response). 
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Figure 4.12: Trend in learners’ responses to question 3.4 

 

The vignettes Figure 4.13 are two samples of learners’ responses to question 

3.4.. This question was earlier coded CU1-SC1-SC3 (see Table 4.13) which shows 

that this question required routine conceptual connections. The concepts that were 

comprehended in this question were: 1) addition, 2) subtraction, 3) BODMAS, 4) 

division and 5) Equivalence.  

 

Phase one, flexibility: Learner A first subtracted the second and third term then 

added the terms. By contrast, Learner B first expressed the terms as equivalent 

fractions then simplified. The question provided flexibility by not stating the procedure 

and allowing learners to use the following: 1) make terms equivalent then compute 

(BOBMAS); and 2) express terms in a common denominator, then compute to 

simplify. Learner A did not use any of these procedures, hence procedurally the 

learner was wrong. Learner B used the first procedure. Phase two, accuracy, Learner 

A could not observe BODMAS by subtracting first and the resulting sign was wrong 

(+5𝑥2). Subsequently the learner added the numerators and the denominators, first 

correct, ‘1 + 5 = 6’ and ‘2 + 3 = 5’, but in the context of fractions this was wrong. The 

learner applied an algorithm for integers in fractions and incorrectly regarded the 
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numerators as separate numbers. Learner B computed incorrectly in the 

simplification. 

 

Figure 4.13: Learners’ responses to question 3.4 

 

Phase three, efficiency: for Learner A there was no certainty in conducting the 

procedure and this could have been caused by the learner being procedurally wrong. 

By contrast, Learner B was procedurally correct however, the learner failed to conduct 

the procedure certainly because of lacking accuracy in computations when 

simplifying. Phase four, appropriation: Learner A was not conscious of BODMAS and 

the correct algorithms to apply. Learner B was conscious of the procedure to use but 

was not certain in conducting the procedure during the simplification. As such, 

Learner A was coded SMP3.4B, one of 85.25%, for learners’ not proficient in question 

3.4 in the seven sampled schools. Learner B was one of 6.37% learners’ responses 

coded SMP3.1C, who partially answered question 3.4. 

 
Learner A 
 

 
Learner B 
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 LEARNERS’ RESPONSES TO QUESTION 3.5 
 

Figure 4.14 illustrates learners’ responses to question 3.5. The category no response, 

is a distribution that is almost centred. This shows that there were few or no learners 

who were in this category in the schools. In the category, incorrectly answered, the 

distribution is almost a regular heptagon which means that most learners incorrectly 

answered question 3.5 with the exception of School A (69.76% incorrectly answered). 

For the category partially answered, the distribution is irregular, showing a small 

number of learners and zero in two schools that partially answered question 3.5. Last, 

the category correctly answered is also irregular with a low number of learners in the 

majority of the schools except for School A (11.63% correctly answered), School C 

(4% correctly answered) and School F (5.52% correctly answered). 

 

Figure 4.14: Trend in learners’ responses to question 3.5 

 

Figure 4.15 posits on learners’ responses to question 3.5. This question was 

earlier coded CU1-SC1-SC3 (see Table 4.13) which shows that this question 

contained routine conceptual connections. The concepts that were comprehended in 

this question were: 1) multiplication and relative law of exponents; 2) division and 

relative law of exponents; and 3) factorisation.   
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Figure 4.15: Learners’ responses to question 3.5 

 

Phase one: the question provided flexibility, by not specifying the procedure out 

of the following: 1) multiply first, then divide to simplify; 2) divide first, then multiply for 

simpler version; and 3) Factorise first a common factor for both numerator and 

denominator, then divide the common factor to remain with the simpler version. 

Learner A chose a procedure of multiplying across, hence the learner was wrong 

procedurally. Contrary, Learner B multiplied, then divided for the simplified version. 

 

Phase two, accuracy, cross multiplied the terms in the expression for an 

example, 6𝑥2 × 2𝑥2 = 12𝑥3 𝑎𝑛𝑑 7𝑥𝑦 × 3𝑦2 𝑎𝑛𝑑 𝑔𝑜𝑡 21𝑥𝑦4, Subsequently the learner 

multiplied 12𝑥3 𝑎𝑛𝑑 21𝑥𝑦2 to get 252𝑥4𝑦4. This indicates an incorrect procedure 

 
Learner A 
 

 
Learner B 
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irrespective of the resultant multiplication. By contrast, Learner B, multiplied correct 

and the subsequent division was correct. Unfortunately, the marking indicated that 

the learners’ final simplification was wrong when it was actually correct. Phase three, 

efficiency: Learner A is efficient with multiplication as exhibited in the response, but in 

the context of the question, fractions, the learner was not efficient by choosing a 

wrong procedure. By contrast, Learner B was efficient with the procedure. 

 

Phase four, appropriation, for Learner A, the learner did not exhibit appropriation 

with the wrong procedure and Learner B exhibited appropriation. Learner A was 

coded SMP3.5B, one of 88.8% learners who were not proficient in question 3.5 in the 

seven sampled schools. Contrary, Learner B was one of 3.49% on learners’ 

responses coded SMP3.5D who correctly answered question 3.5. 

 

 LEVELS OF MATHEMATICAL PROFICIENCY TO QUESTION 3 

 

Table 4.15, presents a summary of the levels of mathematical proficiency in question 

three. From the table it is evident that most learners (92.66%) were not proficient in 

Algebra and Algebraic Fractions questions. A very small proportion of learners (4.56% 

and 2.78%) were moderate and proficient in algebra and algebraic fractions questions 

respectively. Algebra and Algebraic Fractions are regarded as abstract content that 

assist learners to handle higher order questions (Dhlamini & Kibirige, 2014). This 

deficiency in proficiencies that learners exhibit in evaluative assessment such as ANA 

justifies urgent attention in the monitoring of curriculum reform.  
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Table 4.15: summary of learners’ levels of mathematical proficiency to question 3 

ANA 2012 Question 3 
(Algebra and algebraic 
fractions) 

Codes for levels of mathematical proficiency 

ANA questions Not Proficient Moderate 
Proficient 

Proficient Total 

3.1 Simplify 

 2(𝑥 + 2)2 − (2𝑥 − 2)(𝑥 + 2) 

(20)SMP3.1A 
(1125)SMP3.1B 

(89)SMP3.1C (16)SMP3.1D 1250 

3.2 Simplify 

15𝑥2𝑦3 − 9𝑥2𝑦3

8𝑥2𝑦3
 

(47)SMP3.2A 
(1057)SMP3.2B 

(73)SMP3.2C (73)SMP3.2D 1250 

3.3 Simplify 

𝑥2 − 4𝑥

𝑥2 − 2𝑥 − 8
 

(53)SMP3.3A 
(1165)SMP3.3B 

(16)SMP3.3C (16)SMP3.3D 1250 

3.4 Simplify 

𝑥2

2
+

2𝑥2

3
−

7𝑥2

6
 

(88)SMP3.4A 
(1058)SMP3.4B 

(74)SMP3.4C (30)SMP3.4D 1250 

3.5 Simplify 

6𝑥2

7𝑥𝑦
×

3𝑦3

2𝑥
 

(77)SMP3.5A 
(1101)SMP3.5B 

(33)SMP3.5C (39)SMP3.5D 1250 

Totals 
Percent 

5791 
92.66 

285 
4.56 

174 
2.78 

6250 
100 

 

4.3.2 Learners’ Responses to Question Six 

 

In question 6, the question were on number patterns, a sub-topic of numbers and 

operations. The questions present solving number problems in exponential form 

(DBE, 2011). Learners require extensive computational fluencies when performing 

algorithms of numbers (Hecht & Vagi, 2012; Siegler, Thompson & Schneider, 2011). 

These are visible in their responses to questions that demand these proficiencies as 

in question 6. Table 4.16 is a synopsis of learners’ responses to question 6 in 7 

schools. The analysis classified learners’ responses into four categories, correctly 

answered, partially answered, incorrect response and no response. These categories 

depicted the proficiency levels of learners for a variety of questions in 7 schools. 

 

The third column in Table 4.16 shows results for learners in question 6 in school 

A. In the category correctly answered, 42.33% learners correctly answered question 

6.1, followed by 28.84% for question 6.2 and last, 29.3% for question 6.3. For the 

category partially answered, 1.4% for question 6.1, followed by 0.93% for question 

6.2 and 2.8% for question 6.3. In the category incorrectly answered, 41.86% 

answered question 6.1 wrong, 61.86% incorrectly answered question 6.2 and 53.02% 
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for question 6.3. In the category no response, there were 14.41% for question 6.1, 

then 8.37% learners for question 6.2 and 14.88% for question 6.3. 

 

Column four of Table 4.16 shows the results for learners to question 6 in school 

B. The category correctly answered, 10.4% learners correctly answered question 6.1, 

followed by 3.3% for question 6.2 and 4.7% for question 6.3. In the category partially 

answered, no learners partially answered question 6.1, 6.2 and 6.3. In the category 

incorrectly answered, 82.1% learners answered question 6.1 wrong, followed by 

85.4% for question 6.2 and last 83.5% for question 6.3. For the category no response, 

7.5% for question 6.1, then 11.3% for question 6.3 and 11.8% for question 6.3. 

 

In column five, Table 4.16 are results for school C for question six. In the 

category correctly answered, 8% learners correctly answered question 6.1, then 6% 

for question 6.2 and 4% for question 6.3. For the category partially answered, no 

learners partially answered question 6.1, 6.2 and 6.3. In the category incorrectly 

answered, 90% of learners answered question 6.1 wrong, 92% for question 6.2 and 

94% for question 6.3. The category no response, there were 2% of learners for 

question 6.1, 6.2 and 6.3. 

 

In column six, Table 4.16, are the results for school D for question six. In the 

category correctly answered, 6.3% learners correctly answered question 6.1, then 

1.1% for question 6.2 and 0.53% for question 6.3. For the category partially answered, 

2.1% for question 6.1, then no learners partially answered question 6.2 and 6.3. The 

category incorrectly answered, 88.4% learners answered question 6.1 wrong, then 

96.8% learners for question 6.2 and 95.24% for question 6.3. In the category no 

response, there were 3.2% learners who had no responses for question 6.1, followed 

by 2.1% for question 6.2 and 4.23% for question 6.3.  

 

Column seven in Table 4.16, outlines results for school E in question six. In the 

category correctly answered, there were 9.2% learners who correctly answered 

question 6.1, then 1.44% for question 6.2 and 0.3% for question 6.3. The category 

partially answered, 0.6% learners partially answered question 6.1, no learners for 

question 6.2 and 1.7% for question 6.3. For the category incorrectly answered, 84.8% 
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“What You Test Is What You Get, (WYTIWUG).” (Schoenfeld, 2007: 72) learners 

answered question 6.1 wrong, then 90.54% for question 6.2 and 87.4% for question 

6.3. The category no response, 5.4% for question 6.1, then (8.02%) for question 6.2 

and 10.6% for question 6.3. 

 

In column eight, Table 4.16, are the results for school F for question 6. In the 

category correctly answered, 17.79% of learners correctly answered question 6.1, 

then 7.97% for question 6.2 and 7.36% for question 6.3. In the category partially 

answered, 1.23% partially answered question 6.1, then no learner for question 6.2 

and 0.61% for question 6.3. For the category incorrectly answered, 66.87% for 

question 6.1, then 71.78% for question 6.2 and 64.42% for question 6.3. In the 

category no response, 14.11% had no responses for question 6.3, then 20.25% for 

question 6.2 and 27.61% for question 6.3. 

 

In column nine, Table 4.16, are the results for school G for question 6. The 

category correctly answered, 13.89% learners correctly answered question 6.1, then 

2.78% for question 6.2 and 4.17% for question 6.3. For the category partially 

answered, no learners partially answered question 6.1, 6.2 and 6.3. In the category 

incorrectly answered, 86.11% learners answered question 6.1 wrong, then 97.22% 

for question 6.2 and 95.83% for question 6.3. In the category no response, there were 

no learners did not respond to question 6.1, 6.2 and 6.3. 

 

In column ten, Table 4.16, shows means and standard deviations for learners’ 

responses to the three levels of question six in four categories. For question 6.1, in 

the category ‘correctly answered’, the mean is 15.42 and the standard deviation is 

12.48. School A is in the range,+2𝜎 < 𝑥 < +3𝜎, schools B, C, D, E and G are in the 

range,−1𝜎 < 𝑥 < 0, and school F is in the range,0 < 𝑥 < +1𝜎. In the category 

‘partially answered’, the mean is 0.76 and the standard deviation is 0.84. Schools A, 

E and F are in the range,0 < 𝑥 < +1𝜎, schools B, C and G are in the range,−1𝜎 <

𝑥 < 0, and school D is in the range,+1𝜎 < 𝑥 < +2𝜎.  The category ‘incorrectly 

answered’, the mean is 77.16 and the standard deviation is 17.35. School A is in the 

range,−2𝜎 < 𝑥 < −3𝜎, schools B, C, D, E and G are in the range,0 < 𝑥 < +1𝜎, and 

school F is in the range,−1𝜎 < 𝑥 < 0. In the category ‘no response’, the mean is 6.66 
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and the standard deviation is 5.71. Schools A and F are in the range,+1𝜎 < 𝑥 < +2𝜎, 

schools C, D and E are in the range,−1𝜎 < 𝑥 < 0, school B is in the range,0 < 𝑥 <

+1𝜎, and school G is in the range,−2𝜎 < 𝑥 < −1𝜎. 

 

For question 6.2, in the category ‘correctly answered’, the mean is 7.35 and the 

standard deviation is 9.79. In the category ‘partially answered’, the mean is 0.13 and 

the standard deviation is 0.35. in the category ‘incorrectly answered’, the mean is 

85.09 and the standard deviation is 13.41. In the category ‘no response’, the mean is 

8.67 and the standard deviation is 6.7. 

 

For question 6.3, in the category ‘correctly answered’, the mean is 7.19 and the 

standard deviation is 10.05. In the category ‘partially answered’, the mean is 0.73 and 

the standard deviation is 1.11. In the category ‘incorrectly answered’, the mean is 

81.92 and the standard deviation is 16.79. In the category ‘no response’, the mean is 

10.16 and the standard deviation is 9.44. 
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Table 4.16: Learners’ responses to question 6 

ANA 2014 GRADE 9 MATHEMATICS LEARNERS’ RESPONSES IN VARIOUS SCHOOLS  

Question 6 Number 
Patterns 

Learners’ responses SA 
 
(F) % 

SB 
 
(F) % 

SC 
 
(F) % 

SD 
 
(F) % 

SE 
 
(F) % 

SF 
 
(F) % 

SG 
 
(F) % 

Standard 
Deviations & 
Means 

(𝑥̅)𝜎 

6.1 
Complete the table 
below. 
(n=1250) 

Correctly answered 
Partially answered 
Incorrectly answered 
No response 
Total scripts  

(91)42.33 
(3)1.4 
(90)41.86 
(31)14.41 
(215) 

(22)10.4 
(0)0 
(174)82.1 
(16)7.5 
(212) 

(4)8 
(0)0 
(45)90 
(1)2 
(50) 

(12)6.3 
(4)2.1 
(167)88.4 
(6)3.2 
(189) 

(32)9.2 
(2)0.6 
(296)84.8 
(19)5.4 
(349) 

(29)17.79 
(2)1.23 
(109)66.87 
(23)14.11 
(163) 

(10)13.89 
(0)0 
(62)86.11 
(0)0 
(72) 

(15.42)12.48 
(0.76)0.84 
(77.16)17.35 
(6.66)5.71 
(178.57)99.77 

6.2 
Write down the 
general term Tn of the 
above number pattern. 
(n=1250) 

Correctly answered 
Partially answered 
Incorrectly answered 
No response 
Total scripts 

(62)28.84 
(2)0.93 
(133)61.86 
(18)8.37 
(215) 

(7)3.3 
(0)0 
(181)85.4 
(24)11.3 
(212) 

(3)6 
(0)0 
(46)92 
(1)2 
(50) 

(2)1.1 
(0)0 
(183)96.8 
(4)2.1 
(189) 

(5)1.44 
(0)0 
(316)90.54 
(28)8.02 
(349) 

(13)7.97 
(0)0 
(117)71.78 
(33)20.25 
(163) 

(2)2.78 
(0)0 
(70)97.22 
(0)0 
(72) 

(7.35)9.79 
(0.13)0.35 
(85.09)13.41 
(8.67)6.70 
(178.57)99.77 

6.3 
If Tn = 512, determine 
the value of n. 
(n=1250) 

Correctly answered 
Partially answered 
Incorrectly answered 
No response 
Total scripts  

(63)29.3 
(6)2.8 
(114)53.02 
(32)14.88 
(215) 

(10)4.7 
(0)0 
(177)83.5 
(25)11.8 
(212) 

(2)4 
(0)0 
(47)94 
(1)2 
(50) 

(1)0.53 
(0)0 
(180)95.24 
(8)4.23 
(189) 

(1)0.3 
(6)1.7 
(305)87.4 
(37)10.6 
(349) 

(12)7.36 
(1)0.61 
(105)64.42 
(45)27.61 
(163) 

(3)4.17 
(0)0 
(69)95.83 
(0)0 
(72) 

(7.19)10.05 
(0.73)1.11 
(81.92)16.79 
(10.16)9.44 
(178.57)99.77 
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Table 4.17 presents an outline of mathematical activities that were examined by 

question 6. There are also codes of SMP that these questions demanded. For more 

detail on the coding of SMP see Table 3.3. 

 

Table 4.17: SMP demanded by question 6 

Strands of mathematical proficiency in question 6 

Question Mathematical activity Codes 
6.1 

Complete the table below. 
Evaluating consecutive terms of 

a pattern, multiplication. 
SP-SC1-SC3 

6.2 
Write down the general term Tn of 

the above number pattern. 

Finding the general formula of 
a pattern, write using 

variables. 

SP-SC1-SC3-AR2 

6.3 
If Tn = 512, determine the value of 

n. 

Substitution in the formula, 
finding the cube. 

PF2-SC1-SC3 

 

Table 4.18 explain with codes SMP that were required by ANA and are likely to 

be exhibited by learners as they respond to the three parts of question six. These 

codes explain the proficiency levels tested by ANA and are key in the analysis and 

categorising of learners’ responses to question 6. The codes were derived from the 

generic of SMP as shown in Table 3.3 and the suggested answers for the ANA test. 

 

Table 4.18: Explanation of learners’ mathematical proficiencies in the three parts of 

question 6 

  Strands of mathematical proficiency analysis key on Question 6 

SMP6.1A 
No response 

SMP6.1A 
Incorrect 

calculation of 
values in the 

sequence 

SMP6.1C 
One of the values 

is incorrect 

SMP6.1D 
Correct calculation of 

values of the sequence 

SMP6.2A 
No response 

SMP6.2B 
Incorrect 
formula 

SMP6.2C 
Not simplified 

formula 

SMP6.2D 
Correct formula 

SMP6.3A 
No response 

SPM6.3B 
Wrong 

statement, 
substitution and 

simplification 

SMP6.3C 
Either, wrong 

statement, 
substitution or 
simplification 

SMP6.3D 
Correct statement, 

substitution and 
simplification 
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 LEARNERS’ RESPONSES TO QUESTION 6.1 
 

Figure 4.16 illustrates the trend in learners’ responses to question 6.1. The category 

no response is centred showing that in the distribution, there were a few or no learners 

in the schools who had no responses to question 6.1. In the category partially 

answered, the distribution is centred which also show a few or no learners in the 

schools who partially answered question 6.1. For the category incorrectly answered, 

the distribution is almost a regular heptagon with the exception of School A (42.33% 

incorrectly answered). This indicates that most learners incorrectly answered 

question 6.1. Last, for the category correctly answered, the distribution is irregular 

and shows that most of the schools had less than 10%, correctly answered with an 

exception of School A (44.23% correctly answered). The vignettes that I used were 

from three learners because the current researcher wanted to explore the consistency 

in question 6.1, 6.2 and 6.3 which were follow-on questions. 

 

Figure 4.16: Trend in learners’ responses to question 6.1 

 

The vignettes in Figure 4.17 are learners’ responses to question 6.1. This 

question was earlier coded SP-SC1-SC3 (see Table 4.17) which shows that this 

question required routine simple procedure. The procedure required knowledge of 

Number Patterns. Specifically, in Grade 8 and 9, learners are expected to use their 

own judgement to generalise Sequences.  
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Figure 4.17: Learners’ responses to question 6.1 

 

Phase one, flexibility: the question does not specify a procedure to follow to 

generate the subsequent terms of the sequence, hence the question is flexible. 

Learner A generates the subsequent terms by adding the common difference. This 

procedure is applicable to linear sequences and not cubic sequences. Learners in 

Grade 9 are expected to use their discretion (not in a systematic way) to complete 

numeric and geometric sequences (DBE, 2011). Only in Grade 10 learners are 

expected to use systematic formulae for linear and geometric sequences (DBE, 

2011). As such, this learner is applying a Grade 10 procedure. By contrast, Learner 

B used the procedure of looking at how the term is generated from the position in the 

pattern. In Phase two, accuracy, Learner A, computed the terms of the sequence as 

follows; 27 − 8 = 19 to generate the subsequent terms 46 𝑎𝑛𝑑 65, correct 

computations for linear sequences, but wrong procedure for this question, hence the 

answers are incorrect. Learner B, computed as follows; 2 × 2 × 2 = 8 𝑎𝑛𝑑 3 × 3 × 3 =

27 then 4 × 4 × 4 = 64 𝑎𝑛𝑑 5 × 5 × 5 = 125, correct procedure and correct 

 
Learner A 

 
Learner B 
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computations. Phase three, efficiency: Learner B showed efficiency but by contrast 

Learner A was not efficient due to wrong procedure followed. Phase four, 

appropriation: Learner A did not exhibit appropriation due to misapplication of 

procedure. By contrast, Learner B exhibited appropriation by choosing the correct 

procedure and applied it at the right time. As such, Learner A was one of 81.92% 

coded SMP6.1B, learners who were not proficient in question 6.1. Learner B was one 

of 15.42% learners coded SMP6.1D who were proficient in question 6.1. 

 

 LEARNER’S RESPONSES TO QUESTION 6.2 
 

Figure 4.18 shows the trend in learners’ responses to question 6.2. The category 

partially answered is centred, which shows that there were very few or no learners 

who partially answered question 6.2. In the category correctly answered, the 

distribution is irregular, in schools E and D it is centred meaning no learners correctly 

answered question 6.2 in these Schools. In school A, the results were (28.84% 

correctly answered), school B (3.3% correctly answered), school C (6% correctly 

answered), school F (7.97% correctly answered) and school G (2.78% correctly 

answered). In the category incorrectly answered, the distribution is almost a regular 

heptagon except for schools A and F. This is an indication that in most schools 

majority of learners incorrectly answered question 6.2. Last, the category no response 

is irregular and almost centred. This indicates that there were a few or no learners in 

the schools that had no responses to question 6.2. 

 

 

Figure 4.18: Trend in learners’ responses to question 6.2 
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The vignettes in Figure 4.19 are learners’ responses to question 6.2. These 

responses are from the same learners in the previous question (6.1) and I also use 

them in question 6.3 because these were follow-on questions. This question was 

earlier coded SP-SC1-SC3-AR2 (see Table 4.17) which shows that this question 

involved routine simple procedure which allowed learners to conjecture. The 

procedure required knowledge of Number Patterns, especially the ability to generalise 

number patterns. 

 

Figure 4.19: Learners’ responses to question 6.2 

 

Phase one, flexibility: this question followed-on from the previous one and 

learners’ responses were dependant on answers for question 3.1. Hence, the 

question was only flexible to the discursive learners’ responses exhibited in the 

previous question. Learner A misapplied the procedure for linear sequence in cubic 

sequence and Learner B applied procedure for cubic sequences. Phase two, 

accuracy: Learner A followed a procedure of finding the general formula a linear 

sequence which was not consistent with the given pattern (cubic sequence). Learner 

B correctly wrote the general term of the cubic sequence which was a generalisation 

from the response in the previous question (6.1). Phase three, efficiency: Learner A 

was not efficient due to the wrong choice of procedure and Learner B was efficient by 

exhibiting correct generalisation of the cubic sequence. Phase four, appropriation: 

Learner A did not exhibit appropriation due to an incorrect procedure. Learner B 

 
Learner A 

 
Learner B 
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exhibited appropriation by knowing the correct procedure, and when and how to use 

it. As such, Learner A was one of 85.09% learners’ responses coded SMP6.2B those 

not proficient in question 6.2. Subsequently, Learner B was one of 7.35% learners’ 

responses coded SMP6.2D for learners who were proficient in question 6.2. 

 

 LEARNERS’ RESPONSES TO QUESTION 6.3 

 

Figure 4.20 illustrates the trend in learners’ responses to question 6.3. The category 

partially answered is almost centred showing that very few or no learners partially 

answered question 6.3. The category correctly answered is irregular and shows 

values less than 10% in most schools except for school A (29.3% correctly answered). 

The category incorrectly answered is almost a regular heptagon except for school A, 

(53.02% incorrectly answered) and school F (64.42% incorrectly answered). Last, the 

category no response, is irregular and is centred for some schools. This is an 

indication that there were very few or no learners who had no responses to question 

6.3. 

 

Figure 4.20: Trend in learners’ responses to question 6.3 

 

The vignettes in Figure 4.21 are responses by Learner A and Learner B to 

question 6.3. This question was earlier coded PF2-SC1-SC3 (see Table 4.17) which 

shows that this question was a routine algorithm. 
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Figure 4.21: Learners’ response to question 6.3, SMP6.3B 

 

Phase one, flexibility: the question is flexible because it does not specify the 

procedure to be followed. The answer written by Learner A is not clear on the 

procedure used. By contrast, Learner B used the formula that was computed in 

question 6.2. Phase two, accuracy: if it is assumed that Learner A followed on the 

previous answers (Question 6.1 & 6.2), and substituting the values, the answer does 

not yield the answer written by the learner here. Hence Learner A did not exhibit 

accuracy. By contrast, Learner B, started with a wrong statement, 𝑇𝑛 = √𝑛
3

, since ‘512’ 

is 𝑇𝑛 and not ‘𝑛’. This statement was supposed to read as 𝑇𝑛 = 𝑛3 ∴ 𝑛 = √𝑇𝑛
3  𝑡ℎ𝑒𝑛 𝑛 =

√512
3

. Fortunately the second statement √512
3

 is accurate, then Learner B exhibited 

accuracy. Phase three, efficiency: Learner A was not efficient by not consistently 

applying the procedure from the previous follow-on questions. By contrast, Learner 

B, was efficient irrespective of the incorrect statement in the solution strategy. Phase 

four, appropriation: Learner A did not exhibit appropriation by not being consistent in 

the procedure used and by contrast Learner B exhibited appropriation due to the 

consistency in the procedure to achieve the outcome. As such, Learner A was one of 

81.92% coded SMP6.3B for learners who were not proficient in question 6.3. 

Subsequently during the coding, Learner B was one of 81.92% one of 7.19% coded 

SMP6.3D, for learners that were proficient in question 6.3. 

  

 
Learner A 

 
Learner B 
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 LEVELS OF MATHEMATICAL PROFICIENCY TO QUESTION 6  

 

In Table 4.19, is a summary of the levels of mathematical proficiency to question 6. 

From the table it is evident that most learners (89.01%) were not proficient in number 

patterns’ questions. A very small proportion of learners (0.7% and 10.29%) were 

moderate and proficient in number patterns questions respectively. 

 

Table 4.19: Summary of learners’ levels of mathematical proficiency to question 6 

ANA 2012 Question 6 
(Number patterns) 

Codes for levels of mathematical proficiency 

ANA questions Not Proficient Moderately 
Proficient 

Proficient Total 

6.1 Complete the table below. (96)SMP6.1A 
(943)SMP6.1B 

(11)SMP6.1C (200)SMP6.1D 1250 

6.2 Write down the general 
term Tn of the above number 
pattern 

(108)SMP6.2A 
(1046)SMP6.2B 

(2)SMP6.2C (94)SMP6.2D 1250 

6.3 If Tn = 512, determine the 
value of n. 

(148)SMP6.3A 
(997)SMP6.3B 

(13)SMP6.3C (92)SMP6.3D 1250 

Totals 
Percent 

3338 
89.01 

26 
0.70 

386 
10.29 

3750 
100 

 

4.3.3 Learners’ Responses to Question Ten  

 

For question ten, the learners responded to Geometry questions that examined 

analogical reasoning. Geometry is difficult to learn and teach because of its abstract 

mathematical proofs that learners must read, write and understand (Luneta, 2015b). 

Learners often perform errors and misconceptions in Geometry problems because 

they have to deal with Three-dimensional problems on a Three-dimensional plane 

(Palha et al., 2013; Soto-Johnson & Troup, 2014). Analogical reasoning entails 

reasoning about commonalities among mathematical relations (Amir-Mofidi et al., 

2012). These are visible in learners’ responses to questions that demand this 

proficiency as in question 10. Table 4.20 is a synopsis of learners’ responses to 

question ten in seven schools. The analysis classified learners’ responses into four 

categories, correctly answered, partially answered, incorrect response and no 

response. These categories depicted the proficiency levels of learners for a variety of 

questions in seven schools.  
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In column three, Table 4.20 are learners’ responses to question t10 in school A. 

In the category correctly answered, 4.65% of learners correctly answered question 

10.2, then 4.19% for question 10.3.1, followed by 15.81% for question 10.3.2 and 

4.19% for question 10.4.1. For the category partially answered, 25.58% learners 

partially answered question 10.2, then 14.88% for question 10.3.1, followed by 

(38.61%) for question 10.3.2 and 24.65% for question 10.4.1. In the category, 

incorrectly answered, 50.7% learners answered question 10.2 wrong, 67.91% for 

question 10.3.1, then 30.23% for question 10.3.2 and 49.3% for question 10.4.1. In 

the category no response, there were 19.07% learners who did not respond to 

question 10.2, then 13.02% for question 10.3.1, followed by 15.35% for question 

10.3.2 and 21.86% for question 10.4.1. 

 

Column four, Table 4.20 shows results for learners’ responses to question ten 

for School B. There were no learners who correctly answered question 10.2, 10.3.1, 

10.3.2 and 10.4.1. For the category partially answered, 1.4% of learners partially 

answered question 10.2, then 2.8% learners for question 10.3.1, and 0.9% for both 

question 10.3.2.and question 10.4.1. In the category incorrectly answered, 67% 

learners incorrectly answered question 10.2, then 62.3% for question 10.3.1, followed 

by (53.8%) for question 10.3.2 and 55.2% for question 10.4.1. The category no 

response, 31.6% learners did not respond to question 10.2, then 34.9% for question 

10.3.1, followed by 45.3% for question 10.3.2 and 43.9% for question 10.4.1. 

 

In column five, Table 4.20 there are results for learners’ responses to question 

ten for School C. In the category correctly answered, no learners correctly answered 

question 10.2, 10.3.1, 10.3.2 and 10.4.1. For the category partially answered, 8% 

learners partially answered question 10.2, then 16% for question 10.3.1, followed by 

8% for question 10.3.2, and 20% for question 10.4.1. In the category incorrectly 

answered, 90% of learners incorrectly answered question 10.2, then 82% for question 

10.3.1 and question 10.3.2, and 68% for question 10.4.1. In the category no response, 

2% of learners did not answer question 10.2 and question 10.3.1, followed by 10% 

for question 10.3.2 and 12% for question 10.4.1. 

 

In column six, Table 4.20 are the results for learners’ responses to question 10 

for school D. For the category correctly answered, no learners correctly answered 
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question 10.2, 10.3.1, 10.3.2 and 10.4.1. In the category partially answered, 12.2% 

learners partially answered question 10.2, then 9.5% for question 10.3.1, followed by 

16.9% for question 10.3.2 and 6.3% for question 10.4.1. The category incorrectly 

answered, 78.3% of learners answered incorrectly question 10.2, followed by 85.7% 

for question 10.3.1, then 74.1% for question 10.3.2 and 85.2% for question 10.4.1. In 

the category no response, 9.5% of learners did not answer question 10.2, followed by 

4.8% who did not answer question 10.3.1, then 9% for question 10.3.2, and 8.5% for 

question 10.4.1. 

 

Column seven, Table 4.20, shows the results for learners’ responses to question 

10 for school E. In the category correctly answered, there were no learners who 

answered question 10.2 correct, then 0.9% for question 10.3.1, followed by 0.3% for 

question 10.3.2 and 1.15% for question 10.4.1. For the category partially answered, 

8.3% partially answered question 10.2, followed by 3.2% for question 10.3.1, then 

8.6% for question 10.3.2, and 5.73% for question 10.4.1. In the category incorrectly 

answered, 84% of learners got question 10.2 wrong, then 86.2% for question 10.3.1, 

followed by 74.8% for question 10.3.2 and 79.08% for question 10.4.1. In the category 

no response, 7.7% of learners did not respond to question 10.2, followed by 9.7% for 

question 10.3.1, then 16.3% for question 10.3.2 and 14.04% for question 10.4.1. 

 

In column eight, Table 4.20 are the results for learners’ responses to question 

10 for school F. In the category correctly answered, there were no learners who 

correctly answered question 10.2 and 10.4.1, then 2.45% for question 10.3.1 and 

0.61% for question 10.3.2. For the category partially answered, 9.82% partially 

answered question 10.2, followed by 6.75% for question 10.3.1, then 14.11% for 

question 10.3.2 and 7.36% for question 10.4.1. In the category incorrectly answered, 

75.46% of learners incorrectly answered question 10.2, then 73.62% for question 

10.3.1, followed by 68.1% for question 10.3.2, and 68.71% for question for question 

10.4.1. In the category no response, 14.72% of learners did not answer question 10.2, 

then 17.18% for question 10.3.1 and question 10.3.2 and last 23.93% for question 

10.4.1.  

 

In the column nine, Table 4.20 are the results for learners’ responses to question 

10 for school G. For the category correctly answered, 1.39% of learners correctly 
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answered question 10.2, 10.31, 10.32 and 10.4.1. In the category partially answered, 

26.39% of learners partially answered question 10.2, then 15.28% for question 10.3.1, 

followed by 27.78% for question 10.3.2 and 12.5% for question 10.4.1. For the 

category incorrectly answered, 72.22% of learners incorrectly answered question 

10.2, followed by 83.33% for question 10.3.1, then 70.83% for question 10.3.2 and 

86.11% for question 10.4.1. The category no response, there were no learners who 

did not respond to question 10.2, 10.3.1, 10.3.2 and 10.4.1. 

 

Column ten, Table 4.20, shows means and standard deviations for learners’ 

responses to the four levels of question ten in four categories. For question 10.2, 

category correctly answered, the mean is 0.86 and the standard deviation is 1.75. For 

the category partially answered, the mean is 13.1 and the standard deviation is 9.4. 

For the category incorrectly answered, the mean is 73.95 and the standard deviation 

is 12.73. For the category no response, the mean is 12.08 and the standard deviation 

is 10.88. For question 10.3.1, in the category correctly answered, the mean is 1.28 

and the standard deviation is 1.58. In the category partially answered, the mean is 

9.77 and the standard deviation is 5.72. In the category incorrectly answered, the 

mean is 77.29 and the standard deviation is 9.44. In the category no response, the 

mean is 11.66 and the standard deviation is 11.92. 

 

For question 10.3.2, in the category correctly answered, the mean is 2.59 and 

the standard deviation is 5.85. In the category partially answered, the mean is 16.41 

and the standard deviation is 12.91. In the category incorrectly answered, the mean 

is 64.84 and the standard deviation is 17.54. In the category no response, the mean 

is 16.16 and the standard deviation is 14.15. For question 10.4.1, in the category 

correctly answered, the mean is 0.96 and the standard deviation is 1.54. For the 

category partially answered, the mean is 11.06 and the standard deviation is 8.51. In 

the category incorrectly answered, the mean is 70.23 and the standard deviation is 

14.29. In the category no response, the mean is 17.75 and the standard deviation is 

14.06. 
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Table 4.20: Learners’ responses to question 10 

ANA 2014 GRADE 9 MATHEMATICS LEARNERS’ RESPONSES IN VARIOUS SCHOOLS  

Question 10 
Concurrency and 

Similarity 

Learners’ responses SA 
 

(F) % 

SB 
 

(F) % 

SC 
 

(F) % 

SD 
 

(F) % 

SE 
 
(F) % 

SF 
 

(F) % 

SG 
 

(F) % 

Standard 
Deviations & 

Means 
(𝑥̅)𝜎 

10.2 
Proving that two sides are 

equal 
(n=1250 

Correctly answered 
Partially answered 

Incorrectly answered 
No response 
Total scripts  

(10)4.65 
(55)25.58 
(109)50.7 
(41)19.07 

(215) 

(0)0 
(3)1.4 

(142)67 
(67)31.6 

(212) 

(0)0 
(4)8 

(45)90 
(1)2 
(50) 

(0)0 
(23)12.2 

(148)78.3 
(18)9.5 
(189) 

(0)0 
(29)8.3 
(293)84 
(27)7.7 
(349) 

(0)0 
(16)9.82 

(123)75.46 
(24)14.72 

(163) 

(1)1.39 
(19)26.39 
(52)72.22 

(0)0 
(72) 

(0.86)1.75 
(13.10)9.40 

(73.95)12.73 
(12.08)10.88 

(178.57)99.77 
10.3.1 

Proving that two lines are 
equal 

(n=1250) 

Correctly answered 
Partially answered 

Incorrectly answered 
No response 
Total scripts 

(9)4.19 
(32)14.88 

(146)67.91 
(28)13.02 

(215) 

(0)0 
(6)2.8 

(132)62.3 
(74)34.9 

(212) 

(0)0 
(8)16 

(41)82 
(1)2 
(50) 

(0)0 
(18)9.5 

(162)85.7 
(9)4.8 
(189) 

(3)0.9 
(11)3.2 

(301)86.2 
(34)9.7 
(349) 

(4)2.45 
(11)6.75 

(120)73.62 
(28)17.18 

(163) 

(1)1.39 
(11)15.28 
(60)83.33 

(0)0 
(72) 

(1.28)1.58 
(9.77)5.72 

(77.29)9.44 
(11.66)11.92 

(178.57)99.77 
10.3.2 

Proving that two triangles 

are congruent (n=1250) 

Correctly answered 
Partially answered 

Incorrectly answered 
No response 
Total scripts  

(34)15.81 
(83)38.61 
(65)30.23 
(33)15.35 

(215) 

(0)0 
(2)0.9 

(114)53.8 
(96)45.3 

(212) 

(0)0 
(4)8 

(41)82 
(5)10 
(50) 

(0)0 
(32)16.9 

(140)74.1 
(17)9 
(189) 

(1)0.3 
(30)8.6 

(261)74.8 
(57)16.3 

(349) 

(1)0.61 
(23)14.11 
(111)68.1 
(28)17.18 

(163) 

(1)1.39 
(20)27.78 
(51)70.83 

(0)0 
(72) 

(2.59)5.85 
(16.41)12.91 
(64.84)17.54 
(16.16)14.15 

(178.57)99.77 
10.4.1 

Proving that two triangles 
are similar 
(n=1250) 

Correctly answered 
Partially answered 

Incorrectly answered 
No response 
Total scripts  

(9)4.19 
(53)24.65 
(106)49.3 
(47)21.86 

(215) 

(0)0 
(2)0.9 

(117)55.2 
(93)43.9 

(212) 

(0)0 
(10)20 
(34)68 
(6)12 
(50) 

(0)0 
(12)6.3 

(161)85.2 
(16)8.5 
(189) 

(4)1.15 
(20)5.73 

(276)79.08 
(49)14.04 

(349) 

(0)0 
(12)7.36 

(112)68.71 
(39)23.93 

(163) 

(1)1.39 
(9)12.5 

(62)86.11 
(0)0 
(72) 

(0.96)1.54 
(11.06)8.51 

(70.23)14.29 
(17.75)14.06 

(178.57)99.77 
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Table 4.21 is an outline of mathematical activities that were examined by 

question 10. There are also codes of SMP that these questions demanded. For more 

detail on the coding of SMP see Table 3.3. 

 

Table 4.21: SMP examined by question 10 

Strands of mathematical proficiency in question 10 

Question Mathematical activity Codes 
10.2 

Proving that two sides are equal 

 

Show equal radii, showing a 
common side, showing two right 

angles in perpendicular lines, 
give valid reasons.  

SP-SC1-SC2-SC3-AR3 

10.3.1 
Proving that two lines are equal 

 

Showing equal given sides, 
showing that BF + FC = CE + 

FC, give valid reasons. 

SP-SC1-SC2-SC3-AR3 

10.3.2 
Proving that two triangles are similar 

Showing with valid reasons 
three pairs of equal sides. 

SP-SC1-SC2SC3-AR3 

10.4.1 
Proving that two triangles are similar 

Showing with valid reasons 
three pairs of equal sides. 

SP-SC1-SC2-SC3-AR3 

 

Table 4.22 explains with codes SMP that are likely to be exhibited by learners 

as they respond to the four parts of question 10. The codes are divided into four 

categories for each part of the question. These codes are key to the analysis and 

categorising of learners’ responses to question ten. The codes were derived from the 

general codes of SMP shown in Table 3.3 and the suggested answers for the ANA 

test. 
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Table 4.22: Explanation of learners’ SMP to the four parts of question 10 

SMP analysis key on Question 10  

SMP10.2A 
No response 

SMP10.2B 
Incorrect procedure 
of proof. 

SMP10.2C 
Either did not show 
with reasons, equal 
radii, common side, 
equal right angles 

or conclusion. 

SMP10.2D 
Correctly show with 
reasons equal radii, 

common side, equal right 
angles and conclusion. 

SMP10.3.1A 
No response 

SMP10.3.1B 
Incorrect procedure 
of proof. 

SMP10.3.1C 
Either did not 

show  𝐵𝐹 = 𝐶𝐸 or 

𝐵𝐹 + 𝐹𝐶 = 𝐶𝐸 +
𝐹𝐸 and cannot 

show 𝐵𝐶 = 𝐸𝐹 

SMP10.3.2D 
Correctly show 𝐵𝐹 = 𝐶𝐸 
as given and 𝐵𝐹 + 𝐹𝐶 =

𝐶𝐸 + 𝐹𝐸 resulting in 𝐵𝐶 =
𝐸𝐹  

SMP10.3.2A 
No response 

SMP10.3.2B 
Incorrect procedure 
of proof. 

SMP10.3.2C 
Either did not show 

2 pairs of equal 
sides or that 𝐵𝐶 =

𝐸𝐹 as proved 

SMP10.3.2D 
Correctly show 2 pairs of 
equal given sides, and 

show 𝐵𝐶 = 𝐸𝐹 as proved. 

SMP10.4.1A 
No response 

SMP10.4.1B 
Incorrect procedure 
of proof. 

SMP10.4.1C 
Either, incorrect 

reasons, or pair of 
equal angles. 

SMP10.4.1D 
Showing with reasons 

common angle, 2 equal 
pair of angles.  

 

 LEARNERS’ RESPONSES TO QUESTION 10.2 
 

Figure 4.22 is an illustration of learners’ responses to question 10.2. The category 

correctly answered is centred, showing a distribution with very low or zero learners 

who correctly answered question 10.2. The category incorrectly answered shows a 

distribution that is an irregular heptagon. This shows, that a high number of learners 

incorrectly answered question 10.2 with the exception of school A, (50.7% incorrectly 

answered) and school B (67% incorrectly answered). In the category partially 

answered, the distribution is irregular, which shows less or no learners who partially 

answered question. An exception is in school A, (25.58% partially answered) and 

school G (26.39% partially answered). Finally, in the category no response, the 

distribution is also irregular and shows less or no learners who did not respond to 

question 10.2. An exception was in school A, (19.07% no response) and school B 

(31.6% no response). 
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Figure 4.22: Trend in learners’ responses to question 10.2 

 

The vignettes in Figure 4.23 are learners’ responses to question 10.2. This 

question was earlier coded SP-SC1-SC2-SC3-AR3 (see Table 4.21) which shows 

that this question involved routine simple procedure which allowed learners to prove 

an analogy. 

 

Phase one, flexibility, the question did not specify the procedure to use to prove 

the analogy, to prove that ‘𝑃𝑁 = 𝑁𝑇’ by showing that ∆𝑃𝑀𝑁 ≡ ∆𝑇𝑀𝑁 by using two 

possible conditions for congruence. Learner A followed a procedure for proving 

congruence, and the same for Learner B. Phase two, accuracy: Learner A, the first 

step ‘𝑃 = 𝑇’ is not a condition for congruence (P and T are points), ‘𝑃𝑁 = 𝑁𝑇’needs 

to be proved and at this stage cannot be pronounced to be equal. The last statement 

‘𝑃2 = 𝑇1’is invalid because the learner failed to mark such angles on the diagram. In 

contrast, Learner B, proves for congruency by showing a condition for congruency. 

However the learner did not specify the congruent triangles.  

 

Phase three, efficiency: Learner A was not efficient in the procedure due to lack 

of accuracy and Learner B was efficient in the procedure for congruency due to the 

accuracy observed. Phase four, appropriation: Learner A was not appropriate due to 

the lack of both accuracy and appropriation. As such Learner A is one of 73.95% for 

learners’ responses who were coded SMP10.2B those who were not proficient in 
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question 10.2. Subsequently, Learner B was one of 0.86% for learners’ responses 

coded SMP10.2D, those who were proficient in question 10.2. 

 

Figure 4.23: Learners’ responses to question 10.2 

 

 LEARNERS’ RESPONSES TO QUESTION 10.3.1 

 

Figure 4.24 illustrates learners’ responses to question 10.3.1. In the category correctly 

answered, the distribution is almost centred which shows that a very small number of 

learners correctly answered question 10.3.1. An interesting observation was that, 

 
Learner A 

 
Learner B 
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even in school A, a small number of learners (4.19%) correctly answered question 

10.3.1. The category partially answered shows a distribution that is an irregular 

heptagon, school A, (14.88% correctly answered), school B (2.8% correctly 

answered), school C (16% correctly answered), school D (9.5% correctly answered), 

school E (3.2% correctly answered), school F (6.75% correctly answered) and school 

G (15.25% correctly answered).  

 

Figure 4.24: Trend in learners’ responses to question 10.3.1  

 

The vignettes in Figure 4.25 are learners’ responses to question 10.3.1. This 

question was earlier coded SP-SC1-SC2-SC3-AR3 (see Table 4.21) which shows 

that this question required routine simple procedure which allowed learners to prove 

an analogy. 

 

Phase one, flexibility: the question is not flexible because there only one 

procedure, using sides, that can be used to prove congruency and 𝐵𝐶 𝑎𝑛𝑑 𝐸𝐹, the 

sides that need to be proved are in the triangles. Both Learner A and B used the 

procedure for congruency. Phase two: accuracy, Learner A was not accurate by 

giving invalid statements and reasons as follows: AC = DF (Proven), AB =

ED (proven) and BC = EF (SAS)or (SSS). Learner B showed only one valid statement; 

𝐵𝐹 = 𝐶𝐹 (given), and the other statements were invalid; F1 = C1 (common) 𝑎𝑛𝑑 𝐵𝐶 =
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𝐸𝐹 (common and they share the same line). Therefore, both learners were not 

accurate. 

 

Figure 4.25: Learners’ responses to question 10.3.1 

 

Phase three, efficiency: both Learner A and B were not efficient due to failure to 

exhibit accuracy in the procedures. Phase four, appropriation: due to the failure by 

both learners to exhibit accuracy and efficiency in congruency, Learner A was one of 

77.29% coded SMP10.3.1B who were not proficient in question 10.3.1. Subsequently 

 

Learner A 

 

Learner B 
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in the coding, Learner B, due to one correct step of the procedure for congruency, 

was coded SMP10.3.1C, one of 9.77% for learners who partially answered question 

10.3.1. 

 

 LEARNERS’ RESPONSES TO QUESTION 10.3.2 

 

Figure 4.26 illustrates the trend in learners’ responses to question 10.3.2. The 

category correctly answered is almost centred which shows very low or no learners 

who correctly answered question 10.3.2. It is worth noting that even school A had 

15.81% of learners who correctly answered question 10.3.2. The category incorrectly 

answered shows a distribution that is an irregular heptagon with high number of 

learners who incorrectly answered question 10.3.2. The exception was in school A, 

(67.91% incorrectly answered) and school B (62.3% incorrectly answered). The 

category partially answered is irregular which shows a very low or no learners who 

partially answered question 10.3.2 in the schools. An exception is in School A, 

(38.61% correctly answered) and school G (27.78% correctly answered). Last, the 

category no response is also irregular showing small number of learners who did not 

respond to question 10.3.2. An exception was in school A, (15.35% no response) and 

school B (45.3% no response).  

 

Figure 4.26: Trend in learners’ responses to question 10.3.2  
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The vignettes in Figure 4.27 are learners’ responses to question 10.3.2. This 

question was earlier coded SP-SC1-SC2-SC3-AR3 (see Table 4.21) which shows 

that this question was routine simple procedure which allowed learners to prove an 

analogy. 

 

Figure 4.27: Learners’ responses to question 10.3.2 

 

Phase one, flexibility: the question is a follow-on from question 10.3.1 and the 

procedure that learners used was dependant on the previous responses. Hence the 

 
Learner A 

 

Learner B 
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question is flexible concerning various procedures that learners exhibited in the 

previous question. Learner A and B followed a procedure for congruency. Phase two, 

accuracy: Learner A gave invalid statements and reasons which are not consistent 

with how the learner responded to the previous question and not accurate for a proof 

for congruency. Learner B correctly showed three statements for congruency, but two 

reasons were incorrect as only one ‘𝐵𝐹 = 𝐶𝐸’ has been proved while the other two 

were not proven, but given in the original question. Hence Learner A and B did not 

exhibit accuracy in this question. 

 

Phase three, efficiency: Learner A and B were not efficient in this question due 

to their inconsistencies in executing procedures that were earlier exhibited in the 

previous question. Phase four, appropriation: Learner A and B failed to execute 

accuracy and efficiency, as such they gave invalid statements that were justified with 

false reasons that showed their failure to apply rules of congruency. As such, Learner 

A was one of 64.84% for learners’ responses coded SMP10.3.2B for being not 

proficient in question 10.3.2. Subsequent in the coding, Learner B was classified as 

SMP10.3.2C, one of 16.41% for learners who partially answered question 10.3.2.  

 

 LEARNER’S RESPONSES TO QUESTION 10.4.1 
 

Figure 4.28 illustrates the trend in learners’ responses to question 10.4.1. The 

category correctly answered is centred showing a very low number of learners who 

correctly answered question 10.4.1 in all the schools. The category partially answered 

is an irregular heptagon showing a low number of learners who partially answered 

question 10.4.1. The exception was in school A, (24.65% partially answered), school 

C (20% partially answered) and school G (12.5% partially answered). The category 

incorrectly answered shows a distribution that is an irregular heptagon. This is an 

indication that there was a very high number of learners who incorrectly answered 

question 10.4.1 in most schools. An exception was in school A, (49.3% incorrectly 

answered) and school B (55.2% correctly answered). Last, the category no response 

is irregular with low numbers for learners who did not respond to question 10.4.1. An 

exception was in school A, (21.86% no response) and school B (43.9% no response). 
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Figure 4.28: Trend in learners’ responses to question 10.4.1  

 

The vignette in Figure 4.29 are learners’ responses to question 10.4.1. This 

question was earlier coded SP-SC1-SC2-SC3-AR3 (see Table 4.21) which shows 

that this question was routine simple procedure that allowed learners to prove an 

analogy. 

 

Phase one, flexibility, the question allowed one condition for congruency, the 

use of only angles to prove the analogy, then the question was not flexible. Learner 

A used a wrong procedure, which is, the given lengths and is not a procedure to prove 

congruency. Learner B used a procedure for proving congruency. 

 

Phase two, accuracy, due to the choice of a wrong procedure and that this 

question was not flexible, accuracy by Learner A cannot be considered. In contrast, 

Learner B, correctly showed two given conditions, ‘𝐵̂ = 𝐶̂ 𝑎𝑛𝑑 𝐴̂ = 𝐴̂’ in the question 

as conditions for congruency. However, the learner could not identify that ‘𝐷1̂ = 𝐸1̂’ 

after showing that other corresponding angles of the two triangles are equal. Instead, 

the learner wrote an incorrect statement and reasons; ‘𝐸1 = 𝐸2 = 𝐷1 = 𝐷2, 𝑐𝑜𝑚𝑚𝑜𝑛.’ 
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Figure 4.29: Learners’ responses to question 10.4.1. 

 

Phase three, efficiency, Learner A was not efficient due to the choice of a wrong 

procedure in a question that was not flexible. Questions that are not flexible are 

essential to foster achievement of particular outcomes (Star, 2004). In contrast, 

Learner B was not fully efficient due to failure to exhibit the third condition for 

congruency. Phase four, appropriation, failure by Learner A to use the relevant 

procedure justified lack of appropriation. Learner B could not be consistent in the proof 

for congruency (not fully efficient), then this learner did not fully exhibit appropriation. 

Hence Learner A was coded SMP10.4.1B, one of (70.23%) learners who were not 

 
Learner A 

 
Learner B 
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proficient in question 10.4.1. Subsequent in the coding, Learner B was coded 

SMP10.4.1C, one of 11.06% for learners who partially answered question 10.4.1. 

 

 LEVELS OF MATHEMATICAL PROFICIENCY IN QUESTION 10 

 
In Table 4.23, is a summary of the levels of mathematical proficiency to question 10. 

From the table it is evident that most learners (87.26%) were not proficient in geometry 

questions. A very small proportion of learners (11.16% and 1.58%) were moderate 

and proficient in geometry questions respectively. This is irrespective of earlier 

findings in the current study that ANA tested analogical reasoning in geometry, a 

weaker form of reasoning and proof (Amir-Mofidi et al., 2012). 

 

Table 4.23: summary of learners’ levels of mathematical proficiency to question 10 

ANA 2012 Question 10 
(Geometry) 

Codes for levels of mathematical proficiency 

ANA questions Not Proficient Moderately 
Proficient 

Proficient Total 

10.2 Proving that two 
sides are equal. 

(178)SMP10.2A 
(912)SMP10.2B 

(149)SMP10.2C (11)SMP10.2D 1250 

10.3.1 Proving that two 
lines are equal. 

(174)SMP10.3.1A 
(962)SMP10.3.1B 

(97)SMP10.2C (17)SMP10.3.1D 1250 

10.3.2 Proving that two 
triangles are similar. 

(236)SMP10.3.2A 
(783)SMP10.3.2B 

(194)SMP10.3.2C (37)SMP10.3.2D 1250 

10.4.1 Proving that two 
triangles are similar. 

(250)SMP10.4.1A 
(868)SMP10.4.1B 

(118)SMP10.4.1C (14)SMP10.4.1D 1250 

Totals 
Percent 

4363 
87.26 

558 
11.16 

79 
1.58 

5000 
100 

 

4.3.4 Synopsis: Levels of Mathematical Proficiency in 2014 ANA 

 

Table 4.24 outlines mean deviations with direction for the levels of SMP to question 

3, 6 and 10 of the 2014 ANA. These values were generated from the data in Table 

4.23, Table 4.19 and Table 4.14 by calculating the mean deviation for each category 

of levels of SMP in learners’ responses to ANA. Algebra and Algebraic Fractions are 

learners’ responses to question 3, Number Patterns are learners’ responses to 

question 6 and Geometry are learners’ responses to question 10. 
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Table 4.24: mean deviations for levels of mathematical proficiency 

Levels of mathematical proficiency 

ANA questions Not Proficient Moderate 
Proficient 

Proficient Mean 

Algebra and Algebraic Fractions 3703.67 -1798.33 -1909.33 0.00 

Number Patterns 2088 -1224 -864 0.00 

Geometry 2296.33 -1108.67 -1587.67 0.00 

 

The mean deviations for levels of SMP (Figure 4.30) outlines the stronger levels 

in cases where graphs protrude upwards above zero, and weaker levels in cases 

where the graph protrude downward below zero. The strength and weaknesses were 

in terms of Algebra and Algebraic fractions, Number Patterns and Geometry in the 

2014 ANA. 

 

The stronger level of SMP was not proficient in Algebra and Algebraic Fractions, 

Number Patterns and Geometry. Such findings are consistent with those in a study 

by Dhlamini and Luneta (2016) who found that the level not proficient was common 

in learners’ responses to Grade 12 mathematics final examinations. Algebra and 

Geometry are regarded as abstract content areas that are essential for university 

mathematics and natural sciences (Luneta, 2015b). Hence such findings illustrate that 

policymakers need to address these content areas to ensure quality in mathematics 

education in South Africa. Concerning the strength of the level not proficient as 

observed in ANA, an evaluative assessment must be a serious concern to the 

monitoring of quality of curriculum reform (Graven & Venkat, 2014). 

 

The weaker levels of SMP were moderate proficient and proficient in terms of 

Algebra and Algebraic Fractions, Number Patterns and Geometry. Again these 

findings are consistent with those in a study by Dhlamini and Luneta (2016) that the 

levels moderately proficient and proficient were weaker in learners’ responses to 

Grade 12 mathematics final examinations. They are also consistent with findings by 

Ally and Christensen (2013) who found absence of reasoning in elementary 

mathematics classrooms. The quality of mathematics education is a serious concern 

where the system produced less proficient learners in Algebra and Geometry which 

are foundations of abstract mathematics and conceptual knowledge (Luneta, 2015b). 
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Figure 4.30: Mean deviations with direction for levels of mathematical proficiency 

 

4.4 Results and Discussion for Alignment of ANA and 

TIMSS 

 

According to Porter (2002), to calculate the Porter’s alignment index, first there must 

be cells of matrices for content and cognitive levels for the documents that are to be 

aligned. In this study, the Porter (2002) alignment index was used to calculate the 

alignment index. A set of percentages of two tables was developed to form matrices 

of proportions that were used to make comparisons. In the current study, to calculate 

the Porter’s alignment index, matrices were generated for cognitive levels for the ANA 

and the TIMSS.  

4.4.1 Content and Cognitive levels in the 2012 ANA 

 

To identify content and cognitive levels in the ANA 2012 mathematics Grade 9 test, 

the content in the 2012 ANA are classified into cognitive levels that each test item 

examined. There are four content areas: Numbers and Operations; Algebra and 

Functions; Geometry and Measurement; and Data handling and Probability. These 
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were classified according to their cognitive demand into four cognitive levels: (1) 

Knowing Facts & Procedures; (2) Applying Concepts & Procedures; (3) Routine 

Problem Solving; and (4) Complex Problem Solving & Reasoning. 

 

The matrix for the 2012 ANA mathematics test is shown in Table 4.25 below and 

is derived from the results of the question by question analysis of the 2012 ANA 

question paper. The totals in the matrix in Table 4.25 resulted from the number of hits 

of cognitive levels that the 2012 Grade 9 ANA mathematics test required. According 

to Porter (2002) this is a matrix of cognitive demands per content strand which is 

compared with another matrix and in this study it will be compared with the 2011 

Grade 8 TIMSS, this is matrix (Xi). 

 
Table 4.25: Matrix for 2012 ANA mathematics Grade 9 for topics and cognitive 

levels 

Content Cognitive levels 

1 2 3 4  

 Knowing 
facts & 

procedures 

Using 
concepts 

Routine 
problem 
solving 

Complex 
problem 

solving & 
reasoning 

Sub-total 

Numbers & 
operations 

6 1 6 2 15 

Algebra & 
functions 

7 7 2 3 19 

Geometry & 
measurement 

5 2 6 8 21 

Data Handling & 
probability 

1 2 1 0 4 

Sub-total 19 12 15 13 59 

 

4.4.2 Content and Cognitive Levels in the 2013 Grade 9 ANA 

 

To identify content and cognitive levels in the ANA 2013 mathematics Grade 9 test, 

the content in the 2013 ANA is classified into cognitive levels that each test item 

examined. There are four content areas: Numbers and Operations; Algebra and 

Functions; Geometry and Measurement; and Data handling and Probability. These 

were classified according to their cognitive demand to four cognitive levels: (1) 

Knowing Facts & Procedures; (2) Applying Concepts & Procedures; (3) Routine 

Problem Solving; and (4) Complex Problem Solving & Reasoning. 
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The matrix for the 2013 ANA mathematics test is shown in Table 4.26 below and 

is derived from the results of the question by question analysis of the 2013 ANA 

question paper. The totals in the matrix in Table 4.26 resulted from the number of hits 

of cognitive levels that the 2013 Grade 9 ANA mathematics test required. According 

to Porter (2002), this is a matrix of cognitive demands per content strand which is 

compared with another matrix and in this study it will be compared with the 2011 

Grade 8 TIMSS, this is matrix (Xj). 

 
Table 4.26: Matrix for 2013 ANA mathematics Grade 9 for topics and cognitive 

levels 

Content Cognitive levels 

1 2 3 4  

 
 

 

Knowing 
facts & 

procedures 

Using 
concepts 

Routine 
problem 
solving 

Complex 
problem 

solving & 
reasoning 

Sub-total 

Numbers & 
operations 

5 0 3 1 9 

Algebra & 
functions 

7 5 2 4 18 

Geometry & 
measurement 

5 7 4 6 22 

Data Handling & 
probability 

9 2 2 0 13 

Sub-total 26 14 11 11 62 

 

4.4.3 Content and Cognitive levels in the 2014 Grade 9 ANA 

 

To identify content and cognitive levels in the ANA 2014 mathematics Grade 9 test, 

the content in the 2014 ANA is classified into cognitive levels that each test item 

examined. There are three content areas, Numbers and Operations, Algebra and 

Functions, and Geometry and Measurement. These were classified according to their 

cognitive demand to four cognitive levels: (1) Knowing Facts & Procedures; (2) 

Applying Concepts & Procedures; (3) Routine Problem Solving; and (4) Complex 

Problem Solving & Reasoning. 

 

The matrix for the 2014 ANA mathematics test is shown in Table 4.27 below and 

is derived from the results of the question by question analysis of the 2014 ANA 

question paper. The totals in the matrix in Table 4.27 resulted from the number of hits 
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of cognitive levels that the 2014 Grade 9 ANA mathematics test required. According 

to Porter (2002) this is a matrix of cognitive demands per content strand which is 

compared with another matrix, and in this study it will be compared with the 2011 

Grade 8 TIMSS. This is called this matrix (Xp). 

 
Table 4.27: Matrix for 2014 ANA mathematics Grade 9 for topics and cognitive 

levels 

Content Cognitive levels 

1 2 3 4  

 Knowing 
facts & 

procedures 

Using 
concepts 

Routine 
problem 
solving 

Complex 
problem 

solving & 
reasoning 

Sub-total 

Numbers & 
operations 

5 2 3 2 12 

Algebra & 
functions 

9 4 7 5 25 

Geometry & 
measurement 

7 8 2 7 24 

Data Handling & 
probability 

0 0 0 0 0 

Sub-total 21 14 12 14 61 

 

4.4.4 Content and Cognitive levels in the 2011 TIMSS 
 

To identify content and cognitive levels in the TIMSS 2011 mathematics Grade 8 test 

items, the content is classified in the 2011 TIMSS into cognitive levels that each test 

item examined. There are four content areas: Numbers and Operations; Algebra and 

Functions; Geometry and Measurement; and Data Handling and Probability. These 

were classified according to their cognitive demand to four cognitive levels: (1) 

Knowing Facts & Procedures; (2) Applying Concepts & Procedures; (3) Routine 

Problem Solving; and (4) Complex Problem Solving & Reasoning. 

 

The matrix for the 2011 TIMSS mathematics test is shown in Table 4.28 below 

and is derived from the results of the question by question analysis of the 2011 TIMSS 

mathematics test items. The totals in the matrix in Table 4.28 resulted from the 

number of hits of cognitive levels that the 2011 TIMSS Grade 8 mathematics test 

demanded. According to Porter (2002), this is a matrix of cognitive demands per 

content strand which is compared with another matrix and in this study it is compared 
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with matrices formed using the Grade 9 mathematics ANAs 2012 (Xi), 2013 (Xj) and 

2014 (Xp) respectively. I shall call this matrix (Yi). 

 

Table 4.28: Matrix for 2011 TIMSS mathematics Grade 8 for topics and cognitive 

levels 

Content Cognitive levels 

1 2 3 4  

 Knowing 
facts & 

procedures 

Using 
concepts 

Routine 
problem 
solving 

Complex 
problem 

solving & 
reasoning 

Sub-total 

Numbers & 
operations 

11 8 0 1 20 

Algebra & 
functions 

11 8 6 5 30 

Geometry & 
measurement 

5 11 2 4 22 

Data Handling & 
probability 

6 8 1 3 18 

Sub-total 33 35 9 13 90 

 

4.4.5 Comparing Content and Cognitive Levels in ANA and TIMSS 

 

The data in Figure 4.31a-d is a synopsis of cognitive levels and content in the 

2012, 2013, 2014 ANA and 2011 TIIMSS. In Numbers and Operations, Knowing Facts 

and procedures and routine questions and routine problems are mostly tested. This 

is an indication that ANA in this content area tested mostly lower order questions, a 

challenge gauging numeracy in mathematics education in South Africa (Graven & 

Venkat, 2014; Greenleess, 2011). Subsequently, the questions tested less questions 

on Using Concepts (conceptual understanding). As such the ANA did not focus on 

comprehending numbers and this allows learners to coherently solve various 

concepts, procedures and relations (Star & Stylianides, 2013). These findings 

confirms data in this study on ANA questions. This confirms the fact that in this content 

area there was a deficit of questions that test at higher order, a challenge to a systemic 

assessment such as ANA. For Algebra and Functions the same results were 

observed for knowing facts and complex problems. However, more questions were 

on using concepts (conceptual understanding) and less on routine problem solving. 

By contrast, the TIMSS have a different trend, as they test more on knowing facts and 

using concepts in most content areas. Subsequently, the 2011 TIMSS test less 
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routine and complex problems. Consequently, the ANA in all three consecutive years 

are not aligned to TIMSS in terms of content and cognitive levels. This is worrisome 

and not regular in mathematics assessment that only Algebra and Functions must 

test more conceptual understanding (Schneider & Stern, 2010; Stein et al., 1996). 
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d) 

 

Figure 4.31 a-d: Cognitive Levels and Content in ANA and TIMSS 

 

4.4.6 Alignment of the Grade 8 and the 2012 ANA Questions 

 

In the matrix for the 2012 ANA mathematics, that is in Table 4.29, shows percentage 

ratios calculated by finding the quotient of the numbers in the cells with the total hits 

in all the cells as shown in Table 4.29 (Xi) below. Table 4.30 shows the percentage 

ratios, matrix Yi derived from Table 4.28, and the 2011 TIMSS Grade 8 mathematics 

and are compared with those in cell Xi to calculate the alignment index between the 

2012 ANA Grade 9 mathematics test and the 2011 Grade 8 TIMSS mathematics test. 

The formula for calculating the alignment index is used: 

 Alignment index = 1 - 
∑ │𝑋−𝑌│

2
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Table 4.29: (Xi) ANA 2012 mathematics Grade 9 ratios 

Content Cognitive levels  

1 2 3 4  

 Knowing 
facts & 

procedures 

Using 
concepts 

Routine 
problem 
solving 

Complex 
problem 
solving & 
reasoning 

Sub-total 

Numbers & 
operations 

6

59
= 0.1 

1

59
= 0.02 

6

59
= 0.1 

2

59
= 0.034 

0.25 

Algebra & 
functions 

7

59
= 0.12 

7

59
= 0.12 

2

59
= 0.035 

3

59
= 0.05 

0.325 

Geometry & 
measurement 

5

59
= 0.085 

2

59
= 0.03 

6

59
= 0.1 

8

59
= 0.14 

0.355 

Data Handling 
& probability 

1

59
= 0.02 

2

59
= 0.03 

1

59
= 0.02 

0

59
= 0.0 

0.07 

Sub-total 0.325 0.2 0.254 0.22 1.00 

 
  

Table 4.30: (Yi) TIMSS 2011 mathematics Grade 8 ratios 

Content Cognitive levels  

1 2 3 4  

 Knowing 
facts & 

procedures 

Using 
concepts 

Routine 
problem 
solving 

Complex 
problem 

solving & 
reasoning 

Sub-total 

Numbers & 
operations 

11

90
= 0.12 

8

90
= 0.09 

0

90
= 0.0 

1

90
= 0.01 

0.22 

Algebra & 
functions 

11

90
= 0.12 

8

90
= 0.09 

6

90
= 0.07 

5

90
= 0.06 

0.34 

Geometry & 
measurement 

5

90
= 0.06 

11

90
= 0.12 

2

90
= 0.02 

4

90
= 0.04 

0.24 

Data Handling 
& probability 

6

90
= 0.07 

8

90
= 0.09 

1

90
= 0.01 

3

90
= 0.03 

0.2 

Sub-total 0.37 0.39 0.1 0.14 1.00 

 

When calculating the sum of the absolute difference between the 2012 ANA 

mathematics question paper and the TIMSS 2011 mathematics test items; the 

alignment index is 0.6566904991.  

 

4.4.7 Alignment of the TIMSS Grade 8 and the 2013 ANA Questions 

 

The matrix for the 2013 ANA mathematics in Table 4.31 is percentage ratios that were 

calculated by finding the quotient of the numbers in the cells with the total hits in all 

the cells as shown in Table 4.31 (Xj). The percentage ratios in Table 4.30 of the 2011 

TIMSS Grade 8 mathematics (Yi), are compared with those in cell Xj to calculate the 

alignment index between the 2013 ANA Grade 9 mathematics test and the 2011 
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Grade 8 TIMSS mathematics test. The formula for calculating the alignment index is 

used:  

Alignment index = 1 - 
∑ │𝑋−𝑌│

2
 

 

Table 4.31: (Xj) ANA 2013 mathematics Grade 9 ratios 

Content Cognitive levels  

1 2 3 4  

 Knowing 
facts & 

procedures 

Using 
concepts 

Routine 
problem 
solving 

Complex 
problem 

solving & 
reasoning 

Sub-total 

Numbers & 
operations 

5

62
= 0.08 

0

62
= 0.0 

3

62
= 0.05 

1

62
= 0.02 

0.15 

Algebra & 
functions 

7

62
= 0.113 

5

62
= 0.08 

2

62
= 0.03 

4

62
= 0.06 

0.283 

Geometry & 
measurement 

5

62
= 0.08 

7

62
= 0.113 

4

62
= 0.06 

6

62
= 0.1 

0.353 

Data Handling 
& probability 

9

62
= 0.15 

2

62
= 0.032 

2

62
= 0.032 

0

62
= 0.0 

0.214 

Sub-total 0.423 0.225 0.172 0.18 1.00 

 

Calculate the sum of the absolute difference between the 2013 ANA 

mathematics question paper and the TIMSS 2011 matrix (Yi), mathematics response 

items and divide it by two, and the value of the alignment index is 0.7281362007. 

 

4.4.8 Alignment of the TIMSS Grade 8 and the 2014 ANA Questions 

 

The matrix for the 2014 ANA mathematics in Table 4.32, percentage ratios is 

calculated by finding the quotient of the numbers in the cells with the total hits in all 

the cells as shown in Table 4.32 (Xp) below. Percentage ratios in Table 4.28 are for 

the 2011 TIMSS Grade 8 mathematics (Yi) and are compared with those in cell Xp to 

calculate the alignment index between the 2014 ANA Grade 9 mathematics test and 

the 2011 Grade 8 TIMSS mathematics test. The formula for calculating the alignment 

index is used: 

 Alignment index = 1 - 
∑ │𝑋−𝑌│

2
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Table 4.32: (Xp) ANA 2014 mathematics Grade 9 ratios 

 

When calculating the sum of the absolute difference between the 2014 ANA 

mathematics question paper and the TIMSS 2011 mathematics response items matrix 

(Yi) and dividing it by two, this value of the alignment index is 0.6805922792. 

 

4.4.9 The Value of the Alignment Index 

 

The calculation of the alignment index between ANA and 2011 TIMSS revealed the 

following: the alignment index of the 2012 ANA Grade 9 mathematics test and the 

2011 TIMSS is 0.657 (66%). The alignment index of the 2013 ANA Grade 9 

mathematics test and the 2011 TIMSS is 0.728 (73%) and the alignment index of the 

2014 ANA Grade 9 mathematics test and the 2011 TIMSS is 0.681 (68%) (Figure 

4.31). Subsequently, the alignment index is interpreted as follows: 0 to 0.5 (no 

alignment to moderate), and 0.51 to 1.1 (moderate to perfect alignment) as shown by 

Porter (2002). Consequently, alignment between ANA and TIMSS is in the range 

‘moderate to perfect). As such, there are content standards that are misaligned due 

to the alignment not being perfect and certain standards not tested (Polikoff et al., 

2011). However, such alignment results between ANA and TIMSS (Figure 4.32) are 

contrary to findings by Ndlovu and Mji (2012) who found poor alignment between 

TIMSS and RNCS. It is suggested that ANA test developers must constantly monitor 

the alignment between ANA and other international assessment. In systemic 

assessments, the performance of a system is often compared with international 

Content Cognitive Levels  

1 2 3 4  

 Knowing 
facts & 

procedures 

Using 
concepts 

Routine 
problem 
solving 

Complex 
problem 
solving & 
reasoning 

Sub-total 

Numbers & 
operations 

5

61
= 0.08 

2

61
= 0.035 

3

61
= 0.05 

2

61
= 0.035 

0.2 

Algebra & 
functions 

9

61
= 0.15 

4

61
= 0.07 

7

61
= 0.115 

5

61
= 0.08 

0.415 

Geometry & 
measurement 

7

61
= 0.11 

8

61
= 0.13 

2

61
= 0.035 

7

61
= 0.11 

0.385 

Data Handling 
& probability 

0

61
= 0.0 

0

61
= 0.0 

0

61
= 0.0 

0

61
= 0.0 

0 

Sub-total 0.34 0.235 0.2 0.225 1.0 
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standards to gauge how well it is doing (Volante & Cherubini, 2010). South African 

systemic assessment testing is not an exception. 

 

 

Figure 4.32: The Porters’ alignment index for TIMSS and ANA 

 

4.4.10 Discussion: Content and Cognitive Levels in ANA and 

TIMSS 

 

Table 4.33 summarises the mean discrepancies for content in the 2012, 2013, 2014 

ANA and TIMSS. The mean discrepancies for content were derived from the totals of 

content from data in Table 4.29, Table 4.31 and Table 4.32. The values show negative 

and positive discrepancies. This outlines the misalignment of content in the cells of 

ANA tests and TIMSS 2011. It is important for policymakers to align content in 

assessments to achieve standards of what is expected from learners (Martone & 

Sireci, 2009). 
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Table 4.33: Mean deviations for content with direction 

 

Figure 4.33 illustrates the mean deviations for content with direction for the 2012, 

2013, 2014 ANA tests and TIMSS 2011. From the graph it is evident that ANA and 

the 2011 TIMSS were weaker in terms of content in the instances where the bars 

protrude downwards below zero, and stronger in the instances where the bars 

protrude upwards above zero. The weakness and strength were in terms of content 

in the ANA and 2011 TIMSS.  

 

Strengths and weaknesses were observed between ANA and the TIMSS in 

terms of content. First, ANA was stronger than the 2011 TIMSS in terms of geometry 

and measurement in the 2012, 2013 and 2014 tests. Second, strength of ANA was in 

the 2014 test in Algebra and Functions. In terms of weaknesses, ANA was weaker 

than the 2011 TIMSS in 2013 and 2014 in terms of Numbers and Operations and this 

was not the same in 2012. The 2012 paper was stronger than the 2011 TIMSS in 

terms of Numbers and Operations. Another weakness of ANA was in data handling 

and probability in the 2012 and 2014. However, in 2013 ANA was slightly stronger 

than 2011 TIMSS. 

 

The strengths and weaknesses that have been observed between ANA and 

TIMSS confirms that there was misalignment between ANA and TIMSS in 2012, 2013 

and 2014 in terms of content. Such misalignment was also observed by Ndlovu and 

Mji (2012) in the RNCS and TIMSS assessment standards. According to the 

observation made here, this seems to filter the ANA and TIMSS assessments. It is 

surprising because Ndlovu and Mji (2012) suggested that action must be taken to 

align the South African and TIMSS assessment standards. According to Porter 

(2002), making policymakers aware of content of instruction assists in monitoring the 

quality a curriculum that is being implemented. Additionally, Polikoff et al. (2011) also 

ANA tests Numbers and 
operations 

Algebra and 
functions 

Geometry and 
measurement 

Data handling 
and probability 

Means 

2012 ANA 0 0.075 0.105 
 

-0.18 0,0 
 

2013 ANA -0.1 0.033 0.103 
 

-0.036 0.0 
 

2014 ANA -0.05 
 

0.165 0.135 
 

-0.25 0.0 

TIMSS 2011 -0.03 0.09 -0.01 -0.05 0.0 
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pointed out that content of instruction is key in judging whether the standard based 

curriculum reform is succeeding. The results shown in this analysis are worrisome 

when there is an obvious revelation that a curriculum monitoring tool such as ANA is 

misaligned with international assessments such as the 2011 TIMSS. Judging from 

these results, one can safely say that there is a need to align TIMSS and ANA in 

terms of content of instruction, which is key to the success of curriculum reform in 

South Africa (Graven & Venkat, 2014; Porter et al., 2011). 

 

 

Figure 4.33: Mean discrepancies for content with direction 

 

Table 4.34 summarises the mean deviations for cognitive in the 2012, 2013, 

2014 ANA and the 2011 TIMSS. The mean discrepancies for cognitive levels were 

derived from the totals of cognitive levels from data in Table 4.29, Table 4.30, Table 

4.31 and Table 4.32. The values show negative and positive discrepancies and this 

outlines the misalignment of cognitive levels in the cells of ANA tests and TIMSS 

2011. Policymakers must assure that assessments are aligned and benchmarked 

internationally to inform monitoring of quality of an enacted curriculum positively 

(Ndlovu & Mji, 2012; Porter, 2002).  
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Table 4.34: Mean deviations for cognitive levels with direction 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.34 illustrates the mean deviations for cognitive levels in the 2012, 2013, 

2014 ANA tests and TIMSS 2011. From the graph it is evident that ANA and the 2011 

TIMSS were weaker in terms of cognitive levels in the instances where the bars 

protrude downwards below zero, and stronger in the instances where the bars 

protrude upwards above zero. The weakness and strength were in terms of 

mathematics cognitive levels in the ANA and 2011 TIMSS. 

 

Strengths and weaknesses were observed between ANA and the TIMSS in 

terms of cognitive levels. First, ANA was stronger than the 2011 TIMSS in terms of 

knowing facts only in 2013 but weaker in 2012 and 2014. Secondly, ANA was stronger 

than TIMSS in 2012, 2013 and 2014 in terms of routine problem solving and complex 

problems and reasoning. Thirdly, ANA was weaker than TIMSS in terms of using 

concepts in 2012, 2013 and 2014. 

 

The strengths and weaknesses that have been observed between ANA and 

TIMSS confirm that there was misalignment between ANA and TIMSS in 2012, 2013 

and 2014 in terms of cognitive levels. In justifying the use of cognitive levels, Fulmer 

(2011) pointed that, for learners to master standards, there is almost complete 

reliance on the adequate testing of the standards. Hence, from the results of the 

current study, it is safe to say that the adequacy of the tested cognitive levels is 

irregular judging from the content and cognitive levels discrepancies. A more coherent 

approach is needed to create high quality ANA which when benchmarked 

internationally, is aligned to those standards (Polikoff et al., 2011).  

 

ANA tests 
 

Knowing 
facts 

Using 
concepts 

Routine 
Problem 
solving 

Complex 
problem solving 
and reasoning 

Means 

2012 ANA 0.075 
 

-0.05 0.004 
 

-0.03 0.0 
 

2013 ANA 0.173 -0.025 -0.078 
 

-0.07 0.0 
 

2014 ANA 0.09 
 

-0.015 -0.05 
 

-0.025 0.0 

TIMSS 2011 0.12 0.14 -0.15 -0.11 0.0 
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Figure 4.34: Mean deviations for cognitive levels with direction  

 

4.4.11 Synopsis: Alignment ANA and TIMSS 

 

To calculate alignment between ANA and TIMSS, two methods were used, the 

Porter’s alignment index and the mean deviations. The Porters alignment index has 

revealed that ANA and TIMSS were in the range moderate to perfect. Such findings 

are not discursive in assessing how content and cognitive levels relate within the 

documents that are aligned (TIMSS and ANA). By contrast, the descriptive data 

explores the relationship between the content and the cognitive levels by explicitly 

showing those favoured in ANA and TIMSS. This disputes the data in the Porter’s 

alignment index by showing misalignment. The use of the Porter’s alignment index 

gives the impression that the alignment is good, whilst the mean deviations assist in 

showing misalignment. Thus, the current researcher can safely infer that ANA and 

TIMSS were misaligned irrespective of an alignment index that is moderate to perfect. 
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 4.5 Conclusion  

 

This chapter has presented and interpreted the results. Key findings have been 

captured that relate to the cognitive levels of mathematics tested by ANA, the levels 

of SMP exhibited by learners in response to ANA and the alignment of ANA and 

TIMSS. The next chapter presents the concluding statements and recommendations. 
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5. CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Introduction 

 

This study was mainly concerned with exploring the effectiveness of Annual National 

Assessment in monitoring the mathematics education standard in South Africa 

through assessing the SMP tested by ANA and exhibited by Grade 9 learners in South 

Africa. This was premised on the notion that in assessments, when learners are 

tested, they exhibit only the mathematical knowledge, skills and dispositions that test 

items examine. The emphasis placed on the effectiveness of ANA was triggered by 

low achievement, especially in Grade 9, by South African learners in the three 

consecutive ANA tests in 2012, 2013 and 2014. Although the focus was not on 

achievement, this researcher opted to assess the effectiveness of ANA as an 

evaluative assessment for curricula in use. Such assessment was done using three 

dimensions. First, through the use of SMP, cognitive complexity of ANA was 

assessed. This notion responded to the first research question of the study. Secondly, 

the assessment of the levels of SMP exhibited by learners in their responses to ANA 

gave an indication of mathematical knowledge, skills and dispositions that learners 

exhibited. This assessment answered the second research question. Finally, the 

relation to content and cognitive levels in ANA tests and TIMSS, the results revealed 

the content messages that the assessment instruments related when benchmarked 

internationally. This answered the third research question. The discussion that follows 

in the next three sections captures the study’s responses to the research questions 

and the key findings of the study. 

 

5.2 Research Design and Method 

 

The study used mixed methods in the context of the exploratory sequential design. 

The use of various methods assisted this study to confirm the inferences made in 

relation to the research problem. The research design was divided into three parts as 

follows: (1) Part one Phase one and Part one Phase two; (2) Part two Phase one and 
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Part two Phase; and (3) Part three Phase one and Part three Phase two as shown in 

Table 3.1. For part one phase one, content areas were explored to assess SMP that 

were tested by ANA. Codes were used to document the categories of SMP that 

emerged from the analysis. These codes were matched with mathematics cognitive 

levels which were informed by the NAEP Taxonomy to view the complexity of ANA. 

Means were used to generate mean deviations and charts that showed discrepancies 

in the various SMP.  

 

Part two Phase one, assessed learners’ responses exhibited in response to ANA 

2014 questions. Learners’ responses were captured in tables using four categories: 

correctly answered, partially answered, incorrectly answered, and no response. 

Subsequently, vignettes were also coded and used to explain proficiency levels of 

learners’ responses to questions on Algebra, Number Patterns and Geometry. In part 

two phase one, the data in tables of categories was used to generate charts of radars 

that showed the trend in learners’ responses. Additionally, the means were used to 

generate descriptive statistics, discrepancies in the levels of SMP. 

 

For part three phase one, document analysis was used to capture content and 

cognitive levels in ANA and TIMSS to generate matrices with ratios. In part three 

phase two, the Porter’s alignment index was calculated, together with descriptive 

statistics, and charts for discrepancies in content and cognitive levels to explain 

misalignment in cells of ANA and TIMSS. 

 

5.3 Summary of Findings and the Research Findings 

 

This section summarises the findings of the study by reflecting on how the study 

responded to the research questions. This assist the researcher to ascertain how this 

study addressed the research problem and subsequently achieved its purpose. 

 

5.3.1 Research Question one 

 

The first research question was: “How are the cognitive levels of mathematics tested 

by ANA reflective of SMP?” First, the results revealed that ANA testing was biased 
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towards procedural fluency, while very few questions were aligned to conceptual 

understanding. Next, in strategic competence that was tested, notably, there was the 

absence of one element of strategic competence, and that was problem solving. 

Thirdly, adaptive reasoning that was only tested in Geometry was in the form of 

analogical proofs and no other forms of proof such as deductive and inductive proofs 

were tested. Fourthly, there was inconsistency in the content tested by ANA in the 

three consecutive years, such as the absence of Data Handling and Probability in the 

2014 ANA. Fifth, ANA tests were biased towards low complexity as shown in the 

descriptive statistics. These results pointed towards the assumptions made earlier in 

this study, ‘what you test is what you get’, which are further explored in the next 

research question. 

 

5.3.2 Research Question two 

 

The second research question was: “What levels of mathematical proficiency do 

learners exhibit in response to the ANA tests?” First, learners exhibited knowledge of 

lower Grades when computing procedures in Algebra. Secondly, the marking of ANA 

focused on correct answers and disregarded thinking processes that learners 

exhibited, in which some were procedurally correct. Thirdly, learners incorrectly used 

algorithms for other concepts to execute some computations. Fourthly, a majority of 

learners were not proficient to the sampled ANA questions, despite there being a 

majority of low complexity questions.  

 

5.3.3 Research Question three 

 

The third research question was: “How do the content and cognitive levels tested by 

ANA compare with TIMSS?” First, the Porter’s alignment index between Grade 9 ANA 

mathematics in three consecutive years and Grade 8 TIMSS mathematics response 

items was in the range moderate to perfect. Secondly, ANA and TIMSS were 

misaligned, meaning that there were discrepancies in the content standards that the 

two assessments tested. Thirdly, in terms of content, ANA testing was biased towards 

Algebra and Geometry at the expense of Numbers and Operations, and Data 

Handling and Probability. Fourthly, in terms of content, TIMSS testing was biased 
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towards Algebra at the expense of Numbers and Operations, Geometry, and Data 

Handling and Probability. Fifthly, in terms of cognitive levels, ANA was biased towards 

Knowing Facts at the expense of Using Concepts, Routine Problem Solving, and 

Complex Problem Solving and Reasoning. Finally, in terms of cognitive levels, TIMSS 

was biased towards Knowing Facts and Using Facts at the expense of Routine 

Problem Solving, and Complex Problem Solving and Reasoning.  

 

5.4 Synthesis of Findings 

 

This section synthesises the research questions with reference to the reviewed 

literature. The findings have been revealed in relation to the research questions and 

now I reflect on what they entail and why they appear the way they are. First the 

results indicate that ANA testing was biased towards procedural fluency with a very 

few questions aligned to conceptual understanding. The CAPS document stresses 

the need for conceptual understanding, as such, when ANA was configured, this 

aspect was not considered. Second, the results indicated that ANA testing was biased 

towards Algebra at the expense of Numbers and operations. This indicates that during 

the configuration of ANA, the test responded positively to the mathematics curriculum 

which has a lot of content in Algebra (35%) and less content in terms of Numbers, 

Operations and Relationships (15%) as a policy requirement (AMESA, 2012). Thirdly, 

the findings pointed that ANA seemed to favour Geometry testing and not TIMSS. 

These findings were reflective of the curriculum requirements in South Africa (30%) 

and the TIMSS assessment framework focus for mathematics (13%). Fourthly, ANA 

focused on the complexity levels of lower nature with less recognition of problem 

solving and higher order thinking skills. The use of SMP in this study was rigorous 

and it shows that the higher levels are minimal. This may emanate from the 

background knowledge and understanding of quality education by curriculum 

designers. This suggests that the focus area was at a policy statement level and not 

at implementation level. This implies that the classroom teacher has no guidance on 

what to act upon during the period since there was no clear actions for the 

implementers to follow. It is no wonder many teacher emphasise memorisation of 

content to show that there is improvement in learners’ content understanding. This 

ultimately has compromised critical thinking at such an early age. To address this 
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shortfall there should be a section in the curriculum explaining the pros and cons of 

critical thinking at various levels of education. Teachers can visit other countries 

where quality education has been identified especially at grades 1-9 for a term or two. 

Also, some pilot schools could use expatriates from the benchmarked countries to in-

house educate teachers in the country for a specified time on how to manage quality 

education at the grass root level through teaching and assessment. The implantation 

of such drastic measures will in no doubt enhance quality education through 

assessment at various levels of achievements. Fifth, the results show that the majority 

of learners were not proficient during ANA, despite the low level type of questions 

used in test items in the middle complexity sections. Learners’ responses to the 2014 

ANA, from the sampled questions, were fragmented when analysed against the SMP. 

Additionally, the rigor in ANA was low as compared to the SMP and learners were 

challenged with such low level questions. As such, these challenges are attributed to 

the quality of assessment that learners received during teaching and learning. 

Bensilal (2017) highlighted discrepancies between Grade 9 classroom assessment 

and ANA testing. This was attributed to the fact that the majority teachers in South 

Africa lack skills of preparing quality classroom assessment. Finally, there is a 

misalignment between ANA and the learners’ mathematics curriculum. This is evident 

in terms of content and cognitive levels between ANA and TMSS. The benchmark 

between ANA and TIMSS assist in gauging the quality of an education system. Such 

discrepancies in content and cognitive levels have high possibility of filtering into the 

mathematics classrooms. For an example, TIMSS has reasoning as a cognitive level, 

which is not explicit in the South African mathematics curriculum. This is an indication 

that ANA which is configured using the policy document is limited on reasoning. 

Hence, contents of the mathematics curriculum need to be revisited in terms of 

cognitive levels and mathematics content in order to improve quality of ANA.  

 

In addition, the contrasting purposes of ANA and TIMSS attributed to this 

discrepancy. ANA focuses on the performance of a single system whilst TIMSS 

focuses on global education systems. The curricula requirements of these multiple 

systems in TIMSS differ drastically in content and cognitive levels. Hence the TIMSS 

assessment framework originates from a benchmark of all participating countries and 

this justifies its discrepancy to the curriculum assessment guidelines in South Africa. 
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5.5 Conclusions 

 

In conclusion, I reflect on, firstly what prompted the researcher to embark on this study 

and secondly, whether the purpose of the study has been achieved. The purpose of 

this study was: 

To explore the effectiveness of ANA in monitoring the standard of mathematics 

education and to assess the mathematical proficiencies tested and exhibited by 

Grade 9 learners in South Africa. 

 

The study addressed its purpose in three ways first, using the SMP to determine 

mathematics cognitive levels tested by ANA. The results on the themes show that 

ANA favoured low cognitive skills. Additionally, there was total lack of other elements 

of SMP in strategic competence and adaptive reasoning. Three levels of SMP were 

tested by ANA, which were: low complexity, moderate complexity and high 

complexity. The results suggest that the ANA was skewed towards low complexity. 

This is a serious challenge as the literature points out that assessment must be 

neither too easy nor too difficult. A conclusion may be reached only towards that ANA 

posed reliability and validity concerns. This was as a result of the ANA tests being low 

complexity because of not paying attention to higher order thinking skills. 

 

Secondly, the purpose of the study was addressed by assessing the levels of 

SMP that learners exhibited in their responses to ANA. Three levels of SMP were 

exhibited by learners in their responses to ANA, and these were: not proficient, 

moderate proficient and proficient. The results show that the levels were skewed too 

much towards not proficient. If I may generalise for the chosen sample could infer that 

the standard of mathematics in South Africa is a serious concern when considering 

that a bulk of learners in the chosen sample were not proficient when examined with 

ANA that was mainly low complexity. 

 

Last, the purpose of the study was addressed by benchmarking the content and 

cognitive levels with international tests, TIMSS to calculate the Porter’s alignment 

index. The study found that the Porter’s alignment index was between moderate and 

perfect in 2012 (65.7%), 2013 (72.8%) and 2014 (68.1%). The mean and cognitive 
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levels discrepancies showed that there was misalignment in the cells. Algebra and 

Numbers and Operations were favoured by ANA and TIMSS, while Geometry was 

favoured by ANA and not TIMSS and Data handling and Probability was not favoured 

by ANA and TIMSS. For cognitive levels, there was an indication from the data that 

ANA and TIMSS were skewed towards knowing facts, a low cognitive demand at the 

expense of complex problem solving and reasoning, which are high cognitive 

demands. For Grade 9 mathematics it can be concluded that ANA there was a serious 

challenge in using ANA as an instrument to monitor the standard of mathematics 

education in South Africa due to the misalignment that was observed when ANA was 

benchmarked internationally. The key findings that have been outlined suggest that 

the purpose of the study was achieved and the research problem was addressed only 

in the issues on which this study focused. 

 

5.6 Recommendations 

 

First, it is recommended that the examiners of the ANA tests must consider the 

complexity of the tests using assessment protocols such as the SAGM for 

mathematics. There must be consistency in consecutive tests to maintain the 

reliability of ANA. The test must be neither too easy nor too difficult, which implies that 

in terms of low, moderate and high complexity, the test must be normally skewed.  

Kilpatrick et al. (2001) pointed out that reasoning is the glue that holds everything 

together. Hence, ANA must include other forms of reasoning such as deductive 

reasoning and inductive reasoning, which will strengthen higher order problem solving 

abilities.  

 

Secondly, it is recommended that mathematical knowledge, skills and 

dispositions exhibited by learners in response to ANA must be verified using theory 

such as the SMP which advocates coherence (Groves, 2012). This will provide 

policymakers with relevant information to use in redressing situations such as those 

where learners are not proficient or moderate proficient. Where learners are found to 

be proficient, policymakers must gather information that contributed to that success 

to share good practice with struggling schools. Once policymakers have gathered 

information, they must revisit the purpose of ANA. The literature identified the purpose 
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of ANA as quality, equity and provision. There is a practice of not reporting on all 

these issues. Before embarking on the next ANA, policymakers must ascertain that 

they gather information on the following: (1) teaching and learning that is aligned to 

the implementation of curriculum; (2) mathematics knowledge, skills and dispositions 

that learners exhibit as a result of engaging with that type of ANA; (3) how the system 

is responding to issues of gender, socio-economic, ethnic groups and school 

governance; and (4) how the education system is responding to curriculum reform, 

system restructuring and factors of achievement. Once this information has been 

gathered, policymakers must design redress strategies that are not only informed by 

outcomes but also widely renowned mathematical practice such as SMP. 

 

Thirdly, it is recommended that alignment of ANA must be done frequently in 

terms of content standards and cognitive levels to inform teaching and learning 

(Porter, 2002). This must begin by reviewing the cognitive levels in the SAGM to 

include higher order problem solving skills and reasoning such as adaptive reasoning. 

Frequent alignment of ANA will assist in testing relevant content of instruction and 

well-balanced cognitive levels. The use of mixed methodologies in calculating 

alignment will help the overreliance on the alignment index, which may be misleading 

when not supplemented with other quantitative descriptive statistics such as charts 

for mean deviations for content and cognitive levels and qualitative document 

analysis. 

 

5.7 Experiences of Engaging With this Study 

 

Methodologically, SMP have not been compatible for document analysis as observed 

in previous studies, such as seminal work by Graven and Stott (2012). Studies 

(Dhlamini & Luneta, 2016; Rittle-Johnson & Schneider, 2015; Star, 2004) often use 

two, or four SMP, which is contrary to claims by Kilpatrick et al. (2001) that the five 

strands are interconnected, interwoven and inseparable. An exception was a study 

by Groves (2012) who used all five strands. However, methodologically that study 

had a different focus from this study. Its focus was on classroom practice that uses 

SMP. Contrary, this study has used all five SMP methodologically in assessments, 

focusing on SMP tested by ANA and exhibited by learners in their responses. Further, 
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the use of document analysis in this study, adapted SMP and the use of descriptive 

statistics, such as radar, which allowed me to elucidate explicitly SMP exhibited by 

learners in various schools  

 

The model in Figure 2.3 which could be an option for policymakers on the use 

of systemic assessment such as ANA for monitoring the quality of mathematics 

education. This model was adapted from models on basic school functionality input-

process-output that shows the functionality of a system from teachers and parents to 

school and classroom factors and how these contribute to the achievements of 

students (Drent et al., 2013). However, in the input-process-output model there is a 

lack of a key element that is relevant to systemic assessment, especially national 

assessment. This is redress, an addition to the model contributed by this study. 

Through applying the model, as an option for policymakers might reflect first on the 

input that outlines a national assessment and secondly the processes that are driven 

by well-known mathematical conceptions such as SMP and last outputs that are 

reflective of these. The redress may then focus on how the deficit of SMP can be 

addressed in terms of the input, quality, equity and provision. The input-process-

output model for school functionality lacks a mathematical component. The 

introduction of the SMP could make the model suitable for the monitoring of 

mathematics education. Success in the use of SMP has been well-documented in the 

relevant literature (Groves, 2012 Suh, 2007) and also in the mathematics curriculum 

that is driven by SMP such as the SMC (Naroth & Luneta, 2015). 

 

5.8 Limitations of the Study 

 

 First, ANA was delimitated to the Grade 9 when it is also administered to Grade 3 

and 6. However, it is argued that ANA gathers information at regular intervals. An 

argument would be that it is premature to generalise about the effectiveness of ANA 

in monitoring mathematics education in South Africa, if one interval was assessed 

while leaving out two more intervals. However, the information that is presented by 

this study can be used to assess the performance of the system at that level since it 

seemed problematic for the DBE. This limitation suggests that further studies need to 
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be done in the other intervals, Grade 3 and Grade 6 to gather comprehensive 

information and make conclusive inferences about the effectiveness of ANA.  

 

5.9 Concluding Remarks 

 

In my concluding remarks, I reflect on the assumptions that I brought to this study. 

The current study was informed by the transformative paradigm. I mentioned earlier 

that a transformative paradigm is a framework that allows researchers to identify 

inequalities in society and the promotion of social justice (Mertens, 2010b). 

 

Firstly, the current study has revealed that ANA posed mostly low complexity 

questions which deprives learners of the opportunity to display high level problem 

solving abilities. The current study has revealed this inequality and now policymakers 

have the information to promote social justice by including high complexity test items 

in ANA. The literature has revealed that powerful assessments such as ANA have the 

ability to shape the mathematics that is taught in classrooms. 

 

Secondly, another assumption that was brought to this study was that 

‘WYTIWUG’ (Schoenfeld, 2007: 72). ANA has prioritised low complexity questions 

and irrespective of the fact that learners were not proficient. This is a sign of a system 

that is not doing well and directs policymakers to address the deficit of knowledge, 

skills and dispositions in terms of quality, equity and provision. Although most of the 

findings point to challenges on ANA as a tool to monitor the quality of the mathematics 

education standard in South Africa, the lessons learnt from testing in the three 

consecutive years are that the system needs a vigorous revamp in numeracy. 

 

Lastly, research such as that of Porter (2002) stressed the importance of content 

standards as key to the success of educational reform. Subsequently, these are 

visible when calculating the alignment between curriculum and assessment. As such, 

frequent alignment of ANA is essential in South Africa to ensure that standards of 

mathematics education are achieved and maintained. This will be effective if policy 

documents such as the SAGM are revised (Berger et al., 2010) to include reasoning 

and proof which will then filter through to classroom practice such as assessments. 
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You are free to use the grade 8 mathematics items for your research.  We ask that 
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