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Abstract 

 

Of late climate change and consequently, the spread of crop diseases has been 

identified as one of the major threat to crop production and food security in sub-

Saharan Africa. This research, therefore, aims to evaluate the role of in situ 

hyperspectral and new generation multispectral data in detecting maize crop viral 

and fungal diseases, that is maize streak virus and grey leaf spot respectively. To 

accomplish this objective; a comparison of two variable selection techniques 

(Random Forestôs Forward Variable, (FVS) and Guided Regularized Random Forest: 

(GRRF) was done in selecting the optimal variables that can be used in detecting 

maize streak virus disease using in-situ resampled hyperspectral data. The findings 

indicated that the GRRF model produced high classification accuracy (91.67%) 

whereas the FVS had a slightly lower accuracy (87.60%) based on Hymap when 

compared to the AISA. The results have shown that the GRRF algorithm has the 

potential to select compact feature sub sets, and the accuracy performance is better 

than that of RFôs variable selection method. Secondly, the utility of remote sensing 

techniques in detecting the geminivirus infected maize was evaluated in this study 

based on experiments in Ofcolaco, Tzaneen in South Africa. Specifically, the 

potential of hyperspectral data in detecting different levels of maize infected by 

maize streak virus (MSV) was tested based on Guided Regularized Random Forest 

(GRRF). The findings illustrate the strength of hyperspectral data in detecting 

different levels of MSV infections. Specifically, the GRRF model was able to identify 

the optimal bands for detecting different levels of maize streak disease in maize. 

These bands were allocated at 552 nm, 603 nm, 683 nm, 881 nm, and 2338 nm. 

This study underscores the potential of using remotely sensed data in the accurate 

detection of maize crop diseases such as MSV and its severity which is critical in 

crop monitoring to foster food security, especially in the resource-limited sub-

Saharan Africa. The study then investigated the possibility to upscale the previous 

findings to space borne sensor. RapidEye data and derived vegetation indices were 

tested in detecting and mapping the maize streak virus. The results revealed that the 

use of RapidEye spectral bands in detection and mapping of maize streak virus 

disease yielded good classification results with an overall accuracy of 82.75%. The 

inclusion of RapidEye derived vegetation indices improved the classification 

accuracies by 3.4%.  Due to the cost involved in acquiring commercial images, like 
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RapidEye, a freely available Landsat-8 data can offer a new data source that is 

useful for maize diseases estimation, in environments which have limited resources. 

This study investigated the use of Landsat 8 and vegetation indices in estimating and 

predicting maize infected with maize streak virus. Landsat 8 data produced an 

overall accuracy of 50.32%. The inclusion of vegetation indices computed from 

Landsat 8 sensor improved the classification accuracies by 1.29%. Overally, the 

findings of this study provide the necessary insight and motivation to the remote 

sensing community, particularly in resource-constrained regions, to shift towards 

embracing various indices obtained from the readily-available and affordable 

multispectral Landsat-8 OLI sensor. The results of the study show that the medium-

resolution multispectral Landsat 8-OLI data set can be used to detect and map 

maize streak virus disease. This study demonstrates the invaluable potential and 

strength of applying the readily-available medium-resolution, Landsat-8 OLI data set, 

with a large swath width (185 km) in precisely detecting and mapping maize streak 

virus disease. The study then examined the influence of climatic, environmental and 

remotely sensed variables on the spread of MSV disease on the Ofcolaco maize 

farms in Tzaneen, South Africa. Environmental and climatic variables were 

integrated together with Landsat 8 derived vegetation indices to predict the 

probability of MSV occurrence within the Ofcolaco maize farms in Limpopo, South 

Africa. Correlation analysis was used to relate vegetation indices, environmental and 

climatic variables to incidences of maize streak virus disease. The variables used to 

predict the distribution of MSV were elevation, rainfall, slope, temperature, and 

vegetation indices. It was found that MSV disease infestation is more likely to occur 

on low-lying altitudes and areas with high Normalised Difference Vegetation Index 

(NDVI) located at an altitude ranging of 350 and 450 m.a.s.l. The suitable areas are 

characterized by temperatures ranging from 24°C to 25°C. The results indicate the 

potential of integrating Landsat 8 derived vegetation indices, environmental and 

climatic variables to improve the prediction of areas that are likely to be affected by 

MSV disease outbreaks in maize fields in semi-arid environments. After realizing the 

potential of remote sensing in detecting and predicting the occurrence of maize 

streak virus disease, the study further examined its potential in mapping the most 

complex disease; Grey Leaf Spot (GLS) in maize fields using WorldView-2, 

Quickbird, RapidEye, and Sentinel-2 resampled from hyperspectral data. To 

accomplish this objective, field spectra were acquired from healthy, moderate and 



xix 
 

severely infected maize leaves during the 2013 and 2014 growing seasons. The 

spectra were then resampled to four sensor spectral resolutions ï namely 

WorldView-2, Quickbird, RapidEye, and Sentinel-2. In each case, the Random 

Forest algorithm was used to classify the 2013 resampled spectra to represent the 

three identified disease severity categories. Classification accuracy was evaluated 

using an independent test dataset obtained during the 2014 growing season. Results 

showed that Sentinel-2 achieved the highest overall accuracy (84%) and kappa 

value (0.76), while the WorldView-2, produced slightly lower accuracies. The 608 nm 

and 705nm were selected as the most valuable bands in detecting the GLS for 

Worldview 2, and Sentinel-2. Overall, the results imply that opportunities exist for 

developing operational remote sensing systems for detection of maize disease. 

Adoption of such remote sensing techniques is particularly valuable for minimizing 

crop damage, improving yield and ensuring food security.  
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Chapter 1  

 

GENERAL INTRODUCTION 

 

1.1 Introduction 

 

A wide range of crops in both commercial and smallholdersô farms are being affected 

by biotic and abiotic factors and resulting in significant yield losses. Plant diseases 

account for at least a 10% loss of the worldôs food production, (Christou and 

Twyman, 2004, Strange and Scott, 2005). There is an increase in the cost of 

production and toxic residues in agricultural products and pollutants in the 

environment due to excessive use of pesticides and fungicides. Patches of disease 

within fields needs to be timely and treated locally in order to effectively control these 

diseases. This requires one to obtain information of infected areas in the field as 

early and accurately as possible. Most people use the conventional method of data 

collection. The most common and conservative method is manual field survey. The 

old-fashioned ground-based survey method requires high labour costs and produces 

low efficiency. Thus, it is impracticable for large areas. Fortunately, remote sensing 

technology can provide spatial distribution information of diseases over a large area 

with relatively low costs. The presence of diseases on plants or canopy surface 

causes changes in pigment, chemical concentrations, cell structure, nutrient, water 

uptake, and gas exchange. These changes result in differences in colour and 

temperature of the canopy and affect canopy reflectance characteristics, which can 

be detectable by remote sensing (Raikes and Burpee, 1998). Therefore, remote 

sensing provides a harmless, rapid, and cost-effective means of identifying and 

quantifying crop stress from differences in the spectral characteristics of canopy 

surfaces affected by biotic and abiotic stress agents.  

 

Maize (Zea mays L.) contributes 15ï50% of the energy in human diets in sub-

Saharan Africa (Kagoda et al., 2011, Archetti et al., 2009). In South Africa, maize is 

the main diet for the majority of the African population as well as being the major 

livestock feed grain (Langyintuo et al., 2010, Walker and Schulze, 2006). 

Furthermore, 50% of maize in Southern African Development Community (SADC) is 
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produced in South Africa (Benhin, 2008). Therefore, maize is considered to be the 

second largest crop produced in South Africa after sugar cane. Maize (Zea mays L.) 

is the most essential grain crop in South Africa and is produced throughout the 

country under different environments. Approximately 8,0 million tons of maize grain 

is produced in South Africa annually on about 3,1 million ha of land. Half of the 

production consists of white maize, for human food consumption. 

 

Maize is grown in two main zones in South Africa, a marginal western belt, and a 

reliable and higher productivity eastern core. In these areas, maize is highly 

dependent on climate variables such as temperature and precipitation (Benhin, 

2008). Only less than 10% of the maize is produced under irrigation (Benhin, 2008). 

Therefore, climate change and variability is one of the key factors influencing year to 

year crop maize production and thus information on climate has to be deliberated 

during the planning of agricultural activities and related decision making (Kang et al., 

2009, Moeletsi and Walker, 2012). 

 

However the productivity of maize and quality of maize products is impacted 

negatively by pests and diseases worldwide, despite many years of research and 

development on improved methods for their control. Research has shown that some 

of these diseases are causing serious yield losses on maize farms. The yields of 

maize have greatly reduced due to disease infection. The reduction in the cropôs 

yield, affects the returns obtained by the maize farmers. The cost of controlling the 

diseases increases the cost of production, thus decreasing the gross margin. The 

most prevalent of these diseases that threaten the stability of maize production in the 

southern African region, particularly in South Africa, are Grey leaf spot (GLS) 

(Derera et al., 2008), northern corn leaf blight (NCLB) (Degefu et al., 2004, Welz and 

Geiger, 2000) Phaeophaeria leaf spot (PLS) (Sibiya et al., 2011) and Maize Streak 

virus (MSV). 

 

Maize streak disease is a prevalent virus disease of maize in sub-Saharan Africa 

and several Indian Ocean Islands (Fuller, 1901, Redinbaugh and Zambrano-

Mendoza, 2014, Lapierre and Signoret, 2004, Agriculture and Storey, 1925, 

Thottappilly et al., 1993).  The disease continues to cause major losses and food 

insecurity across sub-Saharan Africa (Shepherd et al., 2010). The disease is caused 
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mainly by Maize streak virus-strain A (MSV-A; family Geminiviridae; genus 

Mastrevirus), which is spread in a tenacious manner by leafhoppers in the genus 

Cicadulina, especially C. mbila (Naude´). Distinctive symptoms include longitudinal 

chlorotic streaks along the leaf veins and a reduction in plant growth and yield. Early 

planted maize crops serve as pools of both virus and vectors in regions with 

staggered, overlapping growing seasons, and a number of wild grasses can also 

serve as virus pools (Shepherd et al., 2010, Konate and Traore, 1992).   

 

Maize streak virus is controlled using virus-resistant maize hybrids and cultivars, by 

eliminating virus pools, and by decreasing vector populations. MSV can be spread 

using viruliferous vectors, and this approach is often used in genetic studies and in 

the development of resistant hybrids and cultivars. In the laboratory, MSV and virus 

clones can be spread using vascular puncture inoculation (Redinbaugh, 2003) and 

clones can be transmitted using agroinfiltration (Boulton et al., 1993). The 

importance of MSV disease as a constraint to maize production has been reported 

from many African countries including Kenya (Bock et al., 1977), South Africa (Van 

Rensburg, 1981), Zimbabwe (Mzira, 1984), Zaire (Vogel et al., 1993), Nigeria and 

other West African countries (Fajemisin et al., 1984).  

 

Grey leaf spot of maize is now known as one of the most important yield-limiting 

disease of maize worldwide and in the province of KwaZulu-Natal. It is not only a 

threat to maize production in the commercial farming sector; it also reduces yields of 

maize on small-scale farms. Grey leaf spot (GLS) is a foliar fungal disease that 

affects, maize crop. There are two fungal pathogens that cause GLS, which are 

Cercospora zeae-maydis and Cercospora zeina. GLS caused by Cercospora zeae-

maydis was first identified from specimens collected in 1924 by Tehon and Daniels in 

Alexander County, in southern Illinois near the Mississippi River (Ward et al., 1999). 

In South Africa, GLS was first noted in KwaZulu-Natal during 1988 and has since 

spread rapidly to neighbouring provinces (Ward et al., 1997). Currently, GLS is 

recognised as the most significant yield-limiting disease of maize crop (Zea mays L.) 

in  South Africa especially in areas with warm temperatures and extended relative 

humidity (Wegary et al., 2003, Derera et al., 2008, Ward et al., 1999, Lyimo et al., 

2012).  
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Figure 1.1 Disease Cycle 

 

Grey leaf spot reduces the maize yield by damaging photosynthetic tissue and 

increasing stem and root lodging, Figure 1.1 (Derera et al., 2008). High yield 

reduction of 69% is attributable to GLS in South Africa (Derera et al., 2008).  Grey 

leaf spot is dependent on recurrent and extended periods of overcast, high relative 

humidity and warm temperatures to complete spore germination and the infection 

process (Beckman and Payne, 1982). Spores (conidia) are produced from infested 

residues of previous maize crops in spring under conditions of high humidity and 

these are windblown to infect the newly planted maize crop. The fungus lives in the 

debris of topsoil and infects healthy crop via asexual spores called conidia. GLS 

impact on crop yield and quality, and also reduce resource-use efficiency. 

Management techniques include crop resistance, crop rotation, residue 

management, use of fungicides, and weed control. Value-added crop protection 

http://en.wikipedia.org/wiki/Crop_rotation
http://en.wikipedia.org/wiki/Fungicide
http://en.wikipedia.org/wiki/Weed_control
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approaches to prevent such damage and loss can increase production and make a 

substantial contribution to food security.  

 

Currently, no studies have been conducted in South Africa to evaluate the effect of 

remote sensing on GLS and MSV diseases detection or to compare different 

methods of detecting GLS and MSV on maize under field conditions. Remote 

sensing technologies are one basic tool of precision agricultural practice which can 

provide an alternative to visual disease assessment (Nutter Jr and Schultz, 1995). 

Discovery and control of maize diseases are a vital task in agricultural management. 

Presently, the South African government spends several million rands annually to 

detect crop diseases. Farmers spend millions trying to control maize diseases every 

year. Traditional ways of field observations and ground surveys are used to collect 

the information about diseases in the fields. However, these approaches give results 

which often differ from what is on the ground.  

 

Remote sensing has proved to be reliable tool and techniques that agronomists and 

plant pathologists can use to detect and record crop conditions. Detection of crop 

diseases is one of the potential applications of remote sensing technology. These 

techniques may offer useful and timely information about the health of crops and 

also present the information which has previously been unavailable.  
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1.2 Problem statement 

 

Grey leaf spot and Maize streak virus diseases of maize are being recognised as the 

most significant diseases that limit yields of maize globally and in South Africa.  

These diseases are not the only risk to maize crop production in commercial farms 

but also reduces yields in smallholder farms.  

In Africa, maize diseases are rapidly spreading to most maize growing countries of 

sub-Saharan Africa. Being rapidly spreading diseases in the region, there is a need 

for a quick but effective control strategy. Since pathogen and viral populations cause 

widespread damages, it is logical that control strategies should target populations 

rather than individuals. Remote Sensing can target these populations and is cost 

effective. Although methods exist to detect these GLS and MSV diseases in maize, 

current field-based techniques (carried out by plant pathologists) are not effective in 

the early detection and quantification of the fungi and virus. Identifying plant 

diseases visually is expensive, inefficient, and difficult. Sustainable management of 

diseases helps the farmers to reduce the number of ancillary disease cycles and 

protect leaf area from damage before grain development. Early detection of GLS and 

MSV will reduce the widespread use of fungicides and chemical insecticides which 

might have adverse effects on the environment. 
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1.3 Aim and objectives 

 

The purpose of this study was to examine the potential of field spectroscopy and 

new generation satellite images for detecting, identification, and mapping of MSV 

and GLS diseases of maize while the objectives were to: 

 

¶ compare Random forestôs forward variable selection and guided regularized 

random forest methods for optimum variable selection; 

¶ detect the severity of maize streak virus infestations in maize hybrid lines 

using in-situ hyperspectral data;  

¶ detect and map maize streak virus using RapidEye satellite imagery; 

¶ Investigate the potential of the Landsat-8 data in detecting and mapping 

maize streak virus infestations 

¶ To determine environmental factors that explain the probability of maize 

streak virus disease occurrence; and 

¶ Test the capability of spectral resolution of the new multispectral sensors on 

detecting the severity of grey leaf spot infection in maize hybrid line 

 

1.4 Reliability, validity and objectivity 

 

Joppe, (2000)  defines reliability as: é 

The extent to which results are consistent over time and an accurate 

representation of the total population under study is referred to as reliability 

and if the results of a study can be reproduced under a similar methodology, 

then the research instrument is considered to be reliable. 

 

Demonstrated in this research is the notion of repeatability of results or observations. 

Kirk and Miller, (1986) acknowledged three types of reliability referred to in 

quantitative research, which relate to (1) the degree to which a measurement, given 

repeatedly, remains the same (2) the stability of a measurement over time; and (3) 

the similarity of measurements within a given time period.  In this study, reliability in 

several tests was ensured by using applicable levels of statistical significance for 
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discrimination and when calculating the agreement measured using the Kappa 

statistic.  

  

Joppe, (2000) explains what validity is in research: Validity determines whether the 

research truly measures that which it was intended to measure or how truthful the 

research results are. In other words, does the research instrument allow you to hit 

"the bullôs eye" of your research project?. Braun, (2009) defines the validity in 

research as ñconstruct validityò. The idea is the initial concept, notion, question or 

hypothesis that defines which data is to be collected and how it is to be collected. 

They also emphasise that quantitative researchers actively cause or affect the 

interplay between ideas and data in order to validate their investigation, usually by 

the use of a test or other process. Validity was maintained by conducting the 

experiment at the same location over two seasons.  Objectivity is described as 

striving, as far as possible or practicable, to reduce or eliminate biases, prejudices or 

subjective evaluations by relying on verifiable data (Leedy and Ormrod, 2005). 

Objectivity is attained by deliberating the findings on the basis of pragmatic evidence 

as shown by statistical analyses, with findings compared and contrasted with 

findings in other studies (Hills, 1984). 

 

1.5 Bias 

 

Bias is defined as any influence, environments or set of situations that separately or 

completely distort the data collected (Leedy and Ormrod, 2005). In this study, bias 

was minimised by making sure that the error in each experiment was minimized 

through increased repetitions and random sampling in data collection (Hills, 1984). 

 

1.6 Significance of the study 

 

The outcomes of this study will contribute to a better understanding of maize 

reflectance properties during disease development. Methods will further be 

applicable in precision crop protection, to realize the early detection, mapping, and 

quantification of GLS and MSV. Knowledge generated by the project concerning the 

detection of GLS and MSV, together with existing literature, will be used to design, 
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develop and promote integrated disease management strategies for GLS and MSV. 

Currently, there is minimal work done on the detection, mapping, and quantification 

of GLS and MSV. 

1.7 Format of the thesis 

 

This thesis is consisting of six stand-alone articles, which have been submitted to 

internationally recognised peer-reviewed journals. Three of the manuscripts have 

already been published online, three under review. In this thesis, each article has 

been presented as a stand-alone chapter that can be read and reflected 

independently, from the entire dissertation, but it contributes to the overall 

introduction (Chapter One) and synthesis (Chapter Nine). It is also critical to note 

that the content of most of the manuscripts submitted to peer-reviewed journals has 

been recollected. This means that each of the stand-alone chapters consists of its 

abstract, conclusion, and references, which relate it to the following chapter, hence 

the presence of duplications and overlaps, particularly in the óintroductionô and 

ómethodsô sections, of the various chapters in the Thesis. This duplication is 

assumed to be of little concern when considering that these are peer-reviewed 

scientific articles, which are stand-alone chapters that can be read separately, 

without losing the overall context. The entire thesis is made up of nine chapters.  

 

1.7.1 Chapter One  
 

This chapter serves as an introduction and a contextualization of the study. It 

highlights the importance of detection, identification, and mapping of maize streak 

virus and grey leaf spot diseases of maize using different remote sensing 

techniques. The chapter further highlights the importance of remote sensing as 

reliable tools and techniques that agronomists and plant pathologists can use to 

observe and inventory crop conditions. These techniques may provide useful and 

timely information about the health of crops and also makes available information 

which has previously been unavailable. In addition, the detailed research problem, 

aim, and objectives are outlined in this chapter.  
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1.7.2 Chapter Two  
 

This chapter provides a detailed review of the literature. The review attempts to 

highlight the challenges and opportunities that are geared towards the detection and 

mapping of maize diseases. How remote sensing data was used and is currently 

being used in maize crop disease detection and mapping was reviewed, and gaps in 

literature were identified in order to assess the use of remote sensing data in maize 

crop diseases. The review focuses on how remote sensing is used in maize crop 

disease mapping and detection 

 

1.7.3 Chapter Three  
 

The chapter focuses on identifying techniques for the ócurse of dimensionalityô 

reduction without sacrificing significant information which is critical in hyperspectral 

data processing and analysis. A comparison of two variable selection techniques 

Random Forestôs Forward Variable, (FVS) and Guided Regularized Random Forest: 

(GRRF) was done in selecting the optimal variables that can be used in detecting 

maize streak virus disease using in-situ resampled hyperspectral data. 

 

1.7.4 Chapter Four  
 

In this chapter, the utility of remote sensing in detecting the geminivirus infected 

maize was assessed based on experiments in Ofcolaco, Tzaneen in South Africa. 

Specifically, the potential of hyperspectral data in detecting different levels of MSV in 

maize was tested based on Guided Regularized Random Forest (GRRF). This study 

underscores the potential of using remotely sensed data in the accurate detection of 

maize crop diseases such as MSV and its severity which is critical in crop monitoring 

to foster food security especially in the resource-limited sub-Saharan Africa 
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1.7.5 Chapter Five  
 

Tests were then conducted on the RapidEye data and derived vegetation indices in 

detecting and mapping the maize streak virus. RapidEye image was classified using 

the robust Random Forest algorithm to detect and map maize streak virus in 

Ofcolaco farm. Variable importance technique was used to determine the influence 

of each spectral band and indices on the mapping accuracy. For better performance 

of image data, commonly used vegetation indices were tested if they can 

significantly improve the classification accuracy. The study recommends future 

studies to evaluate the importance of multi-temporal remote sensing applications in 

detecting and monitoring the spread of maize streak virus 

 

1.7.6 Chapter Six 
  

Due to the cost involved in acquiring commercial images, like RapidEye, a freely 

available Landsat-8 OLI data can offer a new data source that is useful for maize 

diseases estimation, in environments which have limited resources. The study 

investigated the use of Landsat-8 OLI data and vegetation indices in estimating and 

predicting maize infected with maize streak virus. The purpose of this chapter was to 

assess the utility of the medium-resolution multispectral Landsat-8 OLI data set, in 

detecting and mapping maize streak virus disease at Ofcolaco farms in Tzaneen, 

South Africa. More specifically, the study sought to spectrally discriminate and map 

maize infected with maize streak virus from other land-cover classes using Landsat-

8 OLI data. 

 

1.7.7 Chapter Seven  
 

In this study, the researcher aimed at examining the influence of climatic, 

environmental and remotely sensed variables on the spread of MSV disease on 

maize farms at the Ofcolaco farms in Tzaneen, South Africa. Environmental and 

climatic variables together with Landsat-8 OLI derived vegetation indices were 

integrated to predict the probability of MSV occurrence at Ofcolaco maize farms in 

Limpopo, South Africa. Correlation analysis was used to relate vegetation indices, 

environmental and climatic variables to incidences of maize streak virus disease. 

The variables used to predict the distribution of MSV were elevation, rainfall, slope, 
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temperature, and vegetation indices. The results indicated the potential of integrating 

vegetation indices derived from Landsat-8 OLI, environmental and climatic variables 

to improve the prediction of areas that are likely to be affected by MSV disease 

outbreaks in maize fields in semi-arid environments. 

 

1.7.8 Chapter Eight  
 

After realizing the potential of remote sensing in detecting and predicting the 

occurrence of maize streak virus disease, the study further examined its potential in 

mapping the most complex disease; Grey Leaf Spot (GLS) in maize fields using 

WorldView-2, Quickbird, RapidEye, and Sentinel-2 resampled from hyperspectral 

data. To accomplish this objective, field spectra were acquired from healthy, 

moderate and severely infected maize leaves during the 2013 and 2014 growing 

seasons. The spectra were then resampled to four sensor spectral resolutions ï 

namely WorldView-2, Quickbird, RapidEye, and Sentinel-2. In each case, 

classification of the 2013 resampled spectra was done using Random forest 

algorithm to represent the three identified disease severity categories. Classification 

accuracy was evaluated using an independent test dataset obtained during the 2014 

growing season. 

 

1.7.9 Chapter Nine 
 

This chapter shows a combination of the findings and conclusions drawn, based on 

the preceding chapters. It makes further recommendations for future research, 

based on the highlighted limitations of this study. Overall, the results imply that 

opportunities exist for developing operational remote sensing systems for detection 

of maize disease. Adoption of such remote sensing techniques is particularly 

valuable for minimizing crop damage, improving yield and ensuring food security. 
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 Progress in the application of remote sensing in detecting and mapping of 

maize diseases 

Abstract 

 

Timely, and up to date information which is accurate for the detection and mapping 

of maize crop disease can be obtained by remote sensing techniques. In this study, 

the use of remote sensing techniques to maize crop disease detection and mapping 

was reviewed. How remote sensing data was used and is currently being used in 

maize crop disease detection and mapping was reviewed, and gaps in literature 

were identified in order to assess how remote sensing data can be used in maize 

crop diseases. Remote sensing can provide information about how maize leaves 

reflect at different stages of infection. Most of the studies that have been undertaken 

focus on disease classification, areal extent mapping, and crop health monitoring. 

Few studies have focused on the application of remote sensing on maize crop 

diseases in different environments. However remote sensing can be extremely 

useful in maize crop disease monitoring only if appropriate spatial and spectral 

resolution data is identified.   
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2.0 Introduction 

 

Maize is an essential food for many people around the world and mainly in sub-

Saharan Africa (FAO 2004). In Europe and USA, maize is mainly used as animal 

feed. Maize (Zea mays L.) is considered to be the most vital grain crop in South 

Africa. Nearly 8.0 million tonnes of maize grain is produced in South Africa every 

year on a land which is approximately 3.1 million hectares. Almost half of the maize 

is white maize and is used for human consumption. Furthermore, 50% of maize grain 

in the Southern African Development Community (SADC) is produced in South 

Africa (Benhin, 2008). Therefore, maize is considered to be the subsequent largest 

crop that is produced in South Africa after sugar cane.  

It is of paramount importance to detect and map crop diseases in order to plan 

effective control measures so as to increase crop yields and strengthen the countryôs 

food security issues.  Remote sensing can be used to detect and map crop diseases 

that are found in fields since crops infested by a disease, can show variations in the 

biochemical constituents of the plant and also the spectral signatures. Most of the 

prevalent maize crop diseases includes leaf blight caused by Exserohilum turcicum, 

common rust-induced by Puccinia sorghi, grey leaf spot (GLS) and maize streak 

virus caused by Cercospora zeae maydis, ear rots caused by Fusarium and 

Diplodia, head smut caused by Sporisorium reilianum and Phaeosphaeria leaf spot 

(PLS) caused by Phaeosphaeria maydis have negative effect on maize crop 

production.  

Turcicum leaf blight which is distributed worldwide, has also caused yield losses of 

more than 60% in vulnerable germplasm (Raymundo et al., 1981). Another disease 

which was reported to cause severe economic losses on approximately 34% of 

maize in subtropical and highland tropical maize fields is Grey leaf spot. Grey leaf 

spot has been reported as a disease of serious concern in the greater parts of the 

world and can account to almost 60% yield losses in South Africa (Ward et al., 1999) 

with projected losses going up to 100% under severe epidemics (Latterell and Rossi, 

1983, McGee, 1988) 
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Other diseases of maize include maize streak virus (MSV) which was initially 

observed in East Africa and it is now found in many countries in sub-Saharan Africa, 

India, South Pacific, South east Asia and some of the islands in the Indian Ocean 

(Bonga, 1992). Losses of about 1.5% and total loss during severe MSV epidemics 

were also reported. Phaeosphaeria leaf spot (PLS) is a severe problem for maize in 

Brazil (Pegoraro et al., 2002) and has the potential to cause substantial yield losses 

in maize (Carson, 2005) and although it has not been reported in epidemic 

proportions in Africa. Incidences of PLS have been detected by researchers in Africa 

and it is becoming an important disease affecting maize yields.  

Maize diseases are normally assessed using direct field survey methods like 

scouting and checking the plants for any damage symptoms. These methods are 

tedious, time-consuming, expensive and subjective as only a few sites within the 

fields are sampled (Al-Hiary et al., 2011, Pinter Jr et al., 2003). Therefore, 

corresponding disease monitoring methods that allow the implementation of site-

specific practices are essential. In this setting, remote sensing is capable of offering 

synoptic, timely, accurate and relatively inexpensive data that can be utilized to 

provide an explicit overview of maize disease infestation. Also, remote sensing 

allows a wide-area monitoring approach thus less spotty and spatially more effective 

and comprehensible compared to point-specific field-based survey methods (Moran 

et al., 1997, Mulla, 2013).  The objective of this research is to provide an overview of 

the progress of remote sensing in crop disease detection and mapping particularly 

focusing on maize crop diseases. 

 

Significant progress has been made in remote sensing of crop diseases mainly using 

multispectral and machine learning systems. Classification of multispectral data were 

done using simple classes such as bare soil, water, and green vegetation. Handheld 

optical devices have also been used in the rapid detection of pest damage or 

disease (Mirik et al., 2007, Moshou et al., 2004, Xu et al., 2007) and airborne 

sensors (Sudbrink Jr et al., 2003). Since healthy and diseased plants reflect 

differently, researches tried to use reflectance measurements to distinguish between 

healthy and diseased plants in fields (Moshou et al., 2004). Cellular structure 

changes affect reflectance in the 0.75-to 1.35-micrometer wavelengths (Mirik et al., 

2007). Changes in pigmentation affect reflectance in the 0.5-to 0.75-micrometer 
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range, and wavelengths between 1.35 and 2.5 micrometers are intensely influenced 

by the amount of water in the leaf (Carter and Spiering, 2002). The optical properties 

of leaves are categorised by light transmission through a leaf, light that is absorbed 

by leaf chemicals (pigments, lignin, and amino acids), and light that has been 

reflected from internal leaf structures or directly reflected from the leaf surface 

(Carter and Spiering, 2002). The reflectance of light from plants is a multifaceted 

issue that depends on several biophysical and biochemical interactions. The visible 

range (VIS 400 to 700 nm) is influenced by leaf pigment content, the near-infrared 

reflectance (NIR 700 to 1,100 nm) depends on the leaf structure, internal scattering 

processes, and on the absorption by leaf water, and the short-wave infrared (1,100 

to 2,500nm) is influenced by the composition of leaf chemicals and water 

(Jacquemoud and Ustin, 2001). Therefore, changes in reflectance due to crop 

diseases can be attributed to damages in the structure of the leaf and chemical 

composition of the tissue during origin and development of the disease, like a 

succession of chlorotic tissue or the appearance of typical fungal and viral structures, 

such as powdery mildew hyphae and maize streak virus (Jacquemoud and Ustin, 

2001). 

 

2.1 Applications of remote sensing in monitoring crops 

 

Remote sensing has been providing information about the status of vegetation 

looking at visible wavelengths (Price, 1992), active or passive microwaves (Prevot et 

al., 1993a, Prevot et al., 1993b) and emitted thermal wavelengths (Moran et al., 

1994, Seguin et al., 1994, Seguin et al., 1991). Most researchers have so far 

concentrated on the use of  the blue, green, red and near-infrared regions of the 

spectrum on agriculture (Gates et al., 1965, Woolley, 1971). A hand-held radiometer 

was used to collect the red (0.65-0.70 ɛm) and infrared (0.775-0.825 ɛm) spectral 

reflectance and were correlated with total aboveground winter wheat (Triticum 

æstivum L.) biomass accumulation over the growing season (Tucker et al., 1981). A 

high correlation between the spectral data and the vigour and state of the plant 

canopy was reported by the authors. 
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Remote sensing has been used widely in agricultural production in many aspects of 

crops (Adamchuk et al., 2004, Moran et al., 1997, Pinter Jr et al., 2003). Remote 

sensing has been applied in crop yield and biomass estimation (Shanahan et al., 

2001, Yang et al., 2000), water stress and crop nutrient assessment (Clay et al., 

2012, Cohen et al., 2005, Möller et al., 2006, Mulla, 2013), insects and plant 

diseases (Seelan et al., 2003), infestations of weeds (Lamb and Brown, 2001, Thorp 

and Tian, 2004), identification of crops (Foody et al., 1989, Saha and Jonna, 1994), 

detection of crop stresses (Carter et al., 1996, Carter and Spiering, 2002, Karimi et 

al., 2005, Lelong et al., 1998), detection of crop diseases (Lorenzen and Jensen, 

1989, Peñuelas and Filella, 1998), weed detection (Brown et al., 1994, Everitt et al., 

1996, Goel et al., 2003, Vrindts et al., 2002), yield estimation (Ferencz et al., 2004, 

Hamar et al., 1996) and precision farming (Moran et al., 1997, Pearson et al., 1994, 

Seelan et al., 2003, Wallace, 1994). From these studies, one can conclude that 

remote sensing has been employed widely in monitoring crop production. 

 

Different crop species were classified using remote sensing data (Rao, 2008). Plant 

water stress, pests, crop weeds, and crop diseases were also monitored using 

remote sensing techniques. Crops such as corn, cotton, sorghum, wheat, and 

canola, have been monitored using different remote sensing techniques (Lelong et 

al., 1998, Yang, 2010, Zhao et al., 2007). Different remote sensing data like Aerial 

photography (Godwin and Miller, 2003), satellite hyperspectral (Rao, 2008), airborne 

hyperspectral (DeTar et al., 2008, Lelong et al., 1998), satellite multi-spectral 

(Clevers, 1997, Gomez et al., 2008) and close range hyperspectral techniques 

(Gomez et al., 2008, Rao, 2008, Zhao et al., 2007) have also been used to examine 

different field crop spectral responses. (Gallego, 1999) used satellite data to 

successfully estimate crop acreage, (Chen et al., 2007) successfully identified the 

infestations of the take-all disease (Gaeumannomyces graminis) in wheat using 

Landsat multispectral imagery.  Franke and Menz (2007) assessed a QuickBird 

satellite multispectral imagery in detecting powdery mildew (Blumeria graminis) and 

leaf rust (Puccinia recondita) in winter wheat. Results revealed that multispectral 

images are mostly suitable for detecting infield heterogeneities in wheat vigour, 

especially at later stages of fungal infections. 
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Different crop parameters such as crop productivity, yield, plant nutrient, type of plant 

species, and plant pathological status have been assessed using the blue, green, 

red and near infra-red regions of the electromagnetic spectrum. Reflectance 

measurements from different crops  were used successfully to distinguish between 

healthy and diseased crops (Deering, 1989). Reflectance data was also used to 

detect Magnaporthe grisea on rice (Kobayashi et al., 2001), Phytophthora infestans 

on tomato (Zhang et al., 2003), and yellow rust in wheat (Huang et al., 2007). Genc 

et al., (2008) assessed the sunn pest damage to wheat using NDVI and structure 

insensitive index derived from the handheld radiometer. Furthermore, field and 

laboratory spectroscopy reflectance of healthy and infested canopies of mustard 

were compared. Vegetation indices (Normalised Difference Vegetation index (NDVI), 

and Structure Insensitive Pigment Index (SIPI) were meaningfully correlated with aphid 

infestation and these indices can be used in identifying aphid infestation in mustard.  

Rumpf et al., (2010) assessed crops damaged by the virus using sensors. Most of 

these studies employed airborne spectral data for discrimination of mature disease 

symptoms and healthy leaves and hyperspectral data is also increasingly being used 

often in agricultural areas. Some studies have used hyperspectral imaging 

successfully for quality assessment of maize kernels, and pickling cucumbers, 

(Ariana and Lu, 2010, Larsen et al., 2009). 

  

Riedell and Blackmer, (1999) utilized the leaf reflectance spectra obtained from a 

handheld radiometer in the greenhouse to portray wheat stressed by Russian wheat 

aphid. The specialists discovered that leaf reflectance in the 625ï 635 nm and 680ï 

695 nm ranges, just as the standardized complete color to chlorophyll a, ratio index, 

were great indicators of chlorophyll loss brought about by aphid feeding. Yang et al., 

(2005) completed an examination on greenbug (Schizaphis graminum Rondani) 

stress in wheat that was developed in a greenhouse. Their outcomes uncovered a 

waveband focused at 694 nm and vegetation indices inferred utilizing 800 nm and 

694 nm were most delicate to greenbug-harmed wheat. Ashourloo et al., (2014), 

created two indices: Leaf Rust Disease Severity Index 1 and 2 (LRDSI1 and 

LRDSI2) in view of the reflectance in the 605, 695 and 455 nm wavelengths. These 

vegetation indices were obtained from information acquired with a hyperspectral 

radiometer for identifying diseases of wheat leaf Rust (Pucciniatriticina). The two 

indices had high R² with the disease severity (0.94 and 0.95, respectively). 
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2.3 Multi- and hyperspectral sensors. 

 

Remote sensors are characterised by the spectral, spatial resolution and the type of 

detector utilized (imaging and non-imaging sensor frameworks). Multispectral 

sensors measure spectral data of features in several broad bands. Multispectral 

imaging cameras measures in the RGB wavebands and Near-Infrared band. 

Hyperspectral sensors estimates information in the 350 to 2500 nm spectral range 

with a narrow spectral resolution of 1 nm and below (Rumpf et al., 2010). 

Hyperspectral information are typically observed as huge matrices with spatial x-and 

y-axes, and the spectral data as reflectance intensity per waveband in the third 

measurement, (z). The spatial resolution relies upon the distance between the 

sensor and the feature under investigation. In this manner, airborne or spaceborne, 

far range systems have lower spatial resolution than close range or microscopic 

systems. The spatial resolution of a sensor has an impact on the detection of crop 

diseases (Mahlein et al., 2012, West et al., 2003). Airborne sensors proved to be 

valuable for the detection of field patches that are affected with soil-borne pathogens 

or in later stages of the diseases (Hillnhütter et al., 2011, Mahlein et al., 2012). 

 

When utilizing airborne images to distinguish infected crops, it is imperative to 

choose a sensor with a suitable spatial and spectral resolution. For example, Mewes 

et al., (2011) looked at the viability of the identifying wheat plants infected with brown 

rust (Puccinia recondita f. sp. tritici) with two hyperspectral cameras (AISA-DUAL, 

Specim LTD, Oulu, Finland) which recorded the reflected radiation in the 498 

channels in the range of 400 - 2500 nm with a spectral resolution of 2.5 - 5.8 nm and 

(ROSIS, German Space Agency, DLR) in the 115 directs in the range of 383 - 839 

nm with a spectral resolution of 5 nm.  

 

The accuracy with which healthy and unhealthy plants were recognized in the AISA-

DUAL images was higher than in the ROSIS images (respectively 84.32% and 

80.33%) and was related with stronger correlations at longer NIR wavelengths.  

AISA images were recorded from a lower elevation (2300m) with a higher spatial 

resolution of (1.5m) than ROSIS images (2880m) with a spatial resolution of 2.0m 
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and more grounded AISA signal intensity because of lower atmospheric absorption 

and scattering of the signal reflected from the field surface. Garcia-Ruiz et al., (2013) 

compared the value of citrus greening disease, (brought about by motile microbes) 

(Candidatus Liberibacter spp) detection utilising a UAV based sensor with a 

comparative imaging system mounted on a piloted airplane with spatial resolutions of 

5.45 cm/pixel and 0.5 m/pixel, respectively. In general classification accuracy of 67ï 

85% were accomplished using UAV. 

 

Mahlein et al., (2013) showed the distinction of foliar pathogens of sugar beet using 

leaf reflectance. Rumpf et al., (2010) had the capacity to identify early Cercospora 

leaf spot, powdery mildew, and rust-infected sugar beets before the presence of 

visible symptoms. Non-invasive spectral data was also used to detect Fusarium 

graminearum in wheat (Bauriegel et al., 2011a, Bauriegel et al., 2011b), Venturia 

inaequalis in apple (Delalieux et al., 2007), and Phytophthora infestans in tomato 

(Wang et al., 2008). In proximal detecting, hyperspectral imaging also appeared to 

be helpful for the appraisal of mycotoxin-producing pathogens in maize (Del Fiore et 

al., 2010). Bravo et al., (2003) utilised in-field spectral images for the early detection 

of yellow rust infected wheat. Soil-borne infections were effectively separated by 

(Hillnhütter et al., 2011). Apan et al., (2004) detected orange rust using EO-1 

Hyperion hyperspectral imaging. Huang et al., (2007) identified yellow rust in wheat 

by ground-based spectral measurements and airborne hyperspectral imaging. In 

addition to the detection of plant diseases, hyperspectral imaging is broadly used for 

monitoring fruit health and quality. Canker lesions of citrus fruits (Qin et al., 2009), 

apple surface imperfections (Mehl et al., 2004), or rot of strawberries (ElMasry et al., 

2007) were detected by hyperspectral imaging sensors. These techniques are vital in 

screening fruits and crops to avoid diseases. Different types of crops have been 

monitored using different techniques of remote sensing, but only a couple of studies 

have used remote sensed data on maize crop in different environments (Adam et al., 

2017, Dhau et al., 2017, Dhau et al., 2018). 
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2.4 Remote sensing of maize diseases 

 

There are various studies that have utilised remote sensing data in detecting maize 

diseases (Adam et al., 2017, Dhau et al., 2017, Dhau et al., 2018, Bauer et al 1971, 

Carroll et al 2008). Schaafsma et al., (1993) precisely identified maize plots infested 

by corn rootworm (Diabrotica virgifera) using hyperspectral images. The overall 

classification accuracies for identification of insect infected plots were up to 99% and 

were more noteworthy on account of images recorded later in the season.  

 

The maximum separability between healthy and infected maize was determined 

using Simple Ration index determined as the proportion of two bands in VIS (648 

nm) and NIR (747 nm) wavelengths. Aerial photography has been used to greatly in 

the investigation of mould and dwarf mosaic virus infected corn (Berger et al., 1989, 

Curran, 1985). Williams et al., (2012) assessed the capability of the hyperspectral 

near infrared (NIR) imaging to assess fungal contamination in maize kernels. 

Jingcheng Zhang, (2015) used satellite multispectral data for mapping of damage 

caused armyworm (Spodoptera frugiperda) in maize at a regional scale. The 

objectives of their study were to determine suitable spectral features for armyworm 

detection and to build up a mapping technique at a regional scale based on satellite 

remote sensing data. Their outcomes exhibited the credibility of the strategy and its 

promising potential for implementation in practice. 

 

2.5 Challenges associated with remote sensing of maize diseases 

 

In order to improve agricultural management in precision agriculture, there is a need 

to combine historical remote sensing data with real-time data, (Thenkabail, 2003).  

A noteworthy challenge of remote sensing applications in crop diseases is the 

capacity to separate spectral signals originating with a plant response to a specific 

disease from signals associated with normal plant biomass or the background 

ñnoiseò that is introduced by exogenous non-plant factors. Results from several 

crops across a number of different locations indicate that general relationships 

between spectral properties and plant response are achievable (Wiegand et al., 

1990, Wiegand et al., 1992, Richardson and Everitt, 1992). One of the significant 
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research challenges is to develop disease detection algorithms that perform reliably 

and precisely across space and time. Procedures ought to be independent of 

location, soils, and the board management factors. They ought to likewise work well 

all through the season, from planting through maturity. Current satellite-based 

sensors which are openly accessible or less expensive have fixed spectral bands 

that might be unsuitable for a given application, spatial resolutions too coarse for 

within field investigation, inadequate repeat coverage for intensive crop disease 

monitoring, and long time periods between image acquisition and delivery to the 

user. 

A variety of studies have used hyperspectral data to model crop diseases. However, 

hyperspectral data are high dimensional, complex, expensive and their analysis is 

associated with a high computational cost. In addition, the narrow and contiguous 

wavebands of hyperspectral data are highly correlated and cause a collinearity 

problem when they are integrated into an empirical projecting model. Techniques for 

ócurse of dimensionalityô reduction without sacrificing significant information are 

critical in hyperspectral data processing and analysis (Borges et al., 2007, Pal, 2005, 

Shaw and Manolakis, 2002). For the past few decades, significant improvements 

have been achieved in the adoption of efficient remote sensing approaches to detect 

and map maize diseases. However, there are still more issues to be explored as far 

as remote sensing of maize diseases is concerned. The challenge of disease 

infestation on maize production warrants more investigation as very little was found 

during this literature survey. Forthcoming research on remote sensing of maize 

diseases should focus more on the utilization of new generation satellite images at 

local and regional level.  
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2.6 Conclusions 

 

One of the potential applications of remote sensing in agriculture is the detection of 

plant diseases in broad areas before the indications obviously show up on the plant 

leaves. This is profitable on the grounds that remote sensing distinguishes 

biophysical changes before physiological changes are visible. Early detection and 

delineation of maize infested areas, particularly in some of the high profitable zones 

that are prone to infections (e.g. Maize streak virus and grey leaf spot) using 

hyperspectral and new generation multispectral remotely data could be attempted. 

Therefore, spectroscopy analysis could be considered as an efficient technique for 

non-destructive, rapid, and accurate measurement which is widely applied in 

agricultural fields for crop discrimination and monitoring of diseases (Sankaran et 

al., 2010). The current study has reviewed previous studies on the prospective of 

remote sensing applications in maize diseases detection, identification, and 

mapping.  Research has shown that the use of field surveys in detecting and 

mapping maize diseases, their spread, its life cycle remains a challenge in most 

parts of the world. Remote sensing technology hereby offers better assessments in 

detection and mapping of maize diseases.  

The use of medium spatial resolution in the detection, identification, and mapping of 

maize diseases has been hampered by satellite sensorôs limited spatial, spectral and 

radiometric resolution.  In spite of the fact that the application of high spatial and 

spectral resolution sensors has accurately detected and mapped crop diseases at 

local scales, the application of these data sets is compromised by smaller swath 

width, low temporal resolution, and high acquisition costs.  Challenges encountered 

in remote sensing of maize include the problem of similarity and multi-collinearity in 

spectral signatures of maize diseases leading to low classification accuracy. In 

future, some of these challenges can be minimized by the use of robust algorithms 

for classification such as Random Forest. 
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Abstract 

 

Random forestôs forward variable selection method was compared with guided 

regularized random forest in selecting the optimum variables using maize streak 

virus dataset. In order to provide a robust indicator of comparative error, the OOB 

error was reported. The sensitivity of regularized random forest to specific hyper-

parameters was examined. To examine the impact of the hyper-parameters, the 

OOB error rate and the number of bands that are selected by the algorithm were 

examined. The effect of ntree and mtry on band selection and error rates were 

examined. The best-selected bands (502.4, 636.3, 669.7, 683, 729, 8 and 850.4) 

from maize streak virus dataset to resampled AISA eagle using GRRF yielded an 

OOB error of   8.4 %.  Best bands (480.4, 571.9, 633.5 and 708,9) selected from 

maize streak virus dataset resampled to HyMap yielded an OOB error of  7.25 %. 

The best subsets of bands were then used as input variables in random forest 

classifier. On a resampled Hymap, bands selected by GRRF (n= 4) yielded an 

overall accuracy of 91.67% and a Kappa value of 0.89 and bands selected by FVS 

(n=8) yielded a relatively lower overall accuracy of 87.60% and a Kappa value of 

0.83. On a resampled AISA, bands selected by GRRF (n= 6) yielded an accuracy of 

89.17% and a Kappa value of 0.86 and bands selected by FVS (n=10) yielded a 

relatively lower overall accuracy of 85.85% and a Kappa value of 0.81. The results 

have shown that the GRRF algorithm has the potential to select compact feature sub 

sets, and the accuracy performance is better than that of RFôs variable selection 

method. The GRRF was considered to be a vigorous model for dealing with 

redundancy in the complexity of hyperspectral data.  

 

Keywords: Random forest, Forward variable selection, guided regularized random 

forest, hyperspectral remote sensing. 
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3.0 Introduction  

 

Recent developments in hyperspectral remote sensing technology (imaging 

spectrometers) have seen a dramatic improvement in the characterisation of 

terrestrial features (Artigas and Yang, 2005, Bassani et al., 2009, Cho et al., 2010, 

Choe et al., 2008, Fava et al., 2009, Adam and Mutanga, 2009b, Ismail and 

Mutanga, 2011a). The value of imaging spectrometers lies in combining imaging and 

spectroscopy in a unique system that is able to detect subtle variations in surface 

features in many contiguous and narrow spectral bands (between 380 nm and 2500 

nm with bandwidths of less than 2 nm) (Demarchi et al., 2014).   

 

Processing of hyperspectral data is principally hampered by the hyper-dimensionality 

of the data which requires adequate training samples to simplify the multifaceted 

nature of classification and prediction processes (Li et al., 2011, Pal, 2009, Bajcsy 

and Groves, 2004, Hsu, 2007). Practically, in most of the hyperspectral applications, 

the number of bands limits the number of training samples  (Hsu, 2007).  

 

The ócurse of dimensionalityô (small n large p problem) causes the ópeaking 

phenomenonô or óHughes phenomenonô (Hsu, 2007). The óPeaking phenomenonô 

introduces multi-collinearity in the input data which makes the estimation of 

parameters inaccurate and unreliable (Hsu, 2007, Kavzoglu and Mather, 2002). 

Furthermore, the use of a large number of features is time-consuming and may 

increase the complexity of the modelling task (Pal, 2009). Therefore, techniques for 

ócurse of dimensionalityô reduction without compromising significant information are 

critical in hyperspectral data processing and analysis (Borges et al., 2007, Pal, 2005, 

Shaw and Manolakis, 2002).  

 

The commonly-used methods to reduce dimension can be grouped into two 

categories: feature selection and feature extraction. Feature selection methods 

reduce the dimensionality by selecting a subgroup of features capturing the relevant 

properties of the entire data set. On the other hand, feature extraction methods 

provide innovative features based on a linear or nonlinear transformation of the 

original feature sets (Pal, 2009). Given the fact that the hyperspectral band has its 
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own corresponding image, this conversion could not keep the original physical 

interpretation of the image. Thus feature extraction methods are not preferable for 

the dimensionality reduction of hyperspectral images (Bajwa et al., 2004, Bruzzone 

and Serpico, 2000, Li et al., 2011). 

 

Several hyperspectral techniques for feature or band selection have been proposed 

to reduce the ócurse of dimensionalityô and to identify the optimal bands required for 

different applications (Daughtry and Walthall, 1998, Schmidt and Skidmore, 2003, 

Thenkabail et al., 2004, Thenkabail et al., 2002, Vaiphasa et al., 2005, Vaiphasa et 

al., 2007). These methods can be classified into the wrapper or filter approaches, 

based on whether or not they use classification algorithms as part of the evaluation 

process (Kavzoglu and Mather, 2002). The wrapper approach is a feature selection 

algorithm that looks for the best subset of bands using the classification algorithm as 

part of the evaluation process. On the other hand, the filter approach evaluates 

subsets of bands using the training data and without direct reference to the 

classification algorithm (Kavzoglu and Mather, 2002, Kohavi and John, 1997). The 

filter approach is computationally more efficient and has been more commonly used 

than the wrapper approach (Ismail et al., 2007, Schmidt and Skidmore, 2003, 

Vaiphasa et al., 2005). In the application of high dimensionality data such as 

hyperspectral data, it is suggested that the classification algorithm should be a part 

of the variable selection process (Granitto et al., 2006, Adam et al., 2012b). It is 

therefore desirable to have an algorithm that offers direct measurement of the 

importance of variables at the same time of the classification process of 

hyperspectral data (Ismail, 2009). Such calculations are able to reach a solution 

faster by avoiding retraining a predictor from scratch for every variable subset 

investigated (Guyon and Elisseeff, 2003, Adam et al., 2012b, Mutanga et al., 2012). 

 

In recent years Random Forest (Breiman, 2001b) has emerged as a powerful 

algorithm for the classification of remotely sensed data (Ismail and Mutanga, 2011b, 

Adam et al., 2012b, Adjorlolo et al., 2012a, Lawrence et al., 2006, Rodriguez-

Galiano et al., 2012). The effectiveness and efficiency of the RF algorithm are 

clarified by the capability of the algorithm to deal with categorical and numerical data, 

missing values, different scales between variables, interactions and non-linearityôs 

present in the dataset (Deng and Runger, 2012a). Within hyperspectral applications, 
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the algorithm has been used for classification purposes in addition to proving a 

measure of variable importance (Adam et al., 2012b, Mansour et al., 2012b, 

Lawrence et al., 2006). Later research has focussed on using the variable 

importance to improve model interpretation and classification accuracies (Archer and 

Kimes, 2008, Díaz-Uriarte and de Andrés, 2006, Granitto et al., 2006, Svetnik et al., 

2003, Han et al., 2007, Hamza and Larocque, 2005). However, since the algorithm 

offers a ranking and does not eliminate redundant bands automatically, researchers 

have combined the algorithm with various feature selection methods such as 

recursive feature elimination (RFE) framework (Ismail and Mutanga, 2011b) and 

forward variable selection (Adam et al., 2012b, Mansour et al., 2012b) as a wrapper 

in order to obtain the optimum subset of bands that best explain the phenomena of 

interest. However, these methods are computationally intensive and require building 

multiple models after which the model with the lowest error rate is selected. 

Moreover, it has been reported that the integrations between variable importance 

measurements by traditional random forests and variable selection processes show 

significant preference on highly correlated predictor variables (Strobl et al., 2008, 

Nicodemus et al., 2010, Adjorlolo et al., In press). Consequently, experts have 

suggested the use of the kind of supervise approach to mitigate the problems 

associated with random forest variable selection process (Adjorlolo et al., In press). 

Moreover, it would be valuable if the feature selection algorithm required building 

only one model to identify the best subset of the variable that best explains the 

phenomena of interest (Guyon et al., 2010).  

 

Consequently, a regularization framework which was applied to random forest and 

boosting tree was suggested by Deng and Runger, (2012b). The regularized 

framework builds a model once and only requires training a single model for variable 

selection which may significantly reduce the training time (Guyon et al., 2010). 

Furthermore, the framework avoids selecting the new feature for splitting the data in 

a tree node when that feature produces similar information to the feature already 

selected (Deng and Runger, 2012a). Thus, comparative research have shown that 

the framework is effective in selecting high-quality feature subsets while maintaining 

predictive accuracies (Deng and Runger, 2012a). It is within this context that the 

researcher compared the ability of the guided regularized Random Forest and 

traditional RFôs variable selection methods to select a subset of optimal bands for the 
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classification of four stages of MSV infection on maize using resampled Hymap and 

AISA Eagle bands. Additionally, the behaviour of the regularized random forest is 

assessed by considering multiple criteria related to variations in the classifier 

parameters values. The performance of the guided regularized random forest is also 

evaluated in comparison to traditional Random Forest as a classification and a 

variable selection method. Random Forest is frequently applied as they attain a high 

prediction accuracy and have the ability to identify informative and important 

variables.  

 

Random forestôs forward variable selection method was compared with guided 

regularized random forest in selecting the optimum variables. The mtry  value was 

accepted as the square root of the total variables ( ) as recommended by 

(Breiman, 2001b), the ntree value was set to 1000 trees and the coefficient of 

regularization for the regularized random forest was set to 0.8 (Deng and Runger, 

2012b).  In order to provide a robust indicator of comparative error, the OOB error 

was reported. Moreover, the sensitivity of regularized random forest to specific 

hyper-parameters was examined. To examine the effect of the hyper-parameters, 

the OOB error rate and the number of bands that are selected by the algorithm were 

examined. The effect of ntree and mtry on band selection and error rates was 

examined. 

 

3.1 Variable Ranking 

 

Random forest algorithm can return three methods of variable importance (Breiman, 

2001b). Such variable importance measures depends on the selection rate of each 

candidate variables; the Gini index, based on the principle of impurity reduction (Pal, 

2005) and permutation of predictor variables as an estimate of variable importance 

(Strobl et al., 2008). Amongst these variable importance measures, the Gini index 

has been found to show a bias when predictor variables vary in their number of 

categories or scale of measurement (Strobl et al., 2008). This is because the 

fundamental Gini gain splitting criterion is a biased estimator and can be affected by 

multiple testing effects (Strobl et al., 2008).  
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The other variable importance concept that is based on the impact of a predictor 

variable commonly termed "mean decrease in accuracy", compares each candidate 

predictor variable with respect to its effect in predicting the response or its causal 

effect using the OOB error selection rates of each ensemble of trees (Breiman, 

2001b). The later variable importance measure has been shown, calculated 

successfully by means of randomly permuting each predictor variableôs association 

with response variables (Strobl et al., 2008).  

 

The variable importance follows the logic that a random permutation of the values of 

predictor variables represents the absence of a variable from the model. Thus, the 

variance in prediction accuracy prior and after permuting a variable (i.e. the class 

membership of a permuted variable, together with the remaining non-permuted 

predictor variables) is used to predict the response for the OOB observations as the 

measure of importance (Strobl et al., 2008). In this context, the number of 

observations classified correctly decreases substantially if the permuted band was 

associated with the multivariate response variables (Breiman, 2001b). That is, by 

randomly permuting the maize streak virus reflectance band values, its original 

association with the response variable is broken. The Gini index -based variable 

importance was implemented in this study.  

 

3.2 Random forest and regularized random forest  

 

In order to determine the split at each node of tree, Random forest has the additional 

modification of selecting only a random subset of candidate features (mtry). When 

the tree is maximally grown, it makes estimates using an out of bag (OOB) sample 

for that particular tree. The prediction error will then provide an unbiased assessment 

of the accuracy, since the OOB sample is not used in the training process. 

Additionally, the random forest provides an internal measure of variable importance 

using the OOB sample. In this study, the Gini index was examined as an importance 

measure. The index selects the best band based on an information gain score. 
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The Gini index at node v defined as: 

Gini (v)  

Where  represents the ratio of class k observations at node v. The Gini information 

gain (Xi, v) is the variance between the impurity at node v and the weighted average 

of impurities at each child node of v. The weights are proportional to the number of 

samples assigned to each child from the split at node v so that   

 

Where  and  are the impurity scores and  and  are the 

weights for the left and right child nodes. The principle of the regularization 

framework is to utilize a regularized version of gain at each node v as follows  

 

Where F is the feature set selected in the previous nodes and  is called the 

coefficient of regularization for . This coefficient is then used to penalise using a 

feature  for splitting. A smaller  leads to a larger penalty. The regularized 

random forest uses the  at each node v and adds new features to F if 

those features provide new predictive information. According to Deng and Runger, 

(2012a), and Deng and Runger (2012b) the procedure allows for the most significant 

bands to have an advantage to enter the feature set (F). The coefficient of 

regularization (  ) is calculated as  

 

Where   is the normalized variable importance score of  from an 

original random forest   that controls the degree of regularization and is 

called the base coefficient and  controls the weight of the normalized 

importance score and is called the importance coefficient. The regularized random 

forest was done in R (R Development Core Team, 2007) using the RRF package 

that is freely distributed and is available from http://cran.r-project.org/ 
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3.3 Resampling field spectra  

 

Processing hyperspectral data requires dimensionality of data to be reduced without 

losing the spectral separability of a considered feature space (Thenkabail et al., 

2000, Schmidt and Skidmore, 2003). To reduce data dimensionality, a number of 

techniques have been developed. The techniques include among others the 

resampling of spectra to wider bandwidths around a few band-centers or to the 

spectral configuration of existing sensors, using their respective spectral response 

functions or spectral resolution (i.e., FWHMùɚ, full width at half maximum,). In this 

study, the spectral measurements were resampled to the Hymap, and AISA Eagle 

spectral resolutions using the ENVI 4.7 image processing software (ENVI, 2009). 

Then variable selection and classification was done using the resampled spectra. 

 

The spectral measurements from each of the MSV infection stages (n = 4) were 

resampled to HYMAP and Airborne Imaging Spectroradiometer for Applications 

(AISA) AISA Eagle spectra using ENVI 4.3 image processing software. The method 

used a Gaussian model with a full width at half maximum (FWMAP) equal to the 

band spacing provided (Mutanga, 2005). HYMAP is an airborne hyperspectral 

imaging spectrometer, comprising 126 wavelengths, operating over the spectral 

range 436.5ï2485 nm, with average spectral resolutions of 15 nm (437ī1313 nm), 

13 nm (1409ï1800 nm) and 17 nm (1953 nmï2485 nm) (Cho et al., 2007). AISA 

Eagle is an airborne hyperspectral imaging spectrometer, comprising 126 

wavelengths. The spectral reflectance was resampled because the current 

operational airborne and space borne sensors such as HYMAP and AISA Eagle lack 

the fine spectral resolution of the ASD spectral reflectance (Mutanga et al., 2005).  

Furthermore, in line with the current availability of airborne sensors in South Africa, it 

is of interest if the specific spectral bands of these sensors can discriminate between 

infection stages of maize streak virus. In the event that the outcomes are certain, the 

mapping and monitoring of maize diseases could be operational on airborne 

hyperspectral platforms. 
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3.4 Optimizing using the random forest 

 

The purpose of the optimization process was to define the best parameters for each 

classifier so as to get the best classification accuracies. The ntree and mtry for RF 

were optimized using the grid search and a ten-fold cross-validation method (Waske 

et al., 2009). That dataset was divided into ten subsets of equal size, RF model was 

then used to train nine subset samples, and tested on the omitted one. The process 

was repeated ten times until all subset samples were served as test samples. The 

pair of parameters for each classifier that reduces the classification error was then 

considered as the best values for final classification. Based on the recommendation 

of (Statnikov et al., 2008) ntree values up to 5000 were considered using intervals of 

500 while the default mtry was used (for example 1/3, default mtry). The default 

value of mtry is based on the square root of the 272 AISA Eagle and 126 Hymap 

wavebands.  

  

3.5 Variable Selection 

 

The optimum bands are set of bands, with the least correlation among themselves, 

high information content and are able to discriminate the target. Optimum can be 

quantified using Random Forestôs (RF) Forward variable selection and Guided 

Regulized Random Forest (GRRF). The variable importance as calculated by RF 

was used to rank the 272 AISA Eagle and 126 Hymap wavebands according to their 

ability to discriminate amongst healthy, early, moderate and severely infected maize 

leaves with maize streak virus. Forward variable selection method was executed to 

identify the least number of the spectral bands that produced the maximum 

classification accuracy, (Kohavi and John, 1997). Multiple RFs were iteratively fitted 

using the ranked wavebands in a sequential manner.  

 

Initially, a new RF model was built using the highest two ranked bands and for the 

next iteration, the two highest bands were considered. This process was repeated 

until all the spectral variables used in this study (n = 272 for AISA and 126 for 

Hymap) were considered (Adam and Mutanga, 2009b). Finally, the subset of 

spectral bands that produced the lowest 10-fold cross-validated error was selected 
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as the optimum subset of spectral bands for classification. Random Forests was 

used to distinguish relevant from irrelevant variables in variable selection 

approaches e.g. (Díaz-Uriarte and de Andrés, 2006, Sandri and Zuccolotto, 2006, 

Yang et al., 2009).  

 

The limitations of the random forest algorithm in measuring variable importance is 

that it does not select automatically the optimum number of variables that produce 

the best classification accuracy (Adam and Mutanga, 2009b). Therefore, GRRF was 

used to automatically select the optimal number of wavelengths based on the 

Random Forest measurement of variables importance (Adam and Mutanga, 2009b, 

Ismail and Mutanga, 2010).  Here, a guided RRF (GRRF), was proposed in which 

the importance scores from the ordinary random forest were used to guide the 

feature selection process in RRF. Since the importance scores from an RF are 

calculated based on all trees in the RF and all the training data, GRRF is expected to 

perform better than RF.  

 

When  using the GRRF, the importance scores from an ordinary random forest (RF) 

are used to guide the feature selection process in RF (Daughtry and Walthall, 1998, 

Schmidt and Skidmore, 2003, Thenkabail et al., 2004, Thenkabail et al., 2002, 

Vaiphasa et al., 2005). Several studies show that GRRF, in general, is able to select 

compact feature sub sets and is better than RF, varSelRF and LASSO-logistic 

regression in terms of the accuracy of RF and a decision tree method (Thenkabail et 

al., 2002). Feature selection has been widely used in many applications as it can 

reduce the curse of dimensionality, improve interpretability and avoid unnecessary 

work of analyzing irrelevant and redundant features. A powerful classifier called 

random forest (RF) has been widely used for measuring feature importance as it 

naturally handles numerical and categorical variables, different scales, interactions, 

and nonlinearities, etc (Schmidt and Skidmore, 2003, Thenkabail et al., 2004). 

Though the random forest feature importance scores can be used to select K 

features with the highest importance scores (the K best features), there could be 

redundancy among the K variables, which is different from feature selection that 

selects a set of relevant but non-redundant features (the best K-feature sub set).  
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3.6 Accuracy assessment 

 

The accuracy of each classifier was assessed using the 30% holdout sample. In 

order to evaluate the accuracy of the RF classifiers, the overall accuracy (OA), userôs 

accuracy (UA), and producerôs accuracy (PA) were used (Mather and Tso, 2009). 

Overall accuracy is a ratio (%) between the number of correctly classified samples 

and the number of test samples, while User accuracy shows the likelihood that a 

sample belongs to the specific class and the classifier accurately assigns it such a 

class. Producer accuracy shows the probability of a certain class being correctly 

classified.  

 

3.7 Results 

 

3.7.1 Variable importance using the random forest algorithm 

 

Using the default setting of traditional random forest, the importance of resampled 

AISA Eagle and Hymap bands was measured using the mean decrease in Gini 

index.  What can be noticed from Figures 3.1a, and b is that there are key regions of 

the electrometric spectrum that are important for classifying the maize streak virus. 

The most important spectral wavebands for AISA are located in the red and the 

rededge (631.9 nm, 667.4 nm, 669.7 nm, and 683.0 nm), of the electromagnetic 

spectrum, and for Hymap are located in the red and red edge region (618 nm, 633.5 

nm, 679.4 nm, 694.4 nm). The results shows that random forest algorithm has 

successfully explored and described the relative importance of each individual 

wavelength in discriminating among the four stages of MSV infection.  
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Figure 3.1 The variable importance as measured by traditional random forest for 

resampled AISA Eagle (a) and resampled Hymap (b). The errors were calculated 

using the mean decrease in the Gini index and the default settings. The black arrow 

indicates the most important wavelengths  

 

a 
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3.7.2 Random Forestôs Forward Variable selection  

 

The study concentrated on the prediction performance of RF focusing on out-of-bag 

(OOB) error (Breiman, 2001b). The study used this prediction error estimate for three 

reasons: the main reason being that of comparing models instead of assessing 

models, the second is that it gives fair assessment compared to the usual alternative 

test set error even if it is considered as a little bit optimistic and the last one, is that it 

is a default output of the Random Forest procedure, so it is used by almost all users. 

 

The forward variable selection method selected an optimal of 10 spectral bands from 

the resampled AISA Eagle and 8 spectral bands from the resampled Hymap using 

the ranking output of RF for discriminating amongst classes. The 10 spectral 

wavebands of AISA Eagle produced a minimal OOB error of 12% using the training 

dataset and a bootstrap error of 11% (Figure 3.2 a). The 8 spectral bands of Hymap 

produced a minimum OOB error of 10.58% and a bootstrap error of 11.23 % (Figure 

3.2 b). These spectral wavebands were then used as the optimal input variables in 

the Random Forest classifier.  
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Figure 3.2: Forward variable selection method AISA dataset (a) and HyMap dataset 
(b) 

b 

a 
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3.7.3 Variable selection using GRRF 

 

The variable selection has been extensively used in many applications as it can 

reduce the curse of dimensionality, improve interpretability and avoid unnecessary 

work analysing irrelevant and redundant features. Recently the regularized random 

forest (RRF) has been proposed for feature selection by building only one ensemble. 

However, in RRF the features are assessed by a part of the training data at each 

tree node, and thus the feature selection process may not be stable. In this study an 

enhanced RRF, referred to as guided RRF (GRRF), is proposed. When using the 

GRRF, the importance scores from an ordinary random forest (RF) are used to guide 

the feature selection process in RRF. Experimental studies show that GRRF, in 

general, is able to select compact feature sub sets and is better than RRF, varSelRF 

and LASSO-logistic regression in terms of the accuracy of RF and a decision tree 

method. Both RRF and GRRF were implemented in the ñRRFò package available at 

CRAN (http://cran.r-project.org/), the official R package archive. The best-selected 

bands (502.4, 636.3, 669.7, 683, 729, 8 and 850.4) from AISA eagle dataset using 

GRRF yielded an OOB error of 8.4 %. Best bands (480.4, 571.9, 633.5 and 708,9) 

selected from HyMap dataset produced an OOB error of  7.25 %. The best subsets 

of bands were used as input variables in random forest classifier. 
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3.7.4 Accuracy Assessment 
 

Accuracy assessment was done using the bands that were selected by GRRF and 

RFôs FVS methods for both the two sensors in order to assess the prediction 

performance of the models using an independent test dataset. 

 

 

Table 3.1: Shows bands selected by GRRF from AISA Eagle (n= 6) yielded a higher 

accuracy (89.17%) while those selected using FVS for AISA Eagle (n=10) yielded an 

overall accuracy of 85.85% 

 

Sensor and 

Method AISA FVS 

 

AISA GRRF 

 

Hymap FVS 

 

Hymap GRRF 

 683.0 502.4 633.5 480.4 

669.7 636.3 618.0 571.9 

667.4 669.7 679.0 633.5 

685.2 683.0 694.4 708.9 

671.9 729.8 602.5  

631.9 850.4 648.7  

680.8  663.8  

596.3  587.1  

698.6    

 580.7    

 

Total Number of 

bands 10 

 

 

6 

 

 

8 

 

 

4 

OA 85.85% 89.17% 87.60% 91.67% 

 

 

 

 

 

 



53 
 

Table 3.2: Confusion matrix for AISA Eagle and Hymap showing the classification 

accuracy for the different levels of maize streak virus severity (H- Healthy, E- Early 

stage, M-Moderate, and S-Severe) 

 

           AISA (GRRF)                        HYMAP (GRRF)               AISA (FVS)               HYMAP (FVS) 

          H    E    M    S  Total            H    E    M    S   Total           H     E     M    S  Total            H    E    M    S  Total      

 

H       28    1     1     0     30           28    1     1     0     30            27     1     2      0    30            28    2     1     0     30 

E        2    26    1     1      30           2    26    1     1      30             2     25    2      1    30             3    24    1     2    30 

M       2     2    26    0      30           1     2    27    0      30             3      2     25     1    30             1     1    26    2     30 

S        1     1     1    27     30           0     0     1    29     30             1      1     2     26   30             0     1     1    28    30 

TOTAL33 30   29   28   120          31   29   30   30    120           33    30   31    28   120          31    29   30   30  120 

 

 

 

(30%):  OOB error = 10.83%          (30%) OOB error  = 8.33%                  OOB error = 14.17%               OOB error =  12.40 % 

Overall accuracy    = 89.17%      = 91.67%                      = 85.85%                                       =   87.60% 

KHAT Value          = 0.86      = 0.89                                        = 0.81                                             =   0.83 

Producer Accuracy= 84.85%                      = 90.32%                                   = 81.82%                                       =   87.5% 

User Accuracy       = 93.33%                      = 93.33%                                   = 90%                                            =   90.32% 

 

 

On a resampled Hymap, bands selected by GRRF (n=4) produced an accuracy of 

91.67% while bands selected by RFôs FVS (n=8) produced a lower accuracy 

(87.60%). On a resampled AISA, bands selected by GRRF (n=6) produced an 

accuracy of 89.17% bands selected by RFôs FVS (n=10) produced a lower accuracy 

of 85.85%.  

 

3.8 Discussion  

 

The objective of this study was to test the ability of RFôs FVS and GRRF in selecting 

optimum variables from resampled AISA Eagle and Hymap. The two methods 

yielded accuracies that can be compared. Bands selected by GRRF yielded better 

accuracy than bands selected by RFôs FVS. Hyperspectral band selection allows for 

the interpretation of selected bands based on physiological and/or structural 

information of vegetation and for the selection of a set of optimal bands that produce 

a predictive model. Results from this analysis have shown that the GRRF is able to 
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select the best number of bands that produce an accurate model for the 

classification of maize streak virus infestation. 

 

In comparison to related studies, the results produced by the guided regularized 

random forest are superior in classification accuracy and an optimal subset of bands 

that have best discriminatory power. This result was expected as recent 

hyperspectral studies have shown that reducing the number of input bands produces 

more accurate random forest classifier.  Researchers attribute the improvement in 

classification accuracy due to, the trade-off between bias and variance, sensitivity to 

regularization parameters, sensitivity to mtry and ntree parameters.  Mtry is always 

chosen based on the lowest error rate.  

 

Bands selected by GRRF for both sensors yielded a higher accuracy than those 

selected by FVS. There is a significant difference in the number of bands selected by 

the two methods. GRRF selects fewer bands and produced relatively lower OOB 

error and higher overall accuracies for both the sensors than the RFôs FVS. The 

researcher used MSV data sets for the experiments and the results show that GRRF 

can select compact feature sub sets, and the accuracy performance is better than 

that of RFôs variable selection method. There is a relative difference in overall 

accuracy for the two methods and the GRRF selects fewer bands than the FVS. 

Several studies have concluded that choosing a set of appropriate variables could 

improve the accuracy of classification and reduce the training time and reduces the 

complexity of the problem. (Adam et al., 2012b, Bajcsy and Groves, 2004, Borges et 

al., 2007, Li et al., 2011, Mutanga et al., 2012, Pal, 2009, Abdel-Rahman et al., 

2013). This is due to the fact that a model which has a large number of variables as 

input data does not guarantee a more accurate result because some of these 

variables might not be useful for modelling processes (Pal, 2009). Such variables are 

the same as noise to any statistical model even if it is unique and accurate (Bajcsy 

and Groves, 2004, Li et al., 2011, Pal, 2009). 
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3.9 Conclusion 

 

This study utilises an analysis design in order to evaluate the validity and replicability 

of variable selection methods in terms of both prediction and description for 

comparative purposes. This study shows that the variable selection process is critical 

in order to ensure optimal and stable results in the estimation process so that 

methods can be compared. The results of this study present a successful application 

of the random forestôs variable selection and guided regularized random forest in 

selecting the optimal variables. The results have shown that the GRRF algorithm has 

the potential to select compact feature sub sets, and the accuracy performance is 

better than that of RFôs variable selection method. The GRRF was considered to be 

a vigorous model for dealing with redundancy in the complexity of hyperspectral 

data.  

In the future, research should target ways that enhance the understanding of how 

ntree and mtry parameters are set in the models. Overall, the feasibility and flexibility 

of using the GRRF algorithm for detecting MSV using hyperspectral data can assist 

in making decisions regarding site-specific applications of chemicals and fungicides. 

However, for the approach presented in this study to be operational, various 

available hyperspectral and newly-launched multispectral sensors, together with 

other environmental variables, such as rainfall and temperature, should be 

investigated and tested in different maize diseases and different climatic conditions. 
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Abstract 

 

Maize streak geminivirus (MSV) causes maize streak disease, a major disease 

limiting maize production over wide-spread areas of Africa. There has always been 

an urgency about the need for developing quick and efficient methods of detecting 

such disease for control purposes as well as increased food production and security. 

The utility of remote sensing techniques in detecting the geminivirus infected maize 

was evaluated in this study based on experiments in Ofcolaco, Tzaneen in South 

Africa. Specifically, the potential of hyperspectral data in detecting different levels of 

MSV in maize was tested based on Guided Regularized Random Forest (GRRF). 

Specifically, the optimal bands for detecting different levels of maize streak disease 

in maize were 552 nm, 603 nm, 683 nm, 881 nm, and 2338 nm based on the GRRF 

algorithm. The findings from this study illustrate the strength of hyperspectral data in 

detecting different levels of MSV infections. This study highlights the potential of 

remotely sensed data in the accurate detection of food crop diseases such as MSV 

and their severity which is critical in crop monitoring to foster food security, especially 

in the resource-limited sub-Saharan Africa. 

Key Words: Field spectroscopy, Random forest, Remote sensing, Maize Streak 

Virus (MSV) 
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4.0 Introduction 

 

Maize (Zea mays L.) is a staple food for over 100 million people and it is the most 

important cereal crop in sub-Saharan Africa where approximately 15 million ha are 

planted annually (Olaniyan, 2015). Maize streak virus (MSV) is one of the most 

severe and widespread diseases that adversely reduces maize production thereby 

posing a threat to food security (Thottappilly et al., 1993). This disease was reported 

in the year 1901 in South Africa and its symptoms were ýrst described as ómealie 

var- iegationô (Fuller, 1901) and later renamed ómaize streakô.  Maize streak starts as 

tiny, pale round spots on young leaves after infection (Shepherd et al., 2010). With 

time, newer leaves develop containing streaks that measure to several millimeters in 

length along the leaf veins. The streaks mainly coagulate along secondary and 

tertiary veins. Usually, the streaks are fused laterally, appearing as broken thin 

chlorotic stripes stretching along the leaves. The colour of these stripes varies from 

white to yellow. Occasionally, high MSV loads cause red pigmentation on the leaves 

as well as stunted plants (Shepherd et al., 2010). 

 

Since Fullerôs report, little was done until the 1920s when research on the disease 

and its causal agent began in Kenya. McClean, (1935) demonstrated that it is 

transmitted by Balclutha (=Cicadulina) mbila Naude´(Homoptera:Cicadellidae) leaf 

hoppers. The damage to the maize crop by MSV varies each year with temperature 

and precipitation, but with a widespread occurrence, it can destroy crops to a yield 

loss of hundred percent (Alegbejo et al., 2002). Specifically, field trials depending on 

natural infection in East Africa reported yield losses of between 33 and 56% 

(Guthrie, 1977), while losses of 100% were reported in many countries in West 

Africa (Fajemisin et al., 1976a, Bosque-Perez et al., 1998). Research conducted 

between 1983 and 1985, presented by Fajemisin et al. (1976b), reported a yield 

reduction of 71 to 93% in maize due to MSV. Under conditions of natural infection, 

yield losses ranged from 24 to 76% (Fajemisin et al., 1976b). Across the African 

tropics, maize is grown predominantly as a subsistence crop and MSV is the most 

significant viral disease of Africaôs most important food crop costing between 

US$120m and US$480m per year (Bosque-Pérez, 2000). Consequently, there is still 

an urgent need for novel techniques of forecasting epidemics such as MSV in Africa. 
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Monitoring the health of agricultural crops is a critical step in controlling stress 

induced by insects and diseases, which often results in high yield loses, poor quality 

produce and uncertainties when fostering food security interventions. It is still a 

common practice for farmers to indiscriminately apply agro-chemicals throughout the 

entire field in controlling diseases such as the MSV which brings about exorbitant 

economic losses. The quantification of the spatial extent and real-time distribution of 

such damages has been largely hinged on visual surveys. This procedure is time-

consuming, tedious and, highly subjective at landscape scales. Therefore, to 

minimise economic costs and environmental pollution while ensuring food security, 

affordable, quick and consistent methods for agricultural crop monitoring and 

diseases forecasting are urgently required, especially in southern Africa where 

diseases such as MSV are frequent and severe. This can provide useful information 

for decision making on the necessity and appropriate timing of the application of 

insecticides.  

Earth observation technologies have emerged as a quick and reliable procedure in 

detecting plant disease with a potential for being continuously utilised in remotely 

monitoring the physiology of agricultural crops (Chemura et al., 2017). Earth 

observation facilities offer spatially explicit information about the damage, real-time 

spatial distribution of disease infestation over large geographic areas (Deery et al., 

2014, Raji et al., 2016). Remote sensing techniques have been widely utilised in 

plant pathology and crop protection (Yuan et al., 2017, Devadas et al., 2015, Yuan et 

al., 2014, Bauriegel and Herppich, 2014). Yuan et al., (2017) specifically, used 

remotely sensed data and analysis of variance to discriminate wheat insects and 

diseases. Williams et al., (2012) noted that hyperspectral narrow band channels 

1900 nm and 2136 nm were the most optimal wavebands for detecting Fusarium 

verticillioides bacterial infections in maize based on partial least squares discriminant 

analysis. Water-stressed corn absorbed a lesser amount of light in the visible and 

more light in the NIR regions of the spectrum than the less water stressed and 

unstressed plants based on field hyperspectral data. Meanwhile, Devadas et al. 

(2015) successfully used hyperspectral data derived vegetation indices to 

discriminate the effect of stripe rust infections and nitrogen deficiency in wheat based 

on a Pearson correlation and simple regression algorithms. Meanwhile, notable 

challenges of analysing hyperspectral data such as the hyper-dimensionality cannot 
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be ignored (Liu et al., 2010; Pal, 2009; Hu et al., 2009). Despite the high 

dimensionality set, the above-cited works attest to the utility of field spectroscopy in 

detecting different agricultural crop diseases. 

Considering the utility and robustness of field spectroscopy, it is hypothesised that 

integrating it with machine learning algorithms could facilitate an easy, timely and 

accurate method of discriminating agricultural crop diseases such as MSV (Adam et 

al., 2012). Machine learning algorithms such as random forest (RF), an ensemble 

learning procedure by Breiman, (2001) could discriminate various infection levels on 

crops such as maize. RF is based on the grouping of tree predictors such that each 

tree depends on the values of a random vector sampled independently and with the 

same distribution for all trees in the forest (Breiman, 2001), designed to increase the 

discrimination process (Dube and Mutanga, 2015, De'Ath, 2007). When compared to 

other algorithms, random forest (i) is more accurate; (ii) has a unique procedure of 

selecting important variables; (iii) has the ability to process complex data affected by 

high dimensionality such as hyperspectral data; (iv) does not require data to be 

normally distributed and (v) it can deal with data with missing values (Cutler et al., 

2007). Simplifying the high dimensionality of hyperspectral data has been indicated 

as a major success of random forest in remote sensing applications (Adam et al., 

2012, Vincenzi et al., 2011, Abdel-Rahman et al., 2012, Adelabu and Dube, 2015). 

However, the challenge with random forest algorithm is that it does not automatically 

select the optimal number of variables that produce the best classification accuracy 

(Vincenzi et al., 2011). Several studies have shown that Random Forest has a 

preference to highly correlated predictor variable in identifying variables in high-

dimensional spectral space (Strobl et al., 2008, Adjorlolo et al., 2013). Therefore, the 

guided regularized random forest (GRRF) proposed by Deng and Runger (2013) 

uses the importance scores from a RF built on the complete training data to 

complement the information gain in a local node and performs better than simple 

Random Forest. Consequently, GRRF has a better potential of selecting compact 

variables for discriminating different levels of MSV infection on maize. 

 

Given that the MSV disease is a viral disease (Ward et al., 1996) and plant leaves 

have a well-known spectral signature, the integration of remote sensing technologies 

such as hyperspectral data and machine learning algorithms could be used to 
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identify spectral channels that could be used for early detection of the disease and 

also providing useful spatial information on the severity of infections. This information 

can also be handy in making decisions on the necessity and appropriate timing of 

agrochemical applications (Nutter Jr and Schultz, 1995). In that regard, this study 

tested whether field spectrometry measurements could discriminate between the 

various stages of MSV infection on maize and healthy maize leaves. More 

specifically the potential of hyperspectral data and GRRF machine learning algorithm 

was tested in detecting different levels of MSV infestation. Finally, the study sought 

to determine the optimum spectral bands that could be important for detecting MSV.  

 

 

4.1 Methodology 

 

4.1.1 Study Area 
 

Field spectral measurements were taken at Ofcolaco experimental farm, located 60 

km south of Tzaneen- in the Limpopo province, of South Africa (Figure 4.1). Maize 

was planted on the 25th of February 2015. Agronomists then visually assessed the 

stages of MSV disease across different growth stages of the maize prior to taking 

measurements (Sibiya et al., 2011).  
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Figure 4.1 Location of the study area. 

 

 

4.2 Maize leaves sampling 

 

Leaves with less than 18% (Figure 4.2b) leaf area showing the first appearance of 

MSV symptoms were considered to be at a mild stage, while leaves with 19 to 42% 

(c) of leaf area with MSV symptoms were considered to be in the moderate stage of 

infection. Leaves with 43% to 100 % (d) of leaf area showing MSV symptoms were 

considered to be severely infected. These leaves were removed from maize plants 

and carried in a preservative container to a laboratory where their reflectance was 

measured within a few minutes of acquisition. 
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Figure 4.2 (a) Health, (b) Early, (c) Moderate and (d) Severe stages of maize streak 

virus infections on maize plants (courtesy Dhau, 2015). 

 

4.3 Remote sensing of different levels of MSV infections 

 

Spectral measurements of healthy, mild, moderate and severely infected maize 

leaves were conducted using the Analytical Spectral Devices (ASD) FieldSpec® 4 

optical sensor (Analytical Spectral Devices, Inc., Boulder, CO, USA). In measuring 

the reflectance of maize at different MSV infections, a plant probe foreoptic with a 

leaf clip holder and an integrated light source was used in the laboratory. The 

contact probe foreoptic has a 10 mm field of view and an integrated 100W halogen 

reflector lamp. The instrument was warmed up for 90 minutes prior to measurement 

to increase the quality and homogeneity of spectral data. Instrument optimization 

and reflectance calibration were performed prior to sample acquisition. Furthermore, 

an average of 25 dark-current and 25 barium sulfate white reference (Spectralon, 

Labsphere, North Sutton, NH, USA) measurements were conducted at different 

intervals before and during the acquisition of maize reflectance. 

 

The ASD FieldSpec® 4 spectrometer has a 350 - 2,500 nm spectral range, with 1.4 

nm and 2 nm sampling interval for the UV/VNIR (350ï1,000 nm) and SWIR (1,000ï

2,500 nm) regions, respectively. In that regard, at least 5 measurements were made 

from each leaf sample. Pre-processing to smooth the spectrum and reduce signal 

noise was not necessary, because reflectance spectra were assessed under 

constant light and temperature conditions with the plant probe foreoptic. One 

hundred (100) samples were taken for each disease status. A total of four hundred 

spectra were used in the spectral analysis (Figure 4.3). One of the most notable 

difficulties in hyperspectral data processing is the hyper-dimensionality of the data, 

a b c d 
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which requires sufficient training samples to simplify the complexity of classification 

and prediction processes (Hu 2009). 

 Status Mean reflectance 

 

 

Healthy 
 

  

Early Stage              

  

 

Moderate 
 

 

 

Severe 
 

Figure 4.3 Field spectra for healthy, early, medium and severely infected maize 

leaves by the MSV 
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4.5 Discriminating against different levels of MSV infection using remotely 
sensed data. 

 

Noise spectral channels between 904.5 and 994.5 nm, 1807.2 and 2027.7 nm and 

between 2182.4 and 2503.4 nm were discarded from the analysis. Thus, only 1825 

wavelengths were used for the spectral analysis. To moderate high dimensionality 

on field measured spectra,  discriminating healthy (HS) maize leaves from those that 

are at the early (ES) moderate (MS) and sever (SS) stages of MSV infection, Deng 

and Rungerôs (2013) guided regularized random forest (GRRF) algorithm was 

adopted for variable importance measurements and selection optimal variables.  

 

4.6 Accuracy assessment 

 

Prior to discrimination based on GRRF, data was split into training (70%) and testing 

(30%). The 30% testing sample was used in the 10-fold cross-validation procedure. 

A confusion matrix was also derived from the classification process. The overall 

accuracy (OA), userôs accuracy (UA), and producerôs accuracy (PA) were derived 

using the confusion matrix. Furthermore, the kappa coefficient was also computed 

and used to evaluate the effectiveness of the GRRF algorithm in discriminating 

different levels of MSV infections on maize. If the kappa coefficients are equal to one 

or close to one, then there is perfect agreement (Safaralizade et al., 2014).  

 

4.7 Results  

 

4.7.1 Spectral separability of MSV disease infestation levels on maize 
 

Figure four illustrates the spectral curves of healthy maize leaves in relation to those 

on the early, medium and severe stages of MSV infection. It can be observed that 

the four different levels of MSV infection can be discriminated effectively using the 

visible, red edge, near-infrared (NIR), shortwave NIR and slightly using the longwave 

NIR sections of the electromagnetic spectrum (Figure 4). 
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Figure 4.4 Spectral profiles of healthy, early, medium and severely infested maize 
leaves. 

 
4.7.2 Selection of optimal variables for discriminating different levels of MSV 
infections. 
 

GRRF selected wavebands from the visible through the red edge to the NIR regions 

of the electromagnetic spectrum for best discriminating healthy maize leaves from 

those in the mild stage, moderate and severely MSV infection stages (Figure 5). 

Specifically, GRRF identified five of 1825 narrow wavebands as optimal bands for 

detecting and discriminating different levels of MSV disease infections. Bands, 552 

nm, 603 nm, 683 nm, 881 nm, and 2338 nm were selected by GRRF as the most 

important variables for distinguishing different levels of MSV infection although band 

881 and 2338 yielded the least mean decrease in accuracy. The selected variables, 

881nm is close to 910nm which associated with proteins (Curran, 1989), while 

2338nm was close to 2340nm which associated with cellulose (Curran, 1989, Fourty 

et al., 1996, Kumar et al., 2001). The five selected wavebands were then used as 

input variables in random forest classifier for discriminating healthy maize leaves 

from those in the early stage, moderate and severely infected by MSV stages. 
























































































































































































































