SYNTHESIS AND BIOLOGICAL ACTIVITY OF SCHIFF BASE AND RUTHENIUM P-CYMENE COMPLEXES CONTAINING ETHYNYL-PYRIDINE BRIDGED TO QUINAZOLINE DERIVATIVES

MASTER OF SCIENCE IN CHEMISTRY

DILEBO K.B

2019
SYNTHESIS AND BIOLOGICAL ACTIVITY OF SCHIFF BASE AND RUTHERNIUM P-CYMENE COMPLEXES CONTAINING ETHYNYL-PYRIDINE BRIDGED TO QUINAZOLINE DERIVATIVES

BY

KABELO BRAMLEY DILEBO

A RESEARCH DISSERTATION SUBMITTED FOR THE DEGREE, MASTER OF SCIENCE IN CHEMISTRY, SCHOOL OF PHYSICAL AND MINERAL SCIENCES, FACULTY OF SCIENCE AND AGRICULTURE, UNIVERSITY OF LIMPOPO, SOUTH AFRICA

SUPERVISOR: Prof R.M. MAMPA
CO-SUPERVISORS: Prof W. NXUMALO

Prof B.O. OWAGA (UKZN)

2019
DEDICATION

I dedicate this work to:

- My baby sister Eucharia, my parents and my brothers.
DECLARATION

I declare that “Synthesis and biological activity of Schiff base and ruthenium ρ-cymene complexes containing ethynyl-pyridine bridged to quinazoline derivatives” is my own, unaided work submitted for the degree of Master Science at Limpopo. It has not been submitted for any degree or examination at any other University, and all sources I have used or quoted have been indicated and acknowledged through complete references.

.. 09/09/2019

Mr K.B Dilebo Date
ACKNOWLEDGEMENTS

This dissertation has become a reality with the kind support and help of my supervisors Prof R.M Mampa, Prof W Nxumalo and Prof B.O Owaga. I extend my sincere thanks to you all.

I also extend great thanks to the following individuals and institutions (in no order of importance) for the help offered where possible and for successful collaborations during the academic journey, this work is what it is because of your contributions:

☐ My family for their prayers, encouragement and support and the Almighty God who in his presence I have achieved a lot.

☐ The department of chemistry at the University of Limpopo for affording me the opportunity to enroll for postgraduate degrees.

☐ The NRF-Sasol Inzalo bursary for the financial support.

☐ Prof M.J Mphahlele for inspiring the project and providing financial support where necessary.

☐ Dr N.J Gumede for teaching and hosting me during molecular modelling training at the Mangosuthu University of Technology.

☐ Ms TG Ramakadi for her continuous guidance during the period of my postgraduate studies and for teaching and training me the running (experiments), maintenance and processing (data) of nuclear magnetic resonance (NMR) instrument.

☐ Prof T Matsebatlela for assisting with anticancer assay experimental data.

☐ The centre for drug delivery and development (H3-D) centre at the University of Cape Town for the anti-Mycobacterium tuberculosis assay experimental data.

☐ University of Stellenbosch for high resolution mass spectrometry analysis.

☐ Ms Bokome Shaku for her continuous support and encouragement, thanks nana!

☐ My labmates Ms L.A Raphoko, Mr N.R Moroane and Mr K Lekgau for making the lab space a fun place to be.

☐ My friends (Cry, Titelo, Msido-Sidwell, Ofentse, Marvelous, Lesedi and Louis) for always being there for me!
TABLE OF CONTENTS

DEDICATION ... i
DECLARATION .. ii
ACKNOWLEDGEMENTS ... iii
SCIENTIFIC CONTRIBUTIONS .. vii
LIST OF FIGURES .. ix
LIST OF SCHEMES .. xii
LIST OF TABLES .. xv
LIST OF ABBREVIATIONS .. xvii
ABSTRACT ... xiii
CHAPTER 1: INTRODUCTION .. 1
Reference ... 2
CHAPTER 2: LITERATURE REVIEW ... 4
 2.1 Structure and Chemistry of Schiff base compounds 4
 2.1.1 Schiff base ligands ... 4
 2.1.2 Schiff base complexes ... 5
 2.1.3 Biological application of Schiff base ligands and their complexes 6
 2.1.4 Industrial application of Schiff base complexes 10
 2.2 Synthesis of Schiff base ligands ... 11
 2.2.1 Methods for the synthesis of n-carbon spacer Schiff base ligands (n = 1, 2 and 3) .. 12
 2.2.2. Indirect methods for the synthesis of Schiff base derivatives 14
 2.3 Synthesis of Schiff base complexes .. 14
 2.4 Quinazolines ... 17
 2.4.1 Structure and biological application of quinazoline derivatives 17
 2.4.2 Synthesis of quinazolin-4-one derivatives ... 22
 2.4.3 Synthesis of quinazolines .. 27
 2.4 Quinazoline derivatives as intermediates in coordination chemistry including their synthesis and biological application .. 34
 2.5 Molecular docking .. 37
 2.6 Purpose of the study .. 38
 2.6.1. Tuberculosis (TB) .. 38
 2.6.2 Cancer .. 39
 2.7 Aim ... 40
 2.8 The objectives were to: .. 40
CHAPTER 3: EXPERIMENTAL .. 59
3.1 General ... 59
3.2 Typical procedure for the synthesis of Schiff base ligands 119a-d .. 59
3.3 Attempted synthesis of Zn(II) ethanamineimidazolyl-Schiff base complexes 62
3.4 General synthesis of 2-arylquinazoline-4-one derivatives 120a – e .. 62
3.5 Oxidative aromatisation of 121a - e in SOCl₂-DMF mixture ... 65
3.5a Typical procedure for the synthesis of 4-chloro-2-arylquinazoline derivatives (121a- e) ... 65
3.6 Typical procedure for Dechloro-Amination of 123a - e... 68
3.7 Typical procedure for Sonogashira Cross-Coupling of 124a - e with ethynylpyridine .. 72
3.8 Synthesis of [(n⁶-p-cymene)RuCl₂-4-(ethynylpyridine)quinazolines] 126a – e 76
3.9 Molecular docking of compounds 119a – d, 123a – e, 125a – e .. 79
3.10 In vitro anti-Mycobacterium tuberculosis activity of compounds 119a – d, 121a – e, 123a – e, 125a – e and 126a – e .. 80
 3.10.1 Broth micro-dilution method .. 80
Reference .. 80

CHAPTER 4: RESULTS AND DISCUSSION .. 82
4.1 Synthesis of ethanamineimidazolyl-Schiff base ligands and their reaction with M(II) metals .. 82
4.2. Attempted synthesis of novel Zn(II)-N¹N-Schiff base complexes .. 89
4.3. Synthesis of quinazoline derivatives ... 91
 4.3.1 Synthesis of 2-aryl-quinazolin-4(3H)-ones .. 91
 4.3.2 Synthesis of 2-aryl-4-chloro-quinazolines .. 93
 4.3.3 Dechloro-amination of 2-aryl-4chloro-quinazolines 121a – e 95
 4.3.4. Sonogashira cross-coupling of 2-aryl-4chloro-quinazolines 121a – e 98
 4.3.5. Coordination of ligands 125a – e to monomeric p-cymene Ru(II) piano stool centre to yield 126a – e .. 101
 4.3.6 Conclusion .. 111
Reference .. 112

CHAPTER 5: APPLICATION .. 115
5.1 Molecular docking ... 115
 5.1.1 Induced fit docking of compounds 119a-d, 123e and 125e into glutamine synthetase (1HTO) receptor grid. ... 115
 5.1.2 Induced fit docking of compounds 119a-d, into oxidoreductase (PDB:3F8P) receptor grid .. 120
5.1.3 Induced fit docking of compounds 119a-d into Tyrosine kinase (2SRC) receptor grid.. 124
5.2 In vitro anti-Mycobacterium tuberculosis properties of compounds 119a-d, 121a-e, 123a-e, 125a-e and 126a-e. .. 128
5.3. Conclusion ... 134
Reference... 135
CHAPTER 6: CONCLUSIONS AND THE FUTURE PROSPECTS............................ 137
APPENDIX.. 139
SCIENTIFIC CONTRIBUTIONS

Conferences attended:

Oral presentation at:

9th Faculty of Sciences and Agriculture, University of Limpopo Research day
Limpopo South Africa 2018

Title: Synthesis, characterisation, molecular docking and in vitro anti-Mycobacterium tuberculosis properties of 4-(pyridylamino) - and 4-(ethynylpyridine)quinazolines

Date: 20-21 September 2018

A series of novel 4-(pyridylamino)- and 4-(ethynylpyridine)quinazolines were successfully prepared via Sonogashira cross-coupling and dechloro-amination reactions on the requisite 4-(p-phenyl)-4-chloroquinazolines. The prepared compounds were characterized by way of (H, 13C, COSY and HMBC) NMR, FTIR, Mass spectrometry and UV/VIS. Furthermore, the compounds were evaluated for potential in vitro anti-Mycobacterium tuberculosis (Mtbb) properties employing rifampicin as a reference drug. Preliminary results from the Alamar Blue assay (Mtbb: H37Rv strain) revealed promising MIC₅₀ ranging from 10 to 43 μg/ml. The possible mode of action against the Mtbb was theoretically explained through molecular docking of glutamine synthetase (1HTO). These compounds were inductively docked into the 1HTO protein

Keywords: 4-(pyridylamino) and 4-(ethynylpyridine)quinazolines, 2-(p-phenyl)-4-chloroquinazolines, Mycobacterium tuberculosis (Mtbb), Molecular docking, glutamine synthetase
A series of novel 4-(pyridylamino)- and 4-(ethynlypyridine)quinazolines were successfully prepared via Sonogashira cross-coupling and dechloro-amination reactions on the C(4)-Cl position of the requisite 2-(p-phenyl)-4-chloroquinazolines. The prepared compounds were characterized by way of 1H-NMR, FTIR and Mass spectrometry. Furthermore, the compounds were evaluated for potential in vitro anti-Mycobacterium tuberculosis (Mtb) properties employing rifampicin as a reference drug. Preliminary results from the Alamar Blue assay (Mtb. H37Rv strain) revealed promising MIC$_{90}$ ranging from <0.244 to 43 µg/ml. The possible mode of action against the Mtb was theoretically explained through molecular docking of glutamine synthetase (1HTO). These compounds were inductively docked into the IHTO protein where a promising hint of the 4-(pyridylamino)- and 4-(ethynlypyridine)quinazolines ranging from -6.280 to -8.257 Kcal/ mol is observed.

Figure 1&2: The 2D ligand interaction diagram of 4-(pyridylamino) and 4-(ethynlypyridine)quinazolines in glutamine synthetase (1HTO).
<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
</tr>
<tr>
<td>Figure 2.1: Schiff base ligands with different coordination geometries</td>
</tr>
<tr>
<td>Figure 2.2: Salen-type Schiff base ligands</td>
</tr>
<tr>
<td>Figure 2.3: Schiff base complexes of different geometry</td>
</tr>
<tr>
<td>Figure 2.4: Biologically active 3d-transition metal Schiff base complexes</td>
</tr>
<tr>
<td>Figure 2.5: Cisplatin and biological active PGM Schiff base complexes</td>
</tr>
<tr>
<td>Figure 2.6: Anticancerous lanthanide (III) Schiff base complexes</td>
</tr>
<tr>
<td>Figure 2.7: Schiff base complexes with catalytic activity</td>
</tr>
<tr>
<td>Figure 2.8: Dyes of Schiff base complexes</td>
</tr>
<tr>
<td>Figure 2.9: Schiff base complexes with polymerisation properties</td>
</tr>
<tr>
<td>Figure 2.10: Generalised examples of the quinazoline framework</td>
</tr>
<tr>
<td>Figure 2.11: Examples of biologically active derivatives of febrifugine</td>
</tr>
<tr>
<td>Figure 2.12: Examples of biologically active quinazoline derivatives</td>
</tr>
<tr>
<td>Figure 2.13: Examples of biologically active quinazoline-4-ones</td>
</tr>
<tr>
<td>Figure 2.14: Examples of biologically active 4-methylquinazolines</td>
</tr>
<tr>
<td>Figure 2.15: Examples of 4-anilinoquinazolines with EGFR inhibitory properties</td>
</tr>
<tr>
<td>Figure 2.16: Examples of cancer active marketed 4-anilinoquinazoline derivatives</td>
</tr>
<tr>
<td>Figure 2.17: Generalised mechanism for Csp²-Csp cross-coupling reactions</td>
</tr>
<tr>
<td>Figure 2.18: Generalised Sonogashira copper co-catalysed reaction mechanism for Csp²-Csp cross-coupling</td>
</tr>
<tr>
<td>CHAPTER 4: RESULTS AND DISCUSSION</td>
</tr>
<tr>
<td>Figure 4.1: ¹H-NMR spectrum of 119b in MeOD-d₃ at 400 MHz</td>
</tr>
<tr>
<td>Figure 4.2: ¹H-¹H-COSY spectrum of 119b in MeOD-d₃ at 400 MHz</td>
</tr>
<tr>
<td>Figure 4.3: Expanded 2D-HMBC spectrum of 119b in MeOD-d₃ at 400 MHz</td>
</tr>
<tr>
<td>Figure 4.4: FTIR spectrum of 119b</td>
</tr>
</tbody>
</table>
Figure 4.5: Overlaid 1H-NMR spectra of ligand (119c) and the attempted reaction time for complexation by ZnCl$_2$ after 12 h (green) and 24 h (red)...90

Figure 4.6: 1H-NMR spectrum for compound 120b...93

Figure 4.7: 1H-NMR spectrum of compound 121b..95

Figure 4.8: 1H-NMR spectrum of compound 123b..97

Figure 4.9: 13C-NMR spectrum of compound 123b..97

Figure 4.10: 1H-NMR spectrum of compound 125b...100

Figure 4.11: 13C-NMR spectrum of compound 125b...100

Figure 4.12: 1H-NMR spectrum of compound 126e...103

Figure 4.13: 13C-NMR spectrum of compound 126e...104

Figure 4.14: 1H-NMR spectrum of compound 126c...106

Figure 4.15: 13C-NMR spectrum of compound 126c...107

Figure 4.16. 2D-1H-13C-HMBC correlations for Ru(II) complex 126e..110

Figure 4.17. 2D-1H-13C-HMBC correlations for Ru(II) complex 126c..111

CHAPTER 5: APPLICATION..115

Figure 5.1a and 5.1b: Docking screen (left) and 2D ligand interaction diagram (right) of 119a in 1HTO...116

Figure 5.1c and 5.1d: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119b in 1HTO...117

Figure 5.1e and 5.1f: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119c in 1HTO...117

Figure 5.1g and 5.1h: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119d in 1HTO...118

Figure 5.1i and 5.1k: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 125e in 1HTO...119
Figure 5.1l and 5.1m: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 123e

(Figure 5.2a and 5.2b: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119b in 3F8P)

Figure 5.2c and 5.2d: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 123c in 3F8P

Figure 5.2e and 5.2f: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 125a in 3F8P

Figure 5.2g and 5.2h: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 125c in 3F8P

Figure 5.3a and 5.3b: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119a in 2SRC

Figure 5.3c and 5.3d: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119b in 2SRC

Figure 5.3e and 5.3f: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119c in 2SRC

Figure 5.3g and 5.3h: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119d in 2SRC
LIST OF SCHEMES

CHAPTER 2: LITERATURE REVIEW

Scheme 2.1: Synthesis of (E)-4-(4-(2,2-bis(trimethylsilyl)vinyl)benzylideneamino)phenol 29 via a direct condensation reaction of organosilicon aldehyde derivatives and a primary amine.12

Scheme 2.2: Group (IV) metal alkoxide catalysed synthesis of corresponding (E)-4-(4-methoxybenzylideneamino)benzonitrile 32. ...13

Scheme 2.3: Manganese oxide catalysed one-pot oxidation-imine formation-reduction of alcohols to imines. ...13

Scheme 2.4: Palladium catalysed aerobic oxidation of amines to imino Schiff base derivatives. ...14

Scheme 2.5: One-pot, three-component assembly (3CA) synthesis of RAS complex. ...15

Scheme 2.6: One-pot synthesis of ternary pyridyl copper(II) complexes. ...15

Scheme 2.7: Square planar palladium(II) Schiff base complexes. ...16

Scheme 2.8: H₃PW₁₂O₄₀ catalysed synthesis of 4-(3,4-dihydro-4-oxoquinazolin-2-yl)benzonitrile 70. ...22

Scheme 2.9: Brønsted acid-promoted aerobic oxidation via solvation-induced proton transfer: Metal-free construction of dihydroquinazolinones. ...23

Scheme 2.10: CAN-mediated synthesis of dihydroquinazolin-4(1H)-ones. ...23

Scheme 2.11: Synthesis of 2-phenylquinazolin-4(3H)-ones with KMnO₄. ...24

Scheme 2.12: Oxidation of 2,3-dihydroquinazolin-4(1H)-ones with tBuO. ...24

Scheme 2.13: Single-pot cyclisation of 2-amino-N-methoxybenzamide with 4-bromobenzaldehyde. ...25

Scheme 2.14: Copper catalysed one-pot synthesis of 2-substituted quinazoline 4-(3H)-one. ...25

Scheme 2.15: One-pot synthesis of quinazolin-4(3H)-ones from 2-nitrobenzamide using sodium dithionite. ...26
Scheme 2.16: One-pot Nickel-catalysed synthesis of quinazolin-4(3H)-ones

Scheme 2.17: One-pot Iridium-catalysed synthesis of 2-substituted quinazolin-4(3H)-ones

Scheme 2.18: Oxidative aromatisation of 92 with SOCl₂ and DMF as a solvent

Scheme 2.19: Oxidative aromatisation by halogenation in the presence of phosphorous pentoxide (P₅O₅)

Scheme 2.20: Hünig’s base promoted synthesis of 3-aryl-4-imino-3,4-dihydroquinazoline-2-carbonitriles

Scheme 2.21: Magnetic IL, butylmethylimidazolium tetrachloroferrate (bmim [FeCl₄]) aided one-pot preparation of 2-(4-chlorophenyl)-6-nitro-4-phenylquinazoline

Scheme 2.22: Ligand dissociation off palladium species

Scheme 2.23: Reduction of palladium(II) to palladium(0) on Pd(II)(OAc)₂

Scheme 2.24: Sonogashira cross-coupling reaction of 103 and 104

Scheme 2.25: Sonogashira cross-coupling reaction of 4-chloro-2-trichloromethylquinazoline

Scheme 2.26: Sonogashira cross-coupling reaction of 4-chloro-6-iodo-2-(4-methoxyphenyl)-quinazoline on the C(6)sp²-I position

Scheme 2.27: Synthesis of silver(I) quinazoline complexes with antimicrobial activity

Scheme 2.28: Synthesis of ruthenium(II) arene quinazoline complexes with antiplatelet activity

Scheme 2.29: Synthesis of ruthenium(II) erlotinib complex with improved anticancer activity

CHAPTER 4: RESULTS AND DISCUSSION

Scheme 4.1: Retrosynthetic strategy for the synthesis of the proposed ethanamineimidazolyl Schiff base complex

Scheme 4.2: Reaction scheme for the synthesis of Schiff base ligands

Scheme 4.3: Retrosynthetic strategy for the synthesis of the proposed 4-pyridylquinazoline ligands
Scheme 4.4: Iodine-promoted oxidative cyclocondensation of anthranilamide with aldehyde derivatives...92

Scheme 4.5: Oxidative aromatisation of 2-aryl-4chloro-quinazolines in SOCl₂..94

Scheme 4.6: De-chloro amination of 2-aryl-4chloro-quinazolines 121a–e...........96

Scheme 4.7: Sonogashira cross-coupling of 2-aryl-4chloro-quinazolines 121a–e with 4-ethynylpyridine...98

Scheme 4.8: One-pot synthesis of quinazoline monomeric p-cymene Ru(II) piano stool centre..101
LIST OF TABLES

CHAPTER 4: RESULTS AND DISCUSSION...82

Table 4.1: Summarised characterisation of compounds 119a-d..............................84

Table 4.2: Summarised characterisation of compounds 120a – e............................93

Table 4.3: Summarised characterisation of compounds 121a – e............................94

Table 4.4: Summarised characterisation of compounds 123a.................................96

Table 4.5: Summarised characterisation of compounds 125a – e.............................99

Table 4.6a. 1H and 13C NMR coordination induced shifts for Ru(II) complex 126e...105

Table 4.6b: 1H and 13C NMR coordination induced shifts for Ru(II) complex 126c...108

Table 4.6c. Summarised selected 1H and 13C shifts for complexes 126a-e109

CHAPTER 5: APPLICATION...115

Table 5.1: Summarised docking scores for ligands 119a-d (1HTO).........................118

Table 5.2: Summarised docking scores for ligands 125a-e (1HTO)..........................119

Table 5.3: Summarised docking scores for ligands 123a-e (1HTO).........................120

Table 5.4: Summarised docking scores for ligands 119a-d (3F8P)............................122

Table 5.5: Summarised docking scores for ligands 123a-e (3F9P)............................123

Table 5.6: Summarised docking scores for ligands 125a-e (3F8P)............................124

Table 5.7: Summarised docking scores for ligands 119a-d (2SRC).........................127

Table 5.8: Summarised docking scores for ligands 123a-e and 125a-e (2SRC)........128

Table 5.9: MIC$_{90}$ data for GFP assay for day 7 and day 14 data for compounds 119a-d...129

Table 5.10: MIC$_{90}$ data for GFP assay for day 7 and day 14 data for compounds 121a-e ...130

Table 5.11: MIC$_{90}$ data for GFP assay 7 day data for compounds 123a-e131
Table 5.12: MIC\textsubscript{90} data for GFP assay for day 7 and day 14 data for compounds 125a-e ..132

Table 5.13: MIC\textsubscript{90} data for GFP assay for day 7 and day 14 data for compounds 126a-e ..133
LIST OF ABBREVIATIONS

A
- **A431**: Squamous Carcinoma
- **ATP**: Adenosine Triphosphate
- **ADME**: Absorption Distribution Metabolism Excretion
- **ALA**: Alanine
- **ASP**: Asparagine
- **ARG**: Arginine
- **ADC**: Antibody Drug Conjugate
- **ATNR**: Amine Terminated Liquid Natural Rubber

B
- **br-s**: Broad Signal

C
- **c-myc**: Avian Myelocytomatisis
- **CAN**: Cerium(IV) ammonium nitrate
- **COSY**: Correlation Spectroscopy
- **CIS**: Coordination Induced Shift
- **CAS**: Central Asian Strain
- **CAN**: Cerium Ammonium Nitrate

D
- **DDQ**: Dichloro Dicyano Benzoquinone
- **dd**: Doublet Of Doublet
- **DNA**: Deoxyribonucleic Acid
- **DCM**: Dichloromethane
- **DMSO**: Dimethylsulfoxide
- **DMF**: Dimethylformamide

E
- **EGFR**: Epidermal Growth Factor Receptor
- **EGFR-TK**: Epidermal Growth Factor Receptor Tyrosine Kinase
- **ES**: Electrospray
FTIR: Fourier Transform Infrared Spectroscopy
GLN: Glutamine
GLY: Glycine
GFP: Green Fluorescent Protein
HTVS: High Throughput Virtual Screening
HepG2: Hepatocellular Carcinoma Cell Line
HT29: Human Colon Adenocarcinoma Cells
HMBC: Heteronuclear Multiple Bond Correlation
HPLC: High Performance Liquid Chromatography
HIE: Histidine Neutral E-Protonated
HIV: Human Immunodeficiency Virus
IFD: Induced Fit Docking
Kcal: Kilocalvins
Ligprep: Ligand Preparation
LBVS: Ligand Based Virtual Screening
LBDD: Ligand Based Drug Design
LYS: Lysine
LLC: Limited Liability Company
MIC: Minimum Inhibitory Concentration
MHz: Megahertz
MDR: Multi-Drug Resistant
mg/mL: Milligram Per Milliliter
MCF-7 Michigan Cancer Foundation 7
Mt\textit{b} Mycobacterium \textit{tuberculosis}
MCHRI Melanin Concentrating Hormone Receptor
MS Mass Spectrometry
mp Melting Point
mol Molecules
\textbf{N}
NMR Nuclear Magnetic Resonance
\textbf{O}
OPLS Optimised Potentials For Liquid Simulations
\textbf{P}
PGM Platinum Group Metals
ppm Parts Per Million
PSCBH Polymer-Supported Cyanoborohydride
p53 Protein 53
pH Potential Hydrogen
PDB Protein Data Bank
\textbf{Q}
QSAR Qualitative Structure Activity Relationship
\textbf{R}
RET Rational Emotive Therapy
RAQ Ruthenium Arene Quinazolines
rt Room Temperature
ROS Reactive Oxygen Species
RAS Ruthenium Arene Schiff Bases
\textbf{S}
SAR Structure Activity Relationship
SBDD Structure Based Drug Design
SBVS Structure Based Virtual Screening
\textbf{T}
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two Dimension</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimension</td>
</tr>
<tr>
<td>3CA</td>
<td>Three Component Assembly</td>
</tr>
<tr>
<td>TBABr</td>
<td>Tetrabutylammonium Bromide</td>
</tr>
<tr>
<td>TBAI</td>
<td>Tetrabutylammonium Iodide</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TYR</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>TRP</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>U</td>
<td>University of Cape Town</td>
</tr>
<tr>
<td>UCT</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Valine</td>
</tr>
<tr>
<td>VAL</td>
<td>Vascular Endothelial Growth Factor Receptor</td>
</tr>
<tr>
<td>VEGF</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XP</td>
<td>Extra Precision</td>
</tr>
</tbody>
</table>
ABSTRACT

Imidazolyl-ethanamine Schiff base ligands of the N^N type were prepared by condensation reaction of histamine dihydrochloride with para-substituted aldehyde derivatives to yield: (E)-N-benzylidene-2-(1H-imidazol-4-yl)ethanamine 119a, 4-((E)-(2-(1H-imidazol-4-yl)ethylimino)methyl)phenol 119b, E)-N-(4-fluorobenzylidene)-2-(1H-imidazol-4-yl)ethanamine 119c and (E)-N-(4-nitrobenzylidene)-2-(1H-imidazol-4-yl)ethanamine 119d, which were characterised by ^1H and ^13C-NMR, FTIR spectroscopy and HRMS. 2D-NMR experiments (^1H-^1H COSY and 2D-HMBC) for representative ligand 119b were performed to qualify success in the condensation reaction. An attempted reaction to coordinate Schiff base ligand 119c to zinc chloride was carried out in an NMR tube and traces of the product were observed between 12 and 24 h monitoring using ^1H-NMR. Iodine promoted cyclocondensation reaction of anthranilamide and para-substituted aldehyde derivatives afforded 2aryl-quinazolin-4(3H)-ones 120a-e and subsequent chloro-aromatisation reaction in SOCl2 afforded electrophilic C4-(Cl) 2-aryl-4-chloro-quinazolines 121a-e and the compounds were characterised by ^1H and ^13C-NMR and FTIR spectroscopic techniques. The 2aryl-4-chloro-quinazolines served as prerequisites for de-chloro amination on the C4-(Cl) position by 2-amino-3-nitropyridine to yield 2-aryl-N-(3-nitropyridin-2-yl)quinazolin-4-amine derivatives 123a-e in good yield and the derivatives were characterised by ^1H and ^13C-NMR, FTIR and HRMS spectroscopic techniques. The C4-(Cl) position further allowed for Sonogashira cross-coupling with ethynylpyridine to yield 2aryl-4-(ethynylpyridine)quinazoline derivatives 125a-e which were characterised by ^1H and ^13C-NMR, FTIR and HRMS spectroscopic techniques. The 2aryl-4-(ethynylpyridine)quinazoline served as ligands for coordination to monomeric p-cymene ruthenium(II) which yielded (η^6-p-cymene)RuCl2-2-aryl-4-(ethynylpyridine)quinazoline derivatives 126a-e in good yield. Compounds 126a-e were characterised by ^1H and ^13C-NMR, FTIR and HRMS spectroscopic techniques. 2D-HMBC NMR of representative ligands 126c and 126e showed long range couplings from ^1JCH to ^9JCH and this was confirmed by coordination induced shifts (CIS) ranging from 1 ppm to 11 ppm.

Compounds 119a-d, 123a-e and 125a-e were inductively docked into the active receptors of tyrosine kinase (PDB:2SRC), glutamine synthetase (PDB:1HTO) and
oxidoreductase (PDB:3F8P). The docking scores obtained gave hits ranging from -5 to -10 Kcal/mol.

Compounds 119a-d, 121a-e, 123a-e, 125a-e and 126a-e were assayed employing the broth-dilution method which gave promising anti-\textit{Mycobacterium tuberculosis} activity. Compound 125e gave good activity of $<0.244 \, \mu\text{g/mL}$ over 7 day and 14 day sampling. Coordination of ligands 125a-e to Ru(II) group resulted in loss of activity, notably for ligand 125e.
Inorganic chemistry is a field that combines with biochemistry to examine the role of metals in biological cell lines by studying metalloproteins and artificially induced metals [1]. On the other hand, biochemistry is aimed at understanding biological processes in the living cell, through the action of prodrugs i.e. inorganic or organic compounds [2]. The latter fields have grown significantly over the previous 40 years in an excess of 2 million scientific literature reports [3]. There are numerous literature articles in which reports aimed at combating the development and persistence of infectious and deadly diseases such as cholera, human immunodeficiency virus (HIV), influenza, malaria, tuberculosis (TB) and cancer through chemotherapeutic techniques [4] have been recorded. Some of the successful drug candidates include transition metal containing cisplatin currently used to treat cancer [5]. Newly food and drug administration (FDA) approved drug candidates include vizimpro, pilifetro, krintafel and terizidone used to treat metastatic non-small-cell lung cancer, HIV-1 infection in adult patients, radical cure of plasmodium vivax malaria and multi-drug resistant (MDR) tuberculosis respectively [6].

A major challenge of the aforementioned drug regimen lies in the development of cellular mutations, wherein the prodrugs employed become inactive over time [7]. This has paved the way for drug-drug complementation in the form of molecular hybrids [8]. For example, ruthenium containing compounds (NAMI, NAMI-A, KP1019, KP1339 and KP418) have since entered phase II of clinical trials and are reported to show excellent abnormal-DNA damage and low toxicity towards normal cells [9]. At the same time, drug delivery nanocomposites are being designed to improve targeted therapy [10]. Targeted therapy is a newer type of chemotherapeutic treatment approach which employs chemical compounds to precisely identify and attack infected cells in biological systems. This therapy is complemented by in silico studies such as molecular modelling which looks at molecular kinetics and dynamics under molecular docking conditions [11-12].

Molecular docking is a computational process to study protein-ligand interactions and has proven to be a game changer in drug design. The process employs approaches such as ligand preparations (ligprep), conformational search, protein preparation,
ligand docking, virtual screening work-flow (VSW), high-throughput virtual screening (HTVS), induced-fit docking (IFD) of either extracted or synthetic compounds, etc. [12].

Method development for synthesis of the desired active bioinorganic compounds may include one-pot or multi-step non-sequential [13] or sequential [14] synthesis of carbo-substituted heterocycles and coordination to transition metal compounds. Reaction procedures employed may include condensation, cyclcondensation, dehydrogenation, oxidation, amination, cross-coupling, mesylation [15], neutral or oxidative coordination of polar ligands to transition metals [16], etc.

Reference

CHAPTER 2: LITERATURE REVIEW

2.1 Structure and Chemistry of Schiff base compounds

2.1.1 Schiff base ligands

Schiff bases were discovered as azomethine conformers bearing an imino group of the form (-RN=CH-) in 1864 by a German scientist named Hugo Schiff [1]. Schiff base compounds are well studied due to their attractive chemical (catalysis, dyes and corrosion inhibition), physical (photophysics – emission and absorption) and biological (antitubercular, anticancer and antimalarial) properties [2]. The structural conformation of Schiff base ligands plays an important role in developing stable Schiff base transition metal complexes. The chelating ability of the Schiff base ligands is augmented by the presence of pi-electrons in the sp^2-hybridised nitrogen of the azomethino group. The azomethine group imparts excellent chelating ability when combined with one or more electron donor atoms (sulphur, nitrogen, oxygen and phosphorous) to yield bi- 1, tri- 3, tetra- 3 and polydentate 4 coordination systems (Figure 2.1).

Figure 2.1: Schiff base ligands with different coordination geometries.
Salicylaldimine or salen-type Schiff base ligands as shown in Figure 2.2 are widely studied due to their ease of preparation. The condensed ligands produce a di-nitrogeno-dioxo \(\text{N}_2\text{O}_2 \) or \(\text{N}^\lambda\text{N}^\lambda\text{O}^\lambda\text{O} \) coordination system. These type of ligands accommodate transition metals with high oxidation numbers. The most popular type of coordination system is the tetradeutate bis-Schiff base ligands [3].

![Figure 2.2: Salen-type Schiff base ligands](image)

2.1.2 Schiff base complexes

The aforementioned Schiff base ligands can coordinate a variety of transition metals to yield stable Schiff base complexes with various geometries (Figure 2.3) and redox properties. The oxidation and reduction states provides knowledge on stability and geometry of a metal complex. When the \(sp^2 \)-hybridised nitrogen of the azomethine group donates electrons towards the metal centre, \(pi \)-back donation from the metal is triggered and such electronic transitions can be registered as absorption or emission spectra [4-10].
Figure 2.3: Schiff base complexes of different geometry.

2.1.3 Biological application of Schiff base ligands and their complexes

Schiff base complexes possess biological activities including cardiovascular, antimycobacterial, anticancer, ant-inflammatory, anti-leukemic and antibacterial activities depending on the type of metal present in the complex [11-17]. For example, 3d-transition metal Schiff base complexes containing metals such as copper, nickel, chromium, iron, cobalt and zinc have been reported to chelate DNA of various diseased cells [18-25].

Kumar and co-workers [26] reported N^N-O^O-tetraacordinated acyclic chromium(III) Schiff base complexes with antimicrobial activity. The antimicrobial activity of the $[\text{Cr(III)}-(N,N^\prime\text{-bis(5-methyl-salicylaldimine)})-N,N^\prime\text{-bis-(3-amino-propyl)}-\text{ethylene-}$
diamine)(H₂O)₂⁺ 13 was demonstrated by in vitro testing against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The latter demonstrated promising activity with inhibition zones ranging from 18 to 36 mg/mL. In addition, Pervez and co-workers [27] reported salen-derived copper(II) complexes as urease inhibitors. Urease is a nickel ion (Ni²⁺) dependent natural enzyme which catalyses the rate of urea hydrolysis to ammonia (NH₃) and carbon dioxide (CO₂) in bacteria, fungi and plants [28].

Medically, ureases have become important therapeutic targets for treatment of disease caused by urease-dependent pathogenic microorganisms [29]. Likewise, the antecedent copper(II) complexes i.e., the dioxo-di-nitrogeno tetracoordinated bipyrimidal Bis-(3Z)-3,3′-[(4-methyl-1,3-phenylene)dinitrilobis(1,3-dihydro-2H-indol-2-one) copper(II) chloride complex 14 was tested against Helicobacter pylori cells and the latter demonstrated excellent anti-urease activity with an inhibition concentration (IC₅₀) of 0.03 µM [27]. Furthermore, a bidentate, thiocarbohydrazone zinc(II) Schiff base complex, i.e. (1E,5E)-1,5-bis((furan-2-yl)methylene)-thiocarbono-hydrazide-zinc(II) chloride 15 was synthesised and tested for antibacterial activity against Acinetobacter septicaemia and Staphylococcus aureus. The complex 15 tested positive against Acinetobacter septicaemia, with inhibition zones ranging from 8 – 16 mm [30]. Although the complexes in (Figure 2.4) demonstrate promising pharmaceutical importance, key candidates of the transition metal containing bioactive compounds have come from the platinum group metals (PGMs) [31]. Metals such as platinum (Pt) and ruthenium (Ru) are present in drug candidates applied in cancer treatment and some in clinical trials respectively [32].

Figure 2.4: Biologically active 3d-transition metal Schiff base complexes.
Bioinorganic Schiff base complexes containing the PGMs (Figure 2.5) are applied mostly in cancer therapy [33]. The motivation behind this application arises from the success of cisplatin 16, however its use results in side effects such as hair loss, constipation, normal cell death and diarrhoea [34]. The coordination chemical properties of the Schiff base ligands plays an important role for targeted therapy. For example, Peng Wu and co-workers [35] designed and synthesised platinum(II) complexes with the ability to bind and inhibit c-myc by way of stabilising G-quadruplex DNA. The c-myc is a gene that encodes DNA-binding to proteins and promotes development of cancers when overexpressed in cells [36]. In this project, the authors tested the corresponding [N,N′-Bis(salicylidene)-4,5-methoxy-1,2-phenylenediamine] platinum(II) 17 against human hepatocellular carcinoma (HepG2) and the Pt(II) complex proved cytotoxic with an inhibitory concentration of 1.09 ± 0.14 µM. In addition, Mun and co-workers [37] reported p53 independent ruthenium(II) arene Schiff base (RAS) complexes with promising anticancer activity. The p53 gene is a tumor suppressor involved in the intercession of cellular DNA repair and neurotoxicity of anticancer drugs. However, it can be deactivated due to mutations. The antecedent RAS complexes are p53 independent, meaning, their mechanism of action is non-binding to the p53 gene. To qualify their theory, the authors designed and prepared “three-legged piano-stool” quinolone derived ruthenium(II) arene Schiff base complexes, i.e. [(η⁶-1,3,5-Triisopropylbenzene)RuCl(N-(2-quinolinylmethylene)-1-naphthyl-amine)]Cl 18 which was tested against MCF7 human cancer cell lines and tested active with IC₅₀ of 2.93 ± 0.21 µM. The promising anticancer activity of these PGMs proved insightful and opened doors for research in the coordination chemistry and biological evaluation of Lanthanide Schiff base complexes thereof [38].

Figure 2.5: Cisplatin and biological active PGM Schiff base complexes.
Lanthanides are commonly referred to as rare earth elements and comprise of 15 elements. Lanthanide(III) coordinated compounds play an important role as antibacterial agents, in cancer diagnosis and for imaging diagnostics therapy [41]. Radioactive lanthanides and their complexes are reported to find application in neoplastic diseases [42]. For instance, a heptagonal gadolinium(III) complex bearing texaphyrin produces reactive oxygen species (ROS) such as O_2^-, H_2O_2 or OH when reacted with antioxidants. The generated species bind proteins and lead to their destruction and cell apoptosis [43]. Likewise, the Gd(III) Schiff base complex i.e. gadolinium(III) texaphyrin 19 (Figure 2.6) was evaluated for anticancer activity against human colon cancer cell lines (HT29) in vitro [44] and the study revealed progressive cell killing at a concentration of $2.2 \pm 0.03 \mu M$. Similarly, Andiappan and co-workers [45] prepared distorted square planar erbium(III) Schiff base complexes and the corresponding [bis-((15E,22E)-N$_2^-$-((anthracen-10-yl)methylene)-N$_3^-$-((anthracen-9-yl)methylene) pyridine-2,3-diamine)erbium(III)]nitrate 20 (Figure 2.6) was tested against MCF7 cancer cell lines. The latter proved cytotoxic by killing 20% of cancerous cells at 10 $\mu g/mL$.

![Figure 2.6. Anticancerous lanthanide (III) Schiff base complexes.](image-url)
2.1.4 Industrial application of Schiff base complexes

2.1.4.1 Catalysts

Hydroxy benzaldehyde derived Co(III), Fe(III) and Ru(III) Schiff base complexes are used in hydrogen peroxide promoted aerobic oxidation of cyclohexane to cyclohexanol and cyclohexanone [46-47]. In addition, chromium-salen complexes 21 (Figure 2.7) are reported to take part in heterogeneous catalysis, [48] by catalysing epoxidation of cis-olefins. Furthermore, \(N^N\)-bischelated nickel(II) Schiff base complexes 22 (Figure 2.8) are reported to act as effective catalytic precursors for active olefin oligomerisation [49].

![Figure 2.7: Schiff base complexes with catalytic activity.](image)

2.1.4.2 Schiff base compounds as dyes

Azomethine complexes of chromium and cobalt are reported to give fast colours to wools, leathers and food packages [50]. Similarly, chromium(III) azo-Schiff base complexes 23 (Figure 2.8) are applied as dyes for cellulose polyester textiles [51]. Some cobalt(II) complexes 24 (Figure 2.8) reported are used in dying mass polyfibres [52].
Ethlyenediamine promotes photochemical degradation of natural rubber to produce amine terminated liquid natural rubber (ATNR) in solution [53]. The reaction between ATNR and glyoxial polymeric Schiff bases 25 (Figure 2.9) enhances aging resistance [54]. Nickel(III) Schiff base complexes with a tridentate coordination system 26 (Figure 2.9) are reported to initiate emulsion and co-polymerisation of dienyl and vinyl monomers [55].

The general method for the synthesis of Schiff base or imine derivatives involves a direct condensation reaction between a primary amine and an aldehyde derivative in basic or acidic conditions [56]. The original synthesis reported by Hugo Schiff involved the condensation of a carbonyl compound with an amine under azeotrophic distillation [1] conditions. Molecular sieves were then used to completely remove the by-product (water) formed during the reaction. In the 1990s, an in situ method for drying water
was applied using salts such as sodium hydrogen carbonate (NaHCO₃), sodium carbonate (Na₂CO₃) and magnesium sulphate (MgSO₄) [5]. In 2004, Chakraborti and co-workers [16] revealed that the competence of these methods is dependent on the use of highly electrophilic carbonyl compounds and strongly nucleophilic amines. They proposed as an alternative, the use of substances that function as Bronsted-Lowry or Lewis acids to activate the carbonyl group of aldehydes and catalyse the nucleophilic attack by amines, and dehydrate the system, thus eliminating water as the final step.

2.2.1 Methods for the synthesis of n-carbon spacer Schiff base ligands (n = 1, 2 and 3)
Multiple synthetic approaches towards Schiff base derivatives have been described in literature [57]. Problems such as hydrolysis [61] and moisture susceptibility [62] are reported to bring about structural decomposition and encouraging reverse reaction. Synthetic approaches such as racemization by aza-Michael/ retro-aza-Michael addition [58], aerobic oxidation [59], amine reduction [60] etc, are aimed at solving the problems associated with the imine bond of the Schiff base compounds. Safa and co-workers [63] reported organosilicon type Schiff base derivatives, prepared by a direct condensation of 4-(2,2-bis(trimethylsilyl)vinyl)benzaldehyde 27 and 4-aminophenol 28 refluxed in ethanol for 15 hours to afford the corresponding (E)-4-(4-(2,2-bis(trimethylsilyl)vinyl)-benzylideneamino)-phenol 29 in low yields ranging from 33 - 45% (Scheme 2.1).

\[
\text{Reagents and conditions: (i) Ethanol, reflux, 24 h.}
\]

Scheme 2.1: Synthesis of (E)-4-(4-(2,2-bis(trimethylsilyl)vinyl)benzylideneamino)-phenol 29 via a direct condensation reaction of organosilicon aldehyde derivatives and a primary amine.

A facile and heatless metathesis reaction of aryl isocyanates and aldehydes yielding imino derivatives of Schiff bases was described by Kumar and Samuelson [64]. The metathesis reaction is catalysed by square planar, group IV metal alkoxides. The
reaction time is accelerated by an insertion step leading to the formation of carbamate. As a demonstration, the authors reacted 1-isocyanato-4-methoxybenzene 30 and para-cyanobenzaldehyde derivatives 31 in the presence of Zr(OMe)_4, solvated by a combination of THF and water v/v 3:1. The reaction was then stirred at room temperature for 60 h to yield 70% of the corresponding (E)-4-(4-methoxybenzylideneamino)benzonitrile 32 (Scheme 2.2).

\[
\begin{align*}
\text{MeO} & \quad \text{N} = \text{C} = \text{O} \\
\text{30} & \quad + \\
\text{NC} & \quad \rightarrow \\
\text{MeO} & \quad \text{N} = \text{C} \quad \text{N} \quad \text{C} \quad \text{O} \\
\text{31} & \quad \rightarrow \\
\text{32} & \end{align*}
\]

Reagents and conditions: (i) Zr(OMe)_4, rt, 60 h, THF-H$_2$O.

Scheme 2.2: Group IV metal alkoxide catalysed synthesis of corresponding (E)-4-(4-methoxybenzylideneamino)benzonitrile 32.

A combination of polymer-supported cyanoborohydride (PSCBH) and manganese dioxide in a one-pot type conversion of alcohols into imines was reported by Blackburn and Taylor $^{[65]}$. The manganese oxide acts as an oxidant in situ and thus adhering to the oxidation-imine formation-reduction sequence and converts the alcohols to tertiary amines. As an example, the authors reacted 2-phenylethanol 33 and cyclohexanamine 34 in the presence of MnO/PSCBH in two portions at reflux temperature in DCM to afford 95% of the corresponding (E)-N-(2-phenylethylidene)cyclohexanamine 35 (Scheme 2.3).

\[
\begin{align*}
\text{33} & \quad + \\
\text{34} & \quad \rightarrow \\
\text{35} & \end{align*}
\]

Reagents and conditions: (i) MnO/PSCBH, 60 °C, 24 h, DCM.

Scheme 2.3: Manganese oxide catalysed one-pot oxidation-imine formation-reduction of alcohols to imines.
2.2.2. Indirect methods for the synthesis of Schiff base derivatives

Amines undergo aerobic oxidation to afford *imino* Schiff base derivatives by way of introducing unsaturation between the amino C-sp^3-carbon and nitrogen [66]. For example, Wang and co-workers [67] presented a palladium catalysed selective aerobic oxidation reaction of N-benzyl-naphthalen-1-amine 36 to yield 99% of the corresponding (Z)-N-benzylidene-naphthalen-1-amine 36 (Scheme 2.4). Synthesis of 37 involves palladium(II) chloride (PdCl$_2$) as catalyst, sodium acetate (NaOAc) as a base, triphenylphosphine (PPh$_3$) as a ligand, oxygen (O$_2$) and dimethylformamide (DMF) as a solvent. The aforementioned reagents were stirred at room temperature for 16 hours in the presence of 36.

\[
\begin{align*}
\text{Reagents and conditions: (i) PdCl}_2, & \text{ NaOAc, PPh}_3, \text{ O}_2, \text{ rt, DMF.} \\
\text{Scheme 2.4: Palladium catalysed aerobic oxidation of amines to } \text{*imino*} \text{ Schiff base derivatives.}
\end{align*}
\]

2.3 Synthesis of Schiff base complexes

The synthesis of Schiff base complexes generally involves treatment of metal salts with Schiff base ligands under moisture free conditions [68]. However, for Schiff base complexes with catalytic application, a *one-pot* reaction procedure is followed [69]. For example, a purification free, three-component assembly (3CA) of dichloro-$(p$-cymene)-ruthenium(II) dimer 38, picolinaldehyde 39 and 4-aminobenzamidine 41 afforded 74% of the corresponding [($(t^n^6$-p-cymene)RuCl((E)-4-((pyridin-2-yl)methyleneamino)benzamidine)Cl 42 (Scheme 2.5). The synthesis of 42 is effected by continuous stirring at room temperature for 36 h in DMSO-d_6/D$_2$O mixture 1:1 v/v [70].
Reagents and conditions: (i) DMSO-d$_6$/D$_2$O (1:1 v/v), 36 h, rt.

Scheme 2.5: One-pot, three-component assembly (3CA) synthesis of RAS complex.

A one-pot preparation of ternary pyridyl copper(II) Schiff base complexes was reported by Banerjee and co-workers [71]. The pre-mentioned Cu(II) complexes were prepared in a basic medium by refluxing 1:1 mmol of salicyaldehyde 43 and histamine dihydrochloride 44 in methanol for 1 h, after which another 1:1 solution of copper(II) nitrate and 2-(pyridin-2-yl)pyridine 45 was added slowly and the solution was stirred for an additional 1 h (scheme 2.6) to yield 78% of 2-(pyridin-2-yl)pyridine-2-((E)-(2-(1H-imidazol-4-yl)ethylimino)methyl)phenol Cu(II) chloride 46.

Reagents and conditions: (i) TEA, Cu(OAc)$_2$.H$_2$O, MeOH, heat 1h, rt 1h.

Scheme 2.6: One-pot synthesis of ternary pyridyl copper(II) complexes.

Tajuddin and co-workers [72] described square planar palladium(II) complexes with potential catalytic activity in Suzuki coupling reactions. The tetracoordinated Pd(II) complexes were synthesised by refluxing the corresponding 2-((E)-1-(4-fluorobenzylimino)ethyl)phenol 47 and palladium(II) acetate 48 in ethanol for 5 h
(Scheme 2.7) to yield 87.8% of bis-2-((E)-1-(4-fluorobenzylamino)ethyl)phenolpalladium(II) 49.

\[
\begin{align*}
\text{Reagents and conditions:} & \quad (i) \text{ Ethanol, 5 h, heat.} \\
\text{Scheme 2.7:} & \quad \text{Square planar palladium(II) Schiff base complexes.}
\end{align*}
\]
2.4 Quinazolines

2.4.1 Structure and biological application of quinazoline derivatives

Nitrogen-containing heterocyclic compounds exert a global dominance in organic chemistry research because of their important biological and medicinal applications [73-74]. Among the pharmaceutically essential organo-nitrogen heterocycles, fused pyrimidines formally found in a variety of natural products possess a broad spectrum of biological properties. These consist of antibacterial, antifungal, antiviral, antimalarial, anticancer, anti-inflammatory and analgesics, antidepressant, anticonvulsant, antioxidant, antileishmanial and antiobesity activities [75-76]. Quinazolines which form part of this investigation, are made up of two fused six-membered simple aromatic rings, a benzene ring and a pyrimidine ring with one carbonyl group, [i.e. 2,3-dihydroquinazoline-4(1H)-one 49, quinazolin-4(3H)-one 50, 3,4-dihydroquinazoline-2(1H)-one 51] or two carbonyl groups [i.e. quinazoline-2,4(1H, 3H)-dione 52] on the pyrimidine framework (Figure 2.10).

![Figure 2.10: Generalised examples of the quinazoline framework.](image)

Quinazoline frameworks, the 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-one are the most experimented due to their biological properties and potential application in material sciences [77]. The quinazoline alkaloid termed Febrifugine 53a (Figure 2.11), for example, was the first to be discovered as an extract from the Chinese plant *Dichora Fibrifuga* in 1950 and was reported to exhibit antimalarial activity [78]. A drawback was revealed in its clinical trials as the latter was found to cause gastrointestinal disorders [79]. This drawback made way for the search of Febrifugine analogues with escalated effectiveness and reduced side effects [80]. A hydrated and aminated Febrifugine derivative, Diproqualone 53b (Figure 2.11), was synthesised and is currently used for the treatment of inflammatory pain resulting from osteoarthritis and rheumatoid arthritis [81]. Methaqualone 54a, an important derivative
in the field of synthetic anticonvulsants was reported was reported by Arora and co-workers [82]. The modification of 54a was carried out by El-Azab and co-workers [83] to obtain quinazolinone scaffold 54b which proved to be 2-fold more active than 54a. According to the findings of El-Azab and co-workers, 8-substituted-4(3H)-quinazolinone 54c was demonstrated to be a better anticonvulsant activity with lower toxicity than 54a and 54b.

\[
\begin{align*}
53a & \quad 53b \\
54a & \quad 54b \\
54c &
\end{align*}
\]

Figure 2.11: Examples of biologically active derivatives of febrifugine.

The 2,3-dihydroquinazolin-4(1H)-one framework offers the opportunity for introduction of a vast degree of unsaturation in the heterocyclic ring through dehydration and subsequent aromatisation to afford corresponding quinazolin-4(3H)-ones and quinazoline derivatives respectively. Quinazoline-4(3H)-one based compounds are reported to possess antitubercular activity [84-85] with some derivatives exhibiting sedative properties [86]. For example, 4-(isopropylthio)quinazoline 55 (Figure 2.12) previously prepared by acylation of the corresponding quinazoline-4-thiol with 2-chloropropane was reported to display significant antibacterial activities against *Mycobacterium tuberculosis* strains [88]. In addition, 6,8-dichloro-3-phenylquinazoline-2,4(1H,3H)-dione 56 prepared by chlorination of the corresponding antharalic acid, followed by cyclisation and acylation of the corresponding 6,8-dichloro-3H-benzo[e][1,3]oxazine-2,4-dione with chlorobenzene was reported to show activity against Multi-Drug resistant MDR-TB [87].
Figure 2.12: Examples of biologically active quinazoline derivatives

The keto-group of the quinazoline-4-ones was reported to be a crucial DNA-chelator during in silico studies [89]. As a result, many quinazoline compounds holding the keto-group, particularly on the 4-position have been reported to demonstrate anticancer, anti-proliferative, anti-sedative, anti-inflammatory and antibacterial activities [90]. For example two derivatives, 2-(2-methoxystyryl)-6-chloro-3-(pyrimidin-2-yl)quinazolin-4(3H)-one 57 and 2-(2-methoxystyryl)-6-chloro-3-(5-methylisoxazol-3-yl)quinazolin-4(3H)-one 58 previously prepared by an acetic acid supported reflux of the corresponding 2-methylquinazolines with benzoic aldehyde derivatives were tested for anti-leukemic activity and the latter reported good activity [91]. Moreover, Patel and co-workers [92] reported 2-(2-(2,6-dichlorophenylamino)benzyl)-3-(4,5-dihydro-5-phenyl-1H-pyrazol-3-ylamino)-6-iodoquinazolin-4(3H)-one 59 derivatives which showed positive in vitro antibacterial activity against both gram negative and gram positive. In addition to quinazolinone containing bactericides, Cakici and co-workers [93] reported 2-(4-nitrophenoxo)-N-(4-oxo-2-phenylquinazolin-3(4H)-yl)acetamide 60 which was prepared by reacting the corresponding 2-chloro-N-(4-oxo-2-phenylquinazolin-3(4H)-yl)acetamide with different substituted benzyl alcohols. The latter was tested for antibacterial activity against Salmonella typhimurium by employing a cup plate method measuring inhibition zone, the compound casted excellent antibacterial activity.
4-methylquinazolines are a rare class of quinazoline analogues which are not as documented as the 4-quinazolinone derivatives. The (Z)-N-(2-(3-hydroxypropylamino)-4-methylquinazolin-6-yl)-3-(4-chlorophenyl)acrylamide 61 and (Z)-3-(4-chlorophenyl)-N-(2-(4-cyclopropyl-4-hydroxypiperidin-1-yl)-4-methylquinazolin-6-yl)-acrylamide 62 were reported to act as antagonists for melanin concentrating hormone receptor 1 (MCHR1) in vivo and were therefore applied as antiobesity agents [94].

4-Anilinoquinazolines extensively studies as a results of bioactive quinazoline analogues due to their activity against EGFR (Epidermal Growth Factor Receptor), reversible and irreversible kinase inhibition capabilities [95]. The 4-anilinoquinazolines are reported to exhibit anticancer activity against lung, breast, prostate, brain and liver cancer cells [96]. For example, the N⁶-(4-chlorobenzyl)-N⁴-(3-bromophenyl)quinazoline-4,6-diamine 63 was tested for the ability to prompt apoptosis in the Hep G2 liver cancer cell lines. Both in silico and in vitro studies qualified the latter as having both antiproliferative and EGFR-TK inhibitory activity [97]. In addition, N-(4-(3-chloro-4-fluorophenylamino)quinazolin-6-yl)-3-bromopropanamide 64 showed
anti-cell proliferation against A431 breast cancer cell lines and is also reported to participate in cell proliferation and autophosnylation inhibition of EGFR in vitro [98].

![Molecule 63](image1)

![Molecule 64](image2)

Figure 2.15: Examples of 4-anilinoquinazolines with EGFR inhibitory properties.

The study of 4-anilinoquinazoline derivatives as inhibitors of tyrosine kinase activity of EGFR resulted in the approval of Gefitinib 65 for the treatment of lung cancer [99]. Protein tyrosine kinases are enzymes involved in many cellular processes and are known to be activated in cancer cells to drive tumour growth and progression. Blocking tyrosine kinase activity therefore represents a coherent approach to cancer therapy. Erlotinib or Tarceva 66, a 4-anilinoquinazoline derivative bearing an alkynyl moiety on the aniline ring, is also known as a tyrosine kinase inhibitor which acts on the epidermal growth factor receptor [100]. A multiple approach by a marketed drug vandetanib 67 is reported to act against three targets (1) vascular endothelial growth factor receptor (VEGFR), (2) EGFR and (3) inhibits RET-tyrosine kinase activity, an important growth driver in certain types of thyroid cancer [101].

![Molecule 65](image3)

![Molecule 66](image4)

![Molecule 67](image5)

Figure 2.16: Examples of cancer active marketed 4-anilinoquinazoline derivatives.
2.4.2 Synthesis of quinazolin-4-one derivatives

The primary method for the preparation of quinazoline derived chemical compounds involves the cyclocondensation of anthranilamide and aldehyde derivatives in the presence of iodine [102], phosgene [103], NaOBr [104] to name a few.

2.4.2.1 Methods for the synthesis of quinazolin-4(1H)-ones

A variety of methods for the synthesis of quinazolin-4(1H)-ones have been presented in literature including cyclisation, amidation and metal promoted reactions. Tajbakhsh and co-workers [105] described a straightforward procedure for the synthesis of 2,3-dihydroquinazolinones. The reaction mixture involves an inexpensive and non-toxic catalyst \(i.e \) \(\text{H}_3\text{PW}_{12}\text{O}_{40} \) (1 mol%) which aids a cyclisation reaction at reflux temperature in water between antharanilamide 68, aldehyde derivative and 4-formylbenzonitrile 69 to afford the corresponding 4-(3,4-dihydro-4-oxoquinazolin-2-yl)benzonitrile 70 in high yields (Scheme 2.8). The catalytic system holds several advantages including short reaction time of 2 h, easy work-up and green procedure avoiding toxic solvents.

\[
\begin{array}{c}
\text{NH}_2 \quad \text{NH}_2 \\
\text{O} \\
\text{CN} \\
68 \\
\end{array} + \begin{array}{c}
\text{O} \\
\text{CN} \\
69 \\
\end{array} \xrightarrow{(i)} \begin{array}{c}
\text{NH} \\
\text{O} \\
\text{CN} \\
70 \\
\end{array}
\]

Reagents and conditions: (i) \(\text{H}_3\text{PW}_{12}\text{O}_{40} \) (1 mol%), 80 °C, reflux, 2 h.

Scheme 2.8: \(\text{H}_3\text{PW}_{12}\text{O}_{40} \) catalysed synthesis of 4-(3,4-dihydro-4-oxoquinazolin-2-yl)benzonitrile 70.

Metal-free cyclisation of anthranilamide 68 and aldehyde derivatives 71 using \(\text{SO}_3\text{H} \)-functionalised ionic liquid catalysts under solvation-induced proton transfer afforded 2,3-dihydroquinazolin-4(1H)-one derivatives 72 (Scheme 2.9, on page 23) [106]. Methane-sulfonic acid is a Brønsted acid which promotes cyclo-condensation via aerobic oxidation.
With the escalating amount of organic pollutants found in drinking water, green chemistry has been documented as the future of science in organic synthesis \[107\].

Wang and co-workers \[108\], reported a novel synthetic procedure for the synthesis of 2,3-dihydroquinazolin-4(1\(H\))-ones 73, which involves the grinding of anthranilamide 68 with aldehyde derivatives 71 at ambient temperature in the presence of cerium(IV) ammonium nitrate (CAN) and water. The reaction is driven to completion by heating at 60 °C (Scheme 2.10). Cerium(IV) ammonium nitrate (CAN) is a flexible single-electron oxidant which promotes the cyclisation of anthranilamide 68 derivatives with carbonyl containing compounds. The grinding step was found to be vital in increasing the surface area and resulted in high yields.

Reagents and conditions: (i) CAN, Grinding.

Scheme 2.10: CAN-mediated synthesis of dihydroquinazolin-4(1\(H\))-ones

2.4.2.2 Methods for the synthesis of quinazolin-4(3\(H\))-ones

Dihydroquinazolin-4(1\(H\))-ones undergo tautomerism to afford the corresponding quinazolin-4(3\(H\))-ones through dehydrogenation aided by oxidising agents introducing unsaturation between N-1 and C-2 of the scaffold. Otherwise, quinazolin- 4(3\(H\))-ones can prepared directly in a single-pot procedure from anthranilamide derivatives and various carbonyl compounds by oxidative cyclocondensation or transition metal-catalyzed reactions \[109\].
2.4.2.3 Indirect methods involving dehydrogenation of quinazolin-4(1H)-ones

The 2-phenylquinazolin-4(3H)-one derivatives serve as an example as they are prepared by the oxidation of dihydrogenated derivatives 74 with potassium permanganate in acetone under reflux (Scheme 2.11) [110]. Potassium permanganate serves as an oxidising reagent to bring about unsaturation between N-1 and C-2. Hitherto, two forms of quinazolin-4-ones were reported namely: the lactam (major) 76 and iminol form (minor) 75. [111].

![Image of chemical structures](image_url)

Reagents and conditions: (i) KMnO₄, Me₂CO, reflux.

Scheme 2.11: Synthesis of 2-phenylquinazolin-4(3H)-ones with KMnO₄

By the same token, the oxidation of 2,3-dihydroquinazolin-4(1H)-ones 77 with tertiary-butyloxide (2 equiv.) as an oxidising agent under refluxed furnished 2-substituted quinazolin-4(3H)-ones 78 yielding between 75 to 93% (Scheme 2.12) [112].

![Image of chemical structures](image_url)

Reagents and conditions: (i) tBuO, reflux.

Scheme 2.12: Oxidation of 2,3-dihydroquinazolin-4(1H)-ones with tBuO

Although the synthesis of quinazolin-4(3H)-ones by dehydrogenation of the parallel quinazolin-4(1H)-ones has been effective, the majority of these procedures include the use of non-environmentally, non-friendly oxidising agents in large excess. As an attempt to minimise the risk of pollution, one-pot synthesis methods continue to spark interest in literature.
2.4.2.4 Direct methods for the synthesis of quinazolin-4(3H)-ones

A single pot reaction between 2-amino-N-methoxybenzamide 79 and 4-bromobenzaldehyde 80, in acetone refluxed at 100 °C for 12 h was reported to undergo a cascade cyclisation sequence to yield the corresponding 2-(4-bromophenyl)quinazolin-4(3H)-one 81 by 81% (Scheme 2.13) [113].

Reagents and conditions: (i) 90 °C, acetone, 12 h.

Scheme 2.13: Single-pot cyclisation of 2-amino-N-methoxybenzamide with 4-bromobenzaldehyde.

A mixture of anthranilamide 68, ethynylbenzene 82 and tosylazide 83 in acetonitrile at room temperature for 10 h afforded 2-benzylquinazolin-4(3H)-one 84 in 91% yield. The latter was produced after 8 h in the presence of copper(i) iodide (10 mol%), triethylamine (3 equiv) in acetonitrile (Scheme 2.14) [114]. The reaction was found to proceed through two crucial steps involving 1,3-dipolar cycloaddition and intramolecular cyclisation. Though complex, this procedure gave high yields at low temperature. The use of high temperature was dubbed to produce complex decomposed mixtures [115].

Reagents and conditions: (i) CuI, TEA, rt, CH₃CN, 10 h

Scheme 2.14: Copper catalysed one-pot synthesis of 2-substituted quinazoline 4-(3H)-one.

Romero and co-workers [116] described a simple one-pot synthetic procedure for quinazolin-4(3H)-ones by the reaction of 2-nitrobenzamide 85 with 3-fluorobenzaldehyde 86 in the presence of sodium dithionite (3.5 equiv). Sodium dithionite is a reducing agent of the nitro group and it thus decomposes in situ in
aqueous DMF-H₂O (9:1) at 90 °C (reflux) for 5 h (Scheme 2.15), leading to an oxidation step that yields the desired 2-(3-fluorophenyl)quinazolin-4(3H)-one 99% 87. The reaction is accelerated by the addition of water.

\[
\text{Reagents and conditions: (i) } \text{Na}_2\text{S}_2\text{O}_4, \text{DMF-H}_2\text{O}, 90 \degree\text{C}, \text{reflux, } 5 \text{ h}
\]

Scheme 2.15: One-pot synthesis of quinazolin-4(3H)-ones from 2-nitrobenzamide using sodium dithionite

Parua and co-workers [117] reported an environmental friendly and mild approach for the synthesis of quinazolin-4(3H)-ones via a square-planar nickel(II) complex-catalysed acceptor-less dehydrogenative cyclisation of anthranilamide 68 with (4-methoxyphenyl)methanol 88 (Scheme 2.16). The reaction proceeds in xylene with sodium butaoxide (1.5 equiv) as a base, Ni-catalyst (5 mol%) at a reflux temperature of 100 °C for 36 h. The approach yielded 74% of 2-(4-methoxyphenyl)quinazolin-4(3H)-one 89. The by-product of this particular procedure was reported to be a hydrogen gas.

\[
\text{Reagents and conditions: (i) } [\text{Ni(MeTAA)}], \text{Na'OBu, xylene, } 100 \degree\text{C, } 36 \text{ h}
\]

Scheme 2.16: One-pot Nickel-catalysed synthesis of quinazolin-4(3H)-ones

As an addition to eco-friendly reaction conditions, Fang [118] described the synthesis of quinazolin-4(3H)-ones via a homogeneous transition metal catalysed acceptor-less dehydrogenative alcohol oxidation which produces water via nitrile 90 hydrolysis and later hydrogen via a dehydrogenative oxidation step. The procedure involves the cyclocondensation of anthranilamide 68 derivatives with oxidised alcohols (i.e. aldehydes) 71. The reaction takes place in water as a solvent at room temperature.
while stirring for 3 h (Scheme 2.17), and is therefore catalysed by a water soluble Iridium-catalyst [CpIrCl₂]₂ (5 mol%) to yield 70-81% of 2-substituted quinazolin-4-ones 91.

![Chemical structure](image)

Reagents and conditions: (i) [CpIrCl₂], water, rt, 3 h

Scheme 2.17: One-pot Iridium-catalysed synthesis of 2-substituted quinazolin-4(3H)-ones

2.4.3 Synthesis of quinazolines

An assortment of synthetic methods leading to the synthesis of quinazoline framework have been reported in literature by employing different starting materials, for instance *N*-substituted anthranilamide, isatoic anhydride derivatives and the heavily documented quinazolin-4(3H)-ones.

2.4.3.1 Oxidative-aromatisation of quinazolin-4(3H)-ones derivatives

The 4-halogenoquinazolines have proven to be an important class of intermediates in the construction of quinazoline analogues owing to the C-X (X=Cl, Br, I) bond towards various nucleophiles. For example, the conjoint method for the synthesis of 4-chloroquinazoline derivatives involves oxidative aromatisation of the analogous quinazolin-4(3H)-ones using reagents such as thionyl chloride (SOCl₂) in DMF [119], phosphoryl chloride (POCl₃) [120] and at times the combination of phosphoryl chloride (POCl₃) and pentachloride (PCl₅) [121]. The synthesis of 6,8-dibromo-4-chloro-2-(4-methoxyphenyl)quinazoline 92, for example was prepared by aromatisation of the 6,8-dibromo-2-(4-methoxyphenyl)quinazolin-4(3H)-one 93 (a quinazolin-4(3H)-one framework) using SOCl₂ and DMF as a solvent [122] (Scheme 2.18).
Reagents and conditions: (i) SOCl$_2$, DMF, 80 °C.

Scheme 2.18: Oxidative aromatisation of 92 with SOCl$_2$ and DMF as a solvent.

The treatment of 2-trichloromethylquinazolin-4(3H)-one 94 in the presence of phosphorous pentoxide (P$_2$O$_5$) in toluene with either tetrabutylammonium bromide (TBABr) or tetrabutylammonium iodide (TBAI) can result in oxidative aromatisation by bromination or iodination to yield quinazoline derivatives 95 and 96 respectively (Scheme 2.19) [123].

Reagents and conditions: (i) TBABr, P$_2$O$_5$ (ii) TBAI, P$_2$O$_5$

Scheme 2.19: Oxidative aromatisation by halogenation in the presence of phosphorous pentoxide (P$_2$O$_5$).

2.4.3.2 Direct synthesis of quinazolines from substituted anthranilamide derivatives

A new, direct and very convenient procedure to synthesise quinazoline derivatives from substituted anthranilamide derivatives was discovered by Koutentis and co-workers [124]. The authors reported synthesis of 3-aryl-4-imino-3,4-dihydroquinazoline-2-carbonitriles 99a-b from 2-amino-N'-arylbenzamidines 97a-b with 4,5-dichloro-1,2,3-dithiazolium chloride 98 (Appel salt) in the presence of Hünig’s
base (2 equiv.). Target compounds were obtained in one-step process in moderate to good yields of 51 to 86% (Scheme 2.20). The reaction provides an expedient synthetic route to C-2 cyano substituted quinazolin-4(3H)-imines

\[
\begin{align*}
\text{R} & \quad \text{NH}_2 \\
\text{N} & \quad \text{NH}_2
\end{align*}
\]

97a-b

\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{S} & \quad \text{S}
\end{align*}
\]

98

\[
\begin{align*}
\text{R} & \quad \text{NH}_2 \\
\text{N} & \quad \text{NH}_2
\end{align*}
\]

99a, \(R = -\text{H} \)

99b, \(R = -4,5\text{-diOMe} \)

Reagents and conditions: (i) \(\text{Pr}_2\text{Net} \) (2 equiv.), DCM, 20 °C, 2h.

Scheme 2.20: Hünig’s base promoted synthesis of 3-aryl-4-imino-3,4-dihydroquinazoline-2-carbonitriles.

An atom-efficient, atom-economic, eco-friendly, solvent-free, high yielding, multicomponent green strategy to synthesise the highly functionalised 2-(4-chlorophenyl)-6-nitro-4-phenylquinazoline 102 through a magnetic ionic liquid (IL), butylmethylimidazolium tetrachloroferrate (bmim [FeCl₄]) aided one-pot reaction of 2-aminobenzophenone 100, aromatic aldehyde 71, and ammonium acetate 101 (Scheme 2.21) was reported by Saha and Panja [125]. The presence of a nitro group at C-5 position of the corresponding (2-aminophenyl)(phenyl)methanone 100 affects the reaction time significantly.

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{C} \\
\text{Ph} & \quad \text{NH}_2
\end{align*}
\]

100

\[
\begin{align*}
\text{Ar-CHO} & \quad \text{NH}_4\text{OAc}
\end{align*}
\]

71

101

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{N} \\
\text{Cl} & \quad \text{Ph}
\end{align*}
\]

102

Reagents and conditions: (i) \(\text{Pr}_2\text{NET} \) (2 equiv.), DCM, 20 °C, 2h.

Scheme 2.21: Magnetic IL, butylmethylimidazolium tetrachloroferrate (bmim [FeCl₄]) aided one-pot preparation of 2-(4-chlorophenyl)-6-nitro-4-phenylquinazoline 102.
2.4.3.3 Metal-catalysed cross-coupling reactions aiding the synthesis of carbo-substituted quinazoline derivatives.

The assortment of transition metal-catalysed cross-coupling reactions can easily be regarded as a foundation of construction leading to highly substituted heterocycles in organic synthesis [126]. Kumada, Negishi, Suzuki-Miyaura, Stille, and Sonogashira cross-coupling reactions represent a direct approach towards the synthesis of new carbon-carbon (Csp²-Csp) bonds [127-130]. The mechanism for metal-catalysed cross-coupling follows three steps, namely, oxidative addition, transmetallation and reductive elimination. In the case of palladium cross-coupling reaction conditions, a catalytically active 14-electron Pd(0) species supplied by Pd(PPh₃)₄, PdCl₂(PPh₃)$_2$, Pd(OAc)$_2$ is generated by ligand dissociation for Pd(0) (Scheme 2.22) or by palladium reduction for Pd(II) (Scheme 2.23). Pd(PPh₃)$_4$ is most commonly used because of the increased reactivity of palladium which is already in a zero oxidation state. Concurrently, PdCl₂(PPh₃)$_2$ and Pd(OAc)$_2$ plus an additional PPh₃ or other phosphine ligands have also been reported efficient since they are non-hydroscopic and can be reduced to the active Pd(0) complexes with stoichiometric additions of phosphines.

Scheme 2.22: Ligand dissociation off palladium species

\[
\begin{align*}
\text{Pd(0)L}_4 & \xrightarrow{-L} \text{Pd(0)L}_3 \\
\text{18-electron palladium(0)} & \quad \text{16-electron palladium(0)}
\end{align*}
\]

Scheme 2.23: Reduction of palladium(II) to palladium(0) on Pd(II)(OAc)$_2$

\[
\begin{align*}
P(OAc)_2 & \xrightarrow{2L} \left[\begin{array}{c}
\text{AcO} \\
\text{L}
\end{array} \right] - \text{Pd} - \left[\begin{array}{c}
\text{OAc} \\
\text{L}
\end{array} \right] + \left[\begin{array}{c}
\text{AcO} - \text{L}
\end{array} \right] + \left[\begin{array}{c}
\text{L} - \text{Pd} - \text{OAc}
\end{array} \right]^- \\
& \xrightarrow{L} \left[\begin{array}{c}
\text{L} - \text{Pd} - \text{OAc}
\end{array} \right] \\
& \quad \text{14-electron palladium(0)}
\end{align*}
\]
The palladium cross-coupling catalytic cycle starts with oxidative addition of the active palladium(0) complex $\text{Pd}(0)L_2 A$ to the aryl halide (Figure 2.17). During this step, the $\text{Csp}^2 \cdot \text{X}$ bond breaks forming a palladium(II) complex conforming to $\text{trans-} \text{R}_1\text{Pd(II)L}_2\text{X}$ B containing aryl and halide ligands. The rate of the oxidative addition is accelerated by the reactivity of the aryl halide and the type of ligand present in the palladium(0) precursor [131]. The periodic order of electronegativity in aryl halides is in agreement with the $\text{C} \cdot \text{X}$ bond strengths. Likewise, alkylphosphine ligands are reported to increase the electron density by σ-complexation-dehydropalladation-reductive elimination of palladium and thus, accelerate the oxidative addition step. The palladium(II) complex B formed is a 16-electron square-planar complex which undergoes transmetallation via a ligand exchange process with the aid of a base to form an organopalladium(II) complex $\text{R}_1\text{Pd(II)L}_2\text{Nu}$ C (Figure 2.17). The ligands of compound C are trans oriented and are converted to cis in a trans-cis isomerization to form isomer D. The final step, known as reductive elimination, the organopalladium(II) complex cis-$\text{R}_1\text{Pd(II)L}_2\text{Nu}$ D dissociates the coupled product and regenerates the catalyst Pd(0). The increase of the electron density at the metal centre accelerates the reductive elimination. Alkylphosphine ligands are known to coordinate with palladium and increase its electron density more than arylphosphines. The general catalytic cycle for such reactions is represented as follows:

![Generalised mechanism for Csp²-Csp cross-coupling reactions.](image)

Figure 2.17: Generalised mechanism for Csp²-Csp cross-coupling reactions.
In addition to the cross-coupling reaction conditions, the Sonogashira cross-coupling reaction has since dominated the field of organic synthesis due to the ease of synthesis leading to carbon-carbon bonds. The cross-coupling reaction involves a copper(I) salt which serves as a co-catalyst. The palladium catalytic cycle in this type of reaction is very much similar to the general palladium reaction which involves 3 catalytic steps (1) oxidative addition (2) transmetallation (3) reductive elimination. The copper co-catalysed Sonogashira reaction takes place in two independent catalytic cycles, where the tertiary amine (R₃N) is represented as base. The palladium catalytic cycle follows the one described in Figure 2.18. Akin to the palladium cycle, the copper cycle follows three steps, a copper acetylide (Nu-Cu⁺ X⁻) E, is formed in the presence of copper(I) salt in solution. The base then abstracts the proton of the alkyne derivative leading to the π-alkyne-Cu complex F. The third step is transmetallation between the trans palladium complex B after which the copper(I) salt D is regenerated and the cycle continues.

Figure 2.18: Generalised Sonogashira copper co-catalysed reaction mechanism for Csp²-Csp cross-coupling.
2.4.3.4. Sonogashira cross-coupling reaction

The trend in reactivity of the C\text{sp}^2–halogen bonds in Sonogashira cross-coupling reaction of halogenated quinazoline compounds follows, C\text{sp}^2-I > C(4)-Cl > C\text{sp}^2-Br > C(2)-Cl > C\text{-sp}^2-Cl > C\text{sp}^2-F in relation to the different bond dissociation energies which favours substitution of iodine in the presence of Br, Cl and the C(4)-Cl [132]. The Sonogashira cross-coupling reaction between 6-bromo-2,4-dichloroquinazoline 103 and terminal alkynes 104 catalysed by PdCl\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2} as Pd(0) source and CuI co-catalysed in triethylamine (Et\textsubscript{3}N), favoured cross-coupling at the more electrophilic C(4)-Cl position rather than the less activated C\text{sp}(6)-Br bond yielding 78-86% of the corresponding 6-bromo-2-chloro-4-(hex-1-ynyl)quinazoline 105 (Scheme 2.24) [133].

\[
\begin{array}{c}
\text{N} \\
\text{Cl} \\
\text{N} \\
\text{Br} \quad \text{Cl} \\
\text{Cl} \\
\end{array} + \quad \text{≡Bu} \quad \xrightarrow{(i)} \quad \begin{array}{c}
\text{N} \\
\text{Cl} \\
\text{N} \\
\text{Cl} \quad \text{Br} \\
\text{Bu} \\
\end{array}
\]

\textbf{Reagents and conditions:} (i) PdCl\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2}, CuI, Et\textsubscript{3}N, rt.

\textbf{Scheme 2.24:} Sonogashira coupling reaction of 103 and 104.

Attempted Sonogashira cross-coupling reaction between 4-chloro-2-trichloromethylquinazoline 106 and phenylacetylene 107 using triethylamine as a base, tetrakis(triphenyl-phosphine)palladium(0) [Pd(PPh\textsubscript{3})\textsubscript{4}] as a source of a reactive Pd(0) species and copper(I) iodide (CuI) in THF under nitrogen atmosphere did not afford the expected cross-coupled product [134]. The presence of the trichloromethyl group at the 2-position was found to interfere with the outcome of this reaction. The use of cesium carbonate (Cs\textsubscript{2}CO\textsubscript{3}) as a base and palladium(II) acetate [Pd(OAc)\textsubscript{2}] as a source of Pd(0) in dimethylformamide (DMF), on the other hand, afforded the cross-coupled product 108 in low yield (15%) along with other undesirable products (Scheme 2.25).
Reagents and conditions: (i) Cs$_2$CO$_3$, Pd(OAc)$_2$, CuI, DMF, N$_2$, rt, 3 h.

Scheme 2.25: Sonogashira cross-coupling reaction of 4-chloro-2-trichloromethylquinazoline.

A good demonstration of the reactivity trend in Sonogashira coupling reaction leading to the C$_{sp^2}$-C$_{sp}$ bond was shown during a reaction between 4-chloro-6-iodo-2-(4-methoxyphenyl)quinazoline 109 and phenylacetylene 110. The reaction was catalysed by Pd(II)Cl$_2$(PPh$_3$)$_2$ and CuI in the presence of Cs$_2$CO$_3$ under nitrogen atmosphere at room temperature. The reaction conditions favoured cross-coupling at the C(6)$_{sp^2}$-I position rather than the C(4)-Cl position to yield 75% of the corresponding 4-chloro-2-(4-methoxyphenyl)-6-(2-phenylethynyl)quinazoline 111 (*Scheme 2.26*) [135].

Reagents and conditions: (i) Cs$_2$CO$_3$, Pd(II)Cl$_2$(PPh$_3$)$_2$, CuI, THF, N$_2$, rt, 18 h.

Scheme 2.26: Sonogashira cross-coupling reaction of 4-chloro-6-iodo-2-(4-methoxyphenyl)quinazoline 111 on the C(6)$_{sp^2}$-I position.

2.4 Quinazoline derivatives as intermediates in coordination chemistry including their synthesis and biological application.

The field of bioinorganic chemistry has been at the highest receiving end of chemistry research attention over the past 3 decades [136-137]. The research interest in this field is amplified by the unending increase in activity of heterocyclic compounds with anticancer, anti-inflammatory, antimalarial, antibacterial and anti-proliferative
properties [138]. Of these highly biologically active heterocycles, pyrimidine derivatives, particularly quinazoline bearing derivatives have been under massive exploration both in silico and in vitro studies [139].

The literature on transition metal containing quinazoline complexes is limited, hence indicative of perhaps, difficulty in synthesising the complexes or area unexplored. The synthesis or coordination of quinazoline derivatives requires knowledge in ligand behaviour, coordination modes, general understanding of coordination chemistry, etc. The type of geometrical arrangement around the metal centre is key in avoiding steric hindrance, hence contributing to the stability of the complex. For example, poly-nuclear silver(I) quinazoline containing derivatives 114 were reported by Glišić and co-workers [140] to possess activity against the pathogenic *Pseudomonas aeruginosa* strains in silico and in vitro. The Ag(I) complexes were synthesised by refluxing 2 mmol of quinazoline 112 and 1 mmol of AgCF₃SO₃ 113 in ethanol for 8 h to yield 42% of the corresponding tetrahedral Silver(I) quinazoline complex (Scheme 2.27) 114.

![Scheme 2.27](image)

Reagents and conditions: (i) AgBF₄, ethanol, heat, 8 h.

Scheme 2.27: Synthesis of silver(I) quinazoline complexes with antimicrobial activity.

A three-legged piano stool ruthenium(II) quinazoline complex possessing oncotherapeutic antiplatelet activity was reported by Kharamang and co-workers [141]. The ruthenium arene quinazoline (RAQ) complex is reported to hinder ATP release and [Ca²⁺], and therefore decrease Akt/JNK signals. Akt/JNK pathways are involved in autophagy [142] process. Autophagy is a homeostatic, catabolic degradation process whereby cellular proteins and organelles are engulfed into autophagosomes, digested in lysosomes and recycled to sustain cellular metabolism [143]. Targeting these pathways represents an ideal strategy towards cancer cell lysis. Experimental synthesis of the RAQ complex was achieved by stirring dichloro-(p-
cymene)-ruthenium(II) dimer 38 and corresponding 4-phenyl-2-(pyridin-2-yl)quinazoline 115 ligand in methanol at room temperature for 24 h to yield 87% of \([(η⁶-p\text{-cymene})\text{RuCl}_4\text{-phenyl-2-(pyridin-2-yl)quinazoline}]\text{tetrafluoroborate} 116 (Scheme 2.28). Likewise, the RAQ complex inhibited platelet aggregation in washed human platelets while stimulated by collagen in a concentration-dependent manner (1 – 5 uM).

Reagents and conditions: (i) NaBF₄, methanol, rt, 24 h.

Scheme 2.28: Synthesis of ruthenium(II) arene quinazoline complexes with antiplatelet activity.

A new, dual-targeting, piano stool ruthenium(II) complex possessing anticancer properties was developed by Zhang and co-workers [144]. The corresponding RAQ complex was synthesised by stirring 6-(2-(2-aminoethylamino)ethoxy)-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-quinazoline 117 and dichloro-(p-cymene)-ruthenium(II) dimer 38 in methanol for 24 h to yield 31.2 % of \([(η⁶-p\text{-cymene})\text{RuCl}_6\text{-2-(2-aminoethylamino)ethoxy)-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-quinazoline}]\text{hexa-fluorophosphate} 118 (Scheme 2.29). The antecedent RAQ complex is reported to exhibit 29-fold IC₅₀ against HeLa cell lines i.e. 1.36 uM compared to the ligand precursor 117 i.e. 29.5 uM.
Scheme 2.29: Synthesis of ruthenium(II) erlotinib complex with improved anticancer activity.

The synthesis of biologically active compounds is a challenging and costly process, in the 1960’s researchers would blindly screen hundred thousands of natural and synthetic compounds for possible biological activity. Upon viewing activity, medicinal chemists would synthesise a library of compounds for further biological exploration [145]. This method, termed “traditional drug design” is costly as out of 100 thousand compounds only 25 would register the desired property investigated [146]. Previous sources estimated the cost to be ranging from $200-$500 million each year worldwide [147]. To ameliorate this injustice, scientists have since developed a computer programme called molecular docking.

2.5 Molecular docking

Molecular docking is a modern medicinal chemistry tool which investigates pharmacodynamical data and pharmacokinetic properties through structure activity relationship (SAR) of prodrugs [148]. The pharmacodynamical data includes potency, selectivity, affinity and efficacy of prodrugs [149], on the other hand pharmacokinetic properties investigated include ADME-Tox (absorption, distribution, metabolism, excretion and toxicity) of the prepared prodrugs [150]. The progression of this field is complemented by advances in biomolecular spectroscopic methods such as X-ray crystallography and nuclear magnetic resonance techniques (NMR) [151]. These techniques have produced over 100 000 three-dimensional (3D) protein structures, brewing influential information on macromolecular drug targets [152].
incorporation of computational (in silico) and experimental (in vitro) methods have provided a broad understanding of the complex aspects of intermolecular recognition [153].

Within the pre-described concept, structure-based design (SBDD) methods such as molecular kinetics, molecular dynamics and structure-based virtual screening (SBVS) are employed to aid molecular recognition events such as binding energy, molecular interactions and induced conformational changes [154]. A defined approach in drug design encompasses biologically active small molecule libraries [155]. The unique diversity available in these libraries (co-crystallised ligands within proteins) represents the active site to which ligands target [156]. This application is limited to ligand-based drug design (LBDD) methods. Similarly, ligand-based virtual screening (LBVS), conformational searching and quantitative structure activity relationship (QSAR) modelling are the most used LBDD methods [157]. The SBDD and LBDD methods are the most encountered in computer aided drug design and have proved valuable to both academia and industry [158].

2.6 Purpose of the study

Infectious airborne and neoplastic diseases are the two causes of illness and mortality in developing and developed countries, respectively [159]. This section covers the challenges faced by chemotherapeutic techniques applied to treat specifically Tuberculosis (TB) and cancer.

2.6.1. Tuberculosis (TB)

Tuberculosis (TB) is an airborne disease caused by Myobacterium tuberculosis (Mtb) [1]. The world health organisation (WHO) has reported that TB remains one of the modern day killer bacteria in the world, where treatment and management of the infection remains a big challenge [160]. In 2017 (latest statistics), TB was reported to be the biggest killer disease in the country (South Africa) and unfortunately more and more people are infected daily at an alarming rate [160]. Several TB drugs, such as Isoniazid, Rifampicin, Pyrazinamide, Ethambutol and Streptomycin, are administered to treat the TB disease at different stages (i.e. for latent TB, MDR-TB and XDR-TB). Even though the antecedent drugs have several advantages such as low cost, effectiveness and limited host toxicity, the country is still burdened with increased new
infections. This is because of the prolonged treatment period of six (6) months, during which mutations of the *Mtb* resistant strains occurs if care is not taken during the six (6) months period [161]. Recently, drugs by names Delamanid and Bedaquiline have been unveiled as the most progressive treatment for the resistant TB, the major limitation being the QT-prolongation side effect [162]. The QT-prolongation is a serious disturbance of the heart’s electrical rhythm. Other side effects include the liver toxicity, deafness, accumulation of phospholipids in cells and even death [162].

2.6.2 Cancer

Cancer is defined as a group of unrelated diseases that affect any part of the human body. According to the world health organisation (WHO), cancer is one of the leading causes of death worldwide and it has been responsible for 9.6 million deaths in 2018 [163]. The development of cancer strategies over the years have employed chemotherapy combined with radiotherapy, surgery and targeted therapy [164]. Chemotherapeutic drugs currently employed to treat this burden include Cisplatin, cobimetinib and elronitib [165]. These drugs, though effective to some extent, pose severe side effects such as hair loss, stroke and vomiting due to their non-selectivity towards normal cells [166]. Apart from the pre-mentioned drawbacks and lack of alternatives, they still find application.

Herein we hypothesise a possible strategy on eliminating the problems described in subsections 2.6.1 and 2.6.2. Schiff base and quinazoline structure activity relationship (SAR) of ruthenium(II) *p*-cymene bioinorganic molecular hybrids with plausible mimic of synergy in cancerous and *Mycobacterium tuberculosis* cell lines. In this project, we employ Sonogashira cross-coupling at the C(4)-Cl to introduce electron-donating ethynylpyridine bridge, which is used as a link between the quinazoline and the ruthenium(II) *p*-cymene moieties. For the Schiff base groups, a similar idea is hoped to stabilise the ligands in biological solutions such as DMSO and water, and thus improving binding in the active site. Molecular docking is used to better understand the possible interactions in the binding site of cancer and *Mtb* proteins 3F8P and 2SRC belonging to the Tyrosine kinase and oxidoreductase family and the 1HTO of *glutamine synthetase* respectively. In this way, we hope to gain control of the hydrophilicity and size of the complexes in the delivery system, where the two parts of
the compound complement each other to exhibit different interactions in the binding site. Thus, the aim and the objectives of the study are therefore defined as follows:

2.7 Aim

The aim of this study was to synthesise, characterise, and perform biological evaluation of \(p \)-cymene ruthenium(II) complexes of imidazolyl-ethanamine-Schiff bases and 4-ethynylpyridine cross-coupled quinazolines.

2.8 The objectives were to:

i. Synthesise imidazolyl-ethanamine-Schiff bases and their M(II) complexes
ii. Synthesise ethynylpyridine bridged quinazolines and their \(p \)-cymene ruthenium(II) complexes
iii. Evaluate the anticancer properties of the synthesised compounds \textit{in vitro}
iv. Evaluate the anti-\textit{Mycobacterium tuberculosis} properties of the synthesised compounds \textit{in vitro}
v. Perform molecular docking of the synthesised compounds in 1HTO, 2RSC and 3F8P

Reference

[62]. Sadeghi-Kiakhani, M., Gharanjig, K. and Arami, M., 2015. Grafting of prepared chitosan–poly (propylene) imines dendrimer hybrid as a biopolymer onto cotton and

thiosemicarbazide motif and related heterocyclic compounds. *Current medicinal chemistry.*

3.1 General

Chemical reagents were purchased from Sigma-Aldrich or Merck (Johannesburg, South Africa) and used without further purification. Tetrahydrofuran (THF) was distilled over sodium metal lumps and benzophenone [1] and stored over activated molecular sieves before use. Melting points were obtained using Lasec/SA-melting point apparatus from Lasec company, SA (Johannesburg, South Africa). IR spectra for compounds 120a-e, 121a-e, 123a-e, 125a-e and 126a-e were recorded using Anglient technologies Carry 600 series, FTIR spectrometer. For compounds 119a-d, the FTIR spectra were recorded on Bruker, FTIR spectrometer with a platinum ATR. NMR spectra were obtained as CDCl₃, DMSO-d₆ and Methanol-d₄ solutions using Bruker 400 MHz NMR spectrometer (Bruker Biospin GmhH, Karlsruhe, Germany) operating at 400 MHz (¹H) and 100 MHz (¹³C), and ¹H-¹³C-HMBC NMR chemical shifts were quoted relative to the TMS peak. High-resolution mass spectra were recorded at an ionisation potential of 70 eV using Waters Synapt G2 Quadrupole Time-of-flight mass spectrometer (Waters Corp., Milford, MA, USA) at the University of Stellenbosch Central Analytical Facility. The synthesis of ligands 125a-e, 119a-d and attempted synthesis of 119c** was performed under nitrogen atmosphere purchased from Afrox (Polokwane gas and gear) and used without further purification.

3.2 Typical procedure for the synthesis of Schiff base ligands 119a-d

\[
\begin{align*}
\text{H}_2\text{N} & \quad \begin{array}{c}
\text{N} \\
\text{H} \\
\text{2HCl}
\end{array} & \quad \rightarrow & \quad \begin{array}{c}
\text{N} \\
\text{H} \\
\text{43}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{H} \\
\text{43*}
\end{array} & \quad \begin{array}{c}
\text{R} \\
\text{O} \\
\text{73a - d}
\end{array} & \quad \begin{array}{c}
\text{R} \\
\text{119a - d}
\end{array}
\end{align*}
\]

\(R = \text{-H (119a), -OH (119b), -F (119c) and –NO}_2\text{ (119d)} \)

To a 50 mL Schlenk flask equipped with a stirrer bar, was added 2.5 mmol histamine dihydrochloride and 5 mmol sodium hydroxide. The mixture was stirred for 1.5 h at
room temperature in 15 mL methanol to obtain a sodium chloride precipitate which was filtered through a syringe plugged with cotton wool. The filtrate was taken into a 250 mL Schlenk flask charged with 15 mL methanol and 2.5 mmol aldehyde. The mixture was stirred for 5 minutes before the addition of 2.5 mmol sodium hydrogen carbonate, the flask was then purged with nitrogen gas for 2 minutes before stirring at room temperature for 24 h after which stirring was stopped and allowed to cool to room temperature. The solvent was removed under reduced pressure to obtain a paste of colours white, brown and yellow. The paste was washed thoroughly with hexane and diethyl ether to acquire the corresponding Schiff bases 119a-d.

3.2.1 (E)-N-benzylidene-2-(1H-imidazol-4-yl)ethanamine (119a). A mixture of histamine dihydrochloride 43 (460.1675 mg, 2.5 mmol), benzaldehyde 73a (265.30 mg, 2.50 mmol), sodium hydroxide (199.99 mg, 5.00 mmol) and sodium hydrogen carbonate (210.02 mg, 2.50 mmol) in methanol 30 mL afforded 119a as white solid (275.21 mg, 92%); m.p. 247.4 – 248.6 °C; FTIR(νmax) 598, 763, 824, 1089, 1162, 1251, 1354, 1537, 1627, 2450, 3394 cm⁻¹; ¹H-NMR (400 MHz, MeOD-d₄, ppm) 2.99 (t, J = 14.23 Hz, 2H), 3.87 – 3.90 (td, 3JH,H = 12 Hz and 4JH,H = 1.12 Hz, 2H), 6.82 (s, 1H), 7.44 – 7.48 (m, 3H), 7.60 (s, 1H), 7.71 – 7.73 (dd, J = 1.69 Hz and J = 1.71 Hz, 2H), 8.24 (s, 1H); ¹³C-NMR (100 MHz, MeOD-d₄, ppm) 29.3, 61.8, 118.5, 129.9, 130.9, 132.3, 136.1, 137.1, 161.6, 165.0; HRMS (ESI): calculated 119.1109, [MH]+, C₁₂H₁₃N₃⁺, found 200.1180.

3.2.2 4-((E)-(2-(1H-imidazol-4-yl)ethylimino)methyl)phenol (119b). A mixture of histamine dihydrochloride 43 (460.17 mg, 2.50 mmol), 4-hydroxybenzaldehyde (73b)
(305.30 mg, 2.50 mmol), sodium hydroxide (199.99 mg, 5.00 mmol) and sodium hydrogen carbonate (210.02 mg, 2.50 mmol) in methanol 30 mL afforded 119b as brown solid (481.87 mg, 90%); m.p. 262.5 – 263.1 °C; FTIR (v_max) 599, 720, 834, 1126, 1221, 1257, 1358, 1537, 1668, 2948, 3327, 3928 cm⁻¹; ¹H-NMR (400 MHz, MeOD-d₄, ppm) 2.95 (t, J = 14.4 Hz, 2H), 3.80 (t, J = 14 Hz, 2H), 6.75 (d, J = 8.66 Hz, 2H), 6.81 (s, 1H), 7.52 (d, J = 8.63 Hz, 2H), 7.60 (s, 1H); ¹³C-NMR (100 MHz, MeOD-d₄, ppm) 29.7, 61.5, 118.8, 120.3, 122.7, 131.6, 136, 161.6, 165.9, 173.0; HRMS (ESI): calculated 215.1059, [MH]⁺, C₁₂H₁₃N₃O⁺, found 216.1126.

3.2.3 (E)-N-(4-fluorobenzylidene)-2-(1H-imidazol-4-yl)ethanamine (119c). A mixture of histamine dihydrochloride 43 (460.1675 mg, 2.5 mmol), 4-fluorobenzaldehyde (73c) (310.29 mg, 2.5 mmol), sodium hydroxide (199.99 mg, 5.00 mmol) and sodium hydrogen carbonate (210.02 mg, 2.50 mmol) in methanol 30 mL afforded 119c as white solid (488.56, 90%); m.p. 284.9 – 286.1 °C; FTIR (v_max) 598, 822, 895, 1088, 1126, 1254, 1362, 1624, 2951, 3340 cm⁻¹; ¹H-NMR (400 MHz, MeOD-d₄, ppm) 2.98 (t, J = 14.30 Hz, 2H), 3.86 – 3.89 (td, ³J_H-H = 12 Hz and ⁴J_H-H = 0.88 Hz), 6.82 (s, 1H), 7.16 – 7.20 (m, 2H), 7.59 (s, 1H), 7.60-7.89 (dd, ³J_HF = 5.60 Hz and ³J_HF = 5.54 Hz, 2H), 8.23 (s, 1H); ¹³C-NMR (100 MHz, MeOD-d₄, ppm) 29.3, 61.8, 115.4 (³J_CF = 22.2 Hz), 118.5, 131.6 (³J_CF = 8.6 Hz), 130.1 (³J_CF = 9 Hz), 133.7 (⁴J_CF = 2.9 Hz), 136.1, 161.6, 163.5, 166.0 (d, ¹J_CF = 250 Hz); HRMS (ESI): calculated 217.1015, [MH]⁺, C₁₂H₁₂FN₃⁺, found 218.1078.

3.2.4 (E)-N-(4-nitrobenzylidene)-2-(1H-imidazol-4-yl)ethanamine (119d). A mixture of histamine dihydrochloride 43 (460.17 mg, 2.50 mmol), 4-nitrobenzaldehyde (73d)
(377.80 mg, 2.50 mmol), sodium hydroxide (199.99 mg, 5.00 mmol) and sodium hydrogen carbonate (210.02 mg, 2.50 mmol) in methanol 30 mL afforded 119d as yellow solid (594.17, 90%); m.p. 266.2 – 267.4 °C; FTIR (v_{max}) 599, 761, 824, 1090, 1121, 1207, 1365, 1537, 1628. 2949, 3348 (\text{-NH}) cm^{-1}; ^1H-NMR (400 MHz, MeOD-d_4, ppm) 3.016 (t, 14.13 Hz, 2H), 3.94 - 3.98 (td, J_{\text{H-H}} = 16 and J_{\text{H-H}} = 1.25 Hz, 2H), 6.84 (s, 1H), 7.60 (d, J = 1.12 Hz, 1H), 7.96-7.98 (dd, J = 2 Hz and J = 2 Hz, 2H), 8.30-8.33 (dd, J = 2 Hz and J = 1.6 Hz, 2H), 8.38 (s, 1H); ^13C-NMR (100 MHz, MeOD-d_4, ppm) 29.3, 62.2, 118.4, 125.0, 130.3, 131.1, 143.0, 150.7, 161.6, 162.3; HRMS (ESI): calculated 244.096, [MH]^+, C_{12}H_{12}N_4O_2^+, found 245.1031.

3.3 Attempted synthesis of Zn(II) ethanamineimidazoly-Schiff base complexes

Into an NMR tube was added, (1.00 mg, 0.0001 mmol) of 119c and (0.63 mg, 0.0001 mmol) of ZnCl_2. The mixture was left to stand at room temperature for 24 h in 0.6 mL of MeOD-d_4. The ^1H-NMR was recorded at (400 MHz, ppm) 2.90 (br-s, 2H), 4.04 (br-s, 2H), 6.85 (br-s, 1H), 2.25 (m, 2H), 7.55(br-s, 1H), 8.12 (d, J = 3.72 Hz, 2H), 8.70 (br-s, 1H).

N.B Compounds 120a-e are reported in literature and referenced thereof.

3.4 General synthesis of 2-arylquinazoline-4-one derivatives 120a – e

\[
\begin{align*}
\text{68} & \quad + \quad \begin{cases} (73c - d, 73a', 73b', \\
\text{and 73c'}) \end{cases} \\
\rightarrow \quad \begin{cases} \text{120a - e} \\
R = \text{-Cl (120a), -Br (120b), -F (120c), -NO}_2 (120d), \text{-OMe (120e)} \end{cases}
\end{align*}
\]
Quinazoline derivatives were prepared following a literature method reported by Mphahlele and co-workers [2]. To a 100 mL round bottom flask, anthranilamide 68 (1 mmol), benzaldehyde derivatives (73c – d, 73a’, 73b’ and 73c’) (1 mmol) and iodine (2 equiv.) in ethanol (30 mL per mmol of 68) was refluxed at 80 °C for 6 h. The mixture was left to cool to room temperature and quenched with cold saturated sodium metabisulfate solution. The resulting precipitate was filtered and washed thoroughly with water. The solid product was recrystallised from acetonitrile and oven dried to yield the corresponding quinazoline-4(3H)-ones 120a - e. The following products were prepared accordingly:

\[\text{120a} \]

3.4.1 2-(4-Chlorophenyl)quinazolin-4(3H)-one (120a): A mixture of 68 (1500.00 mg, 11.02 mmol), benzaldehyde (73a’) (1550.00 mg, 11.02 mmol) and iodine (2.80 g, 22.04 mmol) in ethanol (100 mL) yielded 120a as a white solid (2450.00 mg, 87%); m.p. 295.2 – 297.1 °C, lit (298 – 299 °C) [3]; FTIR (vmax) 764, 840, 1168, 1232, 1259, 1531, 1606, 1666, 3052, 3174 cm\(^{-1}\); \(^1\)H-NMR (400 MHz, DMSO-d\(_6\), ppm) 7.53 (t, J = 14.4 Hz, 1H), 7.73 – 7.77 (m, 3H), 7.84 (t, J = 14.4 Hz, 1H), 12.63 (s, 1H); \(^13\)C-NMR (100 MHz, DMSO-d\(_6\), ppm) 121.0, 125.2, 125.9, 126.8, 127.4, 129.8, 131.6, 131.9, 134.6, 148.5, 151.5, 162.2.

\[\text{120b} \]

3.4.2 2-(4-Bromophenyl)quinazolin-4(3H)-one (120b): A mixture of 68 (1500.00 mg, 11.02 mmol), benzaldehyde (73b’) (2000.00 mg, 11.02 mmol) and iodine (2800.00 mg, 22.04 mmol) in ethanol (100 mL) yielded 120b as a white solid (3001.00 mg, 91%); m.p. >350 °C, lit (>350 °C) [3]; FTIR (vmax) 764, 840, 1232, 1369, 1486, 1610, 1544, 1656, 3064, 3186 cm\(^{-1}\); \(^1\)H-NMR (400 MHz, DMSO-d\(_6\), ppm) 7.53 (t, J = 14.8 Hz, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8 Hz, 1H), 7.84 (t, J = 14.8 Hz, 1H) 8.15 (d, J = 8
Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H) 12.63 (s, 1H); 13C-NMR (100 MHz, DMSO-d$_6$, ppm) 121.0, 125.9, 126.8, 127.5, 128.7, 129.6, 131.6, 134.7, 136.3, 148.5 151.4, 162.2.

3.4.3 2-(4-Fluorophenyl)quinazolin-4(3H)-one (120c): A mixture of 68 (1500.00 mg, 11.02 mmol), benzaldehyde (73c) (1370.00 mg, 11.02 mmol) and iodine (2800.00 mg, 22.04 mmol) in ethanol (100 mL) yielded 120c as a white solid (2.46 g, 93%); m.p. 261.3 – 263.2 °C, lit (257 – 259 °C) [3]; FTIR(v_{max}) 764, 840, 1166, 1305, 1484, 1555, 1605, 1668, 3098, 3204 cm$^{-1}$; 1H-NMR (400 MHz, DMSO-d$_6$, ppm) 7.24-7.35 (m, 3H), 7.71-7.77 (m, 2H), 8.09-8.15 (m, 3H), 12.58 (s, 1H); 13C-NMR (100 MHz, DMSO-d$_6$, ppm) 115.4 (d, $^2J_{\text{CF}} = 22.2$ Hz), 120.9, 125.9, 126.5, 128.9 (d, $^4J_{\text{CF}} = 2.9$ Hz), 129.5, 130.1 (d, $^3J_{\text{CF}} = 9$ Hz), 134.6, 148.7, 151.7, 163.8 (d, $^1J_{\text{CF}} = 249.2$ Hz).

3.4.4 2-(4-Nitrophenyl)quinazolin-4(3H)-one (120d): A mixture of 68 (1500.00 mg, 11.02 mmol), benzaldehyde (73d) (1670.00 mg, 11.02 mmol) and iodine (2800.00 mg, 22.04 mmol) in ethanol (100 mL) yielded 120d as a white solid (2.65 g, 90%); m.p. > 300 °C, lit (>300 °C) [3]; FTIR(v_{max}) 741, 833, 1018, 1261, 1399, 1583, 1601, 1684, 3057, 3200; 1H-NMR (400 MHz, DMSO-d$_6$, ppm) 7.38-7.68 (m, 1H), 7.72-7.51 (m, 2H), 8.21-8.42 (m, 5H), 12.882 (s, 1H); 13C-NMR (100 MHz, DMSO-d$_6$, ppm) 121.4, 123.3, 123.6, 126.0, 126.8, 127.6, 129.0, 134.3, 134.5, 139.9, 148.8, 152.1.
3.4.5 2-(4-Methoxyphenyl)quinazolin-4(3H)-one (120e): A mixture of 68 (1500.00 mg, 11.02 mmol), benzaldehyde (73c') (1500.00 mg, 11.02 mmol) and iodine (2800.00 mg, 22.04 mmol) in ethanol (100 mL) yielded 120e as a white solid (2.58 g, 93%); 242.7 – 243.4 °C, lit (240 – 241 °C) [3]; FTIR(ν_{max}) 703, 888, 1086, 1380, 1477, 1566, 1691, 1699, 3011, 3247; ¹H-NMR (400 MHz, DMSO-^d6, ppm) 3.84 (s, 3H), 7.08 (d, J = 14.8 Hz, 2H), 7.48 (t, J = 16.0 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 16.0 Hz, 1H), 8.19 (d, J = 14.8 Hz, 2H), 12.43 (s, 1H); ¹³C-NMR (100 MHz, DMSO-^d6, ppm) 55.46, 114.0, 120.7, 124.9, 125.8, 126.1, 127.1, 129.5, 134.5, 148.9, 152.0, 161.9, 162.4.

3.5 Oxidative aromatisation of 121a - e in SOCl₂-DMF mixture

N.B Compounds 121a-e are reported in literature and referenced thereof.

3.5a Typical procedure for the synthesis of 4-chloro-2-arylquinazoline derivatives (121a- e)

Quinazoline derivatives were prepared following a literature method reported by Mphahlele and co-workers [1]. To a stirring suspension of 120a (1000.00 mg, 3.90
mmol) in thionyl chloride (30 mL) at room temperature, DMF (1 mL) was added dropwise. The mixture was refluxed for 4 h and allowed to cool to room temperature before quenching with cold water and was extracted with dichloromethane. The dichloromethane was dried over anhydrous sodium sulphate, filtered and evaporated under reduced pressure to yield (The same procedure was applied to afford 120b – e):

3.5.1 4-Chloro-2-(4-chlorophenyl)quinazoline (121a) [4] as a white solid (940.00 mg, 88%); m.p. 143.2 – 145.4 °C; FTIR(νmax) 758, 842, 954, 1152, 1234, 1336, 1519, 1537; 1H-NMR(400 MHz, CDCl3, ppm) 7.47 (d, J = 8.8 Hz, 2H), 7.66 (t, J = 16. Hz, 1H), 7.92 (t, J = 16.4 Hz, 1H), 8.05 (d, J = 8 Hz, 1H), 8.23 (d, J = 8 Hz, 1H), 8.56 (d, J = 8.8 Hz, 2H); 13C-NMR (100 MHz, CDCl3, ppm) 122.4, 125.8, 128.4, 128.9, 130.1, 135.0, 137.4, 143.7, 151.7, 159.0, 162.6.

![121b](image)

3.5.2 2-(4-Bromophenyl)-4-chloroquinazoline (121b) [5]. A stirred mixture of 120b (1000.00 mg, 3.30 mmol) and DMF (1 mL) in thionyl chloride (30 mL) yielded 121b as a white solid (1130.00 mg, 93%); m.p. 151.7 – 153.4 °C; FTIR(νmax) 647, 699, 742, 785, 844, 902, 1152, 1264, 1339, 1600; 1H-NMR (400 MHz, CDCl3, ppm) 7.48-7.54 (m, 3H) 7.92 (t, J = 16.4 Hz, 1H) 8.05 (d, J = 8.4 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 8.43 (d, J = 8.8 Hz, 2H); 13C-NMR(100 MHz, CDCl3, ppm) 122.4, 125.8, 128.8, 130.0, 131.8, 135.0, 135.5, 137.3, 151.6, 159.0, 162.6.

![121c](image)
3.5.3 4-Chloro-2-(4-fluorophenyl)quinazoline (121c) [6]. A stirred mixture of 120c (1.00 g, 4.18 mmol) and DMF (1 mL) in thionyl chloride (30 mL) yielded 121c as a white solid (0.97 g, 90%); m.p. 137.2 – 139.3 °C, lit [139 – 141 °C]; FTIR(ν_max) 655, 688, 726, 760, 844, 933, 1153, 1264, 1510, 1563; ¹H-NMR (400 MHz, CDCl₃, ppm) 7.11-7.28 (m, 2H), 7.64 (t, J = 16.8 Hz, 1H), 7.92 (t, J = 16.8 Hz, 1H), 8.05 (d, J = 8 Hz, 1H), 8.23 (d, J = 8 Hz, 1H), 8.41-8.46 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃, ppm) 115.7 (d, ²J_CF = 84 Hz), 122.3, 128.2, 128.8, 130.9 (d, ³J_CF = 8.8 Hz), 132.9 (d, ²J_CF = 3 Hz), 151.8, 159.0, 162.5, 165.1 (d, ¹J_CF = 248.5 Hz).

![121d]

3.5.4 4-Chloro-2-(4-nitrophenyl)quinazoline (121d) [4]. A stirred mixture of 120d (1000.00 mg, 3.74 mmol), ν_max (ATR) and DMF (1 mL) in thionyl chloride (30 mL) yielded 121d as a white solid (900 mg, 84%); m.p. 148.1 – 150.2 °C; FTIR(ν_max) 709, 843, 891, 1026, 1248, 1322, 1373, 1509, 1587; ¹H-NMR (100 MHz, CDCl₃, ppm) 7.74 (t, J = 16.8 Hz, 1H), 7.79 (t, J = 16.8 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 8.4 Hz, 1H), 8.34 (d, J = 10.4 Hz, 2H), 8.74 (d, J = 10.4 Hz, 2H); ¹³C-NMR (400 MHz, CDCl₃, ppm) 122.7, 123.7, 125.9, 129.5, 129.6, 135.3, 142.3, 144.2, 149.4, 151.6, 157.7, 162.9.

![121e]

3.5.5 4-Chloro-2-(4-methoxyphenyl)quinazoline (121e) [7]. A stirred mixture of 120e (1000 mg, 3.98 mmol) and DMF (1 mL) in thionyl chloride (30 mL) yielded 121e as a white solid (960 mg, 89%); m.p. 144.3 – 146.6 °C; FTIR(ν_max) 763, 837, 934, 1152,
1290, 1336, 1579, 1603; 1H-NMR (400 MHz, CDCl$_3$, ppm) 3.87 (3H, br-s), 7.08 (d, J = 8.8 Hz, 2H), 7.58 (t, J = 16.4 Hz, 1H), 7.87 (t, J = 16.4 Hz, 1H), 8.01 (d, J = 8 Hz, 1H), 8.17 (d, J = 8 Hz, 1H), 8.52 (d, J = 8.8 Hz, 2H); 13C-NMR (100 MHz, CDCl$_3$, ppm) 55.4, 113.9, 122, 125.8, 127.7, 128.5, 129.2, 130.4, 134.7, 151.8, 159.8, 162.1, 162.2.

3.6 Typical procedure for Dechloro-Amination of 123a - e

![Dechloro-Amination Reaction Diagram]

R = -Cl (123a), -Br (123b), -F (123c), -NO$_2$ (123d), -OMe (123e)

A stirred mixture of 121a (1 equiv.), 2-amino-3-nitropyridine 1.1 equiv.) 122 and concentrated sulfuric acid (20 drops) in (3:1) THF-DMF 30 ml was heated at 65 °C for 5 h after which the solution was allowed to cool to RT. The reaction mixture was then added to crushed ice 30 mL, stirred and the product extracted with ethyl acetate. The organic layer washed with aqueous solution of sodium hydrogen carbonate, dried over anhydrous Na$_2$SO$_4$, filtered and evaporated under reduced pressure to afford 123a as yellow solid product 123b-e were all prepared in a similar fashion.

3.6.1 2-(4-Chlorophenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123a). A mixture of 4-chloro-2-(4-chlorophenyl)quinazoline 121a (300.00 mg, 1.09 mmol), sulphuric acid 20-drops and 2-amino-3-nitropyridine 122 (166.87 mg, 1.20 mmol) afforded 123a as yellow solid (280.00 mg, 95%) m.p. 281.2 – 282.1 °C; FT-IR (v_{max}) 458, 478, 538,
683, 728, 761, 840, 1012, 1074, 1149, 1241, 1280, 1344, 1443, 1556, 1599,
1669, 3132, 3461; \(^1\)H-NMR (400 MHz, DMSO-d\(_6\), ppm) 6.73-6.76 (dd, \(J = 4.8\) Hz and
4.4 Hz, 1H), 7.54 (t, \(J = 14.8\) Hz, 1H), 7.63 (d, \(J = 8.8\) Hz, 2H), 7.75 (d, 8.0 Hz, 1H),
7.85 (t, \(J = 14.8\) Hz, 1H), 7.90 (s, 1H), 8.16 (d, \(J = 8.0\) Hz, 1H), 8.20 (d, \(J = 8.8\) Hz,
2H), 8.38 (t, \(J = 10.8\) Hz, 1H), 12.63 (s, 1H); \(^{13}\)C-NMR (100 MHz, DMSO-d\(_6\), ppm)
113.0, 121.5, 126.4, 127.3, 128.0, 129.2, 130.1, 132.0, 135.2, 135.4, 136.8, 149,
151.8, 154.2, 156.8, 162.6; HRMS (ESI): calculated 377.0680, [M-HCl]\(^+\), \(\text{C}_{19}\text{H}_{12}\text{N}_{5}\text{O}_{2}\)\(^+\),
found 341.2670.

3.6.2 2-(4-Bromophenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123b). A mixture
of 2-(4-bromophenyl)-4-chloroquinazoline 121b (300.00 mg, 0.94 mmol), sulphuric
acid 20-drops and 2-amino-3-nitropyridine 122 (143.29 mg, 1.03 mmol) afforded 123b
as yellow solid (210.00 mg, 78%), m.p. 292.1 – 284.1 \(^{\circ}\)C; FTIR (\(\nu_{\text{max}}\)) 389, 505, 545,
771, 799, 1008, 1064, 1150, 1182, 1336, 1480, 1558, 1600, 1670, 2884, 2919, 2960,
3027, 3268, 3462; \(^1\)H-NMR (400 MHz, DMSO-d\(_6\), ppm); 6.73-6.76 (dd, \(J = 4.63\) Hz
and \(J = 4.44\) Hz, 1H), 7.54 (t, \(J = 15.03\) Hz, 1H), 7.73-7.78 (m, 3H), 7.85 (t, \(J = 15.51\)
Hz, 1H), 7.72 (s, 1H), 8.10-8.16 (m, 3H), 8.19-8.40 (m, 1H), 12.64 (s, 1H); \(^{13}\)C-NMR
(100 MHz, DMSO-d\(_6\), ppm) 112.5, 121.0, 125.3, 125.7, 126.8, 126.8, 127.5, 129.9,
131.7, 132.0, 135.0, 148.6, 151.5, 153.8, 156.3, 162.3; HRMS (ESI): calculated
421.0174. [M+Na]\(^+\), \(\text{C}_{19}\text{H}_{12}\text{BrN}_{5}\text{O}_{2}\)Na\(^+\), found 444.9536.
3.6.3 2-(4-Fluorophenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123c). A mixture of 4-chloro-2-(4-fluorophenyl)quinazoline 121c (300.00 mg, 1.16 mmol), sulphuric acid 20-drops and 2-amino-3-nitropyridine 122 (177.48 mg, 1.28 mmol) afforded 123c as yellow solid (260.00 mg, 92%), m.p. 273.8 – 274.8 °C; FTIR (νmax) 426, 496, 540, 685, 735, 763, 802, 840, 940, 1019, 1110, 1149, 1233, 1321, 1446, 1518, 1580, 1667, 3090, 3463; 1H-NMR (400 MHz, DMSO-d6, ppm) 6.73-6.76 (dd, J = 4.4 Hz and 4.4 Hz, 1H), 7.39 (t, J = 17.6 Hz, 2H), 7.52 (t, J = 15.2 Hz, 1H), 7.74 (d, J = 8 Hz, 1H), 7.84 (t, J = 15.6 Hz, 1H), 7.89 (s, 1H), 8.15 (d, J = 7.6 Hz, 1H), 8.14-8.23 (m, 2H), 8.38 (t, J = 11.6 Hz, 1H), 12.58 (s, 1H); 13C-NMR (100 MHz, DMSO-d6, ppm) 113.0, 115.7 (d, 2JCF = 21.8 Hz), 121.3, 126.3, 127.1, 127.2, 127.9, 129.3 (d, 4JCF = 2.9 Hz), 130.4 (d, 3JCF = 9.2 Hz), 135.1, 135.4, 149.1, 151.9, 154.2, 156.7, 164.2 (d, 1JCF = 249.4 Hz); HRMS (ESI): calculated 361.0975, [M]+, C19H12FN5O2+, found 361.0641.

3.6.4 2-(4-Nitrophenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123d). A mixture of 4-chloro-2-(4-nitrophenyl)quinazoline 121d (300.00 mg, 1.05 mmol), sulphuric acid 20-drops and 2-amino-3-nitropyridine 122 (160.70 mg, 1.16 mmol) afforded 123d as yellow solid (180.00 mg, 66%), m.p. 269.2 – 271.2 °C; FTIR (νmax) 501, 539, 762, 802, 820, 941, 1030, 1070, 1099, 1149, 1175, 1241, 1440, 1410, 1515, 1561, 1598, 1674, 3133, 3462; 1H-NMR (400 MHz, DMSO-d6, ppm); 6.73-6.76 (dd, J = 4.53 Hz and J =
4.59 Hz, 1H), 7.57 (t, J = 15.27 Hz, 1H), 7.79 (d, J = 7.63 Hz, 1H), 7.87 (t, J = 15.27 Hz, 1H), 7.93 (s, 1H), 8.18 (d, J = 7.63 Hz, 1H), 7.86-8.44 (m, 6H), 12.89 (s, 1H); 13C-NMR (100 MHz, DMSO-d₆, ppm) 112.5, 121.3, 123.7, 126, 127.8, 127.7, 129.3, 135.0, 139.1, 148.9, 151.3, 153.8, 156.3, 162.7; HRMS (ESI): calculated 388.0920, [M+Na]⁺, C₁₉H₁₂N₆O₄Na⁺, found 411.0530.

3.6.5 2-(4-Methoxyphenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123e). A mixture of 4-chloro-2-(4-methoxyphenyl)quinazoline 121e (300.00 mg, 1.11 mmol), sulphuric acid 20-drops and 2-amino-3-nitropyridine 122 (169.59 mg, 1.22 mmol) afforded 123e as yellow solid (240.00 g, 84%), m.p. 262.4 – 264.4 °C; FTIR(νmax) 423, 504, 540, 575, 611, 762, 835, 940, 1119, 1244, 1291, 1415, 1441, 1483, 1517, 1558, 1599, 1668, 2994, 3464; ¹H-NMR(400 MHz, DMSO-d₆) 3.85 (s, 3H), 6.73-6.76 (dd, J = 4.67 Hz and J = 4.47 Hz, 1H), 7.09 (d, J = 9.14 Hz, 2H), 7.49 (t, J = 17.97 Hz, 1H), 7.70 (d, J = 8.36 Hz, 1H), 7.82 (t, J = 15.36 Hz, 1H), 7.91 (s, 1H), 8.13 (d, J = 8.36 Hz, 1H), 8.19 (d, J = 9.14 Hz, 2H), 8.20-8.40 (m, 1H), 12.43 (s, 1H); ¹³C-NMR(100 MHz, DMSO-d₆) 55.5, 112.5, 114.0, 120.7, 124.8, 125.9, 126.2, 126.8, 127.3, 129.5, 134.6, 135.0, 149.0, 151.9, 153.8, 156.3, 161.9, 162.4; HRMS(EI): calculated 373.1175 [M⁺, C₂₀H₁₅N₅O₄⁺, found 373.1553.
3.7 Typical procedure for Sonogashira Cross-Coupling of 124a - e with ethynylpyridine

A mixture of 121 (1 equiv.), PdCl₂(PPh₃)₂ (10%), Cul (10%) and Cs₂CO₃ (2 equiv.) in 3:1 THF-water, in a round-bottom flask equipped with a stirrer bar and a condenser equipped with a balloon was flushed for 5 min with nitrogen gas. 1.5 equiv. Ethynylpyridine 124 was added to the flask at once and the mixture was flushed for an additional 10 min. The mixture was refluxed for 24 h at 65 °C under nitrogen atmosphere and then quenched with an ice cold water. The precipitate was filtered on a sintered funnel and then taken-up into dichloromethane. The solution was dried with anhydrous sodium sulfate, filtered and then evaporated under reduced pressure. The residue was recrystallised from diethyl ether to afford 4-(ethynylpyridine)quinazolines 125a – e.

3.7.1 2-(4-Chlorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125a), A mixture of 4-chloro-2-(4-chlorophenyl)quinazoline 121a (500.00 mg, 1.82 mmol), PdCl₂(PPh₃)₂ (127.00 mg, 0.18 mmol), Cul (35.00 mg, 0.18 mmol), Cs₂CO₃ (1185.99 mg, 3.64
mmol) and 4-ethynylpyridine 124 (381.05 mg, 2.73 mmol) in THF-water, 30 mL (3:1) afforded 125a as white solid (460.00 mg, 98%); m.p. 209.2 – 210.0 °C; FTIR(v_{max}) 759, 845, 881, 1024, 1228, 1433, 1537, 2221; 1H-NMR (400 MHz, CDCl$_3$, ppm) 7.50 (d, $J = 8.4$ Hz, 2H), 7.61 (d, $J = 5.2$ Hz, 2H), 7.69 (d, $J = 14.8$ Hz, 1H), 7.95 (t, $J = 14.8$ Hz, 1H), 8.10 (d, $J = 8.4$ Hz, 1H), 8.33 (d, $J = 8.4$ Hz, 1H), 8.59 (d, $J = 8.4$ Hz, 2H), 8.74 (d, $J = 5.2$ Hz, 2H); 13C-NMR (100 MHz, CDCl$_3$, ppm) 88.8, 93.7, 123.8, 125.9, 126.1, 128.2, 128.9, 129.2, 129.4, 130.0, 134.7, 136.0, 137.1, 150.1, 151.0, 151.1, 151.9, 159.9; HRMS(ESI): calculated 341.0720, [MH]$^+$, C$_{21}$H$_{12}$BrN$_3$+, found 342.0787.

3.7.2 2-(4-Bromophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125b), A mixture of 2-(4-bromophenyl)-4-chloroquinazoline 121b (500.00 mg, 1.56 mmol), PdCl$_2$(PPh$_3$)$_2$ (110.00 mg, 0.16 mmol), Cul (30 mg, 0.16 mmol), Cs$_2$CO$_3$ (1016.56 mg, 3.12 mmol) and 4-ethynylpyridine 124 (327.57 mg, 2.35 mmol) in THF-water, 30 mL (3:1) afforded 125b white solid (400.00 mg, 90%); m.p. 234.6 – 236.3 °C; FTIR(v_{max}) 767, 1005, 1023, 1264, 1336, 1532, 2225; 1H-NMR (400 MHz, CDCl$_3$, ppm) 7.60 (d, $J = 6$ Hz, 2H), 7.64–7.70 (m, 3H), 7.94 (t, $J = 16.8$ Hz, 1H), 8.10 (d, $J = 8.4$ Hz, 1H), 8.33 (d, $J = 8.4$ Hz, 1H), 8.68 (d, $J = 13.2$ Hz, 2H), 8.74 (d, $J = 6$ Hz, 2H); 13C-NMR (100 MHz, CDCl$_3$, ppm) 89.0, 93.7, 123.8, 125.7, 125.9, 126.1, 128.2, 129.1, 129.3, 130.2, 131.8, 134.7, 136.4, 150.1, 151.0, 151.9, 159.9; HRMS(ESI): calculated 386.0215, [MH]$^+$, C$_{19}$H$_{12}$BrN$_3$+, found 388.0274.
3.7.3 2-(4-Fluorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125c), A mixture of 4-chloro-2-(4-fluorophenyl)quinazoline 121c (500.00 mg, 1.93 mmol), PdCl₂(PPh₃)₂ (136.00 mg, 0.19 mmol), Cul (38.00 mg, 0.19 mmol), Cs₂CO₃ (1257.67 mg, 3.86 mmol) and 4-ethynlypyridine 124 (404.08 mg, 2.90 mmol) in THF-water, 30 mL (3:1) afforded 125c white solid (0.39 g, 94%); m.p. 197.6 – 199.2 °C; FTIR(νmax) 758, 819, 925, 1147, 1270, 1336, 1537, 2220; ¹H-NMR (400 MHz, CDCl₃, ppm) 7.20 (t, JHF = 27.6 Hz, 2H), 7.60 (d, J = 6 Hz, 2H), 7.67 (t, J = 16.4 Hz, 1H), 7.94 (t, J = 16.4 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H), 8.41-8.67 (m, 2H), 8.73 (d, J = 6 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃, ppm) 88.9, 93.6, 115.6 (d, JCF = 21.5 Hz), 123.7, 126.0, 128.0, 129.1, 129.4, 130.8 (d, JCF = 8.7 Hz), 133.7 (d, JCF = 2.9 Hz), 134.7, 150.2, 151.5, 160.0, 164.7 (d, JCF = 247.6 Hz); HRMS(ESI): calculated 325.1015, [MH]+, C₂₁H₁₂FN₃+, found 326.1082.

3.7.4 2-(4-Nitrophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125d), A mixture of 4-chloro-2-(4-nitrophenyl)quinazoline 121d (500.00 mg, 1.75 mmol), PdCl₂(PPh₃)₂ (123.00 mg, 0.18 mmol), Cul (33.00 mg, 0.18 mmol), Cs₂CO₃ (1140.37 mg, 3.50 mmol) and 4-ethynlypyridine 124 (367.10 mg, 2.63 mmol) in THF-water, 30 mL (3:1) afforded 125d white solid (390.00 mg, 94%); m.p. 272.7 – 274.8 °C; FTIR(νmax) 714,
819, 930, 1215, 1250, 13338, 1592, 2207; 1H-NMR (400 MHz, CDCl$_3$, ppm) 7.61 (d, J = 5.60 Hz, 2H), 7.76 (t, J = 14.62 Hz, 1H), 8.01 (t, J = 15.87 Hz, 1H), 8.16 (d, J = 8.77 Hz, 1H), 8.16-8.35 (m, 3H), 8.75 (d, J = 5.01 Hz, 2H), 8.83 (d, J = 9.19 Hz, 2H); 13C-NMR (100 MHz, CDCl$_3$, ppm) 88.4, 94.1, 123.6, 123.9, 125.8, 126, 128.3, 128.4, 129.0, 129.2, 129.3, 134.9, 143.1, 149.1, 149.8, 150.0, 150.8, 151.9, 158.4; HRMS(ESI): calculated 352.1015, [MH]$^+$, C$_{21}$H$_{12}$N$_4$O$_4$+, found 353.1027.

![Image](image.png)

3.7.5 2-(4-Methoxyphenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125e) A mixture of 4-chloro-2-(4-nitrophenyl)quinazoline 121d (500.00 mg, 1.85 mmol), PdCl$_2$(PPh$_3$)$_2$ (130 mg, 0.19 mmol), CuI (35.00 mg, 0.19 mmol), Cs$_2$CO$_3$ (1205.53 mg, 3.70 mmol) and 4-ethynylpyridine124 (388.03 mg, 2.78 mmol) in THF-water, 30 mL (3:1) afforded 125d yellow solid (495.00 mg, 79 %) ; m.p. 202.6 – 204.6 °C; FTIR(ν_{max}) 761, 818, 924, 1161, 1252, 1360, 1468, 1535, 2219; 1H-NMR (400 MHz, CDCl$_3$, ppm) 3.88 (s, 3H), 7.03 (d, J = 8.87 Hz, 2H), 7.58-7.62 (m, 15.97 Hz, 3H), 7.88 (t, J = 15.08 Hz, 1H), 8.05 (d, J = 8.87 Hz, 1H), 8.27 (d, J = 8.87 Hz, 1H), 8.57 (d, J = 8.87 Hz, 2H), 8.72 (d, J = 3.52 Hz, 2H); 13C-NMR (100 MHz, CDCl$_3$, ppm) 55.4, 89, 93.2, 113.9, 123.4, 125.9, 126, 127.4, 129.5, 130.1, 130.3, 134.4, 150.1, 151.1, 151.6, 160.6, 161.9; HRMS(ESI): calculated 337.0215, [MH]$^+$, C$_{22}$H$_{15}$N$_3$O$,^+$ found 338.1286.
3.8 Synthesis of [(η⁶-p-cymene)RuCl₂-4-(ethynylpyridine)quinazolines] 126a – e

To a 250 mL Schlenk flask, a mixture of 125 (2.25 equiv.) and dichloro-(p-cymene)-ruthenium (II) dimer 38 (1 equiv.) was heated to reflux in hexane for 5 h, after which stirring was continued for 12 h at room temperature, the precipitate was collected on a filter-paper and washed thoroughly with methanol and diethyl ether to afford 126a – e.

3.8.1 [(η⁶-p-cymene)RuCl₂-2-(4-chlorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline] (126a), A mixture of 2-(4-chlorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline 125a (125.40 mg, 0.37 mmol) and dichloro-(p-cymene)-ruthenium(II) dimer 38 (100.00 mg, 0.16 mmol) in hexane 30 mL afforded 126a as orange solid (94.31 mg, 90%); m.p 402.2 – 404.1 °C; FTIR(νmax) 768, 834, 937, 1149, 1270, 1339, 1601, 2218, 2962; ¹H-NMR (400 MHz, CDCl₃, ppm) 1.33 (d, J = 6.8 Hz, 6H), 2.13 (s, 3H), 3.01 (sep, J = 28.8 Hz, 1H), 5.27 (d, J = 5.6 Hz, 2H), 5.45 (d, J = 6 Hz, 2H), 7.60 (d, J = 6Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.71 (t, J = Hz, 1H), 7.97 (t, J = Hz, 1H), 8.11 (d, J = 8 Hz, 1H), 8.27 (d, J = 8 Hz, 1H), 8.50 (d, J = 8.8 Hz, 2H), 9.16 (d, J = 6.4 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃, ppm) 18.4, 22.3, 30.9, 58.4, 82.3, 83.1, 91.7, 97.3, 103.7,
123.7, 125.8, 125.9, 126.6, 128.5, 129.2, 130.2, 131.2, 131.8, 134.9, 136.3, 151.1, 155.0, 159.9; HRMS(ESI): calculated 647.02 [M-Cl]+, C31H2635Cl2N3Ru+, found 611.1852.

\[
\begin{align*}
\text{126b} \\
\end{align*}
\]

3.8.2 [(η⁶-p-cymene)RuCl₂-2-(4-bromo phenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline] (126b), A mixture of 2-(4-bromo phenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline 125b (151.75, 0.37 mmol) and dichloro-(p-cymene)-ruthenium(II) dimer 38 (100.00 mg, 0.16 mmol) in hexane 30 mL afforded 126b as orange solid (76.01 mg, 67%); m.p >450 °C; FTIR(νmax) 733, 869, 1007, 1171, 1338, 1449, 1536, 1562, 1604, 2219, 2966; ¹H-NMR (400 MHz, CDCl₃, ppm) 1.33 (br-s, 6H), 2.14 (br-s, 3H), 3.01 (br-s, 1H), 5.27 (br-s, 2H), 5.49 (br-s, 2H), 7.60 (br-s, 1H), 7.66 (d, J = 7.2 Hz, 4H), 7.96 (br-s, 1H), 8.11 (d, J = 4.4 Hz, 1H), 8.27 (br-s, 1H), 8.50 (d, J = 6.4 Hz, 2H), 9.17 (br-s, 2H); ¹³C-NMR (100 MHz, CDCl₃, ppm) 18.4, 22.3, 30.7, 82.4, 83.1, 91.7, 91.8, 97.4, 103.8, 123.8, 125.8, 126.0, 126.6, 128.5, 129.2, 130.2, 131.2, 131.9, 134.9, 136.3, 151.1, 151.2, 155.1, 159.9; HRMS(ESI): calculated 692.44, [M-Cl]+, C₃₁H₂₆⁷⁹Br₃⁻Cl₅N₃Ru+, found 656.0060.

\[
\begin{align*}
\text{126c} \\
\end{align*}
\]

3.8.3 [(η⁶-p-cymene)RuCl₂-2-(4-fluorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline] (126c), A mixture of 2-(4-fluorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline 125c (119.40 mg, 0.37 mmol) and dichloro-(p-cymene)-ruthenium(II) dimer 38 (100.00 mg, 0.16 mmol) in hexane 30 mL afforded 126c as orange solid (82.46 mg, 80%); m.p >
410 °C; FTIR(v_{max}) 770, 841, 936, 1151, 1264, 1338, 1537, 1813, 2021, 2359, 2963;
\(^1\)H-NMR (400 MHz, CDCl\(_3\), ppm) 1.31 (d, J = 7.2 Hz, 6H), 2.11 (s, 3H), 2.98 (sep, J = 26.5 Hz, 1H), 5.27 (d, J = 6 Hz, 2H), 5.48 (d, J = 6 Hz, 2H), 7.16-7.21 (m, 2H), 7.57 (d, J = 6.4 Hz, 2H), 7.67 (t, J = 14.4 Hz, 1H), 7.93 (t, J = 16.4 Hz, 1H), 8.06 (d, J = 4 Hz, 1H), 8.24 (d, J = 8 Hz, 1H), 8.25-8.62 (m, 2H), 9.14 (d, J = 6 Hz, 2H)
\(^13\)C-NMR (100 MHz, CDCl\(_3\), ppm) 18.3, 22.3, 30.7, 82.2, 83, 91.7, 91.6, 97.4, 103.6, 115.6 (d, \(J_{CF} = 21.7\) Hz), 123.5, 125.9, 126.6, 130.0, 130.7 (d, \(J_{CF} = 8.6\) Hz), 133.5 (d, \(J_{CF} = 2.8\) Hz), 134.8, 150.1, 155.0, 159.9, 164.7 (d, \(J_{CF} = 250\) Hz); HRMS(ESI): calculated 631.05, [M-p-cymene\]^+\, C\(_{21}\)H\(_{13}\)Cl\(_2\)FN\(_3\)Ru\(^+\), found 497.0965.

![image](126d)

3.8.4 [(η\(^6\)-p-cymene)RuCl\(_2\)-2-(4-nitrophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline] (126d) A mixture of 2-(4-nitrophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline 125d (129.31 mg, 0.37 mmol) and dichloro-(p-cymene)-ruthenium(II) dimer 38 (100.00 mg, 0.16 mmol) in hexane 30 mL afforded 126d as orange solid (86.60 mg, 81%); m.p > 410 °C; FTIR(v_{max}) 714, 833, 937, 1192, 1338, 1520, 1578, 1778, 2210, 2962; 1H-NMR (400 MHz, CDCl\(_3\), ppm) 1.32 (d, J = 7.2 Hz, 6H), 2.13 (s, 3H), 3.01 (sep, J = 28.8 Hz, 1H), 5.27 (d, J = 6 Hz, 2H), 5.49 (d, J = 6 Hz, 2H), 7.35 (m, J = 18.4 Hz, 3H), 7.60 (t, J = 14.8 Hz, 1H), 8.01 (t, J = 14.8 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.35 (d, J = 8.4 Hz, 2H), 9.17 (d, J = 6.6 Hz, 2H); 13C-NMR (100 MHz, CDCl\(_3\), ppm) 18.4, 22.3, 30.7, 82.3, 83.1, 91.3, 97.4, 103.7, 123.8, 126.0, 126.2, 126.6, 129.3, 123.5, 131.0, 135.1, 135.3, 143.1, 149.3, 150.2, 151.0, 155.1, 158.6; HRMS(ESI): calculated 658.05, [M-Cl\]^+\, C\(_{31}\)H\(_{28}\)ClN\(_4\)O\(_2\)Ru\(^+\), found 622.0796.
[(η⁶-p-cymene)RuCl₂-2-(4-methoxy-phenyl)-4-(2-(pyridin-4-yl)-ethynyl)-quinazoline] (126e). A mixture of 2-(4-methoxyphenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline 125e (123.82 mg, 0.37 mmol) and dichloro-(p-cymene)-ruthenium(II) dimer 38 (100.00 mg, 0.16 mmol) in hexane 30 mL afforded 126e as orange solid (74.41 mg, 71%); m.p 410 °C; FTIR (v max) 714, 829, 930, 1169, 1250, 1354, 1574, 1605, 1774, 2210, 2962; ¹H-NMR (400 MHz, CDCl₃, ppm) 1.32 (d, J = 6.8 Hz, 6H), 2.13 (s, 3H), 3.01 (sep, J = 27.6 Hz, 1H), 3.89 (s, 3H), 5.27 (d, J = 6 Hz, 2H), 5.48 (d, J = 6 Hz, 2H), 7.03 (d, J = 8.8 Hz, 2H), 7.59 (d, J = 6.4 Hz, 2H), 7.63 (t, J = 15.2 Hz, 1H), 7.91 (t, J = 14.8 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 8.22 (d, J = 8.8 Hz, 1H), 8.56 (d, J = 8.8 Hz, 2H), 9.15 (d, J = 6.8 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃, ppm) 18.3, 22.3, 30.7, 55.4, 82.3, 83.0, 91.3, 91.9, 97.3, 103.7, 114.0, 123.4, 125.8, 126.6, 127.7, 129.0, 130.0, 130.3, 131.3, 151.0, 151.2, 155, 160.7, 162; HRMS (ESI), calculated 643.07, [M-Cl]+, C₃₂H₂₉₃₅ClN₃₃ORu+, found 607.1059.

3.9 Molecular docking of compounds 119a – d, 123a – e, 125a – e

The molecular docking calculations were achieved using the Schrodinger-2018-1 LLC interface, employing Maestro 11.5 database. All ligands and proteins in the induced-fit docking job were prepared at physiological pH 7.4 using Epik. The conformational search for all ligands was done using optimised potentials for liquid simulations (OPLS_2005) employing water as a solvent. The induced-fit docking (IFD) experiment was run on extra-precision (XP), wherein residues within ligand poses were refined at 5 Å and all ligands were re-docked into structures within 30 Kcal/mol of the best structure, and within the top 20 structures overall.
3.10 In vitro anti-Mycobacterium tuberculosis activity of compounds 119a – d, 121a – e, 123a – e, 125a – e and 126a – e.

3.10.1 Broth micro-dilution method

The inhibitory activity against *Mycobacterium tuberculosis* was achieved at the University of Cape Town, drug discovery and development centre (H3-D), following broth micro-dilution method. The broth micro-dilution method allows a range of antibiotic concentrations to be tested on a single 96-well microtitre plate in order to determine the minimum inhibitory concentration (MIC). Briefly, a 10 mL culture of a mutant *Mtb* (H37Rv) strain constitutively expressing recombinant alamar blue assay of a plasmid integrated at the *attB* locus is grown to an OD600 of 0.6–0.7. The *Mtb*. H37Rv strain culture is then diluted 1:100 in 7H9 GLU CAS TX. In a 96-well microtitre plate, 50 μL of 7H9 GLU CAS TX medium is added to all wells from Rows 2-12. The compounds to be tested are added to Row 2-12 in duplicate, at a final concentration of 640 μM (stocks are made up to a concentration of 12.8 mM in DMSO, and diluted to 640 μM in 7H9 GLU CAS TX medium). A two-fold serial dilution is prepared, by transferring 50 μL of the liquid in Row 1 and 2 to mix. 50 μL of the liquid in Row 2 is then transferred to Row 3 and aspirated. The procedure is repeated until Row 12 is reached, from which 50 μL of the liquid is discarded to bring the final volume in all wells to 50 μL. Finally, 50 μL of the 1:100 diluted *Mtb* cultures are added to all wells in Rows 2-12. Row 1 serves as a contamination control which includes media, 5% DMSO and rifampicin. The microtitre plate is stored in a secondary container and incubated at 37 °C with humidifier to prevent evaporation of the liquid. The lowest concentration of compounds which inhibit growth of more than 90% of the bacterial population is considered to be the MIC$_{90}$ and MIC$_{99}$. The pellet data is reported as visual score and calculated MIC during 7 and 14 day post inoculation [8].

Reference

CHAPTER 4: RESULTS AND DISCUSSION

Bidentate Schiff base ligands of the N^4N type were synthesised in good yields and their respective metal coordinated complexes where M is Zn(II) were also attempted. This was later followed by the synthesis of ethynylpyridine bridged quinozaline organic moiety derivatives which were coordinated to monomeric μ-cymene ruthenium(II) centre.

4.1 Synthesis of ethanamineimidazolyl-Schiff base ligands and their reaction with M(II) metals

The retrosynthetic analysis strategy for the synthesis of the target ligands 119a-d to be coordinated to metal centres Ru/Zn is shown below in Scheme 4.1.

![Scheme 4.1: Retrosynthetic strategy for the synthesis of the proposed ethanamineimidazolyl Schiff base complex.](image)

$R = -H, -OH, -F, -NO_2$

Schiff base ligands are generally accessible by following a direct acid or base catalysed condensation reaction between aldehyde derivatives and primary amine in the presence of a drying agent (MgSO_4, Na_2SO_4 and NaHCO_3) [1]. The drying agent in this case helps in absorbing the water molecules from the reaction and in-turn form an alkaline solution which does not temper with the progression of the reaction [2]. On the other hand, metal complexes of Schiff bases are formed by treating metal salts with stoichiometric amount of the ligand under moisture free conditions depending on the nature of the ligand and the metal salt employed in the reaction [3].
The synthesis of Schiff base derivatives 119a-d was initiated by a trial series of acid catalysed reactions. A reaction of para-substituted aldehyde derivatives 73a-d, histamine dihydrochloride 43, formic acid 5 - 10% (7 - 12 drops) and sodium hydrogen carbonate (NaHCO₃) in dry methanol while stirring at room temperature for 24 h was unsuccessful. Only starting materials, i.e. aldehyde 73a-d and the histamine dihydrochloride 43, were isolated. Further attempts using different acids such as hydrochloric acid (HCl, 5 - 10%) [5], sulphuric acid (H₂SO₄, 5 - 10%) [6] and acetic acid (CH₃COOH, 5 - 10%) [7] yielded trace amount of the desired product. Reaction of the aldehydes (73a-d) and histamine in basic conditions i.e. triethylamine solution (TEA) showed the formation of the expected product. However, purification was a challenge as chromatographic purification techniques (prep-TLC and column chromatography) proved detrimental to the ligands. The Schiff base ligands cannot be purified using column/ preparative thin layer chromatographic (TLC) techniques, as they are moisture sensitive and undergo hydrolysis. The imidazoyl-ethanamine Schiff base ligands 119a-d were successfully synthesised by condensation of the para-substituted (-F, -NO₂, -H and –OH) aldehyde derivatives 73a-d and histamine dihydrochloride 43 in the presence of sodium hydroxide (NaOH) [4]. Histamine dihydrochloride 43 was neutralised with NaOH in methanol for 2 hrs to give a colourless methanolic reaction mixture 43*. The reaction mixture was then added dropwise to a methanolic aldehyde solution equipped with a stirrer bar and stirred for 15 minutes before adding NaHCO₃. The reaction mixture was stired for 24 h at room temperature, after which Schiff base derivatives 119a-d were isolated in high yields ranging from 94 – 98%, Scheme 4.2.

\[\text{Reagents and solutions: (i) NaOH, MeOH, rt, 2h, (ii) MeOH, rt, 24h.} \]

\[\text{Scheme 4.2: Reaction scheme for the synthesis of Schiff base ligands 119a-d.} \]
A representative ligand, 4-((E)-(2-(1H-imidazol-4-yl)ethylimino)methyl)phenol 119b is here described. The 1H-NMR spectrum (Figure 4.1) reveals the presence of an expected set of two singlets and doublets corresponding to the imidazolyl protons and the symmetrical aromatic protons respectively in the region (δ$_H$ 6.74 – 7.60 ppm). Another expected set of two triplets relatively upfield both integrating for 2H each while the slightly de-shielded –CH$_2^b$ of the ethanamine group resonating at δ 3.80 ppm (J = 14.00 Hz) is also observed. An intense singlet of the imine proton at δ 8.05 ppm confirms the condensation between 4-hydroxybenzaldehyde derivative 73b and histamine 43. The presence of the azomethine group (–CH=N–) was further confirmed using the 1H-1H COSY experiment. The spectrum revealed a correlation between the imine proton and the de-shielded triplet –CH$_2^b$ (correlation peak circled red, (Figure 4.2)). The 1H-HMBC spectrum (Figure 4.3) revealed a correlation between the imine hydrogen (red circles) and the carbon of the –CH$_2^b$ group resonating at 63 ppm via 4J-spin coupling. The FTIR spectrum (Figure 4.4) of the 4-((E)-(2-(1H-imidazol-4-yl)ethylimino)methyl)phenol 119b revealed the azomethine group (–CH=N–) at 1668 cm$^{-1}$ further confirming the presence of the (–CH=N–) link. Similar findings of other derivatives summarised in Table 4.1.

Table 4.1: Summarised characterisation of compounds 119a-d.

<table>
<thead>
<tr>
<th>119</th>
<th>R</th>
<th>Imine proton (ppm)</th>
<th>v_{max} (–CH=N–) link (cm$^{-1}$)</th>
<th>%yield</th>
<th>mp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-H</td>
<td>8.243</td>
<td>1696</td>
<td>94</td>
<td>247.4 – 248.6</td>
</tr>
<tr>
<td>b</td>
<td>-OH</td>
<td>8.048</td>
<td>1668</td>
<td>97</td>
<td>262.5 – 263.1</td>
</tr>
<tr>
<td>c</td>
<td>-F</td>
<td>8.229</td>
<td>1666</td>
<td>95</td>
<td>284.9 – 286.1</td>
</tr>
<tr>
<td>d</td>
<td>-NO2</td>
<td>8.375</td>
<td>1628</td>
<td>98</td>
<td>266.2 – 267.4</td>
</tr>
</tbody>
</table>
Figure 4.1: 1H-NMR spectrum of 119b in MeOD-d_3 at 400 MHz.
Figure 4.2: 1H-1H-COSY spectrum of 119b in MeOD-d_3 at 400 MHz.
Figure 4.3: Expanded 2D-HMBC spectrum of 119b in MeOD-d_3 at 400 MHz.
Figure 4.4: FTIR spectrum of 119b.
4.2. Attempted synthesis of novel Zn(II)-N^N-Schiff base complexes.

Coordination of Schiff base ligand (119c) to ZnCl₂ salt was attempted following literature method [8] in 100 % HPLC grade methanol by adding 1:1 mmol of (E)-N-(4-fluorobenzylidene)-2-(1H-imidazol-4-yl)ethanamine 119c and ZnCl₂. The progress of reaction was monitored at room temperature in an NMR-tube for between 12 h and 24 h by ¹H-NMR. The ¹H-NMR spectra below indicate a loss in multiplicity from Figure 4.5a-c because the zinc has a spin 5/2 (l = 5/2) with a natural abundance of 4.102 %. From the ¹H-NMR, we observed signs of product formation as the –CH₂ and the imine proton both shifting downfield from the original chemical shift position of the ligand, i.e. from 3.87 ppm to 4.0 ppm and 8.23 ppm to 8.65 ppm. This effect is due to the electron donation imine nitrogen towards the metal centre. We also observe that, as the coordination to the metal centre proceeds, the ligand suffers decomposition as the aldehydic proton at 10.01 ppm and the two triplets peaks from the phenyl of the aldehyde in the aromatic region 7.01 ppm and 7.81 ppm reappear, which corresponds to the commercial starting material. Before the aforedescribed observation, a trial series of coordination reactions to the ZnCl₂ metal centre were investigated for ligands 119a-d. In the first attempt, ligands 119a-d were separately reacted with ZnCl₂ (1:1 mmol) in methanol at room temperature for 12 h. To our dismay, all variations gave a mixture of the aldehyde derivatives with histamine. We then investigated the effect of temperature, wherein we heated the reaction mixture to reflux (70-75 °C) under nitrogen atmosphere for 24 h. To our disappointment the ¹H-NMR spectrum obtained was difficult to interpret as the data observed yielded unresolved broad peaks. We then reasoned that perhaps the poor results are due to the ZnCl₂ being subjected to moisture and would then prove detrimental to the ligands while stirriling in methanol. To avert this misfortune, the ZnCl₂ was oven-dried at 120 °C and used immediately thereof. Even with this measure, the reaction presented yielded undesirable spectral data. We then changed the zinc salt to zinc(II) acetate and repeated the above mentioned trials. However, to our dismay, a similar trend was observed across all ligands i.e. decomposition of the Schiff base ligand to give and aldehyde derivative and histamine.
Figure 4.5: Overlaid 1H-NMR spectra of ligand (119c) and the attempted reaction time for complexation by ZnCl$_2$ after 12 h (green) and 24 h (red).
4.3. Synthesis of quinazoline derivatives

The retrosynthetic analysis strategy for the synthesis of the target ligands 125a – e for coordination to the monomeric p-cymene Ru(II) piano stool centre is shown below in Scheme 4.3 (except ligands 123a – e).

\[
\begin{align*}
\text{R} = & \ -\text{Cl}, -\text{Br}, -\text{F}, -\text{NO}_2, -\text{OMe.}
\end{align*}
\]

Scheme 4.3: Retrosynthetic strategy for the synthesis of the proposed 4-pyridyl-quinazoline ligands.

4.3.1 Synthesis of 2-aryl-quinazolin-4(3H)-ones

Compounds 120a – e, were synthesised following a literature procedure [9]. The first requirement under this investigation was to synthesise the 2-aryl-quinazolin-4(3H)-ones 120a – e to be used as substrates for the requisites 2-aryl-4-chloroquinazolines 121a – e. To acquire the desired 2-aryl-quinazolin-4(3H)-ones 120a – e, we performed a one-pot procedure through oxidative cyclocondensation of anthranilamide 68 with para-substituted benzaldehyde derivatives (73c – d, 73a’, 73b’ and 73c’) in the presence of molecular iodine (2 equiv.) in ethanol at 80 °C (Scheme 4.4).
Reagents and conditions: (i) \(\text{I}_2 \) (2 equiv.), EtOH, 80 °C, 6 h.

Scheme 4.4: Iodine-promoted oxidative cyclocondensation of anthranilamide with aldehyde derivatives.

The molecular iodine serves as a promoter to effect cyclocondensation and oxidation reactions by introducing dehydrogenation on the \(N-3 \) position [10]. The quinoxalin-4(3H)-one framework is generally accessible through a dehydrogenation reaction of 2,3-dihyquinoxalin-4(1H)-one precursors by treating the latter with oxidants in large excess of DDQ [10] and KMnO\(_4\) [11]. Other synthetic methods include a one-pot procedure wherein a direct cyclocondensation between anthranilamide 68 and aldehyde derivatives 73 is catalysed by DDQ [12] or NaHSO\(_2\) [13]. The literature procedure followed, induces keto-enol tautomerism, wherein the enol (quinoxalinol-minor) is favoured at high temperatures (70-100 °C) and the keto (quinoxalineone-major) oppositely, is favoured at low temperatures (≤ 20 °C) [9]. The tautomerism in this case was avoided by cooling the reaction vessel to room temperature and later bleaching with an ice-cold saturated sodium metabisulphate (\(\text{Na}_2\text{S}_2\text{O}_5 \)). The synthesised compounds 120a – e, were characterised using \(^1\)H-NMR, \(^{13}\)C-NMR, FTIR and melting point techniques. The \(^1\)H-NMR spectra of compounds 120a – e revealed the presence of a broad singlet at 12.75 ppm corresponding to the N-H proton of the alpha-nitrogen. Further expected protons in the aromatic region ranging from 7.53 – 8.20 ppm are assigned to the 2-phenyl substituent and the quinoxaline backbone (Figure 4.6). The amide nature of the compounds are confirmed by FTIR due to the presence of C-N and C=O in the reagions \(\nu_{\text{max}} \) 1531 – 1583 cm\(^{-1}\) and \(\nu_{\text{max}} \) 1656 – 1691 cm\(^{-1}\), respectively. The melting points recorded are consistent with those reported in literature [14].
Table 4.2: Summarised characterisation of compounds 120a – e.

<table>
<thead>
<tr>
<th>120</th>
<th>R</th>
<th>(v_{\text{max}}) C=O (cm(^{-1}))</th>
<th>(v_{\text{max}}) C-N (cm(^{-1}))</th>
<th>% Yield</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4-Cl</td>
<td>1606</td>
<td>1531</td>
<td>87</td>
<td>295.2 – 297., lit (298 – 299) [14]</td>
</tr>
<tr>
<td>b</td>
<td>4-Br</td>
<td>1656</td>
<td>1544</td>
<td>91</td>
<td>>350, lit (>350) [14]</td>
</tr>
<tr>
<td>c</td>
<td>4-F</td>
<td>1605</td>
<td>1555</td>
<td>93</td>
<td>261.3 – 263.2, lit (257 – 259) [14]</td>
</tr>
<tr>
<td>d</td>
<td>4-NO(_2)</td>
<td>1601</td>
<td>1583</td>
<td>90</td>
<td>> 300, lit (>300) [14]</td>
</tr>
<tr>
<td>e</td>
<td>4-OMe</td>
<td>1691</td>
<td>1566</td>
<td>93</td>
<td>242.7 – 243.4, lit (240 – 241) [14]</td>
</tr>
</tbody>
</table>

Figure 4.6: \(^1\)H-NMR spectrum for compound 120b.

4.3.2 Synthesis of 2-aryl-4-chloro-quinazolines

The next step was to generate an electrophilic centre at the 4-position of the scaffolds 2-aryl-quinazolin-4(3\(H\))-ones 120a – e through oxidative aromatisation to afford the 2-aryl-4-chloro-quinazolines 121a – e. The compounds 121a – e were successfully
synthesised following literature procedure [9], wherein the scaffolds 2-aryl-quinazolin-4(3H)-ones \(120a - e\) were treated with excess thionyl chloride using DMF as a solvent. The reaction was driven to completion by refluxing at 100 °C for 4 h (Scheme 4.5). The full conversion of the latter was confirmed by the absence of an N-H signal on the \(^1\)H-NMR spectra of compounds \(121a - e\). The FTIR spectra of the compounds \(121a - e\) revealed the absence of the C=O stretch thus confirming formation of the \(C(4)-Cl\) bond. Upon obtaining the requisites \(121a - e\), we decided to explore the 4-position through dechloro-amination (section 4.3.3) and Sonogashira-cross coupling (section 4.3.4). Both functionalities were successfully achieved and the compounds were characterised by \(^1\)H-NMR, \(^{13}\)C-NMR, FTIR spectroscopy and HRMS.

Reagents and conditions: (i) \(\text{SOCl}_2\), DMF, 100 °C, 4 h.

Scheme 4.5: Oxidative aromatisation of 2-aryl-4chloro-quinazolines in \(\text{SOCl}_2\)

Table 4.3. Summarised characterisation of compounds \(121a - e\).

<table>
<thead>
<tr>
<th>121</th>
<th>R</th>
<th>% Yield</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4-Cl</td>
<td>88</td>
<td>143.2 – 145.4</td>
</tr>
<tr>
<td>b</td>
<td>4-Br</td>
<td>93</td>
<td>151.7 – 153.4</td>
</tr>
<tr>
<td>c</td>
<td>4-F</td>
<td>90</td>
<td>137.2 – 139.3, lit (139 – 141) [15]</td>
</tr>
<tr>
<td>d</td>
<td>4-NO₂</td>
<td>84</td>
<td>148.1 – 150.2</td>
</tr>
<tr>
<td>e</td>
<td>4-OMe</td>
<td>89</td>
<td>144.3 – 146.6</td>
</tr>
</tbody>
</table>
4.3.3 Dechloro-amination of 2-aryl-4chboro-quinazolines 121a – e

The Synthesis of 2-aryl-N-(3-nitropyridin-2-yl)quinazolin-4-amine 123a – e was achieved through a modified procedure of Paumo and co-workers [16]. The orginal literature procedure employs a combination of THF-i-PrOH and HCl. The HCl protonates the N-1 position of the 4-chloroquinazolines and renders the hetercyclic ring electron deficient and C-4 more electrophilic. Based on this observation, we employed 122 and 121b in the conditions of the literature procedure, unfortunately the reaction yielded trace amounts of the desired product. The reason for undesired yield was due to the poor solubility of 122 in the solvent mixture i.e. THF-i-PrOH. To improve the solubility, a mixture of THF-DMF (3:1) together with 98% Sulfuric acid serving as a catalyst was applied to afford 123a - e (Scheme 4.6). The formation of compounds 123a - e was confirmed by the appearance of an N-H signal at 12.6 ppm as observed on the represenative ¹H-NMR spectrum (Figure 4.8). The presence of the N-H was further confirmed by a signal in the region 3461-3464 cm⁻¹ on IR. Furthermore, the FTIR spectra of compounds 123a - e reflected bands for (C-N) at 1666 cm⁻¹. These type of compounds are easily distinguished by ¹H and ¹³C-NMR spectroscopic techniques from the preceding substrates. Ligand 123b is here described, from the ¹H-NMR spectrum (Figure 4.8), additional signals showing multiplicities of dd, br-s and a multiplet in the aromatic region from 6.73 ppm to 8.4 ppm are observed. From

![Figure 4.7: ¹H-NMR spectrum of compound 121b.](image-url)
the 13C-NMR (Figure 4.9), we observe the quaternary carbon (20-C) of the nitro-deshielded group resonating at 149 ppm. Furthermore, the molecular ion of the mass spectra revealed the absence of the M+ and M2+ but instead HMRS (ESI+) revealed M+Na (444.9536) for 123b. Similar findings were observed for 123d (411.0530). However for 123a HRMS (ESI+) revealed only C$_{19}$H$_{12}$N$_5$O$_2$+ indicating replacement of the 4-Cl, due to the absence of chlorine isotopes (m/z 35 and 37).

![Diagram of chemical reaction](image)

Reagents and conditions: (i) 98% sulphuric acid, TH-DMF, 70 °C, 5 h.

Scheme 4.6: De-chloro amination of 2-aryl-4chloro-quinazolines 121a-e.

Table 4.4: Summarised characterisation of compounds 123a – e.

<table>
<thead>
<tr>
<th>123</th>
<th>R</th>
<th>N-H v_{max} cm$^{-1}$</th>
<th>% Yield</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4-Cl</td>
<td>3461</td>
<td>95%</td>
<td>281.2 – 282.1</td>
</tr>
<tr>
<td>b</td>
<td>4-Br</td>
<td>3462</td>
<td>78%</td>
<td>292.1 – 284.1</td>
</tr>
<tr>
<td>c</td>
<td>4-F</td>
<td>3463</td>
<td>92%</td>
<td>273.8 – 274.8</td>
</tr>
<tr>
<td>d</td>
<td>4-NO$_2$</td>
<td>3462</td>
<td>66%</td>
<td>269.2 – 271.2</td>
</tr>
<tr>
<td>e</td>
<td>4-OMe</td>
<td>3464</td>
<td>84%</td>
<td>262.4 – 264.4</td>
</tr>
</tbody>
</table>
Figure 4.8: 1H-NMR spectrum of compound 123b.

Figure 4.9: 13C-NMR spectrum of compound 123b.
4.3.4. Sonogashira cross-coupling of 2-aryl-4chloro-quinazolines 121a – e.

The final step in the synthesis of ligands for coordination was to perform Sonogashira cross-coupling reaction on the C(4)-Cl position of the 2-aryl-4chloro-quinazolines 121a – e. The choice of Sonogashira cross-coupling in this case, is to create a two-carbon spacer forming a linear bridge to minimise steric hindrance when coordinating to the monomeric p-cymene Ru(II) piano stool centre. Prior to this step, the substrate 4-ethynylpyridine 124 was successfully coupled following Sonogashira using palladium-catalysed coupling reactions (Scheme 4.7). Comparatively, there are few reported cases of Sonogashira coupling reactions between 4-chloroquinazolines and terminal alkynes to significant cases of Suzuki-Miyaura coupling [17]. Accordingly, 4-chloro-2-arylquinazoline was varied with groups such as (R = -Br, -Cl, -F, -NO\textsubscript{2} and -OMe) on the para position of the phenyl ring on the 2-position.

\[\text{Reagents and conditions: (i) PdCl}_2(P\text{Ph}_3)_2, \text{CuI, Cs}_2\text{CO}_3, \text{THF-water (3:1), 65 }^\circ\text{C, 24 h} \]

Scheme 4.7: Sonogashira cross-coupling of 2-aryl-4chloro-quinazolines 121a – e with 4-ethynylpyridine

Our first attempt in the application of Sonogashira cross-coupling conditions at the 4-chloroquinazoline, we employed Pd(PPh\textsubscript{3})\textsubscript{4}, CuI, E\textsubscript{t}3N and 1.5 equiv of 4-ethynylpyridine in dry THF at mild temperatures (40-60 °C). Unfortunately we isolated only the starting material 121a and 124 along with E\textsubscript{t}3N. The Pd(0) source, tetrakis(triphenylphosphine)palladium(0) is air and moisture sentive, therefore proving difficult to employ for Sonogashira cross-coupling. We then substituted the palladium source with PdCl\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2} and kept the other reagents constant, unfortunately this attempt led to recovery of starting material. Further attempts in high boiling solvent such as DMF and Dioxane were also unsuccessful. These results were attributed to E\textsubscript{t}3N not being basic enough to deprotonate the terminal alkyne that should in turn
give an anionic nucleophile to form the copper acetylide [18]. Trace amounts of our desired product were obtained when using K$_2$CO$_3$, Na$_2$CO$_3$ and NaOH as our base during coupling. Since the Sonogashira reaction mechanism requires a relatively strong base to deprotonate the terminal acetylene 124, we then opted for Cs$_2$CO$_3$. In a one-pot, 4-Chloro-2-(4-chlorophenyl)quinazoline 121a (1 equiv.) was reacted with PdCl$_2$(PPh$_3$)$_2$ (10%), CuI (10%) and Cs$_2$CO$_3$ (2 equiv.) in 3:1 THF-water, the reaction was left to stir for 24 h at mild heat (40-60 °C) under N$_2$. To our delight we isolated 98% of 125a after recrystallisation from diethyl ether. Synthesis of ligands 125b – e followed that of 125a while varying the para-position of the 2-aryl group. The formation of 125a - e was confirmed using 1H and 13C-NMR. Ligand 125b is here described, on the 1H-NMR spectrum (Figure 4.10) we observed additional two additional doublet peaks resonating at 7.60 (18-H) and 8.74 ppm (19-H). On the 13C-NMR spectrum (figure 4.11) additional carbons of the two-carbon spacer resonate at 88.216 (15-C) and 93.712 (16-C) ppm are observed. Further characterisation using FTIR spectroscopy showed the presence of Csp-Csp band at v_{max} 2219.44 cm$^{-1}$.

Table 4.5: Summarised characterisation of compounds 125a – e.

<table>
<thead>
<tr>
<th>125</th>
<th>R</th>
<th>v_{max} Csp-Csp cm$^{-1}$</th>
<th>% Yield</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4-Cl</td>
<td>2219.92</td>
<td>98</td>
<td>209.2 – 210.0</td>
</tr>
<tr>
<td>b</td>
<td>4-Br</td>
<td>2219.44</td>
<td>90</td>
<td>234.6 – 236.3</td>
</tr>
<tr>
<td>c</td>
<td>4-F</td>
<td>2220.15</td>
<td>94</td>
<td>197.6 – 199.2</td>
</tr>
<tr>
<td>d</td>
<td>4-NO$_2$</td>
<td>2219.71</td>
<td>94</td>
<td>272.7 – 274.8</td>
</tr>
<tr>
<td>e</td>
<td>4-OMe</td>
<td>2218.70</td>
<td>79</td>
<td>202.6 – 204.6</td>
</tr>
</tbody>
</table>
Figure 4.10: 1H-NMR spectrum of compound 125b.

Figure 4.11: 13C-NMR spectrum of compound 125b.
4.3.5. Coordination of ligands 125a – e to monomeric p-cymene Ru(II) piano stool centre to yield 126a – e.

Three-legged piano-stool Ru(II)/Ru(III) bearing an arene, p-cymene, cyclopentadienyl and heterocyclic caps have come under intense exploration due to their interesting anticancer, anti-metastatic and anti-proliferative properties [19]. These type of complexes are accessible by refluxing a ruthenium dimer and the ligand of interest in a polar solvent [20]. Some ligands however, adopt a double replacement of the lateral chlorine ligands to form a cationic complex which is balanced by anionic counterion. Castonguay and co-workers [21] reported similar complexes wherein, two letrozole ligands were coordinated to monomeric piano-stool arene Ru(II) complex by refluxing in dichloromethane (DCM). The authors reasoned that characterisation of the complex using NMR techniques, 1H-NMR in particular, was less straightforward as the letrozole ligands were found to be labile in CDCl$_3$. This then facilitated replacement of one letrozole ligand by a chloride counterion of the requisite Ru(II) dimer.

Herein, ethynylpyridine-bridged Ru(II)-p-cymene bis-chloride complexes were successfully synthesised following a modified procedure reported by Saez and co-workers [22], i.e. instead of refluxing the Ru(II) dimer and ligand in methanol, the antecedent reagents were heated to reflux in hexane for 5 hrs to obtain 126a – e in good yields 67 – 90%. The complexes were characterised using NMR (1H, 13C and HMBC) and HRMS.

![Reagents and solutions: Hexane, 60 °C, 5 hrs, rt, 12 hrs.

Scheme 4.8: One-pot synthesis of quinazoline monomeric p-cymene Ru(II) piano stool centre.](image)
Two representative complexes (126c and 126e) are here described in details. Complex 126e was characterised using 1H-NMR (Figure 4.12). From the 1H-NMR we were able to differentiate the complex (126e) from its preceding substrate 125e due to the addition of p-cymene protons within the region 1.320 – 5.483 ppm. The upfield peak resonating at 1.320 ppm is assigned to the two methyl groups 26-H which is spin-couples (1H-1H) with 27-H to give an intense doublet (3J$_{H,H} = 6.8$ Hz) peak. The neighbouring singlet at 2.125 ppm is assigned to 21-H and the peak at 2.996 ppm is assigned to 27-H which spin-couples with the two germinal methyl groups to give a septet (3J$_{H,H} = 27.6$ Hz). Furthermore, the two set of doublets (2J$_{H,H} = 6$ Hz) around 5.2 and 5.4 ppm are assigned to symmetrical protons 23-H and 24-H. The carbons on the cymene ligand (Figure 4.13) all resonate relatively upfield within the region 18.276 – 83.022 ppm except the two quartenary carbons 22-C and 25-C. Further interpretations on the 1H-NMR and 13C-NMR spectra include the de-shielding effect brought by coordination to Ru(II) centre. In 1988, Orellana and co-workers [23] reported a study based on coordination induced shifts (CIS) wherein their study involved ruthenium(II) tris chelates containing pyridyl heterocyclic ligands. During their investigation, they assigned factors that affect CIS, calculated as CIS = $\delta$$_{complexed}$ - $\delta$$_{free}$, to be σ-donation, π-back donation, magnetic anisotropy of surrounding ligands, residual paramagnetism and solvent variation. All 13C and 1H-NMR assignments for 126e are summarised in Table 4.5a. In this investigation, almost all the 1H and 13C nuclei are de-shielded, this is due to the σ-donation by the 2-(4-methoxyphenyl) group, which in turn promotes de-shielding of the protons and carbons on the quinazoline backbone. Noticeable de-shielded protons and carbons are 20-H and 20-C which are de-shielded by 0.428 and 4.9 ppm respectively. More de-shielded groups include the quaternary carbons (16 and 17-C) of the ethynylpyridine bridge, with a CIS of 8.59 and 10.54 ppm respectively.
Figure 4.12: 1H-NMR spectrum of compound 126e.
Figure 4.13: 13C-NMR spectrum of compound 126e.
Similar to complex 126e, 126c was analysed for CIS effect. The 1H-NMR spectrum (Figure 4.14) of 126c shows expected additions of cymene protons within the region 1.304 - 5.487 ppm. Within the same line as complex 126e, the intense doublet ($J_{H,H} = 7.2$ Hz) is assigned to 25-H germinal methyl groups, the singlet peak at 2.108 ppm is assigned to 20-H. The septet peak at 2.975 ppm is assigned to proton 26-H ($J_{H,H} = 7.2$ Hz).
26.5 Hz). The two set of doublets ($J_{HH} = 6$ Hz) resonating around 5.4 ppm are assigned to the symmetrical protons 22, 23-H. The carbons on the cymene ligand (Figure 4.15) resonate relatively upfield within the region 18.254 – 83.020 ppm except the two quartenary carbons 21-C and 24-C. The CIS calculations for complex 126c gave a great deal of variation (Table 4.5b), as almost all the protons and carbons on the quinazoline backbone are shielded upon coordination to the Ru(II) centre, the reason for this unexpected transition could be due to the electron withdrawing effect of 2-(4-fluorophenyl). However, the quaternary carbons 15 and 16-C carbons of the ethynylbridge, are de-shielded by 8.47 and 9.99 ppm respectively and the same applies to the symmetrical protons and carbons (19-H and 19-C) of the pyridyl group, which have a CIS of 0.405 and 4.8 ppm respectively.

Figure 4.14: 1H-NMR spectrum of compound 126c.
Figure 4.15: 13C-NMR spectrum of compound 126c.
Table 4.6b: 1H and 13C coordination induced shifts for Ru(II) complex 126c

<table>
<thead>
<tr>
<th>#</th>
<th>Complexed ligand</th>
<th>Free ligand</th>
<th>1H-CIS (ppm)</th>
<th>Complexed</th>
<th>Free</th>
<th>13C-CIS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>159.83</td>
<td>160.00</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>150.05</td>
<td>151.86</td>
<td>-1.81</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.668</td>
<td>7.667</td>
<td>0.001</td>
<td>125.87</td>
<td>126.11</td>
<td>-0.24</td>
</tr>
<tr>
<td>6</td>
<td>7.928</td>
<td>7.936</td>
<td>-0.008</td>
<td>129.01</td>
<td>128.02</td>
<td>0.99</td>
</tr>
<tr>
<td>7</td>
<td>8.06</td>
<td>8.093</td>
<td>-0.876</td>
<td>134.84</td>
<td>134.67</td>
<td>0.17</td>
</tr>
<tr>
<td>8</td>
<td>8.238</td>
<td>8.322</td>
<td>-0.084</td>
<td>128.39</td>
<td>129.13</td>
<td>-0.74</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>151.06</td>
<td>151.13</td>
<td>-0.07</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>131.10</td>
<td>129.41</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>133.47</td>
<td>133.73</td>
<td>-0.26</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7.187</td>
<td>7.201</td>
<td>-0.014</td>
<td>130.72</td>
<td>130.83</td>
<td>-0.11</td>
</tr>
<tr>
<td>13</td>
<td>8.590</td>
<td>8.641</td>
<td>-0.051</td>
<td>115.58</td>
<td>115.62</td>
<td>-0.04</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>164.74</td>
<td>164.85</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>97.40</td>
<td>88.93</td>
<td>8.47</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>103.60</td>
<td>93.61</td>
<td>9.99</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>123.52</td>
<td>123.72</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7.572</td>
<td>7.602</td>
<td>-0.03</td>
<td>126.57</td>
<td>125.93</td>
<td>0.64</td>
</tr>
<tr>
<td>19</td>
<td>9.139</td>
<td>8.734</td>
<td>0.405</td>
<td>154.97</td>
<td>150.17</td>
<td>4.8</td>
</tr>
</tbody>
</table>

The pyridyl 19-H (20-H) and 19-C (20-C) hydrogen and carbon atoms show great shifts after coordination to Ru(II) centre. Coordination induced shifts for complexes 126a-e are summarised on Table 4.6c.
Table 4.6c. Summarised selected 1H and 13C shifts for complexes 126a-e.

<table>
<thead>
<tr>
<th>126</th>
<th>R</th>
<th>%Yield</th>
<th>1H-shift (ppm) (19-H (20-H))</th>
<th>13C-shift (ppm) (19-C(20-C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-Cl</td>
<td>90</td>
<td>9.160</td>
<td>155.03</td>
</tr>
<tr>
<td>b</td>
<td>-Br</td>
<td>67</td>
<td>9.170</td>
<td>155.07</td>
</tr>
<tr>
<td>c</td>
<td>-F</td>
<td>80</td>
<td>9.139</td>
<td>154.97</td>
</tr>
<tr>
<td>d</td>
<td>-NO$_2$</td>
<td>81</td>
<td>9.165</td>
<td>155.06</td>
</tr>
<tr>
<td>e</td>
<td>-OMe</td>
<td>71</td>
<td>9.147</td>
<td>154.95</td>
</tr>
</tbody>
</table>

N.B 20-H and 20-C refer only to complex 126e

In order to establish the connectivities between the proton and carbon nuclei of the cymene group and the ethynylpyridine quinazoline ligand, we performed a long range 2D 1H-13C-HMBC experiment for complex 126e. The 2D-HMBC spectrum below (Figure 4.16), revealed interesting 1-9J$_{CH}$ couplings between the cymene group and the ethynylpyridine quinazoline, especially for protons and carbons along the ethynyl bridge. An intense correlation between protons 24, 23-H and carbon 26-C interact through a 1J$_{CH}$ coupling. A significant correlation between 24-H, 23-H and the ethynyl carbon 17-C through 9J$_{CH}$ coupling is observed. Similarly, another significant proton 21-H correlation with carbon 21-C through 1J$_{CH}$ coupling, 24-C through 4J$_{CH}$ and with 16-C through 8J$_{CH}$ coupling is also observed. Proton 27-H correlates with carbon 16-C through 9J$_{CH}$ coupling. Further correlations observed for long range couplings are viewed as 23-H shares a strong correlation with ethynyl carbon 16-C through 8J$_{CH}$ coupling, but shares a weak interaction with 17-C through 9J$_{CH}$ coupling. By the same note, 24-H shares a strong correlation with 17-C through 8J$_{CH}$ coupling and a weak correlation with 16-C through 9J$_{CH}$ coupling. The observed 8J$_{CH}$ and 9J$_{CH}$ coupling are mainly due to the pi-connection system which reduces the bond lengths between the carbons and therefore facilitates longer range coupling. Further correlations linking the cymene and the ethynylpyridine bridge are observed as 19-H symmetrical hydrogens interact with quaternary carbon 22-C. These correlations are confirmed for complex 126c on Figure 4.17.
Figure 4.16. 2D 1H-13C-HMBC correlations for Ru(II) complex 126e.
4.3.6 Conclusion

Ethanamine Schiff base ligands of the N^NN type were synthesised in good yield in a basic medium, attempted coordination of ligand 119b to zinc chloride showed a hint of formation as the reaction was carried out in NMR tube while monitoring during 12 and 24 h period using 1H-NMR. Unfortunately the reaction proceedings showed decomposition of ligand 119b. The requisite 2-aryl-4-chloro-quinazolines served as a substrate for dechloro-amination and sonogashira cross-coupling reaction at $C(4)$-Cl position which afforded 4-(pyridylamino) and 4-(ethynylpyridine)quinazolines in good yields. Successful coordination to Ru(II) p-cymene centre was achieved and the complexes were isolated in good yield. The newly synthesised Ru(II) complexes
showed new long range couplings of J_{CH}. Furthermore coordination induced shifts were observed across all ligands with different para-substituent of –Br, -Cl, -OMe, -F and –NO$_2$.

Reference

5.1 Molecular docking

The molecular docking calculations were done using the Schrodinger-2018-1 LLC interface, employing Maestro 11.5 database. All ligands and proteins in the induced-fit docking (IFD) job were prepared at physiological pH 7.4 using Epik. The conformational search for all ligands was done using optimised potentials for liquid simulations (OPLS_2005) employing water as a solvent. The IFD experiment was run on extra-precision (XP), wherein residues within ligand poses were refined at 5 Å and all ligands were re-docked into structures within 30 Kcal/mol of the best structure, and within the top 20 structures overall.

Induced-fit docking (IFD) of compounds 119a-d, 123a-e and 125a-e using GLIDE was performed to better understand the anticancer and anti-Mycobacterium tuberculosis (Mtb) activity of the ligands. The molecular docking calculations give a docking or glide score. The glide score is defined as an empirical scoring function designed to maximise separation of compounds with strong binding (more negative) affinity from those with little to no binding ability [1]. A ligand is considered to have affinity towards a protein when the docking score is higher than -5 Kcal/mol cut-off. To aid this study, the compounds were inductively docked into the active pockets of glutamine synthetase (PDB:1HTO) for Mtb, tyrosine kinase (PDB:2SRC) and oxidoreductase (PDB:3F8P) for cancer.

5.1.1 Induced fit docking of compounds 119a-d, 123e and 125e into glutamine synthetase (1HTO) receptor grid.

Glutamine synthetase (PDB:1HTO) is an enzyme essential for cellular nitrogen metabolism and plays a role in both glutamine biosynthesis and ammonia assimilation [2]. Glutamine synthetase (GS) has emerged as a potential target for pharmacological target for tuberculosis therapy due to the critical role it plays in nitrogen metabolism in plays in prokaryotes [3]. Synthetic pyridine derivatives such as isoniazid (first line tuberculosis drug) are reported to inhibit Glutamine synthetase [4] which catalyses the ATP-dependent condensation of ammonium and L-glutamate at the amino acid binding site, resulting in the formation of glnA1 essential for the growth of Mtb in both in vitro
and in vivo [4]. Any disturbance at the amino acid binding site will in turn breakdown cell wall biosynthesis [5] thus leading to cell death. The ligand-protein interacts are described below.

The 2-dimensional (2D) and 3-dimensional (3D) docked poses of compounds 119a-d, 123e and 125e are represented in Figures 5.1a-m below. The ethanamine-Schiff base ligands (119a-d) appear to undergo protonation at the imine group at pH 7.4, which therefore renders all ligands in the receptor grid as positively charged. The docking poses of the ligands in the 1HTO-receptor grid occupy the polar (blue), hydrophobic (green) and electronegative (red) pockets in the α- and β-sheets. Figures 5.1a-m below indicate increased polar, hydrophobic, electronegative and glycine (H-bond, π-π-stacking, π-cation and salt bridge) interactions existing across all ligands with the 1HTO amino-acid sequence TYR125, TRP275, PHE225, LYS208 and HIE271, ASP404 and ARG366.

Ligand 119a exhibits a glide score of -9.972 Kcal/mol wherein the pre-mentioned intermolecular π-π interaction from TRP275 is due to the fused-phenyl ring of the indole group, the π-cation interaction is due to the fused-pyrrole ring of TRP275, PHE225 phenyl ring and the para-methoxy phenyl ring of the TYR125 Fig.5.1a.

Figure 5.1a and 5.1b: Docking screen (left) and 2D ligand interaction diagram (right) of 119a in 1HTO.

Ligand 119b on the other hand exhibits a glide score of -9.634 Kcal/mol wherein the π–π interaction from PHE225 is due to the phenyl ring of the latter. The H-bond interaction is due to the carbonyl group of HIE271, as the oxygen of the carbonyl group acts as a hydrogen bond acceptor. Interactions with the polar nitrogen of the imidazolyl group on ligand 119b and LYS208 are of H-bond acceptor due to the π-electrons on
the nitrogen and the \(\pi \)-cation interactions are due to the fused-pyrrole ring of TRP275, PHE225 phenyl ring and the para-methoxy phenyl ring of the TYR125 Fig.5.1c.

Figure 5.1c and 5.1d: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119b in 1HTO.

Ligand 119c exhibits a glide score of -10.040 Kcal/mol. The observed interactions stem from \(\pi-\pi \) interactions of between PHE225 phenyl ring and the para-fluoro phenyl ring of the ligand 119c. Further interactions from TYR125 show a H-bond acceptor between the para-methoxy group of TYR125 and \(-\text{NH}\) group of the imidazolyl group on ligand 119c. The \(\pi \)-cation interactions are due to the fused-pyrrole ring of TRP275, PHE225 phenyl ring and the para-methoxy phenyl ring of the TYR125 Fig.5.1e

Figure 5.1e and 5.1f: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119c in 1HTO.

The best pose for ligand 119d revealed the absence of \(\pi-\pi \) interactions. Instead we view a \(\pi \)-cation interaction between with a glide score of -8.679 Kcal/mol the para-nitro phenyl ring of ligand 119d and the phenyl ring of PHE225. The interaction with TYR125 owes to the para-methoxy group of the H-bond acceptor from the \(-\text{NH}\) group
of the imidazolyl ring on ligand 119d. Added π-cation interactions from the cationic imine group of ligand 119d are due to indole ring of TRP275 and the para-methoxy phenyl ring of the TYR125 Fig.5.1g. Comparative docking score for the imidazolyl-ethanime Schiff base ligands 119a-d are summarised on Table 5.1 below.

Figure 5.1g and 5.1h: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119d in 1HTO.

Table 5.1: Summarised docking scores for ligands 119a-d (1HTO).

<table>
<thead>
<tr>
<th>Ligand entry#</th>
<th>Docking score (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>119a</td>
<td>-9.972</td>
</tr>
<tr>
<td>119b</td>
<td>-9.634</td>
</tr>
<tr>
<td>119c</td>
<td>-10.040</td>
</tr>
<tr>
<td>119d</td>
<td>-8.697</td>
</tr>
</tbody>
</table>

The ethynylpyridine cross-coupled ligand 125e was found to give the best pose in the glycine, polar and hydrophobic pockets between α- and β-sheets to give a docking score of -9.176 Kcal/mol. The ligand interacts with the protein through π-π stacking and H-bond acceptor. The π-π interactions are due to the fused pyrimidine and aromatic quinazoline framework and the two rings link phenyl backbone of PHE225. Further π-π stacking arise from the interaction between the bridged pyridine and tailing pyrrole ring of HIE271. The H-bond acceptor is due to the para-methoxy group of the ligand 125e and –NH2 group of LYS208 Fig. 5.1i. The docking scores of ligands 125a, 125b, 125c and 125d are here mentioned as -7.566, -6.935, -7.240 and -7.143 Kcal/mol respectively. Comparative docking score for the ethynylpyridine quinazoline ligands 125a-e are summarised on Table 5.2.
Figure 5.1i and 5.1k: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 125e in 1HTO.

Table 5.2: Summarised docking scores for ligands 125a-e (1HTO).

<table>
<thead>
<tr>
<th>Ligand entry#</th>
<th>Docking score (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125a</td>
<td>-7.566</td>
</tr>
<tr>
<td>125b</td>
<td>-6.935</td>
</tr>
<tr>
<td>125c</td>
<td>-7.240</td>
</tr>
<tr>
<td>125d</td>
<td>-7.143</td>
</tr>
<tr>
<td>125e</td>
<td>-9.176</td>
</tr>
</tbody>
</table>

Ligand 123e gave the best pose in the electrophilic, hydrophobic and polar pockets of α- and β-sheets to give a glide score of -7.650 Kcal/mol. The terminal carboxyl and carboxamide groups of electronegative ASP404 interact with the anionic oxygen of the nitro group through a salt bridge, while the –NH group of the ligand interacts with the latter through H-bond acceptor. More interactions are observed for the methoxy group of the ligand and the interactions observed are of H-bond acceptor, the lone pairs of electrons on the oxygen interact with germinal –NH₂ hydrogens of ARG366 and the free water molecules of the receptor. The water molecules help fix the ligand in the binding site within the receptor grid Fig.5.1l. The docking scores for ligands 123a, 123b, 123c and 123d are here mentioned as -7.413, -6.653, -6.250 and -6.409 Kcal/mol respectively. Comparative docking scores for the pyridylamino quinazoline ligands 123a-e are summarised on Table 5.3 below.
Figure 5.1l and 5.1m: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 123e in 1HTO.

Table 5.3: Summarised docking scores for ligands 123a-e (1HTO).

<table>
<thead>
<tr>
<th>Ligand entry#</th>
<th>Docking score (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123a</td>
<td>-7.413</td>
</tr>
<tr>
<td>123b</td>
<td>-6.653</td>
</tr>
<tr>
<td>123c</td>
<td>-6.250</td>
</tr>
<tr>
<td>123d</td>
<td>-6.409</td>
</tr>
<tr>
<td>123e</td>
<td>-7.650</td>
</tr>
</tbody>
</table>

5.1.2 Induced fit docking of compounds 119a-d, into oxidoreductase (PDB:3F8P) receptor grid.

Oxidoreductase (PDB:3F8P) is an enzyme from the protein kinase family and it is overexpressed in breast, liver, gastrointestinal tract and kidney cancer [6]. This enzyme is responsible for catalysing oxidation and reduction reactions in cells. Moreover, the enzyme is responsible for both aerobic and anaerobic metabolisms which aid glycolysis, TCA cycle, oxidative phosphorylation and amino acid metabolism [7]. In cancer cells, oxidoreductase is expressed as xanthine oxidoreductase (XOR) and it links with uric acid to proliferate and transform cells to speed the progression of metastasis. Metastasis is described as the development of secondary malignant tumours distant from the site of cancer cells. The XOR and uric acid effect is reported to promote metabolic syndromes. Metabolic syndromes are defined as neoplastic complications that lead to blood pressure, high blood sugar and uncontrollable cholesterol levels. These complications are reported to have anti-therapeutic
protective outcomes [8]. In this light, targeting the active site of this enzyme (3F8P) represent an ideal approach in combating the proliferation of cancer cells. The ligand-protein interactions are described below.

The 2-dimensional (2D) and 3-dimensional (3D) docked poses of compounds 119a-d, 123e and 125e are represented in Figures 5.2a-h below. The docking poses of the ligands in the 3F8P-receptor grid occupy the polar (blue), hydrophobic (green), electronegative (red) and glycine (grey) pockets in the α- and β-sheets. Figures 5.2a-h below indicate increased polar, hydrophobic, electronegative and glycine (H-bond, π-π stacking, π-cation and salt bridge) interactions existing across all ligands with the 3F8P amino-acid sequence VAL92, GLN51, PHE225, LYS124 and GLU46.

In this fit, ligand 119b exhibits a glide score of -9.221 Kcal/mol. The docking screen, Fig.5.2a depicts ligand interactions occurring in the hydrophobic and glycine pockets within the β-sheets. The ligand interacts with the protein through H-bond acceptor and donor. The H-bond is due to double interaction from carboxamide –NH₂ groups of GLN51. The polar nitrogen of the imidazolyl group of the ligand accesses this interaction through the free lone pair of electrons. Similarly, the hydroxyl group of the ligand accesses the –NH₂ group of VAL92 through the readily accessible lone pair of electrons from the oxygen atom Fig.26a. Similar docking scores of ligands 119a, 119c and 119d are here mentioned -7.425, -7.033 and -6.035 Kcal/mol respectively. Comparative docking scores for the imidazolyl-ethanime Schiff base ligands 119a-d are summarised on Table 5.4.

Figure 5.2a and 5.2b: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119b in 3F8P.
Table 5.4: Summarised docking scores for ligands 119a-d (3F8P).

<table>
<thead>
<tr>
<th>Ligand entry#</th>
<th>Docking score (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>119a</td>
<td>-7.425</td>
</tr>
<tr>
<td>119b</td>
<td>-9.221</td>
</tr>
<tr>
<td>119c</td>
<td>-7.033</td>
</tr>
<tr>
<td>119d</td>
<td>-6.035</td>
</tr>
</tbody>
</table>

Ligand 123c gave a glide score of -9.441 Kcal/mol. Protein to ligand interactions are observed in the electrophilic, hydrophobic and polar pockets of β-sheets. The interactions observed include π-cation, π-π, H-bond donor and acceptor and salt bridging. The π-cation (red lines) and π-π interactions (green lines) are due to interactions between cationic nitro group, pyrimide group of the quinazoline framework and the phenyl group of hydrophobic PHE225. Furthermore, π-cation interactions are due to the 2-(4-fluorophenyl) group of the ligand and the tailing –NH₂ group of polar LYS124. The H-bond acceptor is due to the pyridyl nitrogen of the ligand and the –NH group of VAL92. The H-bond donor interaction is due to –NH group of ligand and carbonyl group of VAL92. The salt-bridges are interactions resulting from cationic nitrogen of -NO₂ of the ligand interacting with electronegative GLU46 and the anionic oxygen of –NO₂ of the ligand which interacts with the –NH₂ group of polar LYS124.

Figure 5.2c and 5.2d: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 123c in 3F8P.
Table 5.5: Summarised docking scores for ligands 123a-e (3F8P).

<table>
<thead>
<tr>
<th>Ligand entry#</th>
<th>Docking score (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123a</td>
<td>-5.709</td>
</tr>
<tr>
<td>123b</td>
<td>-5.743</td>
</tr>
<tr>
<td>123c</td>
<td>-9.441</td>
</tr>
<tr>
<td>123d</td>
<td>-5.738</td>
</tr>
<tr>
<td>123e</td>
<td>-6.341</td>
</tr>
</tbody>
</table>

Ligand 125a exhibited a glide score of -9.107 Kcal/mol. The interactions are observed in the electronegative and glycine pockets of the α-sheets. However, increased H-bond acceptor and π-cation interactions are observed in the glycine pocket. The π-cation interaction results from the double interaction of quinazoline framework with tailing –NH₂ group of polar LYS124. The H-bond acceptor is due to interaction between N-1 and –NH₂ group of GLN51 carboxamide group. Further H-bond acceptor interaction results from the terminal nitrogen of ethynlypyridine and –NH group of hydrophobic VAL92 Fig.5.2e.

Figure 5.2e and 5.2f: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 125a in 3F8P.

Ligand 125c gave a glide score of -10.043 Kcal/mol. Interactions for this ligand are found in the polar, hydrophobic and electronegative pockets of α-sheets. However, interactions of H-bond acceptor and π-cation are observed in the polar and electronegative pockets. The H-bond acceptor is due to interaction between –NH₃ groups of VAL92 and GLN51 for N-1 and pyridyl nitrogen retrospectively. The π-cation is due to interaction between -NH₂ group of polar LYS124 and fused phenyl group of
the quinazoline framework Fig.5.2g. Comparative docking scores for the ethynylpyridine quinazolines ligands 125a-e are summarised in Table 5.6 below.

Figure 5.2g and 5.2h: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 125c in 3F8P.

Table 5.6: Summarised docking scores for ligands 125a-e (3F8P).

<table>
<thead>
<tr>
<th>Ligand entry#</th>
<th>Docking score (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125a</td>
<td>-9.0107</td>
</tr>
<tr>
<td>125b</td>
<td>-8.165</td>
</tr>
<tr>
<td>125c</td>
<td>-10.043</td>
</tr>
<tr>
<td>125d</td>
<td>-8.522</td>
</tr>
<tr>
<td>125e</td>
<td>-8.362</td>
</tr>
</tbody>
</table>

5.1.3 Induced fit docking of compounds 119a-d into Tyrosine kinase (2SRC) receptor grid.

Tyrosine kinases are a subclass of protein kinase family. They are responsible for the transfer of phosphate groups from adenosine triphosphate (ATP) to cellular proteins. They function as an “on” or “off” switch in modulation of growth factor signalling [9]. This signal transduction process helps the rapid widespread of cancer cells [10]. Compounds designed to specifically fit in the active site of tyrosine kinase compete with the ATP binding site of the catalytic domain. Blocking the ATP phosphate transfer results in reduced multiplication of cancer cells and minimises metastasis [11]. The ligand-protein interactions are described below.

124
The 2-dimensional (2D) and 3-dimensional (3D) docked poses of compounds 119a-d are represented in Figures 5.3a-h below. Ligands 119a and 119c were found to give good docking scores when protonated at pH 7.4. The docking poses of the ligands in the 2SRC-receptor grid occupy the polar (blue), hydrophobic (green) and electronegative (red), glycine (grey) pockets in the α- and β-sheets. Figures 5.3a-h below indicate increased polar, hydrophobic, electronegative and glycine (H-bond, π-π-stacking, π-cation and salt bridge) interactions existing across all ligands with the 2SRC amino-acid sequence PHE225, ASP404, GLU339, MET341, ALA390, VAL323.

In this investigation, ligand 119a exhibits a glide score of -8.901 Kcal/mol. The ligand-protein interaction is found in the electronegative and hydrophobic pockets of the receptor within the β-sheets. The ligand interacts with the receptor through π-π stacking, H-bond acceptor and salt-bridge linking. The π-π stacking interaction is due to the phenyl ring of PHE405 and phenyl ring of ligand, the salt-bridge is due to the cationic imino group which interacts with the hydroxyl group of ASP404 carboxyl backbone. The H-bond is through interaction between carboxamide backbone of electronegative GLU339, as the oxygen of the latter acts as hydrogen acceptor of amine hydrogen emanating from imidazolyl group of ligand 119a, Fig.5.3a.

Figure 5.3a and 5.3b: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119a in 2SRC.

Ligand 119b gave a glide score of -8.655 Kcal/mol. All interactions are found in the hydrophobic pocket of the receptor grid. The ligand interacts with the protein by way of H-bond acceptor and donor. The tailing hydroxyl group acts as a hydrogen acceptor for amino carboxamide hydrogen of MET341 and the imidazolyl amine hydrogen interacts with oxygen atoms on carbonyl group of ALA390 Fig.5.3c.
Figure 5.3c and 5.3d: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119b in 2SRC.

The best pose for ligand 119c was found in the polar, hydrophobic and electronegative pockets in the β-sheets. A glide score of -9.393 Kcal/mol was obtained for ligand 119c wherein ligand-protein interactions were found to exhibit salt-bridging and H-bond acceptors. The salt-bridge exists between polar and electronegative pockets. This is due to the cationic imino group of the ligand, which shows a double interaction with the carbonyl oxygen and hydroxyl hydrogen of ASP404. Further interactions observed include H-bond acceptor between –NH group of the imidazolyl group of the ligand and the carboxamide oxygen of GLU339 Fig.5.3.

Figure 5.3e and 5.3f: 3D Docking screen (left) and 2D ligand interaction diagram (right) of 119c in 2SRC.

Ligand 119d gave the best pose in the polar, hydrophobic and electronegative pockets of the β-sheets. However, the ligand-protein interactions were found in the hydrophobic pocket to give a glide score of -8.662 Kcal/mol. The interaction is through both H-bond donor and acceptor. The H-bond acceptor interaction exists between –
NH₂ group of carboxamide backbone of electronegative ASP404 and the \(sp^2 \)-
hybridised nitrogen of the imidazolyl group. The H-bond donor exists between the
amino group of the imidazolyl group of ligand and the carboxamide oxygen of
hydrophobic VAL323 Fig. 5.3g. Comparative docking scores for the imidazolyl-
ethanamine Schiff base ligands are summarised in Table 5.7 below.

![Figure 5.3g and 5.3h](image)

Figure 5.3g and 5.3h: 3D Docking screen (left) and 2D ligand interaction diagram
(right) of 119d in 2SRC.

Table 5.7: Summarised docking scores for ligands 119a-d (2SRC).

<table>
<thead>
<tr>
<th>Ligand entry#</th>
<th>Docking score (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>119a</td>
<td>-8.901</td>
</tr>
<tr>
<td>119b</td>
<td>-8.655</td>
</tr>
<tr>
<td>119c</td>
<td>-9.393</td>
</tr>
<tr>
<td>119d</td>
<td>-8.662</td>
</tr>
</tbody>
</table>

In this fit (2SRC), unfortunately ligands 123a – e and 125a – e showed limited binding
towards the protein receptor grid. This resulted in poor docking scores which are
summarised in Table 5.8.
Table 5.8: Summarised docking scores for ligands 123a-e and 125a-e.

<table>
<thead>
<tr>
<th>Ligand entry #</th>
<th>Docking score (Kcal/mol)</th>
<th>Ligand entry #</th>
<th>Docking score (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123a</td>
<td>-5.958</td>
<td>125a</td>
<td>-6.580</td>
</tr>
<tr>
<td>123b</td>
<td>-7.163</td>
<td>125e</td>
<td>-6.010</td>
</tr>
<tr>
<td>123c</td>
<td>-7.408</td>
<td>125c</td>
<td>-6.321</td>
</tr>
<tr>
<td>123d</td>
<td>-5.118</td>
<td>125d</td>
<td>-6.800</td>
</tr>
<tr>
<td>123e</td>
<td>-6.949</td>
<td>125e</td>
<td>-6.870</td>
</tr>
</tbody>
</table>

Computational chemistry studies are usually backed by experimental biological evaluation data [12]. In this study, the IFD study is supported by in vitro Mtb studies of ligands 119a-d, 123a-e and 125a-e in subsection 5.2.

5.2 In vitro anti-Mycobacterium tuberculosis properties of compounds 119a-d, 121a-e, 123a-e, 125a-e and 126a-e.

The in vitro anti-Mycobacterium tuberculosis activity of compounds 119a-d, 121a-e, 123a-e, 125a-e and 126a-e was performed at the drug discovery and development centre (H3-D), University of Cape Town (UCT). The biological experiments are reported as MIC₉₀ and are summarised in tables 5.9 to 5.13 for ligands 119a-d, 121a-e, 123a-e, 125a-e and 126a-e respectively prepared in DMSO. MIC₉₀ is defined as the minimum inhibitory concentration of a compound that is required to inhibit 90% growth of the bacterium. The preliminary data for in vitro anti-Mycobacterium tuberculosis was achieved using the alamar blue assay, employing GFP reporter assay 10pt. The media used includes 7H9 CAS GLU Tx and 7H9 ADC GLU Tw. Compounds were assayed within 7 day and 14 day period using the H₃₇Rv strain using Rifampicin as a reference drug. A compound was considered inactive when it showed activity at a concentration >125 µg/mL.
Table 5.9: MIC\textsubscript{90} data for GFP assay for 7 and day 14 data for compounds 119a-d

<table>
<thead>
<tr>
<th>R</th>
<th>Entry #</th>
<th>After day 7 data</th>
<th>After day 14 data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CAS</td>
<td>ADC</td>
</tr>
<tr>
<td>-H</td>
<td>119a</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>-OH</td>
<td>119b</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>-F</td>
<td>119c</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>-NO\textsubscript{2}</td>
<td>119d</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>#####</td>
<td>Rifampicin</td>
<td>0.009</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Schiff base derivatives are multifaceted compounds reported to give numerous biological applications [13]. A representative of this class of compounds in TB application is the second line drug Terizidone [14]. The ethanamine-Schiff base derivatives 119a-d, on Table 5.9 above showed no activity during the 7 and 14 day period. This inactivity is attributed to the decomposition of the compounds in DMSO as the compounds are moisture sensitive and degrade almost immediately in biological solvents, \textit{i.e} DMSO and water. Due to this, the induced fit docking results contradict that of experimental with appreciable higher glide score. In subsection 5.1.1, the compounds appeared to undergo protonation at mimicked physiological pH 7.4, this perhaps sheds light into the stability of these compounds, where pH is a factor.
Quinazoline derivatives are an important class of compounds in bio-organic chemistry, these compounds are largely applied in cancer application, where compounds such as gefitinib and erlotinib have been marketed and are currently used to treat small lung cancer [15]. In this study we explore a small structure activity relationship (SAR), the 4-chloroquinazoline derivatives (121a-e) were tested against the Mtb strain, unfortunately due to the poor solubility of these compounds in DMSO, no desirable activity was obtained.

Table 5.10: MIC₉₀ data for GFP assay for 7 and day 14 data for compounds 121a-e

<table>
<thead>
<tr>
<th>R</th>
<th>Entry #</th>
<th>After day 7 data</th>
<th>After day 14 data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CAS</td>
<td>ADC</td>
</tr>
<tr>
<td>-Cl</td>
<td>121a</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>-Br</td>
<td>121b</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>-F</td>
<td>121c</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>-NO<sub>2</sub></td>
<td>121d</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>-OMe</td>
<td>121e</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>######</td>
<td>Rifampicin</td>
<td>0.009</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Quinazoline derivatives are an important class of compounds in bio-organic chemistry, these compounds are largely applied in cancer application, where compounds such as gefitinib and erlotinib have been marketed and are currently used to treat small lung cancer [15]. In this study we explore a small structure activity relationship (SAR), the 4-chloroquinazoline derivatives (121a-e) were tested against the Mtb strain, unfortunately due to the poor solubility of these compounds in DMSO, no desirable activity was obtained.
Table 5.11: MIC90 data for GFP assay for 7 day data for compounds 123a-e

<table>
<thead>
<tr>
<th>R</th>
<th>Entry #</th>
<th>After day 7 data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CAS</td>
</tr>
<tr>
<td>-Cl</td>
<td>123a</td>
<td>>125</td>
</tr>
<tr>
<td>-Br</td>
<td>123b</td>
<td>25</td>
</tr>
<tr>
<td>-F</td>
<td>123c</td>
<td>50</td>
</tr>
<tr>
<td>-NO2</td>
<td>123d</td>
<td>50</td>
</tr>
<tr>
<td>-OMe</td>
<td>123e</td>
<td>12.5</td>
</tr>
<tr>
<td>#####</td>
<td>Rifampicin</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Compounds 123a-e were assayed for 7 days, the compounds gave promising preliminary anti-Mtb activity. These compounds however, complement the IFD data as compound 123e gave the highest docking score of -7.650 Kca/mol amongst the compounds in Table 5.11. The activity was confirmed by experimental data of the alamar blue assay as the compound gave promising activity of 12.5 and 10.698 µg/mL. The structure activity relationship (SAR) is here observed as the introduction of a pyridylamino group on the C4-position proves to have improved solubility of the compounds and activity was observed. The variation of the 4-position of the pyridylamino series shows that electron donating groups improve the activity of the compounds. This is because compounds containing halogens -Cl, -Br and –F on the 4-position of the 2-aryl substituent gave MIC90 of 17.2 µg/mL to the undesirable >125 µg/mL. However, an attachment of a 2-aryl substituent bearing a 4-NO2 gave MIC90 of 42.36 µg/mL. Good MIC90 of 10.698 µg/mL was observed when a 2-aryl substituent bearing a 4-OMe was attached. The methoxy group participates in hydrogen bonding and this helps in fixing the molecule in the receptor grid and thus improving the binding of the molecule in the active binding site. Based on this information, we further explored
the C(4)-Cl position of the pre-requisite 4-chloroquinazolines by attaching ethynylpyridine through Sonogashira cross-coupling.

Table 5.12: MIC$_{90}$ data for GFP assay for 7 and day 14 data for compounds 125a-e

<table>
<thead>
<tr>
<th>R</th>
<th>Entry #</th>
<th>After day 7 data</th>
<th>After day 14 data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CAS</td>
<td>ADC</td>
</tr>
<tr>
<td>-Cl</td>
<td>125a</td>
<td>3.355</td>
<td>23.836</td>
</tr>
<tr>
<td>-Br</td>
<td>125b</td>
<td>3.625</td>
<td>62.5</td>
</tr>
<tr>
<td>-F</td>
<td>125c</td>
<td>60.25</td>
<td>>125</td>
</tr>
<tr>
<td>-NO$_2$</td>
<td>125d</td>
<td>8.267</td>
<td>>125</td>
</tr>
<tr>
<td>-OMe</td>
<td>125e</td>
<td><0.244</td>
<td>12.102</td>
</tr>
<tr>
<td>######</td>
<td>Rifampicin</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Compounds with protruding pyridyl groups are considered suitable for application against TB [16]. Examples include first line drug isoniazid and second line drugs ethionamide and prothionamide. The 4-ethynylpyridine cross-coupled quinazoline derivatives gave the most promising preliminary in vitro anti-Mtb activity with MIC$_{90}$ ranging from 0.723 – (>125) µg/mL. From Table 5.5, compound 125d which bears a 4-NO$_2$ group on the para-position of the 2-aryl substituent gave an improved MIC$_{90}$ which increased from 42.362 µg/mL to 8.267 µg/mL. Compound 125c registered a loss in activity as the MIC$_{90}$ decreased from 30.969 µg/mL to an undesirable 60.25 µg/mL concentration. Compound 126e, which bears a methoxy group on the 4-position of the 2-aryl substituent gave the highest MIC$_{90}$ of <0.244 µg/mL. Varying the 4-position of the 2-aryl substituent appeared to negate the activity of the 4-ethynylpyridine-quinazoline series. This is because an attachment of 2-aryl
substituents with 4-Cl (compound 125a) and 4-Br (compound 125b) resulted in a drop in activity with MIC₉₀ values of 3.355 µg/mL and 3.625 µg/mL respectively. Coordination of free active ligands to monomeric piano-stool Ru(II) centre is considered to improve the bioactivity [17].

![Complex 126a-e](image)

Table 5.13: MIC₉₀ data for GFP assay for 7 and day 14 data for compounds 126a-e

<table>
<thead>
<tr>
<th>R</th>
<th>Entry #</th>
<th>After day 7 data</th>
<th>After day 14 data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CAS</td>
<td>ADC</td>
</tr>
<tr>
<td>-Cl</td>
<td>126a</td>
<td>30.439</td>
<td>>125</td>
</tr>
<tr>
<td>-Br</td>
<td>126b</td>
<td>11.279</td>
<td>>125</td>
</tr>
<tr>
<td>-F</td>
<td>126c</td>
<td>15.8</td>
<td>>125</td>
</tr>
<tr>
<td>-NO₂</td>
<td>126d</td>
<td>7.165</td>
<td>>125</td>
</tr>
<tr>
<td>-OMe</td>
<td>126e</td>
<td>8.601</td>
<td>21.865</td>
</tr>
<tr>
<td>#######</td>
<td>Rifampicin</td>
<td>0.005</td>
<td>0.001</td>
</tr>
</tbody>
</table>

In our case we coordinated ligands 125a-e to p-cymene Ru(II) with hope to increase the activity of the ligands in Table 5.12. Unfortunately, this theory did not suffice as the activity dropped lower than some of the free ligands. We observe a 3-fold drop for compounds 126a-b, whose free ligands gave MIC₉₀ of 3.355 µg/mL and 3.625 µg/mL. However, an improvement in activity was observed for complex 126c whose activity improved 4-fold from 60.25 µg/mL of the free ligand 125c to 15.8 µg/mL of the Ru(II) complex 126c. A minute improvement in activity was observed for complex 126d MIC₉₀ 7.165 µg/mL. For this slight improvement, the activity of the complex may as well be systematic as the introduction of the p-cymene Ru(II) group did not seem to effectively incline the activity of the free ligand of which MIC₉₀ was 8.267 µg/mL. For the free ligand 125e, the activity dropped from <0.244 µg/mL to 8.601 µg/mL for
complex 126e which was undesirable. The reason for a drop in activity could be reasoned as the complexes being affected by efflux, though it may be premature to state, the bulkiness of the complexes may also prevent binding within the receptor grid of the target enzymes. Thus resulting in a loss in activity.

5.3. Conclusion

The imidazolyl-ethanmine Schiff base derivatives 119a-d molecular docking investigations into cancer proteins 3F8P and 2SRC gave docking scores ranging from -6 to -9 and -8 to -10 Kcal/mol respectively. Further investigations into TB (1HTO) (Mtb) protein gave good docking scores ranging from -8 to -10 Kcal/mol. However, the in vitro screening results against Mtb H37Rv strain showed no activity due to instability of the compounds in DMSO. The 4-aminopyridyl quinazolines 123a-e gave poor docking scores ranging from -5 to -7 Kcal/mol in the cancer protein 2SRC and this is due to the limited binding in the 2SRC receptor grid. Relatively good docking scores were realised for the 3F8P cancer protein with docking scores ranging from -5 to -9 Kcal/mol. Sensible docking scores for the 123a-e series were realised for the 1HTO TB protein, with a range of -6 to -7 Kcal/mol. Within the 123a-e series, ligand 123e gave the highest docking score of -7.650 Kcal/mol. This was complemented by in vitro screening results, where the compound gave MIC90 value of 10.698 µg/mL. The ethynylpyridine quinazoline derivatives 125a-e gave poor docking scores within -6 Kcal/mol range and this is due to limited binding sites within the receptor grid. Satisfactory docking scores ranging from -8 to -10 Kcal/mol for the 3F8P cancer protein were obtained. The docking calculations into 1HTO TB protein range from -6 to -9 Kcal/mol and the in silico data complements that of in vitro as compound 125e gave the highest docking score of -9.176 Kcal/mol while the in vitro data gave MIC90 of <0.244 µg/mL. Coordination of 125a-e to monomeric piano Ru(II) p-cymene group resulted in a drop in activity towards Mtb.

The molecular docking calculations prove to be accurate in identifying possible hits in biological assays. Our data suggests that a good docking score equals good activity to some extent.
Reference

CHAPTER 6: CONCLUSIONS AND THE FUTURE PROSPECTS

Imidazolyl ethanamine Schiff base ligands of the N^N type were synthesised in good yield. Attempted coordination to ZnCl$_2$ yielded poor results due to decomposition of Schiff base ligands. The 4-pyridylamino- and 4-(ethynylpyridine)quinazoline ligands bearing R = -Cl, Br, -F, -NO$_2$ and -OMe at para position were synthesised in good yield through dechloro-amination and sonogashira cross-coupling respectively.

The 4-(ethynylpyridine)quinazoline ligands were coordinated to Ru(II)-p-cymene centre upon which the spectral characterisation by NMR, IR and Mass spectrometry suggests mono-chelation to the Ru(II) to adopt a piano-stool type complex.

Selected compounds 119a-d, 121a-e, 123a-e, 125a-e and 126a-e were tested for anti-
Mycobacterium tuberculosis properties and the 4-chloro-quinazoline series 121a-e gave no activity due to their poor solubility in biological solvent DMSO. Similar results were obtained for the Schiff base series wherein the stability of these compounds in DMSO remains a challenge. However, the 4-(pyridylamino)quinazoline series 123a-e gave promising activity ranging from 10 to 43 µg/mL. While the 4-(ethynylpyridine)-quinazolines gave good activity against *Mtb* with ligand 125e giving an activity of <0.244 µg/mL. Coordination of ligands 125a-e to Ru(II) p-cymene resulted in a decrease in activity.

Induced-fit molecular docking of ligands 119a-d, 121a-e, 123a-e and 125a-e into active sites of 1HTO, 2SRC and 3F8P suggested that these compounds may have binding in proteins such as *glutamine synthetase* against *Mtb*, tyrosine kinase and *oxidoreductase* for possible anti-cancer activity.

In future the imidazolyl-ethanamine Schiff base of the N^N will be subjected to imino-protonation reactions to yield tertiary-amino two carbon spacer ligands. These ligands will be coordinated to selected transition metal and their protein binding energies will be calculated by way of molecular docking calculations. The molecular docking calculations will determine which compounds to proceed with to in vitro biological evaluation. The pyridylamino derivatives will be coordinated to selected transition metals and their biological activity will be investigated. Phenyl-phosphino ligation is reported to improve lipophilicity in biologically active inorganic compounds. The ethynyl-pyridine bridged Ru(II) complexes will therefore be subjected to phosphine-
group ligation with hope to increase lipophilicity and biological activity of the Ru(II) complexes. The compounds with promising *in vitro* activity *i.e.* activity below 20 µg/mL will be evaluated for safety by way of toxicity assay.
APPENDIX

- 1H, 13C-NMR and HRMS spectra of 119a-d on pages 139-144
- 1H, 13C-NMR and HRMS spectra of 123a-e on pages 144-150
- 1H, 13C-NMR and HRMS spectra of 125a-e on pages 151-157
- 1H, 13C-NMR and HRMS spectra of 126a-e on pages 157-162
Figure 1: 1H-NMR spectrum of 119a

Figure 2: 13C-NMR spectrum of 119a
Figure 3: HRMS spectrum of 119a

Figure 4: 1H-NMR spectrum of 119b
Figure 5: HRMS spectrum of 119b

Figure 6: 1H-NMR spectrum of 119c
Figure 7: 13C-NMR spectrum of 119c

Figure 8: HRMS spectrum of 119c
Figure 9: 1H-NMR spectrum of 119d

Figure 10: 13C-NMR spectrum of 119d
Figure 11: HRMS spectrum of 119d

Figure 12: 1H-NMR spectrum of 123a
Figure 13: 13C-NMR spectrum of 123a

Figure 14: HRMS spectrum of 123a
Figure 15: HRMS spectrum of 123b

Figure 16: \(^1\)H-NMR spectrum of 123c
Figure 17: 13C-NMR spectrum of 123c

Figure 18: HRMS spectrum of 123c
Figure 19: 1H-NMR spectrum of 123d

Figure 20: 13C-NMR spectrum of 123d
Figure 21: HRMS spectrum of 123d

Figure 22: 1H-NMR spectrum of 123e
Figure 23: 13C-NMR spectrum of 123e

Figure 24: HRMS spectrum of 123e
Figure 25: 1H-NMR spectrum of 125a

Figure 26: 13C-NMR spectrum of 125a
Figure 27: HRMS spectrum of 125a

Figure 28: HRMS spectrum of 125b
Figure 29: 1H-NMR spectrum of 125c

Figure 30: 13C-NMR spectrum of 125c
Figure 31: HRMS spectrum of 125c

Figure 32: 1H-NMR spectrum of 125d
Figure 33: 13C-NMR spectrum of 125d

Figure 34: HRMS spectrum of 125d
Figure 35: 1H-NMR spectrum of 125e

Figure 36: 13C-NMR spectrum of 125e
Figure 37: HRMS spectrum of 125e

Figure 38: 1H-NMR spectrum of 126a
Figure 39: 13C-NMR spectrum of 126a

Figure 40: HRMS spectrum of 126a
Figure 41: 1H-NMR spectrum of 126b

Figure 42: 13C-NMR spectrum of 126b
Figure 43: HRMS spectrum of 126b

Figure 44: HRMS spectrum of 126c
Figure 45: 1H-NMR spectrum of 126d

Figure 46: 13C-NMR spectrum of 126d
Figure 47: HRMS spectrum of 126d

Figure 48: HRMS spectrum of 126e