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Abstract: An inorganic geochemical investigation of
mudrocks and sandstone from the southern Bredasdorp
Basin, off the south coast of South Africa was carried out
to unravel the provenance, paleoweathering, and tectonic
setting of the basin. Seventy-seven representative samples
from exploration wells E-AH1, E-AJ1, E-BA1, E-BB1, and
E-D3 underwent geochemical analysis involving major and
trace elements. The major oxide compositions show that
the sandstones could be classified as sub-arkose and sub-
lithic arenite. The provenance discrimination diagrams
based on major oxide geochemistry revealed that the sand-
stones are mainly of quartzose sedimentary provenance,
while the mudrocks are of quartzose sedimentary and inter-
mediate igneous provenances. The discrimination diagrams
indicate that the Bredasdorp sediments were mostly derived
from a cratonic interior or recycled orogen. The bivariate
plots of TiO2 versus Ni, TiO2 against Zr, and La/Th versus
Hf as well as the ternary diagrams of V–Ni–Th∗10 suggest
that the mudrocks and sandstones were derived from felsic
igneous rocks. The tectonic setting discrimination diagrams

support passive-active continental margin setting of the
provenance. Also, the closely similar compositions of the
analysed samples and recent sedimentary rocks of the East
African Rift System perhaps suggest a rifted basin tectonic
setting for the Bredasdorp Basin. Chemical index of altera-
tion (CIA) indices observed in the sandstones suggest that
their source area underwent low to moderate degree of
chemical weathering. However, the mudrocks have high
CIA indices suggesting that the source area underwent
more intense chemical weathering, possibly due to cli-
matic and/or tectonic variations.

Keywords: geochemistry, provenance, weathering, tec-
tonic setting, bredasdorp basin

1 Introduction

The geochemistry of clastic sedimentary rocks is a vital
tool used in the study of provenance, paleoweathering
conditions, and tectonic setting as well as to constrain
the geodynamic development and composition of the
upper continental crust (UCC) [1,2]. The mineralogical
and chemical compositions of these rocks are the pro-
ducts of numerous variables that include provenance,
weathering conditions, transport, diagenesis, climate,
and tectonism [3]. In geochemical studies, some desig-
nated trace elements such as La, Y, Sc, Cr, Th, Zr, Hf, Nb,
and major oxides especially TiO2 are sensitive indicators
of the source rocks, provenance, paleoweathering and
paleoclimatic conditions, and tectonic setting [3,4]. This
is due to their comparatively low mobility and insolubi-
lity during sedimentary processes [5–7]. Furthermore, the
relative distribution of the immobile trace elements with
varying concentrations in felsic and basic rocks has been
employed to deduce the relative contribution of felsic and
basic sources in shales from different tectonic
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environments [8]. For example, trace elements like La
and Th are enriched in felsic rocks, while Sc, Cr, and
Co are more concentrated in basic rocks. Also, the relative
reduction of oxides like Na2O and CaO, and enrichment of
TiO2 and SiO2 give important clues for tectonic setting.
Therefore, the distribution of these major oxides and trace
elements in mudrocks and sandstones gives evidences or
clues to the geological processes, provenance, and tec-
tonic settings of their respective sources [6–11].

Sandstones have been widely investigated for tectonic
provenance using the traditional classic petrographic
methods. However, in some instances, sandstones with a
significant amount of fine fraction may contain trace ele-
ment ratios that could provide added information about
the provenance. On the other hand, shales are the most
abundant type of sediment in sedimentary basins world-
wide and they are alleged to represent average crustal
provenance composition much better than sandstones
[12,13]. In geochemical provenance studies, fine-grained
sedimentary rocks like shales are considered to be the
most useful rocks due to their homogeneity before deposi-
tion, post-depositional impermeability, and higher abun-
dance of trace elements [3,14–16]. Several researchers
including Bhatia [17] and Roser and Korch [18] have high-
lighted that major element geochemistry of the clastic
sedimentary rocks are very useful in discriminating
between different tectonic settings. In fact, they proposed
the use of bivariate diagram of K2O/Na2O versus SiO2 and
calc-alkaline oxide (CaO–Na2O–K2O) ternary diagram to
decipher tectonic setting of unknown basins. These dia-
grams are still widely used to unravel the tectonic setting
of ancient basins. However, McLennan et al. [19] reported
that the trace elements like La, Y, Sc, Cr, Th, Zr, Hf, and
Nb, especially when used in combination with TiO2, are
most appropriate for provenance and tectonic setting
determination studies due to their fairly low mobility
during sedimentary deposition. Major element analysis is
also applicable in interpreting paleoweathering and tec-
tonic setting [3,20,21]. Immobile elements like Al, Ti, and
Zr are also helpful when estimating the nature of source
rock [3,22]. The index of compositional variability (ICV),
K2O/Al2O3 ratio, chemical index of alteration (CIA), and
Al2O3–(CaO + Na2O)–K2O (A–CN–K) ternary plots are useful
geochemical parameters for the study of provenance and
maturity of the rocks [23,24].

There have been quite a number of recent studies
that investigated the elemental composition of mudrocks
and sandstones with the aim of evaluating their prove-
nance [6,11,25–28]. However, most of these studies widely
used the traditional petrographic techniques in the calcula-
tion and interpretation of detrital modes of sandstones, and
consequently, in the determination of their provenance and

paleoweathering conditions [29,30]. In addition, the miner-
alogy ofmudrocks, especially shale has been less considered
or ignored due to the alteration of clay minerals during
weathering and diagenesis [31]. Consequently, up to date,
little attention has been paid to the study of provenance,
paleoweathering, and tectonic setting of the Bredasdorp
Basin, despite the hydrocarbon potential of the basin.
Also, there is no known documented or reported classifica-
tion of the Bredasdorp sandstones, and previous geochem-
ical studies have successfully used geochemistry to solve
problems associated with sandstone petrology. Geochem-
ical classification of sandstones is worth attempting due
to the fact that modern analytical methods are generating
extensive datasets on the composition of rocks. Hence, this
study was aimed at evaluating the geochemistry of the
Bredasdorp mudrocks and sandstones in order to provide
information on the chemical classification, source rock char-
acteristics, provenance, paleoweathering, and tectonic set-
ting using their major and trace elements geochemistry.

2 Geological setting

The Bredasdorp Basin is the westernmost sub-basin of
the greater Outeniqua Basin (Figure 1). The basin was
developed along the South African continental margin,
underneath the Indian Ocean due to extensional epi-
sodes during the initial stage of rifting in the Late Juras-
sic–Early Cretaceous [32]. Sediments deposition in the
Bredasdorp Basin was primarily controlled by the early
continental rifting and tectonic development [32]. The
basin serves as a depocentre and was predominantly
infilled with Late Jurassic and Early Cretaceous marine
and continental sediments [33]. The deposition of these
syn-rift marine and continental sediment continued in
the rift system until about 126 Ma, when most of the
faulting stopped [34]. So, the syn-rift deposition com-
menced and subsequently initiated a transitional phase
and thereafter a drifting phase [35]. The development of
the Bredasdorp Basin is linked to the breakup of Gondwa-
naland and subsequent formation is associated with
thermal subsidence in response to a single rifting event
[36]. The tectonic development of the Bredasdorp Basin is
summarised in Table 1.

The Bredasdorp Basin is envisaged to host an
Oxfordian (∼160Ma)– recent stratigraphic column that
overlies the rocks of the Cape Supergroup [35]. The Late
Jurassic–Early Cretaceous shallow marine and fluvial syn-
rift deposits underlie Albian to recent marine sediments
[37]. The stratigraphic column shows the existence of a
Middle Jurassic–Early Cretaceous syn-rift phase and it is

1188  Temitope Love Baiyegunhi et al.



subsequently overlain by the early Cretaceous to Tertiary
post-rift phase [37]. The syn-rift and drift (post-rift) sequences
are separated by a regionally developed unconformity
referred to as the 1At1, and it took place in the Lower
Valanginian time [38] (Figure 2). The syn-rift sedimenta-
tion phases of the Bredasdorp Basin are subdivided into the
syn-rift I and syn-rift II phases [39]. According to ref. [37],
the syn-rift I phase occurred in the middle Jurassic–late
Valanginian (Basement up to 1At1), whereas the syn-rift II
took place in the Late Valanginian–Hauterivian (1At1–6At1).

In the northern part of the basin, the basal syn-rift
deposits that occurred during the Kimmeridgian–late
Valanginian are divided into four intervals (from base
to top), namely the Lower Fluvial (LF), Lower Shallow

Marine (LSM), Upper Fluvial (UF), and Upper Shallow
Marine (USM) intervals. The above-mentioned intervals
underlie the late Valanginian 1At1 regional unconformity
[40] (Figure 2). The LF interval consists of mudrocks,
sandstones, and conglomerates signifying an early graben
fill deposition in an alluvial fan and fluvial environments
[40]. On the other hand, the LSM interval points to the
first marine invasion in the basin and it is made up of
glauconitic sandstones, perhaps suggesting prograda-
tional anoxic marine deposits of the Kimmeridgian age
[37,40]. The UF interval is made up of meandering fluvial
and alluvial floodplain deposits, whereas the overlying
USM interval is marked by the occurrence of massive glau-
conitic and fossil-rich sandstones of the Late Valanginian

Figure 1: Map of the study area showing distribution of the exploration wells across the Bredasdorp Basin (modified from ref. [32]).
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age. Broad et al. [40] reported that these massive glauco-
nitic fossiliferous sandstones were laid down as transgres-
sive beach facies along the northern and southern edges of
the Bredasdorp Basin and it extends into the neighbouring
sub-basins.

The syn-rift I succession is terminated by the 1At1
regional unconformity, separating deep-marine sediments
from the underlying USM sediments. This 1At1 unconfor-
mity signifies the beginning of a renewed rifting (syn-rift
II) phase initiated due to early or initial movement along
the Agulhas–Falkland Fracture Zone at approximately
133 Ma (Valanginian–Hauterivian boundary) [39]. The
syn-rift II was later followed by the Transitional (early drift)
phase, which occurred during Hauterivian–Early Aptian
(6At1–13At1) [37] (Figure 2). The Transitional (early drift)
phase was dominated by recurrent episodes of progradation
and aggradation and it was mostly affected by tectonic
events and eustatic sea-level changes [36,40]. The Transi-
tional phase is considered the first deep water deposits in
the Bredasdorp Basin and they were deposited due to major
subsidence of the basin as well as an increase in water
depth. On the other hand, the late drift phase trailed amajor
marine regression in the Bredasdorp Basin during the early
Aptian [39]. This regression event resulted in a major ero-
sion which is marked by the 13At1 unconformity. The ero-
sion period is followed by a marine transgression, which

carried and deposited organic-richmudstone, shale, or clays-
tone in the basin under an anoxic condition [35]. The onset
of the late drift phase is manifested or noted by the 14At1
mid Albian unconformity (Figure 2), which marks the begin-
ning of the active thermally instigated subsidence when the
Columbine-Agulhas Archwas cleared by the trailing edge of
the Falkland Plateau in the late Albian [40–42].

3 Methodology

A total of seventy-seven representative mudrock and
sandstones collected from exploration wells E-AH1, E-AJ1,
E-BA1, E-BB1, and E-D3 (Figure 1) were studied under
the petrographic microscope and analysed for the major
oxides and trace element concentrations. X-ray fluores-
cence (XRF) analysis was performed at the geochemical
laboratory in the Department of Geology and Mining,
University of Limpopo, South Africa. The rock samples
were neatly cleaned and crushed into smaller sizes using
the Braun Chipmunk VD67 jaw crusher. Thereafter, the
Herzog milling machine was used to mill the crushed sam-
ples into powdery form of grain size less than 50 µm.
Pressed pellets were used for the major oxides and trace
elements analyses. The pressed pellets were analysed by

Table 1: Summary of the structural development of the Bredasdorp Basin [42]

Stage Period Phase Major event

1 Middle Jurassic–Valanginian
(Basement–1At1)

Syn-rift I Extension-instigated or driven subsidence and syn-rift basin
fill. Isostatic uplift on both sides of the half-graben led to
significant reduction in the erosion of syn-rift I sediments.
Great or intensive marginal uplift and erosion of the northern
part of the basin removed the whole syn-rift I succession in
some places

2 Late Valanginian–Hauterivian
(1At1–6At1)

Syn-rift II Fast subsidence and extensive flooding. Continued or non-
stop uplift caused additional truncation or reduction in
structural highs. The deposition of deep water sediments
happened within rift depocentres (southern sub-Basin and
Arniston half-graben) led to the deposition of source rocks

3 Hauterivian–Aptian (6At1–13At1) Transitional (Early
drift)

Progradation enlargement of the shelf in the northern part
over the Arniston half-graben, plus a sustained deepening of
the southern sub-basin

4 Aptian–Maastrichtian (13At1–15At1) Middle drift Regional subsidence instigated by thermal cooling and
sediment loading. Continued movement on the Arniston Fault

5 Paleocene–present day (15At1–seafloor) Late drift Oil-prone source in syn-rift depocentres and northern and
central part of the Bredasdorp Basin proceed into the main
phase of oil generation. Continued slight subsidence
interrupted by the early tertiary alkaline intrusion activity
over the central part of the basin. Late slanting of the basin
together with uplift of the northern side led to the late
removal or erosion of about 600m succession in some places
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PANalytical Zetium XRF spectrometer equipped with a
4 kW Rh tube. The milled samples were also dried at
100°C (Weight A) and heated at 1,000°C (Weight B) for a
period of at least 3 h to oxidize S and Fe2+ in order to
determine the loss of ignition (LOI). The mathematical
expression for the percentage LOI is given as:

=

 −  

 −  

×% LOI Weight Weight
Weight Weight

100.A B

A crucible

The Epsilon software program was used to quantify
the oxides and trace elements in the mudrocks and sand-
stones. Discriminatory binary and ternary plots of the major
oxides and trace elements were used for geochemical

Figure 2: Stratigraphic chart of the Bredasdorp Basin showing the main unconformities and tectonic stages with corresponding geodynamic
events (after ref. [34]).
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classification as well as the determination of provenance
and tectonic settings. In addition, CIA, chemical index of
weathering (CIW), plagioclase index of alteration (PIA),
and ICV were calculated and bivariate diagram of ICV
against CIA and ternary diagram of Al2O3–(CaO +

Na2O)–K2O were plotted to deduce the degree of weath-
ering. In the CIA, CIW, PIA, and ICV formulas, CaO∗ is the
amount of CaO added into the silicate fraction of the rocks.
In this study, rectification for CaO from the carbonate con-
tribution was not carried out because of the absence of CO2

value. Hence, the proposedmethod from ref. [43]was used
to calculate the amount of CaO∗ from the silicate fraction.
The method suggested that CaO values should be accepted
only if CaO < Na2O. However, when CaO > Na2O, it was
alleged that the concentration of CaO is the same as that of
Na2O. This procedure measures the ratio of the secondary
aluminous mineral to feldspar, and forms a basis for mea-
suring the intensity of weathering.

4 Results

4.1 Petrography

The Bredasdorp sandstones are mostly composed of quartz,
feldspar, glauconite, and clay minerals. The quartz, feld-
spar, and glauconite are the framework minerals, while
the clay minerals are mostly the matrix and sometimes act
as cement. The observed cements in the sandstones are
authigenic clay mineral cement, quartz cement, and occa-
sional glauconite cements. Texturally, these sandstones are
moderately sorted to moderately well-sorted and of fine
tomedium grain sizes (Figures 3 and 4). Petrographic obser-
vations revealed that borehole E-AH1 consists mostly of
massive, well-sorted, fine- to medium-grained glauconitic
sandstone and claystonewithminor siltstone interbeds. The
claystones are characterised by near-horizontal bedding
and sediment injection features (sandstone into claystone)
near the contacts with the sandstones. Borehole E-AJ1 is
made up of claystones and siltstones with occasional inter-
bedded sandstones. The sandstones in borehole E-AJ1 are
generally massive (structureless), fine to medium grained,
and contain abundant glauconite and are moderately well-
sorted. A distinctive feature in borehole E-AJ1 is the occur-
rence of stylolites, which are seen as irregular, undulatory,
and coarsely sutured horizontal features and less commonly
as finely sutured regular vertical to sub-vertical fractures.
Borehole E-BA1 comprises mostly of massive moderately
well-sorted, fine- to medium-grained glauconitic sandstone

with minor claystone and siltstone. The sandstone is
slightly porous, light brownish-grey with very fine to
medium, well-sorted subangular grains. In addition, it is
non-calcareous, slightly glauconitic, and slightly pyritic
and contains green lithic fragments. The sandstone in
borehole E-BB1 is mostly well-sorted, fine grained, very
lithic (metaquartzite clasts), glauconitic, and slightly
shelly and carbonaceous. In borehole E-D3, the sand-
stones are massive, moderately sorted, medium grained,
and slightly glauconitic. In general, the roundness of the
grains in the studied sandstone samples vary from suban-
gular to rounded and the sphericity ranges from low to
high (mostly low; oblong grains). The grain packing is
irregular, showing both fairly packed and tightly packed
grains. However, in most cases, the grains are moderately
tight. Furthermore, the grain contact patterns vary from
point contact to sutured contact, but predominantly long
and concavo-convex contacts. The sandstone grains are
often cemented or supported by clay matrix; however,
some are grain supported. The change in grain size in
the vertical succession indicates both regressive and trans-
gressive conditions, although the transgressive conditions
tend to dominate. The stratigraphy of the studied bore-
holes is presented in the supplementary data (Figure A1).

4.2 Major oxides

Themajor oxide concentrations in the Bredasdorpmudrocks
and sandstones are presented in supplementary data
(Table S1). The stratigraphic descriptions of the boreholes
are presented in the supplementary data. The major oxide
compositions are relatively variable, but are still compar-
able with the average compositions of oxides reported in
refs [44–46] (supplementary data; Table S2). The studied
samples have high percentages of SiO2, varying between
51.70 and 81.58%. The concentration of Al2O3, CaO, Fe2O3,
MgO, and K2O ranges from 2.82 to 29.01%, 0.80 to 7.68%,
0.27 to 5.75%, 0.39 to 5.68%, and 0.43 to 5.11%, respec-
tively. The percentages of MnO, TiO2, Na2O, and P2O5 are
generally low, ranging from 0.01 to 0.10%, 0.16 to 0.99%,
0.03 to 1.30%, and 0.11 to 1.37%, respectively. The SiO2

content in sandstones are higher than shales. In contrast,
the concentration of Fe2O3, K2O, and TiO2 are higher in
the mudrocks, depicting their association with clay-sized
phases.

To compare the abundances of the oxides, the con-
centration of the major oxides in the studied samples
were plotted against the concentration of Al2O3, as shown
in Figures 5 and 6. The Al2O3 contents were used as a
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normalisation factor because of its immobile nature during
weathering, diagenesis, and metamorphism [47]. Further-
more, the average percentages of the Post-Archaean Aus-
tralian Shale (PAAS) and UCC were taken from refs [3,48],
respectively, and incorporated in the plots for comparison

purposes. In the mudstone and shale samples, the concen-
tration of SiO2, Fe2O3, MgO, and Na2O shows negative cor-
relation with Al2O3, while the concentrations of TiO2, MnO,
CaO, K2O, and P2O5 show no specific trend (Figure 5). On
the other hand, all the major oxides in the sandstones

Figure 3: Thin section photomicrographs showing: (a) authigenic quartz (blue arrows) and quartz overgrowths (red arrows) in sandstone
from borehole E-D3; (b) sedimentary lithic fragment (red arrow) and metamorphic lithic fragment (blue arrows) in sandstone from borehole;
(c) mica in clay matrix in sandstone from borehole E-BA1; (d) calcite cement and mica flakes (blue arrows) in sandstone from borehole
E-BB1; (e and f) claystone and siltstone layers in mudrock from borehole E-AH1; (g) partial replacement of feldspar and matrix by glauconite
(red arrows) in sandstone from borehole E-AJ1; and (h) authigenic glauconite as rim or line on the grain surfaces (red arrows) in sandstone
from Borehole E-AJ1.
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show no particular trend or correlation with Al2O3 (Figure 6).
The positive correlations of some of the oxides in the
mudstones and shales suggest their association with
micaceous/clay minerals. The concentration of oxides in
the mudrocks and sandstones were also normalised with
those of UCC and PAAS (Figure 7). Relative to UCC, the
average concentrations of SiO2, TiO2, Al2O3, Fe2O3, MnO,
MgO, CaO, Na2O, K2O, and P2O5 in the mudrocks are 0.85,
1.05, 1.61, 0.83, 0.49, 0.65, 0.47, 0.24, 1.16, and 1.13,

respectively. Relative to PAAS, the average concentrations
of SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O and
P2O5 in the mudrocks are 0.91, 0.68, 1.32, 0.58, 0.44, 0.74,
1.30, 0.67, 0.88, and 1.00, respectively.

Relative to UCC, the mudrocks are low in MnO, CaO,
Na2O, and very high in Al2O3. As reported in ref. [49],
aluminium (Al) is simply absorbed on clays and concen-
trated in the finer, more weathered materials. In support
of this, XRD analysis of the mudrocks revealed that they

Figure 4: Thin section photomicrographs of sandstone showing (a–e) Primary porosity in Boreholes E-AH1, E-AJ1, E-BA1, E-BB1, and E-D3,
respectively; (f and g) fractured pores (red arrows) in-filled by solid bitumens in Borehole E-BB1; and (h) oil emplacement in Borehole E-AJ1.
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Figure 5: Major elements versus Al2O3 graph showing the distribution of shale samples from the Bredasdorp Basin. Average PAAS and UCC
values were extracted from refs [3,48], respectively, and plotted for comparison.
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Figure 6:Major elements versus Al2O3 graph showing the distribution of sandstone samples from the Bredasdorp Basin. Average PAAS and
UCC values were extracted from refs [3,48], respectively, and plotted for comparison.
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are dominated with the mineral kaolinite (Al2Si2O5(OH)4).
The concentration of these oxides in the mudrocks are
generally comparable with those of PAAS. On the other
hand, relative to UCC, the average concentrations of
SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, and
P2O5 in the sandstones are 1.04, 0.69, 0.29, 0.41, 0.52, 0.56,
0.50, 0.19, 0.74, and 0.93, respectively. The average con-
centrations of Al2O3, Fe2O3, and Na2O are low as compared
to the UCC values. The depletion of Na2O (<1%) in the
Bredasdorp rocks can be linked to the relatively smaller
amount of Na-rich plagioclase in them, which is consistent
with the petrographic results. The concentration of K2O
and Na2O, and their ratios (K2O/Na2O >1) are also consis-
tent with the petrographic observations, which revealed
that K-feldspar dominates over plagioclase (albite) feld-
spar. The enrichment of K2O relates to the presence of illite
as common clay mineral in the shales and sandstones. In
addition, the enrichment of CaO can be attributed to the
presence of diagenetic calcite cement, which is also con-
sistent with the petrographic results. In comparison with
PAAS, the average concentrations of SiO2, TiO2, Al2O3,
Fe2O3, MnO, MgO, CaO, Na2O, K2O, and P2O5 in the sand-
stones are 1.11, 0.54, 0.24, 0.29, 0.51, 0.63, 1.40, 0.53, 0.56,

and 0.70, respectively. Again, the average concentrations
of Al2O3 and Fe2O3 are low as compared to PAAS.

4.3 Trace elements

The trace element concentrations in mudrocks and sand-
stones are presented in the supplementary data (Table
S3a–b). The concentrations (in ppm) of these elements
are fairly variable but still comparable with those average
concentrations reported by refs [45,46,50,51] (supple-
mentary data; Table S4). The concentration of large ion
lithophile elements (LILE) like Rb, Ba, Sr, and Th in the
studied samples are in range of 12.60–267.30, 55.20–1160.00,
29.80–324.70, and 4.50–16.50 ppm, respectively. The con-
centration of the high field strength elements (HFSE)
such as Zr, Y, and Nb varies from 50.00 to 215.80 ppm,
1.00 to 127.70 ppm, and 2.70 to 40.80 ppm, respectively.
Likewise, transition trace elements (TTE) like Sc, V, Cr, Ni,
and Zn vary in the range of 1.80–4.90, 16.50–238.00,
247.70–592.80, 5.20–38.30, and 5.50–241.30 ppm, respec-
tively. In general, sandstones have higher concentration of
Ba, Th, Y, Nb, Sc, V, and Cr than the mudrocks, while the
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Figure 7: (a) Spider plot of oxides for the Bredasdorp mudrocks normalised against UCC (after ref. [48]); (b) Spider plot of oxides for the
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PAAS (after ref. [3]); and (d) Spider plot of oxides for the Bredasdorp sandstones normalised against PAAS (after ref. [3]).

Geochemistry of the mudrocks and sandstones from the Bredasdorp Basin  1197



content of Rb, Sr, Zr, Ni, and Zn are higher in themudrocks
than the sandstones.

4.3.1 LILE: Rb, Ba, Sr, Th, and U

The concentration of the LILE in the mudrocks are gen-
erally comparable to those of UCC and PAAS. However,
the concentrations of U and Cr are high, whereas Sr con-
tent is relatively low (Figure 8a and b). On the other
hand, the concentration of Th in the sandstones is rela-
tive to UCC and PAAS. Although U content is comparable
to UCC, it is high relative to PAAS. In addition, the con-
centrations of Rb, Ba, and Sr in the sandstones are gen-
erally low when compared to the UCC and PAAS values
(Figure 8c and d). Th and Nb are positively correlated in
the mudrocks and sandstones, perhaps suggesting that it
may have been controlled by clays and/or other phases
(i.e. Ti- and Nb-bearing phases) associated with clay
minerals. Also, Rb has positive correlations with Ba in
the mudrocks and sandstones, possibly indicating the

same geochemical characteristics. These correlations show
that their distributions are mostly controlled by illites with
little contribution from other clay minerals.

4.3.2 HFSE: Zr, Hf, Y, and Nb

HFSE elements are often concentrated in felsic rocks than
mafic rocks [52]. The Zr, Hf, Nb, and Y contents in the
mudrocks and sandstones are comparable to UCC and
PAAS contents (Figure 8a and c), although Zr is relatively
low, whereas Y is fairly high (Figure 8b and d).

4.3.3 TTE: Sc, V, Cr, Co, Cu, Ni, and Zn

The TTE in the Bredasdorp mudrocks and sandstones are
depleted in comparison with the UCC and PAAS. In the
mudrocks, V, Cu, and Zn are relatively comparable with
UCC and PAAS, whereas the concentrations of Sc, Co, and
Ni are low relative to UCC and PAAS (Figure 8).
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Figure 8: (a) UCC-normalised trace elements distribution of mudrocks from the Bredasdorp Basin. The UCC values are from ref. [48]; (b)
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elements distribution of sandstones from the Bredasdorp Basin. The PAAS values are from ref. [3].
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Furthermore, the concentration of Cr in the samples are
generally high when compared to the UCC and PAAS.

5 Interpretations and discussion

5.1 Sandstone classification

The concentrations of silica, aluminium, potassium, sodium,
and iron oxides have been used to classify sandstones
[53,54]. The background geochemical classification dia-
grams of refs [53,54] were used to classify the Bredasdorp
sandstones. Based on the Herron’s classification [54]
scheme, the Bredasdorp sandstones are mainly sub-arkose
and sub-lithic arenite (Figure 9). Similarly, the classification
scheme in ref. [53] shows that the sandstones are sub-arkose
and sub-lithic arenite, while the mudrocks are plotted in the
field of shale (Figure 10). The geochemical classification of
the sandstones is also in agreement or consistent with the
petrographic classification of the sandstones.

5.2 Provenance

The major oxide concentrations in the mudrocks and
sandstones have been used to decipher the provenance
of the Bredasdorp rocks using the discriminant functions

analysis proposed in ref. [55]. The bivariate plot of the
discriminant functions discriminates between quartzose
sedimentary or recycled, felsic igneous, intermediate
igneous, andmafic igneous provenance fields. Themudrock
samples are plotted in both the quartzose sedimentary pro-
venance and felsic igneous provenance fields (Figure 11a),
whereas the sandstones fall within the quartzose sedimen-
tary provenance field (Figure 11b).

The bivariate plot of TiO2 versus Zr shows that the
mudrocks and sandstones are mostly from felsic igneous
rocks with little contribution from intermediate igneous
rocks (Figure 12). Also, the binary plot of TiO2 against Ni,
La/Th versus Hf, and V–Ni–Th∗10 ternary diagram revealed
that the source area for most of the Bredasdorp mudrocks
and sandstones are predominantly acidic or felsic in nature
(Figures 13–15). The concentration of HFSE (i.e. Hf) are
higher in the sandstones than the shale samples. The low
content of Hf and elemental ratios like La/Sc and Th/Sc
indicate the presence of fractionated source rocks with
lower compatible element contents and recycled sediments
in the source area. Also, the variation in chemical composi-
tion, perhaps suggests changes in the supply of material
and a fluctuation in physico-chemical environment of
deposition. The pattern of geochemical behaviour of indivi-
dual element shows that most of the trace elements that
found their way into the ancient sediments seem to have
invaded the lattices of the silicates and clay minerals and
structurally combined with them.
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5.3 Tectonic setting of the source area

The chemical compositions of clastic rocks are greatly
influenced by plate tectonic settings of their source area(s)
and depositional basins [4,17]. Consequently, clastic rocks
often have distinctive geochemical signatures or character-
istics for a particular tectonic setting. As reported in ref. [7],

tectonic setting discrimination ternary diagrams offer a
steadfast outcome for clastic rocks that have not been stur-
dily affected by post-depositional weathering and meta-
morphism. The binary plots of major oxides and trace
elements’ geochemistry have been widely used by several
researchers to infer the tectonic setting of clastic rocks
[4,17,18,58–60]. The major oxides and trace elements
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Figure 10: Geochemical classification of the Bredasdorp samples based on the binary of plot of Log (Fe2O3/K2O) versus Log (SiO2/Al2O3)
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tectonic discriminate diagrams of refs [4,18,59] have been
attempted in this study to deduce the tectonic setting for the
Bredasdorp mudrocks and sandstones. These aforemen-
tioned discrimination diagrams divide tectonic settings
into oceanic island arc (OIA), continental island arc (CIA),
active continental margin (ACM), and passive continental
margin (PM).

The binary plot of Log (K2O/Na2O) against SiO2 in the
background tectonic setting discrimination diagram of
ref. [18] shows that most of the Bredasdorp mudrocks
are plotted in the ACM field, while a few samples fall in
the PM field (Figure 16a). The opposite is observed for the
Bredasdorp sandstones, where about 95% of the samples

are plotted in the PM (Figure 16b). Also, the calc-alkaline
(CaO–Na2O–K2O), Th–Sc–Zr/10, and La–Th–Sc ternary
diagrams show that majority of the Bredasdorp mudrocks
and sandstones are related to PM with few contributions
from the ACM (Figures 17–19). These rocks also exhibit
similar geochemical characteristics with recent sedimen-
tary rocks of East African Rift System [61], which further
support a rift basin tectonic setting for the Bredasdorp
Basin. The PMs are basins on continental crust and basins
associated with ocean floor spreading, failed rifts, and
Atlantic-type continental margins. On the other hand,
ACMs are subduction related basins, continental basins,
and pull-apart basins associatedwith strike-slip fault zones.
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Figure 12: Bivariate plot TiO2 against Zr showing provenance for the Bredasdorp Basin: (a) mudrocks and (b) sandstones (background field
after ref. [20]).
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5.4 Paleoweathering conditions

The degree or extent of chemical weathering of source
rocks are mainly influenced by the composition of the
source rock, duration of weathering, climatic conditions,
and rates of tectonic uplift of source region [62]. Several
researchers including [3,63,64] have reported that about
75% of labile materials in the upper crust are made up of
feldspars and volcanic glass. Chemical weathering of
these materials would lead to the formation of clay
minerals. Elements like Ca, Na, and K are mostly removed

from source rocks during chemical weathering and the
amount of these elements remaining in sediments derived
from the rocks serve as pointers to the degree of chemical
weathering [65]. As documented by ref. [66], if clastic sedi-
mentary rocks are free from alkali related post-deposi-
tional changes, then their alkali contents (K2O + Na2O)
and K2O/Na2O ratios should be considered as good poin-
ters to the degree of weathering of the source materials. A
few indices of weathering have been proposed for the
determination of the degree of source rock weathering.
The indices of weathering/alteration include CIA, CIW,

Figure 14: V-Ni-Th∗10 triangle diagram showing felsic source rock for the Bredasdorp Basin: (a)mudrocks and (b) sandstones (background
field after ref. [16]).
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and PIA. These indices are based on the molecular percen-
tages of the mobile and immobile element oxides like
Na2O, CaO, K2O, and Al2O3.

The chemical composition of the products of che-
mical weathering in a basin is anticipated to unravel
the mobility of the surviving elements during weathering
[67]. The CIA proposed in ref. [1] is the most widely used
chemical index to determine the degree of source area
weathering. Nesbitt and Young [1] expressed CIA as:

[ ( )]= / + + +  ×

∗CIA Al O Al O CaO Na O K O 100,2 3 2 3 2 2

where ∗CaO is the content of CaO incorporated in silicate
fraction.

The calculated indices of weathering (CIA, CIW, and
PIS) are presented in the supplementary data (Table S5).
The CIA is simply the ratio of primary minerals to sec-
ondary products (i.e. clay minerals). CIA values usually
range from about 50 for unweathered rocks up to 100 in
highly weathered rocks. Generally, CIA values increase
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Figure 16: Binary plot of Log (K2O/Na2O) versus SiO2 for Bredasdorp mudrocks showing: (a) active and passive continental settings for the
mudrocks and (b) passive continental setting for the sandstones (background field after ref. [18]).

Figure 17: Na2O–CaO–K2O ternary plot showing active and passive continental settings for the Bredasdorp: (a) mudrocks and (b) sand-
stones (after ref. [59]).
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with the increase in the degree of weathering, reaching
100 when all the Ca, Na, and K have been leached from
weathering residue. The CIA values in the Bredasdorp
mudrocks and sandstones vary in the range of 82.72–86.42,
30.71–87.20, 66.31–84.01, 31.22–85.52, and 30.98–77.89 in
boreholes E-AH1, E-AJ1, E-BA1, E-BB1, and E-D3, respec-
tively. These average CIA values revealed relatively low to
high degree of chemical weathering in the source area. In
general, the CIA values in themudrocks and sandstones vary

from 73.50 to 90.16 and from 30.71 to 70.99, respectively. The
high CIA values in the mudrocks possibly signifies the
presence of clay minerals and low percentage of detrital feld-
spars. On the other hand, the low CIA values in the sand-
stones (<50%) suggest a low weathering condition in the
source area and perhaps reflect cool conditions. The varia-
tions in CIA reveal changes in the properties of feldspar
against aluminous clay minerals. These changes suggest
that the studied samples were derived from source rocks

Figure 18: Th–Sc–Zr/10 ternary diagram showing: (a) active and passive continental settings for the Bredasdorp mudrocks and (b)
dominance of passive continental setting for the Bredasdorp sandstones (after ref. [4]).

Figure 19: La–Th–Sc ternary diagram showing active and passive continental settings for the Bredasdorp: (a)mudrocks and (b) sandstones
(after ref. [4]).
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that have been subjected to both chemical and physical
weathering.

The CIW was also calculated to reveal the degree of
chemical weathering that the Bredasdorp sediments have
undergone. Just like the CIA, the CIW also accounts for
the rate at which feldspars are converted to clay minerals.
The formula for CIW is expressed in ref. [68] as:

[ ( )]=    /  + +    ×

∗CIW Al O Al O CaO Na O 100.2 3 2 3 2

The CIW values of the Bredasdorp mudrocks and
sandstones are in the range of 93.69–94.82, 49.44–94.14,
72.32–93.97, 36.34–93.88, and 33.60–93.88 in boreholes
E-AH1, E-AJ1, E-BA1, E-BB1, and E-D3, respectively. Again,
the obtained CIW values indicate low to high degree of
chemical weathering. The source area weathering and ele-
mental redistribution during diagenesis of the Bredasdorp
rocks were assessed using the PIA. As reported in ref. [68],
the PIA records and accounts for the rate at which feldspars
are progressively changed or weathered to clay minerals.
The maximum value of PIA for completely weathered
materials (i.e. kaolinite and gibbsite) is 100. The formula
for PIA is denoted in ref. [68] as:

[( ) ( )]=   −   / + +   −  

×

∗PIA Al O K O Al O CaO Na O K O
100.

2 3 2 2 3 2 2

The PIA values of the Bredasdorp mudrocks and sand-
stones are in the range of 92.86–94.26, 50.33–93.75,
69.56–93.16, 31.61–91.56, and 27.46–89.60 in boreholes
E-AH1, E-AJ1, E-BA1, E-BB1, and E-D3, respectively. These
PIA values also signify low-high conversion rate of feldspars
to clay minerals during source weathering, transport, rede-
position, and diagenesis. During the preliminary stages of
chemical weathering, Ca is easily leached than K and Na. As
the weathering progresses, the total alkali ( +K O Na O2 2 )
content increases with the decrease in the K–Na ratio
( /K O Na O2 2 ), perhaps due to the destruction of feldspars;
especially plagioclase ref. [24]. The feldspathic materials in
the Bredasdorp mudrocks and sandstones have undergone
variable degrees of weathering during the different evolution
phases. As reported in ref. [24], the binary plots of K2O/Na2O,
K2O +Na2O, Na2O, K2O, and CaO against PIA can unravel the
mobility of elements during the final phases of chemical
weathering of previously altered feldspars. These plots
were also attempted for the Bredasdorp samples and it is
observed (in general) that as the K2O/Na2O increases, the
PIA also increases, whereas as K2O + Na2O and CaO content
increases, the PIA decreases (Figures 20–21). Generally, the
bivariate plots show weak correlations which could be due
to the presence of K-bearing minerals (i.e. muscovite and
biotite) and retention of most of the mobilized K by alumi-
nous material resulting in the formation of illite.

The Al2O3–(CaO + Na2O)–K2O (represented as
A–CN–K) ternary diagram in ref. [24] is another useful
approach for assessing the composition of original source
rock and mobility of elements during chemical weathering
of source material and post-depositional chemical modi-
fications. The A–CN–K ternary plot of the Bredasdorp
mudrocks and sandstones were plotted to unravel the
compositional changes in the mudrocks and sandstones
that are related to chemical weathering, diagenesis, and
source rock composition. The Al2O3–(CaO + Na2O)–K2O
composition of the Bredasdorp samples are plotted on
the A–CN–K ternary diagram background fields of ref. [24].

The A–CN–K diagrams of the Bredasdorp samples
show that about 100% of the mudrocks and 55% of the
sandstones are plotted above the line joining plagioclase
and K-feldspar (Figure 22). The weathering trendline of
the Bredasdorp shales is closer to the A–K boundary,
signifying that the silicates (i.e. feldspar) have experi-
enced intense or high weathering resulting in the leaching
of Ca and Na out of plagioclase. In addition, the trendline
(red arrow in Figure 22) parallels with the A–K boundary
and slightly extend towards the A apex, signifying
leaching of K and enrichment of Al. This indicates that
further weathering has led to the decomposition of
K-bearing minerals (biotite, illite, and potassium feldspar).
Thus, kaolinite dominates the secondary clay minerals. On
the other hand, the weathering trendline of the Bredas-
dorp sandstones is relatively closer to the A–CN boundary,
indicating that plagioclase are the first to be weathered,
out of which Ca and Na leached rapidly, whereas K-feld-
spar is relatively stable. In the sandstones, illite and smec-
tite are the main weathering products, whereas kaolinite
did not dominate. Samples with CIA values below 50 are
unweathered.

5.5 Sediment maturity and climatic
conditions

The maturity of sediments and paleoclimatic conditions
can be determined by computing the ICV suggested in
ref. [69]. The ICV values tend to be high in minerals
that underwent intensive degree of weathering and low
in less weathered or more stable minerals. As reported in
ref. [69], ICV values generally decrease further in the
montmorillonite group of clay minerals and are lowest
in the kaolinite group minerals. Furthermore, mudrocks
and sandstones that have ICV value of less than 1 are
compositionally mature and are deposited in the tectoni-
cally quiescent or cratonic environment where sediment
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recycling is active. In contrast, mudrocks and sandstones
that have ICV value of greater than 1 are compositionally
immature with the first cycle of sediments deposited in
tectonically active settings. The ICV formula is presented
in ref. [69] as:

( )= +   +   + + + /ICV Fe O K O Na O CaO MgO MnO Al O .2 3 2 2 2 3

The ICV values for the Bredasdorp mudrocks vary
from 0.23 to 0.61, averaging 0.43, whereas ICV values
for the sandstones range from 0.71 to 3.75, averaging
2.82. In fact, only 4 out of the 26 sandstone samples
have ICV of less than 1. Based on the average ICV values,
it can be inferred that the shales are compositionally
mature, while the sandstones are compositionally
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immature with the first cycle of sediments deposited in
tectonically active settings. The bivariate plot of CIA
versus ICV for the Bredasdorp rocks shows that the shales
are geochemically mature and are derived from inten-
sively weathered source rocks, whereas the sandstones
are geochemically immature and derived from weak weath-
ered source rocks (Figure 23). To constrain the climatic con-
dition during sedimentation of clastic sedimentary rocks,
the plot of SiO2 against ( +   +  Al O K O Na O2 3 2 2 ) proposed
in ref. [70] was used to classify the maturity of Bredasdorp
mudrocks and sandstones as a function of climate. The
binary plot of SiO2 versus ( +   +  Al O K O Na O2 3 2 2 ) shows

that themudrocks are of arid climates, while the sandstones
are of humid climate with varied maturities (Figure 24).

6 Conclusion

The provenance, tectonic setting, and paleoweathering
conditions of the Cretaceous mudrocks and sandstones
from the Bredasdorp Basin have been assessed using
inorganic geochemical studies. On the basis of the major
oxide compositions, the sandstones could be classified as
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sub-arkose and sub-lithic arenite. The major oxide and
trace element concentrations in the mudrocks and sand-
stones show significant variation in composition across
the samples. Higher concentrations of Al2O3, Fe2O3, K2O,
Sc, V, Zr, Th, U, La, Ce, and Ni are observed in the
mudrocks than the sandstones, whereas the sandstones
are enriched with SiO2, Hf, Cr, and Zn than the mudrocks.
The preferential enrichment of transitional elements like
Sc, V, and Ni in the mudrocks is probably due to the
surficial sorption. Furthermore, the low concentration
of these elements, La/Sc ratio, and Th/Sc ratio suggest
the presence of fractionated source rocks with lower

compatible element contents and recycled sediments in
the source area. Likewise, the discrimination diagrams
based on major oxide geochemistry shows that the sedi-
ments are mainly of quartzose sedimentary provenance
with little contribution from the intermediate igneous
provenance, suggesting that they were mostly derived
from a cratonic interior or recycled orogen. The tectonic
setting discrimination diagrams support PM-ACM setting
of the provenance. In addition, the closely similar geo-
chemical compositions of the analysed samples and recent
sedimentary rocks of the East African Rift System suggest a
rifted basin tectonic setting for the Bredasdorp Basin. The

Figure 22: A–CN–K ternary diagram of molecular proportions of Al2O3-(CaO + Na2O)-K2O for the Bredasdorp: (a) mudrocks and (b)
sandstones (background field after ref. [24]). The CIA scale shown at the left side is for comparison.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

Weak weathering

Intensive 
weathering

Immature

Mature PAAS (ICV) = 0.85

PA
AS

 (C
IA

) =
 7

0 
-7

5

In
de

x o
f C

om
po

si�
on

al
 Va

ria
bi

lit
y (

IC
V)

Chemical index of Altera�on (CIA)

Borehole E-AH1
Borehole E-AJ1
Borehole E-BA1
Borehole E-BB1
Borehole E-D3

Figure 23: Binary plot of CIA against ICV for the Bredasdorp mudrocks and sandstones.

1208  Temitope Love Baiyegunhi et al.



CIA and PIA values, as well as the bivariate plots of ICV
versus CIA, and SiO2 against total alkali (Al2O3 + K2O +
Na2O) suggest that the source area of the Bredasdorp
mudrocks and sandstones were subjected to low and
intense weathering conditions under arid and humid cli-
mate, respectively.
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Figure A1: Stratigraphy of the Bredasdorp Basin in boreholes E-AH1, E-AJ1, E-BA1, E-BB1 and E-D3.
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