AN INVESTIGATION OF THE ANTIMICROBIAL PATTERNS AND ASSOCIATED DEMOGRAPHIC DETERMINANTS IN BACTERIA ISOLATED FROM PATIENTS WITH NON-HEALING WOUNDS AT THE PIETERSBURG AND MANKWENG HOSPITALS, LIMPOPO PROVINCE

by

KABELO GABRIEL KAAPU

DISSERTATION

Submitted in fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

MEDICAL SCIENCES

in the

FACULTY OF HEALTH SCIENCES (School of Medicine)

at the

UNIVERSITY OF LIMPOPO

SUPERVISOR: Ms NTC Maguga-Phasha CO-SUPERVISOR(S): Ms NM Seloma : Prof. R Lekalakala

DEDICATION

My appreciations go to God for giving me understanding, knowledge and will-power that helped me to complete this project; without God on my side this project would not have been successful.

To my supervisor Ms NTC Maguga-Phasha and co-supervisors Ms NM Seloma and Prof. R Lekalakala-Mokaba, thank you for giving me direction and inspiration throughout the course of the project.

To my family members, friends, and colleagues, thank you for always being there for me. I appreciate your support.

DECLARATION

I declare that the Investigation of Antimicrobial Patterns and Associated demographic determinants in Bacteria Isolated from Patients with Non-healing Wounds at the Pietersburg and Mankweng Hospital, Limpopo Province hereby submitted to the University of Limpopo, for the degree of Master of Science in Medical Sciences has not previously been submitted by me for a degree at this or any other university; that it is my work in design and in execution, and that all material contained herein

10/09/2021

Signature

Date

ACKNOWLEDGEMENT

I would like to convey my deepest gratitude to the following people for making this project a success:

- Mrs N.T.C Maguga-Phasha (Supervisor), Your immeasurable support, guidance and patience is highly appreciated.
- Ms NM Seloma and Prof. R Lekalakala-Mokaba, thank you for being my academic guardian angels, I appreciate your devotion throughout.

I am grateful to the following bodies for the permission granted for this project to be conducted.

- Turfloop Research Ethics Committee.
- Provincial Health Research Ethics Committee; and
- National Health Laboratory Service.

Special thanks to the National Research Foundation (NRF) for providing me with a fully funded scholarship for the masters' project. Without NRF, it would have not been possible for me to study a Masters' degree.

ABSTRACT

Background: Wound infections continue to be problematic in clinical practice where empiric treatment of infections is a routine, with non-healing wounds being a burden to the health care system. A gap has been noted between antimicrobial resistance and demographic factors as an existing relationship. This necessitates an investigation of patterns of isolates and susceptibility profiles of microorganisms in wounds to modify the preventative and therapeutic strategies against the resistant strains leading to the stall of wound healing, which could aid in empiric treatment.

Objective: The aim of this study was to determine the antimicrobial patterns and their associated demographic determinants in bacteria isolated from patients with non-healing wounds at Pietersburg and Mankweng Hospitals, Limpopo Province.

Methods: The study was conducted using antimicrobial susceptibility data collected from National Health Laboratory Service through Academic Affairs and Research Management System for the period 2016-2020. A total of 797 Antimicrobial Susceptibility Test results were analysed using Statistical Package for Social Sciences version 27.0. The susceptibility rates for the bacterial isolates by age and gender were calculated. The mean percentages for sensitivity and resistance were also calculated. Pearson's Chi-square test was used to compare age and gender with drug susceptibility. A p-value of ≤ 0.05 was considered significant.

Results: Of the 797 patient Antimicrobial Susceptibility Test results, 372 (46.7%) were males and 425 (53.3%) females, with mean age of 31.42 ± 21.75 years. The most common isolates were, *Klebsiella pneumoniae* (23%), *Pseudomonas aeruginosa* (21.7%), *Escherichia coli* (16%) and *Proteus mirabilis* (13.5%). Highest percentage of resistance to any antibiotic was amoxicillin, ampicillin (85.15%) then trimethoprim sulfamethoxazole (60.85%), amoxicillin ampicillin (49.1%), tigecycline (46.35%), cefepime (32.7%), gentamycin (25.4%), ciprofloxacin (22.5%), colistin (17.6%), and meropenem (12.3%). Furthermore, the general view of the study is no statistically clinical significance on the effect of age and gender on bacterial resistance although statistical significance was noted on age the resistance *Acinetobacter baumannii*

(p=0.018), and gender on *K. pneumoniae* (p=0.015), *P. mirabilis* (p=0.024). Major resistance to *A. baumannii, K. pneumoniae* and *P. mirabilis* were from female patients.

Conclusions: The most effective antibiotics were meropenem, colistin, and ciprofloxacin. The highest number of isolates were *K. pneumoniae, E. coli, P. aeruginosa, P. mirabilis and A. baumannii* with the most effective antibiotics gentamycin, meropenem, ciprofloxacin, and cefepime. Although the general view of the study is that no statistically clinical significance was noted on the effect of age and gender on bacterial resistance, it is important to note the significant observation that there was an observed relation of age to amoxicillin-clavulanic acid and Ciprofloxacin and gender to amoxicillin ampicillin. As such, there is insufficient evidence that supports the effect of age and gender on antimicrobial susceptibility. The study suggests caution against the use of amoxicillin ampicillin in the treatment of wound infections as it confers low levels of efficacy and high resistance and ultimately the call to revise minimum inhibitory concentrations and critical concentrations of all less-effective drugs to increase their efficacy.

Keywords: antimicrobial susceptibility; demographic determinants.

TABLE OF CONTENTS

DEDICATION
DECLARATION
ACKNOWLEDGEMENT
ABSTRACTv
PRESENTATIONSx
LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVIATIONS
DEFINATION OF CONCEPTS
CHAPTER 1
INTRODUCTION1
1.1 General Background1
1.2 Research Problem
1.3 Purpose of the Study
1.3.1 Aim:
1.3.2 Objectives:
1.3.3 Research Question:
1.4. Significance of the Study4
CHAPTER 2
LITERATURE REVIEW
2.1 Introduction
2.2 Theoretical and Conceptual Framework
2.3 Categories of wounds
2.4 Common bacteria isolated in wound infections8
2.5 Factors affecting susceptibility and resistance of microorganisms to antimicrobials
2.6 Common antimicrobial agents used in the treatment of wound infections11
2.7 Action of different antimicrobials on various microorganisms assessed in previous studies
2.8 Demographic determinants of antimicrobial susceptibility patterns
CHAPTER 3
METHODOLOGY15
3.1 Research Design
3.2 Study Area

3.3. Sample size calculation	15
3.4. Sampling method	16
3.5 Inclusion criteria	16
3.6 Exclusion Criteria	17
3.7 Data collection	17
3.7.1 Data analysis	17
3.8 Validity and Reliability	
3.8.1 Validity	18
3.8.2 Reliability	18
3.9 Bias	19
3.10. Ethical Considerations	19
3.10.1 Permission	19
3.10.2 Informed consent and voluntary participation	20
3.10.3 Anonymity and confidentiality	20
3.10.4 Handling and disposal of samples	20
3.10.5 Harm	20
CHAPTER 4	21
RESULTS	21
4.1 Introduction	21
4.2 Overall characterization of patient data and bacterial isolates	21
4.3 Characterization of bacterial isolates and antibiotic susceptibility	24
4.4 Association of age and gender with antibiotic susceptibility	
4.5 The antibiotic resistance profiles of bacterial isolates.	32
CHAPTER 5	
5.1 DISCUSSION	
5.2 CONCLUSION	
5.3 STRENGTHS AND LIMITATIONS OF THE STUDY	
5.4 RECOMMENDATIONS	
REFERENCES	
APPENDICES	
Appendix 1: RESEARCHER CONFIDENTIALITY FORM	
Appendix 2: NHLS REQUEST FORM	
Appendix 3: DATA EXTRACTION REQUEST FORM	51
Appendix 4: DEPARTMENT OF HEALTH APPROVAL	54
Appendix 5: WOUND SWABS LABORATORY PROCEDURE	55

Appendix 6 TREC APPROVAL	
Appendix 7 NHLS APPROVAL	57
Appendix 8: RAW DATA	

PRESENTATIONS

The study was presented at the Faculty of Health Science 4th Annual Research day on antimicrobial patterns and associated demographic factors in bacteria isolated from patients with non-healing wounds at the Pietersburg and Mankweng hospitals, Limpopo Province, on 7 September 2021.

LIST OF FIGURES

Figure 2.1: Theoretical framework	7
Figure 4.1: Frequency of bacterial isolates	22
Figure 4.1.1: Gram reaction of isolated pathogenic bacteria	23
Figure 4.2: Overall potency of antibiotics to isolated bacteria	23
Figure 4.3: Antibiotic susceptibility	24

LIST OF TABLES

Table 2.1: Common bacteria in wound infections	8
Table 2.2: Common antimicrobials used in the treatment of wound infections	12
Table 4.1: Characterisation of patient socio-demographic data	21
Table 4.2: Frequency of bacterial isolates	22
Table 4.3: The resistance patterns to age and gender	28
Table 4.4: The effect of age and gender on antibiotic susceptibility	30
Table 4.5: Antibiotic resistance profiles of mostly isolated bacteria	31

LIST OF ABBREVIATIONS

AMOX	Amoxicillin
ATCC	American Type Culture Collection
CLSI	Clinical and Laboratory Standards Institute
СТХ	Cefotaxime
СХМ	Cefuroxime (Parenteral)
CCs	Critical Concentrations
DFU	Diabetic Foot Ulcer
ECOFF	Epidemiological Cut Off
FOX	Cefoxitin
МК	Minimum Duration of Killing
MDR	Multi Drug-Resistant
MIC	Minimum Inhibitory Concentration
NHLS	National Health Laboratory Service
NHRD	National Health Research Database
NIT	Nitrofurantoin
ROX	Cefuroxime (Oral)
PMREC	Pietersburg Mankweng Research Ethics Committee
TREC	Turfloop Research Ethics Committee

DEFINITION OF CONCEPTS

Wound

Antimicrobial Resistance Patterns'	description of the antibiotic resistance testing			
	results for an isolate, referring to the			
	characteristics of a single isolate as per the			
	Clinical Laboratory Standards Institute			
	(CLSI) guidelines (CDC, 2015). In this study,			
	antimicrobial resistance patterns refer to the			
	drug resistance trends observed from a			
	single isolate to its antimicrobial agents.			
Comorbidity	can be described broadly as the presence of			
	more than one disorder in a person in a			

more than one disorder in a person in a defined period (Wittchen & Essau, 1993). In this study, comorbidities refer to underlying conditions that occur simultaneously with disease upon a patient with wound infections admission.

a breakdown in the protective function of the skin; the loss of continuity of the epithelium, with or without loss of the underlying connective tissue (Kemebradikumo *et al.*, 2013). In this study, a wound refers to any damage or break in the surface of the skin.

Non-healing wound a wound that will not heal within four weeks, and the cause is usually found in underlying conditions that have either gone unnoticed or untreated, in which infection is also implicated (Ruben, 2015). In this study, a non-healing wound is a wound that did not heal within four weeks prior to or after presentation at the hospital.

Associated Demographic Determinants These are factors used to define the characteristics of a person or a population. Some commonly used demographic factors include variables such as race, age, income, marital status, and educational achievement, among others (Ibok NI, 2012). In this study, the socio-demographic factors such as age, sex and geographic location will be studied, and association with the antimicrobial susceptibility will be established.

CHAPTER 1

INTRODUCTION

1.1 General Background

Wound infections continue to be problematic in clinical practice where empiric treatment of infections is a routine (Kemebradikumo, Beleudanyo & Oluwatoyosi, 2013). Typically, wounds are supposed to heal within a predictable time regardless of the nature of the cutaneous injury, although the treatment required to facilitate healing will vary depending on the type, size and depth of the wound which further enables classification of the wound as having an acute or chronic aetiology (Mercandetti & Cohen, 2008). Acute wounds are caused by external damage to intact skin and include surgical wounds, bites, burns, minor cuts and abrasions, and more severe traumatic wounds such as lacerations and those caused by crash or gun-shot injuries (Bowler, Duerden & Armstrong, 2012). Chronic wounds are most frequently brought about by endogenous mechanisms related to predisposing conditions such as patients with chronic conditions, leg ulcers, foot ulcers, and pressure sores that eventually compromise the integrity of the dermal and epithelial tissue (Iqbal, Jan, Wajid & Tariq, 2017).

Non-healing wounds are slowly becoming a burden to the health care system, where professionals are running out of treatment options and are therefore diverting to amputations in worst-case scenarios (Lutge, Moodley, Tefera, Sartorius, Hardcastle *et al.*, 2016). A study by Guest, Ayoub, McIlwraith, Uchegbu, Gerrish *et al.* (2017), reported that unhealed wounds had a substantial economic burden with an increased patient care cost in the management of leg ulcers and burns with associated comorbidities (Guest *et al.*, 2017). A diabetic foot ulcer (DFU) study conducted in Nigeria reported the country to have a high burden of non-healing DFUs where patients had comorbidities such as hypertension, anaemia and hyperglycaemic emergencies (Ugwu, Adeleye, Gezawa, Okpe, Enamino *et al.*, 2019). These studies are a noteworthy projection of a public health concern which warrants action on non-healing wounds by investigating factors that could aid in better management of non-healing wounds.

To promote and speed up wound healing, antimicrobial regimens may be administered, depending on the type of infecting agent (Ruben, 2015). Widespread

use of antibiotics has resulted in an increased incidence of isolation of antibioticresistant microorganisms from various environments, including wounds (English & Gaur, 2010). Wound infection with antibiotic-resistant bacteria may cause further morbidity in the patient and results in additional treatment costs owing to measures being instituted to reduce patient-to-patient transmission and control nosocomial outbreaks in the ward or institution (Calfee, Salgado, Milstone, Harris & Kuhar, 2014).

A retrospective study conducted in Ethiopia on antimicrobial susceptibility patterns of wound infections considered socio-demographic characteristics such as age, sex, educational background, occupation, residence and patient setting and their relation to antimicrobial resistance (Mohammed, Sied, Gebrecherkos, Tiruneh & Moges, 2017). The study has shown that in-patients had a high number of resistant isolates compared to outpatients, where participants dominating with resistant isolates were aged above 60 (Mohamed *et al.*, 2017). Most of the outpatients with resistant isolates were from rural areas aged between 41 and 60 (Mohammed *et al.*, 2017). This shows an existing relationship between antibiotic resistance and demographic determinants of the resistance, a significant public health issue which is yet to be fully investigated.

In the Limpopo province, a study conducted by Makgatho, Sethowa, Maguga-Phasha and Mashinya (2019) reported a high rate of multiple antibiotic-resistant isolates in both gram-positive and -negative bacteria (Makgatho *et al.*, 2019). In another study by Chanda, Manyepa, Chikwanda, Daka, Chileshe *et al.* (2019), pathogens isolated from routine laboratory specimens were tested using antimicrobials, and the findings revealed that *Staphylococcus aureus, Proteus species, Pseudomonas species* and *Enterobacter species* were the most common and resistant isolates (Chanda *et al.*, 2019). Furthermore, a study conducted in Gaza reported that the most isolated microorganisms from wound infections such as *Pseudomonas aeruginosa* and *Escherichia coli* showed a greater level of resistance to the antibiotics, while another study in Turkey reported isolated strains of *S. aureus* and *Klebsiella species* were also found to be resistant (Goswami, Trivedi, Goswami, Patel & Tripathi, 2011).

Given the above studies, it is evident that antibiotic-resistant bacteria from wound isolates are becoming communal, difficult to control and a forthcoming burden to the health care system. It is also evident that thorough investigations into the emergence of the resistant isolates have not been extensively conducted to determine other factors associated with this concern. It is, therefore, necessary to carry out an investigation of patterns of isolates and susceptibility profiles of microorganisms in wounds to modify the preventative and therapeutic strategies against the resistant strains leading to the stall of wound healing, which could aid in empiric treatment.

1.2 Research Problem

Bacterial infections in wounds are common, often difficult to control, fatal and have become a significant public health concern. Unfortunately, the current control strategies i.e., the use of aseptic techniques and administration of antibiotics amongst others, appear to be inadequate in the management of bacterial infections in wounds. Evidence to support this stance is the incidences of many cases in various clinical settings where microorganisms have reportedly become resistant to antimicrobial agents such as antibiotics. The widespread and prolonged use of antibiotics leads to the emergence of resistant bacterial pathogens in wound infections contributing to non-healing wounds. These highly resistant pathogens result from socio-demographic factors such as age and sex, which this study investigated as previous studies in Limpopo Province have not assessed these variables' association with their patterns of antimicrobial susceptibility.

It is necessary to investigation of patterns of susceptibility profiles of microorganisms in wounds and their demographic determinants. This is to modify the preventative and therapeutic strategies against the resistant strains leading to the stall of wound healing and make recommendations that could aid in empiric treatment; hence this study.

1.3 Purpose of the Study

1.3.1 Aim:

The aim of this study was to determine the antimicrobial patterns and their associated demographic determinants in bacteria isolated from patients with non-healing wounds at the Pietersburg and Mankweng Hospitals, Limpopo Province.

1.3.2 Objectives:

The objectives of the study were to determine the:

- 1.3.2.1 antimicrobial patterns of bacteria isolated from non-healing wounds using National Health Laboratory Services (NHLS) laboratory records.
- 1.3.2.2 demographic determinants of antimicrobial patterns of bacteria isolated from non-healing wounds using NHLS request and data extraction forms.
- 1.3.2.3 association of the demographic determinants with antimicrobial patterns of bacteria isolated from non-healing wounds by carrying out data analysis.

1.3.3 Research Question:

What is the association of bacterial antimicrobial patterns to demographic determinants in non-healing wounds from patients at the Mankweng and Pietersburg Hospitals?

1.4. Significance of the Study

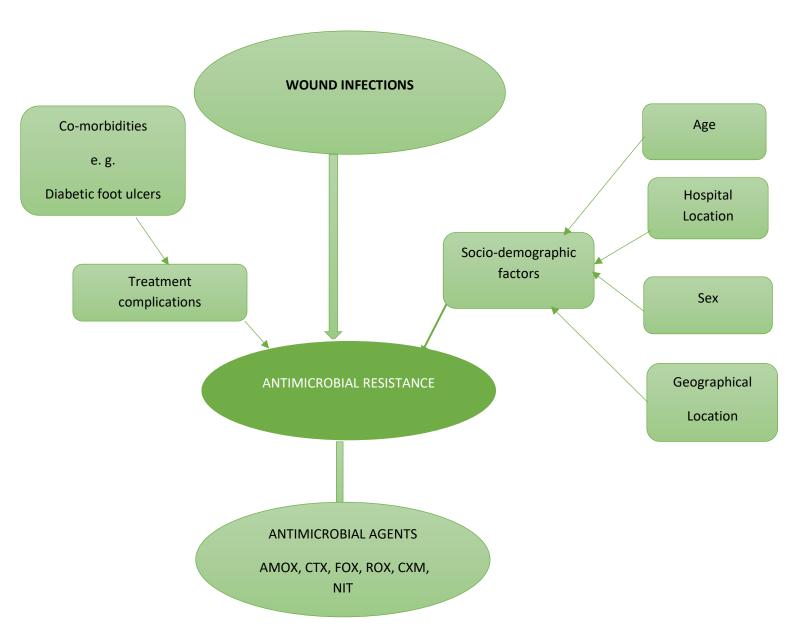
The study may enhance the knowledge existing on the pathogenic bacteria leading to wound infections resulting in non-healing wounds, the comorbidities influencing wound infections and healing and their antimicrobials' usage in medicine. Furthermore, the study will inform on the antimicrobials that frequently result in resistance because of the patients' socio-demographic factors and therefore alternative treatment approaches of wound infections will be recommended to avoid resistance, wound healing delay and amputation of affected sites or death.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

The problem of antimicrobial resistance means there is a need to continually conduct research into the discovery of new treatment strategies. The development of resistance to antimicrobials in the treatment of wound infections is a significant public health concern (Gandra *et al.*, 2019). At present, a significantly high risk of development of antimicrobial resistance is a concern leading to non-healing wounds. These non-healing wounds are a consequence of a wound burden that has been established to be an emerging concern (Neopane *et al.*, 2018 & Guest *et al.*, 2017).

A study by Guest, Ayoub, McIlwraith, Uchegbu, Gerrish *et al.* (2017) reported that unhealed wounds had a substantial economic burden with an increased patient care cost in the management of leg ulcers and burns with associated comorbidities (Guest *et al.*, 2017). A diabetic foot ulcer (DFU) study conducted in Nigeria reported the country to have a high burden of non-healing DFUs where patients had comorbidities such as hypertension, anaemia, and hyperglycaemic emergencies (Ugwu, Adeleye, Gezawa, Okpe, Enamino *et al.*, 2019).


This section will look at the categories of wounds, common bacteria isolated from wound infections, properties of antimicrobial agents and their methods of treatment in acute non-healing wounds. It also discusses chronic wounds, factors affecting susceptibility and resistance of microorganisms to antimicrobials, common antimicrobial agents used in the treatment of wound infections and the action of different antimicrobials on various microorganisms as assessed in previous studies.

2.2 Theoretical and Conceptual Framework

The direction of the study was based on the theory of association of attributes. This theory postulates that many outcomes occur because of simultaneous occurrences of various factors. The outcome result is dependent on other independent factors (Lee & Min, 2013). This study sought to determine associated factors to Multi-Drug Resistance (MDR) using the theory of association of attributes which are socio-demographic factors such as age, sex, location, and educational background.

Antibiotic resistance has become a global threat, and it is essential to know the series of events that have led to this predicament (Laxminarayan, Duse, Wattal, Zaidi, Wertheim *et al.*, 2013). The rational use of antibiotics is a critical approach to improve the antibiotic performance and tackling of the antimicrobial resistance. The efficacy of antimicrobials is influenced by many factors: bacterial status (susceptibility and resistance, tolerance, persistence, biofilm) and inoculum size; antimicrobial concentrations; host factors (serum effect and impact on gut microbiota) (Li, Xie, Ahmed, Wang, Gu, *et al.*, 2017).

The literature revealed a study conducted in South-West Ethiopia which specified two socio-demographic factors: age and sex. This study did not associate these factors with antimicrobial resistance (Mama, Abdissa & Sewunet, 2014). This theoretical framework combines/associates demographic factors to the emergence of MDR isolates, as shown in Figure 2.1 drawn on the next page.

Figure 2.1: Representation of how the environmental factors, comorbidities and normal flora are related to wound infections (Kehinde & Ogunnowo, 2013).

2.3 Categories of wounds

Wounds can be classified as acute or chronic. A wound can either be surgical, traumatic, burns, bite wounds, cuts, grazes, ulcers, and cancer wound depending on the cause (Elmanama *et al.*, 2013; Gupta *et al.*, 2015., Alharbi & Zayed, 2014; White *et al.*, 2016). Infection of any type of wound gives rise to different types of wound infections. Patients with burns are usually hospitalised for an extended period, mainly because of the larger area involved (Alharbi & Zayed, 2014).

Burns provides a suitable site for bacterial multiplication and are more persistent richer sources of infection than surgical wounds, mainly because of the larger area involved and longer duration of patient stay in the hospital, which makes burn wound infection more common (Agnihotri *et al.*, 2004; Alharbi & Zayed, 2014).

2.4 Common bacteria isolated in wound infections

Compared to surgical wounds, burns are more suitable sites for bacterial colonisation (Agnihotri *et al.*, 2004). The most common microorganism that colonises burns is *P.aeruginosa* (Saaiq, Ahmad & Zaib, 2015). The microbial aetiology of ulcer wound infection is usually involved (Bassetti, Baguneid, Bouza, Dryden, Nathwani *et al.*, 2014). Different microorganisms are mostly found in large numbers in surgical and trauma wounds.

Aerobic isolates	Anaerobic isolate		
Gram-positive	Gram-positive		
Staphylococcus aureus	Peptostreptococcus spp.		
Coagulase-negative staphylococci	Clostridium spp.		
Streptococcus pyogenes	Propionibacterium spp.		
Gram-negative	Actinomyces spp.		
Escherichia coli	Eubacterium spp.		
Klebsiella pneumonia	Gram-negative		
Citrobacter spp.	Bacteriodes fragilis		
Enterobacter spp.	Prevotella spp.		
Pseudomonas spp.	Veilonella spp.		
Serratia marcescens	Porphyromonas		
Morganella. morganii	Fusobacterium		
Acinetobacter spp.			
Candida spp.			

Table 1: Common bacteria in wound infections (Buru et. al., 2014)

A study conducted in the Limpopo Province of South Africa also revealed the bacterial isolates commonly isolated in wound infections from samples obtained in Central Polokwane NHLS. Seven different species of bacteria were isolated. The most common organism isolated was *Staphylococcus aureus* (29%) followed by *Staphylococcus epidermidis* (15%), lactose fermenting coliforms (15%), Pseudomonas species (11%), Klebsiella species (7%) as well as *Escherichia coli* (3%) and Streptococcus group D (3%). Only 1% of *Staphylococcus saprophyticus* was isolated (Makgatho *et al.*, 2019)

2.5 Factors affecting susceptibility and resistance of microorganisms to antimicrobials

Antibiotic resistance has become a global threat, and it is essential to know the series of events that have led to this predicament Guest *et al.*, 2017). The rational use of antibiotic is the critical approach to improve the antibiotic performance and tackling of the antimicrobial resistance. The efficacy of antimicrobials is influenced by many factors: bacterial status (susceptibility and resistance, tolerance, persistence, biofilm) and inoculum size; antimicrobial concentrations; host factors (serum effect and impact on gut microbiota) (Li, Xie, Ahmed, Wang, Gu, *et al.*, 2017).

Bacterial status is one of the determinants of antimicrobial activity. The bacteria phenotypes are different under antibiotic exposure, such as susceptibility, resistance, tolerance, and persistence (Brauner, Fridman, Gefen, and Balaban *et al.*, 2016). Susceptibility and resistance are measured by the Minimum Inhibitory Concentration (MIC). It is usually determined by exposing a defined amount of bacterial population to a series of increasing antibiotic concentrations in a standardised growth medium for about 16 - 20 h (Poirel, Jayol & Nordmann, 2017). Isolates can be phenotypically recognised as susceptible and resistant, according to Epidemiological Cut Off (ECOFFs) (Espinel-Ingroff & Turnidge, 2016).

Clinical resistance is a condition whereby the clinical criteria of cure was not reached when enough antibiotic dosage and administration timetable are applied for a specific infection. It is determined by the clinical breakpoints, which separate clinically resistant bacteria from clinically susceptible bacteria. Clinical breakpoints are influenced by pharmacodynamic and pharmacokinetic parameters which, indicate a relationship between antimicrobial activity *in vivo* and the antibiotic concentration at the site of infection (Li *et al.*, 2017).

Tolerance is the capacity of bacteria to stay alive in a brief exposure to antibiotics, which apply only to bactericidal antibiotics (Kester & Fortune, 2014). Longer time rather than a high concentration of antibiotic exposure is necessary to construct the same level of killing in a tolerant strain as in susceptible strain. Tolerant and non-tolerant bacteria may not be different in MIC value. The Minimum Drug Killing (MDK) which can be obtained from the time-kill curves are suggested as quantitative measures of tolerance. There are two types of tolerance, "tolerance by slow growth" and "tolerance by lag". The former occurs at stationary phase while the latter occurs in a transient growth arrest often induced by starvation or stress (Brauner *et al.*, 2016).

Persistence occurs in a bacterial subpopulation that is not killed by antibiotics, and heterogeneous response is repeated when they are exposed to the same antibiotic (Lewis, 2007). The molecular mechanisms of time dependant persistence are also associated with tolerance that slows down the killing by antibiotics (Adams, Takaki, Connolly, Wiedenhoft, Winglee *et al.*, 2011). However, in some cases of tolerance with a very high MDK, the antibiotic toxicity to the host may limit the treatment duration. Drug-induced tolerance or persistence, which causes growth arrest in some microorganisms may result in a long MDK (Dorr, Vulic, & Lewis, 2010; Johnson & Levin, 2013).

The antibiotics apply its effect by different mechanisms initially by inhibiting the synthesis and of the bacterial cell wall, or its transcription, impairing bacterial ribosomes and protein synthesis, interfering with metabolic pathways or disrupting the cytoplasmic membrane (Zamoner, De Freitas, Garms, De Oliveira, Balbi *et al.*, 2016). Different antibiotic concentrations may result in a different selection of resistant bacteria, therefore influencing the efficacy of the antimicrobials (Li *et al.*, 2017).

Rational and correct uses of antibiotics are the fundamental approaches in improving antibiotic performance and tackling antimicrobial resistance. The efficacy of antibiotic treatment is influenced by many factors. The sensitivity of the specified pathogens is usually combined with pharmacokinetic parameters to investigate the effectiveness of antimicrobial dosage regimens. It should be noted that the non-protein-bound fraction of antibiotics is microbiologically active *in vivo*, which makes the serum effect to be

considered in antibiotic therapy. Choosing the precise antibiotic is essential as the serum effect changes between antibiotics in the same class or antibiotic against different microorganisms (Li *et al.*, 2017).

On the other hand, MIC is not informative for some special bacterial status, such as persistent or tolerant bacteria. In contrast to infections caused by planktonic bacteria, biofilm-forming bacteria tend to cause chronic infections, especially in the respiratory tract, whereby infections persist despite adequate antibiotic therapy. This is because the emergence of persistent or tolerant bacterial cells usually happens in biofilms. Recently, several compounds have been identified as effective against time-dependent persisters (Kim, Heo, Yang, Lee, Cho *et al.*, 2011) or against tolerance in biofilms through the methods of systematic screens. However, the effectiveness of these compounds has not been assessed in the clinical setting. Antimicrobial regimens should be optimised not only for the treatment outcome but for the minimisation of the antimicrobial resistance development (Mouton, Ambrose, Canton, Drusano, Harbarth, MacGowan *et al.*, 2011). It should not be ignored that antibiotic-induced alterations in composition and function of the microbiota may also create long-lasting harmful effects for the host and increase bacterial resistance (Francino, 2015; Becattini, Taur & Pamer, 2016).

2.6 Common antimicrobial agents used in the treatment of wound infections

Different antimicrobial agents are used to treat wound infection concerning the bacterial species responsible for wound infection. There are different classes of antibiotics, and different antibiotics have different mechanisms of action at which they kill and/or inhibit the growth of bacteria responsible for wound infections (Wilson, 2014).

Table 2: Common antimicrobial agents used in the treatment of wound infections and their mechanisms of action (Patrulea *et al.,* 2020)

Classes of antimicrobial agents	Examples of antimicrobial agents	General mechanisms of action of antimicrobial agents.			
Aminoglycosides	Gentamicin	Inhibition of protein synthesis			
Beta-lactams	Vancomycin	Inhibition of cell wall synthesis.			
Carbapenems	Meropenem	Inhibition of cell wall synthesis			
Cephalosporins	Cefepime	Disrupt synthesis of peptidoglycan layer			
Penicillin's	Ampicillin	acylates the active site of Bacillus stearothermophilus-D-alanine carboxypeptidase			
Fluroquinolone	Ciprofloxacin	Inhibition of nucleic acid replication and transcription			
Folate-pathway inhibitor	Trimethoprim- sulfamethoxazole	Interfering with folic acid metabolisms			
Glycylcycline	Tigecycline	Inhibition of protein synthesis			
Polymyxin	Colistin	Inflicting injury to the plasma membrane			

2.7 Action of different antimicrobials on various microorganisms assessed in previous studies

Makgatho, *et al.* (2019) evaluated the antimicrobial susceptibility profiles of microorganisms in wound swabs from Central Polokwane NHLS, in Limpopo Province of South Africa. A high rate of multiple antibiotic-resistant isolates was observed in both gram-positive and gram-negative bacteria. The results are presumptive of the likelihood of a changing resistant profile among the specimen tested. That might be attributable to various factors and warrants further investigation (Makgatho *et al.*, 2019).

A study conducted in Turkey (Oncul, Ulkur, Akar, Turhan, Yeniz *et al.*, 2009) obtained different results where they reported *Pseudomonas aeruginosa* to be the abundant isolate, followed by *Staphylococcus aureus*.

In these cited studies, *P. aeruginosa* was the isolate with the highest resistance to Gentamycin, Piperacillin, Ciprofloxacin, Cefepime, Imipenem, Amikacin, Ceftazidime, and Norfloxacin. It was followed by *Staphylococcus species* which were found to be resistant to Ceftriaxone, Ciprofloxacin, Cefuroxime, Penicillin, Triemethoprim, and Oxacillin. *Staphylococcus spp.* strains isolated from patients' samples were sensitive to linezolid. A marked increase in the number of hospital infections owing to methicillin-resistant staphylococci has been reported in many countries (Johnson, 2011). *P. aeruginosa* is the abundant isolated bacteria and was considered MDR.

Pondei, Fente and Oladapo (2013) conducted a study at the Niger Delta University Hospital in Nigeria. Their study demonstrated a high prevalence of pathogenic bacteria in wounds. This figure is consistent with that obtained in similar studies in Nigeria which further explained that gram-negative bacteria were the most isolated pathogens (Ige, Adesanmi & Asuzu, 2011). Their observation showed *P. aeruginosa* as the most common pathogen in wound infections differing from another study in Nigeria, showing *Staphylococcus aureus* to be predominant (Aye, Omoriege, Igbarumah & Onemu, 2011).

Klebsiella pneumoniae was observed as the most common pathogen isolated in wound infections in a study in Western Nigeria (Mama, *et al.*, 2014). This is evidence of the existence of local and regional variability and shows that each health facility must determine the prevalent microorganisms and other associated indices. Antibiotic resistance by the isolates to commonly prescribed antibiotics was high. This level of resistance is a cause for concern. The absolute resistance to cloxacillin was expected because cloxacillin is a component of Ampiclox, an antibiotic frequently implicated in self-medication in Nigeria (Clarence, Edrin & Odeh EN, 2008). The development of resistance to cephalosporins in this study is a wake-up call for action on antimicrobial resistance (Pondei *et al.*, 2013).

A study conducted by Lai, Bebell, Meney, Veleri and White (2018) in six countries in Africa revealed the antimicrobial resistance data on key pathogens from clinical wound isolates of patients presenting to a single floating hospital ship from the six African countries. It reported that the majority of *Enterobacteriaceae* isolates in the population sampled are resistant to ampicillin, and a substantial proportion is resistant to gentamicin, often the first-line antibiotics recommended for some surgical site

infections in health care facilities of the country's studies. It was found that a high proportion of the isolates are resistant to fluoroquinolones and third-generation cephalosporin, antibiotics commonly used throughout sub-Saharan Africa. Lastly, 23.9% of *Staphylococcus aureus* isolates were methicillin-resistant, a concerning finding for resource-limited settings where alternative antibiotics such as vancomycin are not routinely available. In summary, it was found that resistance to locally available antimicrobials was common among wound infection isolates (Lai *et al.*, 2018)

2.8 Demographic determinants of antimicrobial susceptibility patterns

Various studies (Mama, *et al.*, 2014; Mohammed, Sied, Gebrecherkos, Tiruneh & Moges, 2017) have been conducted on antimicrobial susceptibility. However, the association to demographic factors remains somewhat unclear as most of these conducted studies are not conclusive about the association of these two variables. A study conducted in South-West Ethiopia specified two socio-demographic factors: age and sex. This study involved 150 participants, of which 107 were males and 43 were females. A total of 87.9% of the males were found to have wound infections, and only 81.4% of females had wound infections, and most of the participants infected were males between the ages 15 and 60 (Mama, *et al.*, 2014). This study did not associate these factors with antimicrobial resistance.

A retrospective study in Ethiopia conducted in 2017 considered socio-demographic characteristics such as age, sex, educational background, occupation, residence, and patient setting in their data collection and their relation to antimicrobial resistance. The study has shown that in-patients had a high number of resistant isolates compared to out-patients where participants dominating with resistant isolates were aged above 60 and the majority of the outpatients dominating with resistant isolates were from rural areas aged between 41 and 60 (Mohammed, *et al.*, 2017).

CHAPTER 3 METHODOLOGY

3.1 Research Design

This was a quantitative retrospective study. A quantitative study focuses on gathering numerical/statistical data and generalising it across groups of people or to explain a phenomenon (Babbie, 2010). In this study, medical records of patients with non-healing wounds including demographic, bacteria isolated and antibiotic susceptibility results were collected and analysed statistically. A retrospective cohort study is one in which the outcome has all occurred before the start of the investigation, and the investigator goes back to the past to select study group from existing records of medical and traces them forward through time from the past date fixed on the records usually to the present (Mayer, 2008). In this study, antimicrobial susceptibility patterns and socio-demographic factors were studied by extracting information on patient medical records from the Mankweng and Pietersburg Hospitals' wards and the Central Polokwane NHLS.

3.2 Study Area

This study was conducted at the Pietersburg and Mankweng Hospitals with 498 and 509 bed capacity, respectively. These hospitals are situated in the Capricorn District of the Limpopo Province, South Africa. The province is situated in northern South Africa bordering Mozambique, Zimbabwe and Botswana. It is divided into five district municipalities: Capricorn, Mopani, Sekhukhune, Vhembe and Waterberg. Limpopo Province borders the Mpumalanga, Gauteng and North-West Provinces of South Africa. The study sites were the Mankweng hospital, Pietersburg hospital & Central Polokwane NHLS. The NHLS is a routine diagnostic laboratory that services hospitals at national and provincial levels, located in Polokwane, 29.6 kilometres away from the University of Limpopo. The laboratory has antimicrobial susceptibility results of bacteria isolated from wounds at hospitals and sent for testing at NHLS.

3.3. Sample size calculation

The prevalence of non-healing wound infections in this study helped determine the sample size. Hence the general prevalence was used as the prevalence of non-healing wounds in Limpopo is not known. Studies have shown that the prevalence of

non-healing wounds is around 45% depending on the area of study (Gupta, 2015). In the sample size calculation formulation (Za/2) =1.96 because the confidence interval is 95%, Margin of error is 10%, E= margin of error multiply by prevalence = $0.10 \times 0.45 = 0.045$. Therefore, the sample size is calculated using the formula N= (Za/2)² × (P) × (1-P) ×D (Suresh & Chandrashekara, 2012).

E^2

Where: $(Za/2)^2$ = Level of Significance, where Za/2= 1.96 for 95% confidence interval P= Prevalence, where 45% general prevalence D= Sampling/Method Design, where 1 is used in a random sampling technique E= Precision/ Margin of Error multiplied by prevalence, where 10% is the given margin of error/ precision therefore:

N= <u>(1.96)² X (0.45) X (1-0.45) X 1</u> (0.045)² =470 patient records

Where 235 patient records per hospital were obtained from NHLS

Therefore, a minimum of 470 medical records of patients with non-healing wounds from the two hospitals was needed for the study.

3.4. Sampling method

Probability is a sampling technique in which the researcher chooses samples from a larger population using a method based on the theory of probability where a participant to be considered as a probability sample. Participants must be selected using a random selection (Yang & Banamah, 2014). The patients' medical records used in this study were obtained from those selected at a random technique within a five-year range at the NHLS facility servicing the Pietersburg and Mankweng Hospitals.

3.5 Inclusion criteria

All patients' medical records of a patient with wound infections at Surgical, Trauma, Orthopaedic and Maternity wards, and who have been treated with antimicrobials, considering demographic factors such as sex and age were suitable for this study.

3.6 Exclusion Criteria

Patients' medical records that did not have all the information required in the present study. The study required susceptibility results, demographic factors such as age and sex. Therefore, records that did not have this information were excluded.

3.7 Data collection

The data were collected from NHLS, a routine diagnostic laboratory. The laboratory standard operating procedures were followed for culture and drug susceptibility testing (Appendix 5). The bacteriological analysis involves culturing of specimen on appropriate culturing media following the national standard operating procedures and CLSI guidelines (CLSI 2016). The isolated organism is further exposed to different identification tests using in-house and/or commercially prepared biochemical media such as Sulphur Indole Motility (SIM) agar (Becton, Dickinson and company [BD], USA), Triple Sugar Iron (TSI) agar (BD, USA), Lysine Iron Agar (BD, USA), Citrate agar (Mast Group Ltd, UK), urea media (BD, USA), oxidase reagent (Himedia, India), hydrogen sulphide (VYKing Pharmaceuticals Ltd, Zambia) or Analytical profile index (API) 20E for Enterobacteriaecae (bioMerieux¹ SA, France). Furthermore, the antibiotic susceptibility testing (AST) is performed using a Kirby-Bauer disc diffusion method on the isolated/identified organism by preparing the bacterial suspension in comparison with 0.5 MacFarland turbidity standard and inoculating on Mueller-Hinton agar (BD, USA) or Blood supplemented Mueller-Hinton agar (CLSI 2016). Quality control is performed with various standard, American Type Culture Collection (ATCC) strains.

A data extraction request form was submitted to the NHLS to retrieve the desired data at a minimum of five years from the 2015-2019 (See Appendix 3). These data were captured at NHLS using the NHLS request form sent to the laboratory from the hospital (See Appendix 2) by official hospital personnel. Upon NHLS approval of the data extraction request form, a Microsoft Excel spreadsheet entailing all the required information was provided by NHLS for analysis.

3.7.1 Data analysis

This was a quantitative study in which data analysis was carried out using the Statistical Package for Social Sciences (SPSS) version 27.0). Data analysis was carried out in two phases wherein phase 1, socio-demographic factors were analysed

with drug resistance. To achieve this, a Chi-square test was conducted justifying for age and sex to determine if they have any relation to drug susceptibility using a null hypothesis and an alternate hypothesis.

Phase 2 data analysis was of the microorganisms and the multi-drug resistance. An overall analysis was made where data from patients with single microorganisms were separated from those with multiple microorganisms and both collapsed into corresponding tables in the highest order of resistance. A sub-analysis for each pathogen as well as the groups of pathogens (Gram- and Gram+) were done and were restricted on clinical significance and aligning them with the drugs that were used. Mean percentages for drug susceptibility were calculated per organism.

The AST results were analysed with Microsoft Excel 2010 and SPSS Statistics version 27.0 software. The rates of susceptibility for individual antibiotics were calculated for every bacterial isolate by age and gender of a patient, specimen source (location), year of sample processing and type of specimen. The mean percentages of the susceptibility of each isolate to all tested antibiotics was calculated as the number of resistant strains out of the total number of strains exposed to a particular antibiotic in a specimen. Age and gender of patient comparisons were performed using the Pearson Chi-square test and a p-value of 0.05 was considered significant.

3.8 Validity and Reliability

3.8.1 Validity

Validity can be explained as an extent to which requirements of scientific research method have been followed during the process of generating accurate research findings (Lusby *et al.*, 2010). To ensure validity, all procedures, and systems in place to obtain data were followed to obtain data from a reputable source such as NHLS. The method of obtaining data is of high quality and targeted to obtain exactly what the study wished to investigate through getting approvals from all research approving bodies.

3.8.2 Reliability

Conversely, reliability refers to the extent to which the same answers can be obtained using the same instruments more than one time. In simple terms, if your research is associated with high levels of reliability, then other researchers need to be able to generate the same results, using the same research methods under similar conditions (Babbie, 2010). In this study, to ensure reliability, samples have been collected by Health Care Professionals that understand the Clinical Criteria of wound swab collection and are compliant. The chosen hospitals used the accredited NHLS laboratory to test their samples. The standard procedure was that all tests should have controls in the laboratory to deem the results valid and reliable.

3.9 Bias

Bias is a form of systemic error that can affect scientific investigations and distort the measurement process (Krishna, Maithrey & Surapaneni, 2010). In this study, sampling bias could not be avoided because a retrospective design and probability method was used. This study used a retrospective approach which was prone to selection bias and information bias because of its retrospective nature as errors owing to confounding bias are more common than in prospective studies. To mitigate this, the study used simple random sampling, providing every patient with equal odds of being part of the research and standardised protocols for collecting data was followed.

3.10. Ethical Considerations

The current study used Mankweng, and Pietersburg Hospitals patients' data extracted from NHLS and patients' records and the applicable sections of ethical considerations are:

3.10.1 Permission

According to the National Health Act of South Africa (section 73 act 61 of 2003), the permission to conduct a study must be obtained from a Health Research Ethics Committee that is registered with the National Health Research Ethics Council.

 The research proposal was submitted to the Turfloop Research Ethics Committee for approval to conduct research as a student at the University of Limpopo using human participants before the research can be conducted. A letter to request for approval to conduct research using the health facilities in the Limpopo Province was submitted to the Department of Health (see Appendix 4) by uploading the TREC clearance certificate and proposal onto the National Health Research Database (NHRD). • A data extraction request form was sent to the NHLS to extract the desired data (See Appendix 3).

3.10.2 Informed consent and voluntary participation

In this study there was no need for consent since secondary data were extracted from NHLS and there was no direct contact with the patients.

3.10.3 Anonymity and confidentiality

Confidentiality means not discussing information provided by an individual with others, while anonymity means presenting research findings in ways that ensure that individuals cannot be identified (Wiles, Crow, Heath, & Charles, 2006). Anonymity from National Health Act of South Africa section 14 Act no. 61, 2003, refers to all information concerning user or participants involving information relating to his/her health status, treatment or stay in an establishment is confidential. In this study, anonymity was addressed by using letters and numbers for example P113 to assign patients' data instead of using the patients' names and hospital numbers. Confidentiality was addressed by securing the patients' data so that the researcher and supervisor could access the patient's records and nobody else could. A confidentiality form was signed by both the researcher and research assistants as proof of agreement to ensure confidentiality.

3.10.4 Handling and disposal of samples

This section was not applicable in the study since there was no direct contact with any microorganisms / patient samples.

3.10.5 Harm

Harm refers to any form of pain or discomfort participants may be exposed to during the study, particularly during sample collection. In this study, this was not applicable as there was no collection of samples from the patients.

CHAPTER 4

RESULTS

4.1 Introduction

This chapter consists of four sections viz: overall characterisation of patient sociodemographic data and bacterial isolates, characterisation of bacterial isolates and antibiotic susceptibility, association of age and gender with antibiotic susceptibility, antibiotic resistance profile of bacterial isolates.

4.2 Overall characterisation of patient data and bacterial isolates

	Age Range <i>n (%)</i>				
Patient Characteristics	≤20	21-34	35-59	≥60	TOTAL
Males	126 (15,8)	80 (10,0)	113 (14,2)	53 (6,6)	372(46,7)
Females	120 (15,1)	145 (18,2)	113 (14,2)	47 (5 <i>,</i> 9)	425 (53,3)
Total	246 (30,9)	225 (28,2)	226 (28,4)	100 (12,5)	797 (100)


 Table 4.1: Characterisation of patient socio-demographic data

About 797 patient AST data were analysed and met the study's inclusion criteria. Of the 797, 372 (46.7%) were males and 425 (53.3%) were females, with the age range of 0-95 years with mean age of 31.42 ± 21.75 years. 404 (50.7%) patient data were from Mankweng Hospital and 393 (49.3%) was from Pietersburg Hospital. All data were obtained from cultured wound swabs only. Furthermore, the data were obtained from a period of 2016-2020 where 201 (25.2%) was from 2016, 114 (14.3%) from 2017, 185 (23%) from 2018, 151 (31.4%) from 2019 and 146 (18%) from 2020. Out of the total patient data, 246 (30.9%) came from patients aged 20 years and below, 225(28.2%) from patients between 21 and 34 years, 226 (28.4%) from patients aged 35-59 years while 100 (12.5%) was from patients aged 60 and above (Table 4.1).

Table 4.2: Frequency of bacterial isolates

Bacterial Isolates								
Organism	Frequency n (%)							
Klebiella penuamonae subsp pneumoniae	184 (23)							
Psedomonas aeruginosa	173 (21,7)							
Escherischia coli	128 (16)							
Proteus mirabilis	108 (13,5)							
Acinetobacter baumannii	73 (9,1)							
Klebsiella oxytoca	31 (3,8)							
Bacteria with less than 31 Isolates	100(13)							
Total	797 (100)							

The majority of the organisms isolated were gram negative bacteria (Figure 4.1.1). The most common bacteria isolated from these patients were K. pneumoniae subsp pneumoniae, P. aeruginosa, E. coli, P. mirabilis, A. baumannii and K. oxytoca (Table 4.2). However, the picture of isolates between males and females were almost equal. The highest number of patients' data for 2016 (201/797) and 2018 (185/797) has a good correlation with the number of isolates identified in these year periods but the less numbers for 2017 were attributed to the lower number of data received. Generally, isolates were resistant to amoxicillin ampicillin (86.2%), trimethoprim sulfamethoxazole (65.6%) amoxicillin clavulanic (57.8%) although ciprofloxacin (79.7%), gentamicin (76%) and colistin (81.3%) retained their effectiveness (Figure 4.2).

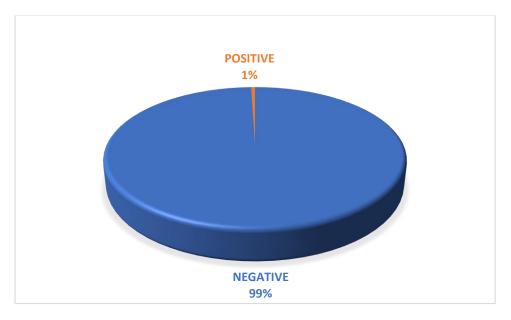
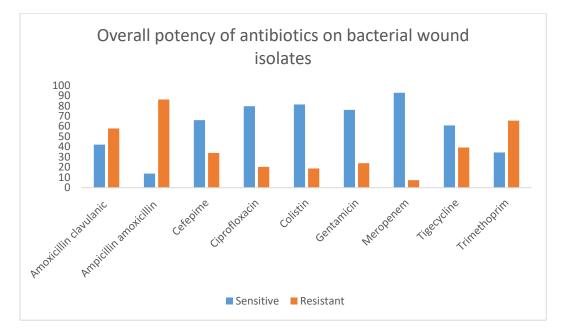
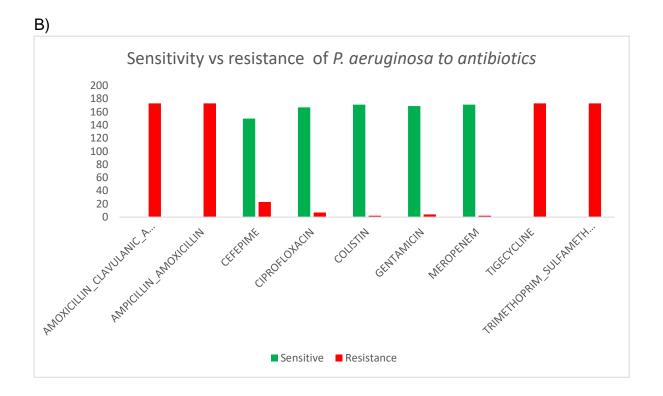
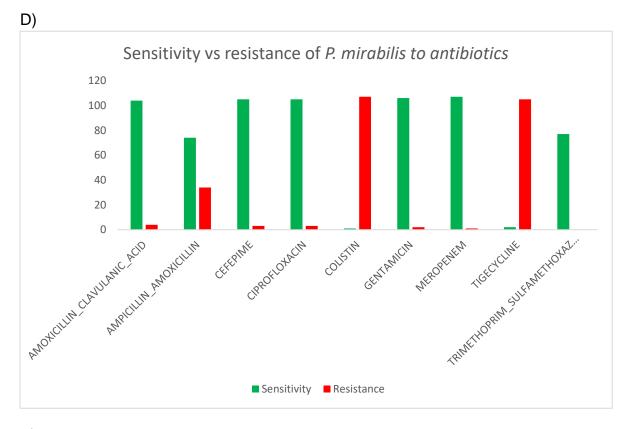



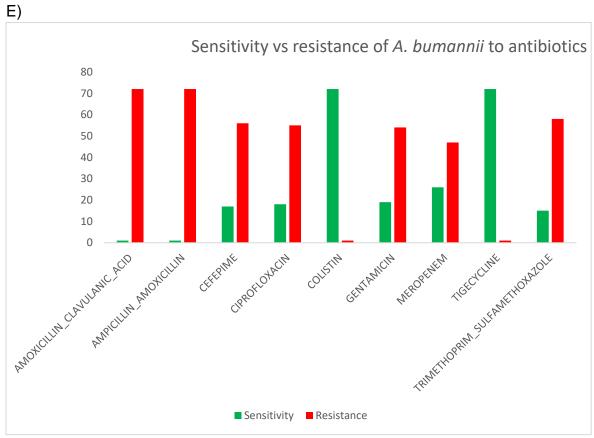
Figure 4.1.1: Prevalence of gram-positive and gram-negative bacterial isolates

Figure 4.2: Overall potency of antibiotics to isolated bacteria



4.3 Characterization of bacterial isolates and antibiotic susceptibility.


The data comprise 100% of wound swab isolates. The common isolates were identified as *K. pneumoniae, E. coli, P. aeruginosa, P. mirabilis and A. baumannii* (Figure 4.1) and their antibiotic susceptibility was determined (Figure 4.3). 99,9% of isolates were gram negative bacteria.



C) Sensitivity vs resistance of *E. coli* to antibiotics

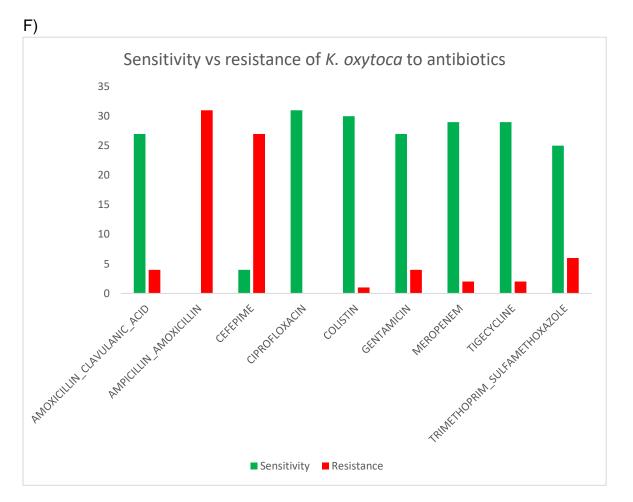


Figure 4.3: Antibiotic susceptibility of *K. pneumoniae* (A), *P. aeruginosa* (B), *E. coli* (C), *P. mirabilis* (D), *A. baumannii* (E) and *K. oxytoca* (F) to amoxicillin clavulanic, ampicillin amoxicillin, cefepime, ciprofloxacin, colistin, gentamycin, meropenem, tigecycline and trimethoprim sulfamethoxazole.

Isolates were tested against nine antibiotics with varying degrees of antibiotic classes, namely, Penicillins (ampicillin) Beta lactamase inhibitors (amoxicillin clavulanic acid), cephalosporins(cefepime) quinolones (ciproflixacin) polymyxins (colistin) aminoglycosidess (gentamycin) carbepenems (meropenen) tetracyclines (tigecycline) and sufonamides (trimethoprim sulfamethoxazole).

Klebsiella pneumoniae isolates showed 100% sensitivity to colistin and tigecycline. High levels of resistance to ampicillin clavulanic acid were observed for *K. pneumoniae, A. baumannii, K oxytoca, E. coli, and P. aeruginosa. P. aeruginosa* showed 100% sensitivity to colistin, gentamycin and meropenem. However, 100% resistance to multiple drugs such as amoxicillin ampicillin, ampicillin clavulanic acid, tigecycline and trimethoprim sulfamethoxazole. *K. oxytoca* was the leading isolate with high levels of sensitivity to multiple antibiotics such as amoxicillin ampicillin, ciprofloxacin, colistin, gentamicin, meropenem, tigecycline and trimethoprim sulfamethoxazole followed by *P. mirabilis* with high levels of sensitivity to amoxicillin clavulanic, amoxicillin ampicillin, ciprofloxacin, gentamycin, meropenem and trimethoprim sulfamethoxazole.

Acinetobacter baumannii was only sensitive to colistin and tigecycline, rendering this isolate as having the least sensitivity. Meropenem has shown high levels of efficacy against 80% of the isolates except in a case of *A. baumannii*. Similar phenomenon was observed in case of colistin which showed effectiveness against 80% of the isolates except in a case of *P. mirabilis*. Tigecycline was observed to have 60% efficacy levels. However, it was not effective against *P. mirabilis and P. aeruginosa*. Ampicillin amoxicillin had the lowest efficacy levels and was only effective against *P. mirabilis*. Similarly, trimethoprim sulfamethoxazole was only effective against *K. oxytoca* and *P. mirabilis*. Overall, isolates showed varying sensitivity levels to antibiotics with significant levels of resistance being observed.

4.4 Association of age and gender with antibiotic susceptibility

Demographics such as age and gender have been associated with the prevalence of bacterial pathogens (Mohammed *et al.*, 2017). Bacterial resistance levels may also be influenced by patient hospital location. There is a risk of obtaining infection by patients admitted into rooms previously occupied by a patient with wound infection by *P. aeruginosa* and *A. baumannii* amongst others (Ghanem & Haddadin, 2018). As such the intention was to understand the impact of age and gender of patients on antibiotic susceptibility. This study used bacterial isolates exposed to nine antibiotics; all isolates were exposed to all the antibiotics. The observation was that *K. pneumoniae* had the highest (60.7%) number of isolates from females, resistant to amoxicillin ampicillin (p=0.015) while *P. aeruginosa* and *K. oxytoca* from male patients were resistant to tigecycline (55.5%, p=0.031) and amoxicillin ampicillin (51.6%, 0.042) respectively (Table 4.3 A). Also, presented in Table 4.3 B, most resistant isolates were *K. oxytoca* (39%), mostly isolated at ≤20 and 35-59 years, age groups, *P. aeruginosa* (38%), *E. coli* (38%), isolated at ≤20 and 35-59 years age groups respectively.

Table 4.3. The resistance patterns of some bacteria with respect to gender(A) and age group (B).

Α		Gender		
Microorganism	Female %(n)	Male %(n)	p value	Drug
Klebsiella pneumoniae	60.7(111)	39.3(72)	0.015	Amoxicillin Amplicillin
Pseudomonas aeruginosa	44.5(77)	55.5(96)	0.031	Tigecycline
Escherichia coli	51.1(48)	48,9(64)	0.047	Trimethoprim sulfamathoxazole
Proteus mirabilis	58.9(63)	41.1(44)	0.024	Colistin
Acinetobacter baumannii	56.9(41)	43.1(31)	0.033	Amoxicillin Clavulanic Acid
Klebsiella oxytoca	48.4(15)	51.6(16)	0.042	Amoxicillin Amplicillin

B Age									
Microorganism	n	≤20	21-34	35-59	≥60	p value	Drug		
Klebsiella pneumoniae	193	28% (55)	28% (54)	28% (55)	9.8% (19)	0.025	Amoxicillin Amplicillin		
Pseudomonas aeruginosa	173	38% (66)	28% (50)	23% (40)	9.8% (17)	0.028	Tigecycline		
Escherichia coli	94	25% (24)	25% (24)	38% (36)	10% (10)	0.015	Trimethoprim sulfamathoxazole		
Proteus mirabilis	108	26% (28)	30% (33)	34% (37)	17% (19)	0.012	Colistin		
Acinetobacter baumannii	72	27% (20)	35% (25)	26% (19)	11% (8)	0.018	Amoxicillin Clavulanic Acid		
Klebsiella oxytoca	31	39% (12)	19% (6)	39% (12)	3% (1)	0.035	Amoxicillin Amplicillin		

Furthermore, the effectiveness of antibiotics with regards to age and gender was thought to be understood (Table 4.4). Chi-square test generally renders age p>0.05

and gender p>0.05 as having no effect on antibiotic susceptibility. The results imply no statistical significance on the effect of these two factors to bacterial resistance. However, p-values lower that 0.05 were observed for ampicillin amoxicillin (p=0.038) and colistin (p= 0.012) with regards to gender and it was also observed that the effectiveness of amoxicillin clavulanic (p=0.044), cefepime (p=0.033) and ciprofloxacin (p=0.015) were affected by age. These p-values lower than 0.05 indicate that there is a significant relation between the two variables.

Isolates	solates Independent Dependent factor factor		P value
Overall	Gender	Amoxicillin clavulanic	0.631
		Ampicillin amoxicillin	0.038
		Cefepime	0.167
		Ciprofloxacin	0.052
		Colistin	0.012
		Gentamicin	0.841
		Meropenem	0.630
		Tigecycline	0.060
		Trimethoprim	0.690
	Age	Amoxicillin clavulanic	0.044
		Ampicillin amoxicillin	0.158
		Cefepime	0.033
		Ciprofloxacin	0.015
		Colistin	0.143
		Gentamicin	0.441
		Meropenem	0.956
		Tigecycline	0.663
		Trimethoprim	0.258

Table 4.4 The effect of age and gender on antibiotic susceptibility.

4.5 The antibiotic resistance profiles of bacterial isolates

The overall effects of age and gender of patients on different antibiotics was highlighted in Table 4.4. As such, most resistant isolates were thought to be identified. Most isolated bacterial pathogens were *K. pneumoniae* (184), *P. aeruginosa* (173), and *E. coli* (128) among other isolates (table 4.2). The low number of isolates being exposed to antibiotics hampered proper identification of most resistant isolates. A vast majority of the isolates were gram-bacterium. Among these, *E coli* showed high levels of susceptibility to all antibiotics except amoxicillin ampicillin and trimethoprim sulfamethoxazole and *P. aeruginosa* as susceptible to all but amoxicillin clavulanic, amoxicillin ampicillin, tigecycline and trimethoprim sulfamethoxazole (Figure 4.3). High potency of Tigecycline was noted across all bacterium except for *P. aeruginosa* and *P. mirabilis*. Resistance patterns of these isolates were also assessed (Table 4.5).

Microorganisms				Antibiotic agents									
		n	AMC n(%)	_	CFPM n(%)	CIP n(%)	COL n(%)	GEN n(%)	MEM n(%)	TG n(%)	TPMS n(%)		
Klebsiella pneumoniae	18	34	120 (65.8)	183 (99.5)	118 (64.1)	49 (26.4)	0 (0)	95 (51.6)	1 (0.5)	0 (0)	118 (64.1)		
Pseudomonas aeruginosa	17	73	173 (100)	173 (100)	23 (13.3)	7 (4.0)	2 (1.2)	4 (2.3)	2 (1.2)	173 (100)	173 (100)		
Escherichia coli	12	28	18 (14.1)	104 (81.3)	34 (26.6)	32 (25.0)	1 (0.8)	13 (10.2)	1 (0.8)	0 (0)	94 (73.4		
Proteus mirabilis	1(08	4 (3.7)	34 (31.5)	3 (2.8)	3 (2.8)	107 (99.1)	2 (1.9)	1 (0.9)	105 (97.2)	31 (28.7)		
Acinetobacter baumannii	73	3	72 (98.6)	72 (98.6)	56 (76.7)	55 (75.3)	1 (1.4)	54 (74.0)	47 (64.4)	1 (1.4)	58 (79.5		

Table 4.5: Antibiotic resistance	e profiles of mostl	y isolated bacteria
----------------------------------	---------------------	---------------------

Klebsiella	31	4	31	4	0	1	4	2	2	6
oxytoca		(12.9)	(100)	(12.9)	(0)	(3.2)	(12.9)	(6.5)	(6.5)	(19.4)
Mean %		49.1	85.15	32.7	22.25	17.6	25.4	12.3	46.35	60.85

AMC: Amoxicillin Clavulanic Acid, AMO: Amoxicillin Ampicillin, CFPM: Cefepime, CIP: Ciprofloxacin, COL: Colistin, GEN: Gentamicin, MEM: Meropenem, TG: Tigecycline, TPMS: Trimethoprim Sulfamethoxazole.

High levels of resistance by number of bacteria were noted to panel of antibiotics used. The drugs with less potency as shown in Figure 4.3 were amoxycillin ampicillin (85.15%), trimethoprim sulfamethoxazole (60.85%), amoxicillin clavulanic (49.1%), Tigecycline (46.35%). Amoxicillin ampicillin was less effective with a mean resistance percentage of 85.15%. However, this drug was on average effective against *P. mirabilis*. Notably, trimethoprim sulfamethoxazole had 60.85% mean resistance percentage, but was on average effective against *P. mirabilis*.

Acinetobacter baumannii was highly resistant against amoxicillin ampicillin and amoxicillin clavulanic, *K. pneumoniae* was highly resistant to amoxicillin clavulanic, amoxicillin ampicillin, ciprofloxacin and gentamycin but was sensitive to tigecycline and colistin. *P. aeruginosa* was highly resistant to amoxicillin ampicillin, amoxicillin clavulanic, tigecycline and trimethoprim sulfamethoxazole. However, this organism was sensitive to colistin and meropenem. *E. coli* was highly resistant to amoxicillin ampicillin ampicillin but sensitive to tigecycline, meropenem and colistin (table 4.5).

This study found *K. pneumoniae*, *P. aeruginosa*, *E coli*, *A. baumannii*, *K. oxytoca* and *P. mirabilis* as common isolates (Table 4.2). All isolates showed resistance to at least one drug but commonly resistant to amoxicillin ampicillin and amoxicillin clavulanic.

CHAPTER 5

5.1 DISCUSSION

Recently, there has been a global effort initiated in clinical settings to combat antibiotic resistance. This is because of the notable effects that this dilemma weighs over the health care system such as increased health care costs, morbidity and mortality. This is because of overuse/misuse of antibiotics owing to misdiagnosis and irrational use. Also, several over-the-counter antibiotics have led to the risk of developing drug resistance. Consequently, thorough investigations of the emergence of the resistant isolates need to be extensively conducted to determine what other factors can be associated with this concern to modify the preventative and therapeutic strategies against the resistant strains leading to the stall of wound healing, which could aid in empiric treatment.

In pursuit to understand antibiotic resistance, the current retrospective analysis was undertaken to investigate the antibiotic susceptibility patterns of wound isolates from patients at the Pietersburg and Mankweng hospitals from 2016-2020. Although this study did not associate type of wound and type of microorganism isolated, it is important to note that all isolates were from different wounds and yielded significant bacterial growth. However, there are studies in Nigeria which associated specific microorganisms with wound types (Mohammed *et al.*, 2013 & Ibrahim *et al.*, 2018).

In this study, the highest number of bacterial isolates were from patients under 20 years. This has a good correlation with the study by Bessa *et al.*, (2015) in which 24.54% of patients belonged to 10-20 years. This finding is possibly because of accidental injuries and social activities. However, this finding is in discordance with those of the study by Datta *et al.*, where in 33% of patients were 21-30 years (Datta *et al.*, 2016). The majority (53.3%) of the patients were females. A study by Bessa *et al.*, (2015) noted a similar sex predominance.

The predominant bacteria isolated was 99% gram-negatives, with *K. pneumoniae* (23%), *P. aeruginosa* (21.7%), *E. coli* (16%), *P. mirabilis* (13.5%), *A. baumannii* (9.1%) and *K. oxytoca* (3.8%). A similar finding was reported in the Trojan, Razdan, and Singh study (2016) where *K. pneumonia*, *P. aeruginosa*, *E. coli*, *P. mirabilis* and *A. baumannii* were the predominant isolates. The predominance of gram-negative bacilli was similar

to that of Mohammed *et al.*, (2013). Infection by gram-negative bacilli is usually associated with surgical site infections. In most cases, surgical site infections are caused by patients' endogenous flora especially in abdominal surgeries where the opening of gastrointestinal tract increases the possibility of coliforms and gram-negative bacilli as agents of wound infections (Mohammed *et. al.*, 2013). These groups of organisms may be endemic in hospital environment therefore being easily transferred from object to object and are usually resistant to common antiseptics (Mohammed *et al.*, 2013)

The observation of *K. pneumoniae* as the most common isolated pathogen in wound infections has a significant concurrence with a study conducted in Iran (Ghanavati *et al.*, 2021). This finding contradicts Sawdeker's study where *S. aureus* (46.2%) was the most frequent isolated followed by gram negative streptococci (23.1%) and gram-negative pseudomonas (15.4%) (Sawdekar *et al.*, 2015). The high prevalence of *S. aureus* may be owing to the contamination from environment as an endogenous source of infection. This is evidence that local and regional variability exists and each facility should determine its own prevalent wound pathogens.

The findings of this study concur with those of a study in Turkey where they reported high percentage of isolates in *P. aeruginosa* (57%) and *A. baumannii* (21%) (Oncul *et al.*, 2009). According to Dryden (2009), *S. aureus*, is the major cause of soft tissue infections, although several other reports implicate *P. aeruginosa*, *E. coli* and *K. pneumoniae* in wound infections (Dryden *et al.*, 2009, Misic *et al.*, 2014). These variations are expected because of different disinfection protocols and antimicrobial therapy protocols, which may favour the survival of some pathogens over others (Elmanama *et al.*, 2013).

Antibiogram results revealed antimicrobial sensitivity of members of the enterobacteriaceae *K. pneumoniae* to colistin (100%) and tigecycline (100%), and *E. coli* to tigecycline (100%). Other gram-negative bacteria showed levels of resistance to the antibiotics. Antimicrobial resistance for gram-negative bacteria causing wound infections ranged from 0.5 to 100%.

Antimicrobial resistance patterns of *P. aeruginosa* isolates were recovered from patients as follows: amoxicillin ampicillin (100%), amoxicillin clavulanic acid (100%), both tigecycline (100%) and trimethoprim sulfamethoxazole (100%). Resistance of *A.*

baumannii were also observed as: 98.6% for both amoxicillin ampicillin and amoxicillin clavulanic, trimethoprim sulfamethoxazole (79.5%), cefepime (76.7%), ciprofloxacin (75.3%), gentamycin (74.0%) and meropenem (64.4%). In addition, *K. pneumoniae* was among the isolates with concerning resistance patterns: amoxicillin ampicillin (99.5%), amoxicillin clavulanic acid (65.8%) and 64.1% for both cefepime and trimethoprim sulfamethoxazole. In contrast, the high isolation of these organisms agrees with a study by Sharma *et al.*, 2015 which reported high isolation of *A. baumannii* (58.8%). This indicates the emergence this organism as a multi-drug resistant wound pathogen. The study further showed that 61% of *A. baumannii* are carbapenemase producers, meaning they were resistant to carbapenem antibiotics. This important finding may be the explanation to the 64% of *A, baumannii* isolates which were resistant to meropenem – a carbapenem antibiotic in this study.

A study conducted by Akinniyi *et al.*, (2012) reported that 66% of carbapenemase producing isolates were Pseudomonas and Klebsiella species. This study was in contrast with their finding because *P. aeruginosa* (1.2%), *K. pneumoniae* (0.5%) and *K. oxytoca* (6.5%) in this study had lower levels of resistance to meropemen. As such the majority of these isolates were not carbapenemase producers. These isolates are considered MDR as they are resistant to more than three antimicrobial agents (Chanda *et al.*, 2019). These isolates have total resistance to four antibiotics, which result from overuse or misuse of antimicrobial agents leading to the acquisition of resistance genes. However, this should be confirmed using molecular techniques. MDR *P. aeruginosa* was also reported in previous studies (Oncul *et al*, 2009 & Elmanama *et al.*, 2013).

The aforementioned study conducted in Iran showed that 80/102 (78.4%) and 51/102 (50%) *K. pneumoniae* isolates had ESBL and carbapenemase resistant genes which according the study are responsible for the development of resistance against beta lactamases and carbapenems (Ghanavati *et al.*, 2021). The beta lactams antibiotics assessed in the current study are penicillins (amoxicillin ampicillin, amoxicillin clavulanic) Cephalosporins (cefepime) and Carbapenems (Meropenem). Notably, the *K. pnuemoniae* isolates in this study showed high levels of resistance to amoxicillin ampicillin (65.8%), amoxicillin ampicillin (99.5%), and cefepime (64.1%). These high levels of resistance to these antibiotics by *K. pneumoniae* may, in correlation with

Ghanavati *et al* (2021), signify that the isolates were ESBL and carbapenemase resistance conferring.

It is not surprising that *E. coli* was among the frequently isolated microorganisms as it has also been reported in many other studies (Trojan *et al.*, 2016; Mohammed *et al.*, 2013; Ibrahim *et al.*, 2018). *E. coli* has also been reported to be resistant to antimicrobials such as cephalosporins, amoxicillin clavulanic acid, imipenem, gentamycin, and meropenem (Trojan *et al.*, 2016). However, these findings contradict the results of the current study as it reveals *E. coli* to be highly sensitive to gentamycin and meropenem while being least resistant to fourth generation cephalosporin and amoxicillin clavulanic acid. Furthermore, 51.6% of the resistant bacterial isolates were from males at ≤20 and 35-59-years age groups. The overall observation is that there is a minor difference of 3.2% between resistant isolates isolated from males (51.6%) and females (48.4%) and therefore do not represent clinically meaningful differences. These findings concur with those of McGregor *et al* (2013) which also revealed minor differences in drug susceptibility between males and females (McGregor *et al.*, 2013).

However, a notable observation was that *K. pneumoniae* had the highest (60.7%) number of isolates from females, resistant to amoxicillin ampicillin (p=0.015) while *P. aeruginosa* and *K. oxytoca* from male patients were resistant to tigecycline (55.5%, p=0.031) and amoxicillin ampicillin (51.6%, 0.042) respectively. A statistically significant difference was noted in a case of gender analysis with overall bacterial isolates for amoxicillin ampicillin at p=0.038 and in case of age for amoxicillin clavulanic acid and Ciprofloxacin for overall bacterial isolates at p=0.044 and p=0.015 respectively. These may indicate an existing relationship of these three drugs to factors such as age and sex and may necessitate further research as the current study could not find any meaningful statistically difference.

Additionally, antibiotics susceptibilities and associated demographic factors may differ by other patients and their geographic locations and therefore, further research is needed in other parts of South Africa. Currently, there is insufficient data to guide the effect of age and gender on drug susceptibility to aid empiric treatment. Consequently, in this study population, there is no significant evidence that age and gender may indicate empiric treatment selection.

5.2 CONCLUSION

The study showed that *K. pneumoniae, P. aeruginosa, E. coli, P. mirabilis, A. baumannii,* and *K. oxytoca* are the major pathogens found in wound infections at Pietersburg and Mankweng Hospitals. Generally, the most effective antibiotics were gentamycin, meropenem, ciprofloxacin, and cefepime. The bacterial isolates were generally resistant to amoxicillin ampicillin, amoxicillin clavulanic acid and trimethoprim sulfamethoxazole. The resistance to carbapenems was thought to be influenced by carbapenamase and ESBL.

Although the general view of the study is that no statistically clinical significance was noted on the effect of age and gender on bacterial resistance, it is important to note the significant observation that there was observed relation of age to amoxicillin clavulanic acid and Ciprofloxacin and gender to amoxicillin ampicillin. The susceptibility data from this study may be worth consideration while implementing empiric treatment strategies.

5.3 STRENGTHS AND LIMITATIONS OF THE STUDY

The present study is the first in Limpopo Province to investigate the association of demographic factors to antibacterial resistance. It therefore serves as a foundation for future studies investigating the association of more demographic factors to antibacterial resistance. The study did not have any limitations.

5.4 RECOMMENDATIONS

The study recommends that surveillance programmes be implemented to help identify prevalent resistant pathogens which will aid in managing patient care in clinical settings. Furthermore, the study argues against the use of antibiotics which are prone to resistance as identified by this study and as such calls for the revision of MICs and CCs of less effective antibiotics such as amoxicillin ampicillin for safe use. Overtime change of antibiotics is essential for management of wound infections. The study further advocates a rational use of antibiotics rather than empirical administration of antibiotics without prior susceptibility testing.

REFERENCES

- Adams KN, Takaki K, Connolly LE, Widenhoft H, Winglee K, Humbert O. Drug tolerance in replicating mycobacteria by a macrophage-induced efflux mechanism. 2011; *Cell*, 145: 39-53.
- Agnihotri N, Gupta V, Joshi RM. Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study. *Burns*, 2004 May 1;30(3):241-3.
- Akinniyi AP, Oluwaseun E, Motayo BO, Adeyokinu AF. Emerging multidrug resistant ampc beta-lactamase and carbapenamase enteric isolates in Abeokuta, Nigeria. *Nature and Science*,2012;7(10):70.
- Alharbi SA, and Zayed ME. Antibacterial susceptibility of bacteria isolated from burns and wounds of cancer patients. 2014; *Journal of Saudi Chemical Society*, *18*(1): 3-11.
- Aye EC, Omoregie R, Ohiorenuan II, Onemu S. Microbiology of wound infections and its associated risk factors among patients of a Tertiary hospital in Benin City, Nigeria. 2011.
- Babbie E. *The practise of social research* (ed.). Wadsworth: Nelson Education Ltd. 2010.
- Bassetti M, Baguneid M, Bouza E, Dryden M, Nathwani D, Wilcox M. European perspective and update on the management of complicated skin and soft tissue infections due to methicillin resistant *Staphylococcus aureus* after more than 10 years of experience with linezoid. *Clinical Microbiology and Infection.* 2014 Apr; 20:3-18.
- Becattini S, Taur R, and Pamer E. Antibiotic induced changes in intestinal microbiota and disease. 2016; *Trends in Molecular Medicine*, 22(6),: 458-478.

- Bessa LJ, Fazii P, Di Giulio M, Cellini L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. *International Wound Journal*, 2015 Feb;12(1):47-52.
- Bowler PG, Duerden BI, and Armstrong DG. Wound microbiology and associated approaches to wound management. 2012; *Clinical Microbiology Reviews*, *14*(2), : 244-269.
- Brauner A, Fridman O, Gefen O, and Balaban NQ. Distinguishing between resistance, tolerance, and persistence to antibiotic treatment. 2016; *Nature Reviews Microbiology*, *14*(5): 320-330.
- Buru AS, Pichika MR, Neela V, Mohandas K. In vitro antibacterial effects of Cinnamomum extracts on common bacteria found in wound infections with emphasis on methicillin-resistant Staphylococcus aureus. Journal of ethnopharmacology. 2014 May 14;153(3):587-95.
- Calfee DP, Salgado CD, Milstone AM, Harris AD, Kuhar DT, Moody J, Aureden K, Huang SS, Maragakis LL, Yokoe DS. Strategies to prevent methicillin-resistant Staphylococcus aureus transmission and infection in acute care hospitals: 2014 update. *Infection Control & Hospital Epidemiology*. 2014 Jul;35(7):772-96.
- Centre for Disease Control. National Antimicrobials Resistance Monitoring System for Enteric Bacteria (NARMS). 2015
- Chanda W, Manyepa M, Chikwanda E, Daka V, Chileshe J, Tembo M, Kasongo J, Chipipa A, Handema R, Mulemena JA. Evaluation of antibiotic susceptibility patterns of pathogens isolated from routine laboratory specimens at Ndola Teaching Hospital: A retrospective study. *PloS one*. 2019;14(12).2
- Clarence YS, Edrin YO, Odeh EN. Pattern of antibiotic usage by adult populations in the city of Benin, Nigeria. *Scientific Research and Essays*. 2008 Mar 31;3(3):081-5.
- CLSI. Performance Standards for antimicrobial susceptibility testing. 26 ed. Wayne PA: Clinical and laboratory standards institute; 2016. 252 p.

- Datta S, Ghosh T, Sarkar D, Tudu NK, Chatterjee TK, Jana A. Bacteriological profile of burn wounds and their antibiotic susceptibility pattern in a tertiary care hospital. *International Journal of Scientific Study*. 2016;4(5):141-5.
- Dorr T, Vulic M, and Lewis K. Ciproflaxin causes persister formation by inducing the TisB toxin in *Escherichia Coli.* 2010; 15: 144-156.
- Dryden MS. Skin and soft tissue infection: Microbiology and epidemiology. International Journal of Antimicrobial Agents. 2009 Jul 1;34: S2-7.
- Elmanama AA, AI Laham NA, & Tayh GA. Antimicrobial susceptibility of bacterial isolates from burn units in Gaza. 2013; *Burns*, 39: 612-618.
- English BK, & Gaur AH. The use of and abuse of antibiotics and the development of antibiotic resistance. 2010; *Hot Topics in Infection and Immunity in Children VI*, pp.73-82. 21: 73-82.
- Espinel-Ingroff A, & Turnidge J. The role of epidemiological cutoff values (ECVs/ECOFFs) in antifungal susceptibility testing and interpretation for uncommon yeasts and moulds. *Revista iberoamericana de micologia*. 2016 Apr 1;33(2):63-75.
- Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. *Frontiers in Microbiology*. 2015 Jan 12;6:1543.
- Gandra S, Tseng KK, Arora A, Bhoowmik B, Robinson ML, Panigrahi B, Laxminarayan R, Klein EY. The mortality burden of multi-drug resistant pathogens in India: A retrospective, observational study. *Clinical Infectious Diseases*. 2019 Aug1;69(4):563
- Ghanem B, Haddadin RN. Multiple drug resistance and biocide resistance in Escherichia coli environmental isolates from hospital and household settings. Antimicrobial Resistance & Infection Control. 2018 Dec;7(1):1-7.

- Ghanavati R, Kazemian H, Asadollahi P, Heidari H, Irajian G, Navab-Moghadam F, Razavi S. Characterization of antimicrobial resistance patterns of Klebsiella pneumoniae isolates obtained from wound infections. *Infectious Disorders-Drug Targets* (Formerly Current Drug Targets-Infectious Disorders). 2021 Feb 1;21(1):119-24.
- Goswami NN, Trivedi HR, Goswami AP, Patel TK, & Tripathi CB. Antibiotic sensitivity profile of bacterial pathogens in postoperative wound infections at a tertiary care hospital in Gujarat, India. *Journal of Pharmacology & Pharmacotherapeutics*. 2011 Jul;2(3):158.
- Guest JF, Ayoub N, McIlwraith T, Uchegbu I, Gerrish A, Weidlich D, Vowden K, Vowden P. Health economic burden that different wound types impose on the UK's National Health Service. International wound journal. 2017 Apr;14(2):322-30.
- Gupta A, & Kumar P. Assessment of the histological state of the healing wound. *Plast Aesthet Res.* 2015 Sep 1;2(2):239-42.
- Ige OK, Adesanmi AA, & Asuzu MC. Hospital-acquired infections in a Nigerian tertiary health facility: An audit of surveillance reports. *Nigerian Medical Journal: Journal of the Nigeria Medical Association*. 2011 Oct;52(4):239.
- Iqbal A, Jan A, Wajid MA, Tariq S. Management of chronic non-healing wounds by hirudotherapy. World Journal of Plastic Surgery. 2017 Jan;6(1):9.
- Ibok NI. Socio-economic and demographic determinants of health insurance consumption. *Canadian Social Science*. 2012 Oct 31;8(5):58-64.
- Ibrahim S, Adam AS, Aliero AA, Umar S. Prevalence and Antibiotic Sensitivity Pattern of Staphylococcus aureus Isolated from Wound and Otitis Media among Patients Attending Aminu Kano Teaching Hospital, Kano, Nigeria. *Microbiology Research Journal International*. 2018 Nov 1:1-9.2

- Johnson AP. Methicillin-resistant Staphylococcus aureus: the European landscape. *Journal of Antimicrobial Chemotherapy*. 2011 May 1;66(suppl_4): iv43-8.
- Johnson PJ, and Levin BR. Pharmacodynamics, population dynamics, and the evolution persistence in *Staphylococcus aureus*. 2013; 12: 188-192.
- Kehinde OO, & Ogunnowo BE. The pattern of antibiotic use in an urban slum in Lagos State, Nigeria. West African Journal of Pharmacy. 2013 Mar 16;24(1).
- Kemebradikumo P, Beleudanyo GF, & Oluwatoyosi O. Current microbial isolates from wound swabs, their culture and sensitivity pattern at the Niger Delta University Teaching Hospital. 2013; *Tropical Medicine and Health*, 41(2): 49-53.
- Kester JC, and Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance bacteria. 2014; *Critical Reviews in Biochemistry and Molecular Biology*, *49*(2): 101-109.
- Kim JS, Heo P, Yang TJ, Lee KS, Cho DH, & Kim BT. Selective killing of bacteria persisters by a single chemical compound without affecting normal antibiotic sensitive cells. 2011; *Antimicrobial Agents and Chemotherapy*, 55(11): 5380-5383.
- Krishna R, Maithreyi R, Surapaneni KM. Research bias: a review for medical students. J Clin Diagn Res. 2010 Apr;4(2):2320-4.
- Lai PS, Bebell LM, Meney C, Valeri L, White MC. Epidemiology of antibioticresistant wound infections from six countries in Africa. BMJ global health. 2018 Mar 1;2(Suppl 4):e000475.
- Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C. Antibiotic resistance—the need for global solutions. *The Lancet Infectious Diseases*. 2013 Dec 1;13(12):1057-98.

- Lee JS, Min CK. Prioritising convention quality attributes from the perspective of a three-factor theory. The case of academic association convention. *Internal Journal of Hospitality Management*. 2013 Dec 1; 35:282-93.
- Lewis K, Persister cells, dormancy and infectious disease. 2007; *Nature Reviews Microbiology*, *5*(1): 48-56.
- Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C, Chai X, Wu Y, Cai J, and Cheng G. Antimicrobial activity and resistance factors: influencing factors. 2017; *Frontiers in Pharmacology*, 8: 364-340.
- Lusby, C. & Bandaruk, B., Study abroad in the recreation curriculum: A study perspective. *Journal of Unconventional Parks, Tourism & Recreation Research*, 2010, *3*(1).
- Lutge E, Moodley N, Tefera A, Sartorius B, Hardcastle T, Clarke D. A hospital-based surveillance system to assess the burden of trauma in KwaZulu-Natal Province South Africa. *Injury.* 2016 Jan 1;47(1):135-40.
- Makgatho M, Sethowa J, Maguga-Phasha T, and Mashinya F. Bacterial Isolates and antimicrobial susceptibility profiles in wound swabs from Central Polokwane NHLS, Limpopo Province South Africa. *African Journal of Biomedical Research*. 2019;22(3):229-33.5
- Mama M, Abdissa A, Sewunet T. Antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to alternative topical agents at Jimma University Specialized Hospital, South-West Ethiopia. Annals of Clinical Microbiology and Antimicrobials. 2014 Dec;13(1):14.4
- Mayer KU. Retrospective longitudinal research: The German life history study. Handbook of longitudinal research: Design, measurement and analysis. 2008:85-106.

- McGregor JC, Elman MR, Bearden DT, Smith DH. Sex-and age-specific trends in antibiotic resistance patterns of Escherichia coli urinary isolates from outpatients. *BMC Family Practice*. 2013 Dec;14(1):1-5.
- Mercandetti M, Cohen AJ. Wound healing: healing and repair. Emedicine. com. Accessed January. 2005 Aug;20(2008):38.
- Mehta M, Dutta P, Gupta V. Bacterial isolates from burn wound infections and their antibiograms: A eight-year study. 2007 *Indian Journal of Plastic Surgery*, *40*(01), pp.91-93.
- Misic AM, Gardner SE, Grice EA. The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing. *Advances in Wound Care*. 2014 Jul 1;3(7):502-10.
- Mohammed A, Adeshina GO, Ibrahim YK. Incidence and antibiotic susceptibility pattern of bacterial isolates from wound infections in a tertiary hospital in Nigeria. *Tropical Journal of Pharmaceutical Research*. 2013 Aug 28;12(4):617-21.
- Mouton JW, Ambrose PG, Canton R, Drusano GL, Harbarth S, MacGowan A. Conserving antibiotics for the future: New ways to use old and new drugs from pharmacokinetic and pharmacodynamic perspective. 2011; *Drug Resistance Updates*, *14*(2): 107-117.
- Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y. In *vitro* biofilm formation by Staphylococcus aureus isolated from wounds of hospitaladmitted patients and their association with antimicrobial resistance. *International Journal of General Medicine*. 2018; 11:25.
- Oncul O, Ulkur E, Acar A, Turhan V, Yeniz E, Karacaer Z, Yildiz F. Prospective analysis of nosocomial infections in a burn care unit, Turkey. Indian J Med Res. 2009 Dec 1;130(6):758-64.
- Patrulea, V., Borchard, G. and Jordan, O., 2020. An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections. *Pharmaceutics*, *12*(9), p.840.

- Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. *Clinical Microbiology Reviews*. 2017 Apr 1;30(2):557-96.
- Pondei K, Fente BG, Oladapo O. Current microbial isolates from wound swabs, their culture and sensitivity pattern at the Niger delta university teaching hospital, Okolobiri, Nigeria. *Tropical Medicine and Health*. 2013;41(2):49-53.
- Ruben DH. Explaining non-healing wounds. Routledge; 2015 Dec 3.
- Saaiq M, Ahmad S, Zaib MS. Burn wound infections and antibiotic susceptibility patterns at Pakistan Institute of Medical Sciences, Islamabad, Pakistan. World Journal of Plastic Surgery. 2015 Jan;4(1):9.
- Sawdekar, H., Sawdekar, R. & Wasnik, V.R., 2015. Antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to antibiotic agents at super specialty hospital, Amravati City, India.
- Sharma P, Bashir YU, Kaur SA, Kaur P, Aggarwa A. Emerging antimicrobial resistance and clinical rele-vance of Acinetobacter isolates in a tertiary care hos-pital of rural area of Punjab. J Microbiol Antimicrob. 2015;1(1):8-12.
- Suresh KP, Chandrashekara S. Sample size estimation and power analysis for clinical research studies. *Journal of Human Reproductive Sciences.* 2012 Jan;5(1):7.
- Trojan, R., Razdan, L. & Singh, N., 2016. Antibiotic susceptibility patterns of bacterial isolates from pus samples in a tertiary care hospital of Punjab, India. *International Journal of Microbiology*, 2016.
- Ugwu E, Adeleye O, Gezawa I, Okpe I, Enamino M, Ezeani I. Burden of diabetic foot ulcer in Nigeria: Current evidence from the multicenter

evaluation of diabetic foot ulcer in Nigeria. *World Journal of Diabetes*. 2019 Mar 15;10(3):200.

- White TL, Culliford AT, Zomaya M, Freed G, Demas CP. Use of antibioticimpregnated absorbable beads and tissue coverage of complex wounds. *The American Surgeon*. 2016 Nov 1;82(11):1068-72.
- Wiles R, Crow G, Heath S, Charles V. The management of confidentiality and anonymity in social research. International journal of social research methodology. 2006 Dec 1;11(5):417-28.
- Wilson DN, Ribosome targeting antibiotics and mechanisms of bacterial resistance. *Nature Reviews Microbiology*. 2014; Jan;12(1):35-48.
- Wittchen HU, Essau CA. Comorbidity and mixed anxiety-depressive disorders: is there epidemiologic evidence? *The Journal of Clinical Psychiatry*. 1993 Jan.
- ang K, & Banamah A. Quota sampling as an alternative to probability sampling? An experimental study. *Sociological Research Online*. 2014 Feb;19(1):56-66.
- Zamoner W, De Freitas FS, Garms DS, De Oliveira MG, Balbi AL, and Ponce D. Pharmacodynamics and pharmacokinetics of antibiotics in critically ill acute kidney injury patients. 2016; 12: 125-128.

APPENDICES Appendix 1: RESEARCHER CONFIDENTIALITY FORM

RESEARCH PROJECT CONFIDENTIALITY FORM AT THE UNIVERSITY OF LIMPOPO

Turfloop Campus

RESEARCHER CONFIDENTIALITY FORM

Statement by Researcher.

I, Kaapu Kabelo Gabriel, here by declare that the patient information in this study will not be shared with non-members of the research project and will solely be used for the research project.

.....

Mr KG Kaapu

Appendix 2: NHLS REQUEST FORM

ATIONAL HEALTH LABORATORY SERVICE 🐠	-			EVELS OF CAR
Patient I.D Number:	-	N	ARK IF URGE	
Patient Hospital Number:				
Surname: Class:	H	Hospital/Clinic:		
First Name:	P	Ward:		
Address:	P	Diagnosis/Reason	for Bequest:	
	-	Diagriosis/ricasor	nor nequeer.	
Tel No : Race:	S P			
	E			
D.O.B.: Age: Sex: M F ICD-10 Dlagnosis Codes:	CI	Medication:		Warfarin: Heparin
Medical Aid: Medical Aid Number:	ME	Type of Specimer	1:	
Employer: Dep Code:	Ň	Date Taken:		Time:
Account To / Principal Member:		Taken By:		
Member Address:	c	Requesting Healt	h Care Worker:	
	SE	HPCSA/SANC N	umber:	
	N D	Contact Numbers	5:	
Member Tel. No.: (H)	E	E-mail Address:		
Member I.D. Number:	R	Signature:		
Type/Origin of Specie			FIN N	VAL
			1:40	
REVIOUS CYTO. REF. NUMBERS:			(·	APPEARANCE OF CERVIX
REVIOUS CYTO. REF. NUMBERS:			(·	
REVIOUS CYTO. REF. NUMBERS:				
THIS THE FIRST SPECIMEN? YES / NO: REVIOUS CYTO. REF. NUMBERS: REVIOUS HISTO. REF. NUMBERS: REVIOUS HISTO. REF. NUMBERS: REVIOUS SURGERY, CHEMOTHERAPY, RADIOTHERAOY (DATES): OR FEMALE PATIENTS:				OF CERVIX
REVIOUS CYTO. REF. NUMBERS:				
REVIOUS CYTO. REF. NUMBERS:	WK	s. Post		OF CERVIX
REVIOUS CYTO. REF. NUMBERS:	WK	S. POST	TMENOPAUSAL .	OF CERVIX
REVIOUS CYTO. REF. NUMBERS:	WK	S. POST KEN BY: PATULA CEI	TMENOPAUSAL .	OF CERVIX
REVIOUS CYTO. REF. NUMBERS:	WK	S. POST KEN BY: PATULA CEI	TMENOPAUSAL .	OF CERVIX
REVIOUS CYTO. REF. NUMBERS:	WK: IR TAP DEN SF X BRO	S. POST KEN BY: PATULA CEL OM OT	TMENOPAUSAL . RVIX BRUSH HER (Specify)	OF CERVIX
REVIOUS CYTO. REF. NUMBERS:	WK: IR TAP DEN SF X BRO	S. POST KEN BY: PATULA CEL OM OT	TMENOPAUSAL . RVIX BRUSH HER (Specify)	OF CERVIX
REVIOUS CYTO. REF. NUMBERS:	WK: IR TAH DEN SF X BRO VULY	S. POST KEN BY: PATULA CEI OM OTT	TMENOPAUSAL . RVIX BRUSH HER (Specify) END(OF CERVIX YE
REVIOUS CYTO. REF. NUMBERS:	WK: IR TAH DEN SF X BRO VULY	S. POST KEN BY: PATULA CEI OM OTT	TMENOPAUSAL . RVIX BRUSH HER (Specify) END(OF CERVIX YE
REVIOUS CYTO. REF. NUMBERS:	WK: IR TAH DEN SF X BRO VULY	S. POST KEN BY: PATULA CEI OM OTT	TMENOPAUSAL . RVIX BRUSH HER (Specify) END(OF CERVIX YE

Appendix 3: DATA EXTRACTION REQUEST FORM

Q-Puice6/dooc/active/FMI0089v3

NATIONAL HEALTH LABORATORY SERVICE HELPDESK Tel: (011) 386-6125/6/7/9 Fax: (011) 386-6308 email: helpdesk1@nhis.ac.za APPLICATION FOR DATA FROM NHLS INFORMATION SYSTEMS (Q-Pulse FMI0069)

Each application will be approved or rejected subject to the ability to extract this data and the availability of the data, and subject to the intended usage of the requested data. Applications that are incomplete and/or do not contain supporting documentation, will be rejected.

APPLICANT'S DETAILS

Applicant Name	KG KAAPU	Tel No	0763488253	Email	Kabelogabriel34@gmail.com		
Business Role / De		MASTERS' ST	UDENT	(MEDICAL SCIENCES)			
Laboratory / Depar (Internal applicants		legion	NA				
Organisation (Exte	rnal applicants)		University of Limpopo				
Supervisor Name	NTC MAGUGA	MAGUGA Tel 0823937957 Email tibello.maguga@ul.ac.					
Supervisor Designation	RESEARCHER A	RESEARCHER AND SENIOR LECTURER - MEDICAL MICROBIOLOGY					

CONDITIONS

- Data / Information is not to be used in contravention of Sections 14, 15, 16 and 17 of the . National Health Act 61 of 2004 and the Promotions of Access to Information Act 2 of 2000.
- The applicant undertakes to ensure that the data supplied to it by the NHLS is used ethically and solely for the purposes for which it is provided as detailed in this application, and further acknowledges that it shall remain liable for any breaches of this clause by the end user.
- If the purpose for the data requested in this application is research or if patient identity linked data is required, ethics approval and a one page summary of the protocol shall be attached to this application form. It is the responsibility of the applicant to ensure that their institutions' Human Ethics approval includes explicit authorisation to access the requested NHLS data.
- The applicant undertakes to store the NHLS data in a confidential manner by separating patient identifying details from laboratory data and storing the master list that links patient identifying details to study patient identifiers in a separate, secure location.
- The information is for the private use of the applicant only, unless further approval is obtained from the NHLS. In the event of this, the applicant shall give due credit, including affiliation, of the participation of the NHLS in any such publications or presentations.
- The applicant undertakes to provide the Executive Manager: Academic Affairs, Research and Quality Assurance at the NHLS with a copy of any report, presentation or publication emanating from the use of this data.

ACCEPTANCE OF CONDITIONS

By signing this document we accept the conditions stated above.								
Applicant Signature	TO BE SIGNED AFTER RECEIVING ETHICAL CLEARANCE	Date						
Supervisor Signature	TO BE SIGNED AFTER RECEIVING ETHICAL CLEARANCE	Date						

in the event of a dispute concerning this document, the electronic version stored on Q-Pulse will be deemed to be the correct version.

National Health Laboratory Service- All rights reserved

Page 1 of 2

Q-Puice5/dooc/active/FMI0069v3

Page 2 of 3

NATIONAL HEALTH LABORATORY SERVICE HELPDESK Tel: (011) 386-6125/6/7/9 Fax: (011) 386-6308 email: helpdesk1@nhis.ac.za APPLICATION FOR DATA FROM NHLS INFORMATION SYSTEMS (Q-Pulse FMI0069)

All fields in this section must be completed

ATA REQUEST DETAILS									
Request Type (Tick)	New / Modify	Data Format (Tick)	Excelv CSV	Data Delivery (Tick)	CD / DVD □ Email√				
Frequency of Extract (Tick)	Once√ □ Repeat	If Repeat, Daily Monthly Weekly Annually							
	DES	CRIPTION OF R							
Data required	AGE, GENDER, HOSPITAL WARD, WOUND TYPE, MICROORCANIEM ISOLATED, TREATMENT RECOMMENDED AN								
Region (for data extract, e Province or Labor		LABORATORY							
Date range of ext	ract	RECORDS EXT ADMITTED AT	RACTED SHO	FROM 2019-2015 IULD BE OF PATIE AND PIETERSBUR CORDS PER HOSE	G HOSPITALS				
Fields required (e.q. Patient name Date of Birth, etc)	ł.		İSM FROM WO	(ARD, WOUND TY) DUND, TREATMEN					
(e.g. research, e				DATA EXTRACT rug effectiveness, d	Isease surveillance)				
RESEARCH									
	LIST	WHO WILL HA	VE ACCESS TO	D THIS DATA					
KG KAAPU (RES									
(if data is	a and a second	JECT NAME AN registered resea		ION NUMBER asse attach the Ethi	cs Approval.)				
ETHICS APPROV	AL ATTACH	ED							

NHLS RESPONSIBILITIES

The NHLS will:

- Ascertain if it is possible to extract the required data. .
- Register the application and issue a registration number. •
- Only release the requested data to the applicant whose name is specified on this application • form.

After this application has been completed and approved, please raise a service request with the NHLS IT Service Desk (Contact Number: (011) 386-6125/6/7/9):

In the event of a dispute concerning this document, the electronic version stored on Q-Puice will be deemed to be the correct version

National Health Laboratory Service- All rights reserved

Q-Puise6/doos/active/FMI0068v3

Page 3 of 3

NATIONAL HEALTH LABORATORY SERVICE HELPDESK

Tel: (011) 386-6125/6/7/9 Fax: (011) 386-6308 email: helpdesk1@nhls.ac.za APPLICATION FOR DATA FROM NHLS INFORMATION SYSTEMS (Q-Pulse FMI0069)

APPROVAL BY BUSINESS										
(Approval will be obtained by the CDW Manager)										
INFORMATION MANAGER	INFORMATION MANAGEMENT UNIT APPROVAL (required for external requests and patient identifying data)									
Check list for external applicants										
Executive Manager: Academic Affairs, Research and Quality Assurance		Signature		Date	ı	/20				
0	CEO APPROVAL (requir	red for sensitiv	e data requests)							
Chief Executive Officer		Signature		Date	ı	/20				
	APPRO	VAL BY IT			•					
CDW Manager		Signature		Date	1	/20				
	REQUEST	TRACKING								
Service Request Number										
Request Commence Date	/ /20									

In the event of a dispute concerning this document, the electronic version stored on Q-Puice will be deemed to be the correct version

National Health Laboratory Service- All rights reserved

Appendix 4: DEPARTMENT OF HEALTH APPROVAL

Department of Health

Ref	
Enquires	
Tel	
Email	

LP_2021-07-004 Ms PF Mahlokwane 015-293 6028 Phoebe.Mahlokwane@dhsd.limpopo.gov.za

Kabelo Kaapu

PERMISSION TO CONDUCT RESEARCH IN DEPARTMENTAL FACILITIES

Your Study Topic as Indicated below;

An investigation of the antimicrobial patterns and associated demographic determinants in bacteria isolated from patients with non-healing wounds at the Pietersburg and Mankweng hospitals, Limpopo province

- 1. Permission to conduct research study as per your research proposal is hereby Granted.
- 2. Kindly note the following:
 - a. Present this letter of permission to the institution supervisor/s a week before the study is conducted.
 - b. In the course of your study, there should be no action that disrupts the routine services, or incur any cost on the Department.
 - c. After completion of study, it is mandatory that the findings should be submitted to the Department to serve as a resource.
 - d. The researcher should be prepared to assist in the interpretation and implementation of the study recommendation where possible.
 - e. The approval is only valid for a 1-year period.
 - If the proposal has been amended, a new approval should be sought from the Department of Health
 - g. Kindly note that, the Department can withdraw the approval at any time.

Your cooperation will be highly appreciated

mellone

15/07/2021

PP Head of Department

Date

NB: Currently access is restricted to our facilities due to COVID-19, therefore this approval is applicable within our COVID-19 policies and circulars

> Private Bag X8302 Polokwane Fidel Castro Ruz House, 18 College Street. Polokwane 0700. Tel: 015 283 6000/12. Fax: 015 283 6211. Website: http://www.limpopo.gov.za

The heartland of Southern Africa – Development is about people!

Appendix 5: WOUND SWABS LABORATORY PROCEDURE <u>Procedure</u>

A. Processing of Specimens:

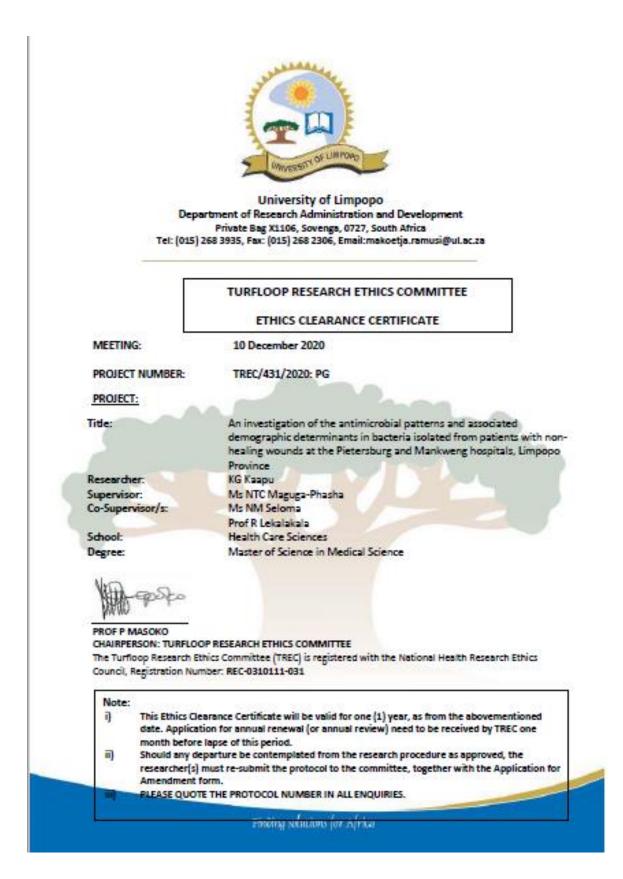
a) Direct Examination: Gram stain - Quantitate the presence of pus cells, squamous epithelial cells, and organisms. - Not required for exit site swabs.

b) Culture: Media Incubation Blood Agar (BA) MacConkey Agar (MAC) Colistin Nalidixic Acid Agar (CNA) CO2, 35°C x 48 hours.

B. Interpretation of Cultures:

Examine the plates after 24- and 48-hours incubation. Any growth of S. aureus, group B streptococcus from neonates, beta-haemolytic streptococcus groups A, C and G and Pseudomonas aeruginosa is significant. For chest tube drainage and tracheal swabs, any growth of H. influenzae and S. pneumoniae is also significant. A heavy, pure growth of other organisms that correlates with the predominant organism seen in the Gram stain is significant if there is >1+ pus cells (not for exit sites). If a specific organism is requested, then it will be looked for and its presence or absence reported. Growth of \geq 3 types of coliforms or other Gram-negative bacilli will be reported as a negative report stating commensal flora including mixed Gram-negative bacilli.

C. Susceptibility Testing:


AST is performed using the VITEK ® 2 Automated instrument for ID/AST testing, providing susceptibility results for multiple drugs per organism. Instructions for use specified on user manual.

D. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells, squamous epithelial cells and organisms.

b) Culture: Negative report: "No growth" or "Commensal flora" "Commensal flora including mixed Gram-negative bacilli". Positive report: Quantitate all significant isolates with appropriate sensitivities. If commensal flora is also present, report with quantitation.

Appendix 6 TREC APPROVAL

Appendix 7 NHLS APPROVAL

Academic Affairs and Research Modderfortein Road, Sandringham, 2031 Tet +27 (0)11 386 6142 Fax: +27 (0)11 386 6296 Email: babatyl.kgokong@nhis.ac.za Web: www.nhis.ac.za

01 July 2021

Applicant: Kabelo Kaapu Institution: University of Limpopo Department: Health Care Sciences Email: <u>kabelogabriel34@gmail.com</u> Tel: 015 268 3280 Cell: 076 348 8253

CC: Molebogeng Lekalakala – HOD Medical Microbiology

Re: Approval to access National Health Laboratory Service (NHLS) Data

Your application to undertake a research project "AN INVESTIGATION OF THE ANTIMICROBIAL PATTERNS AND ASSOCIATED DEMOGRAPHIC DETERMINANTS IN BACTERIA ISOLATED FROM PATIENTS WITH NON-HEALING WOUNDS AT THE PIETERSBURG AND MANKWENG HOSPITALS, LIMPOPO PROVINCE, Ref No: PR2116768" using data from the NHLS database has been reviewed. This letter serves to advise that the application has been approved and the required data will be made available to you without patient names to conduct the proposed study as outlined in the submitted application. Submissions should be made annually on the AARMS system https://aarms.nhls.ac.za.

Please note that approval is granted on your compliance with the NHLS conditions of service and that the study can only be undertaken provided that the following conditions have been met.

- Processes are discussed with the relevant NHLS departments (i.e. Information Management Unit and Operations Office) and are agreed upon.
- Confidentiality is maintained at participant and institutional level and there is no disclosure of
 personal information or confidential information as described by the NHLS policy.
- NHLS Data cannot be used to track patients as no pre-approval/consent is obtained from Patients.
- All data requested should be in accordance with the research protocol submitted and approved by the relevant Ethics Committee.
- Request for the inclusion of the NHLS as a source of data in the original protocol to be approved by Ethics as NHLS does not have a Human Research Ethics Committee.
- A final report of the research study and any published paper resulting from this study are submitted and addressed to the NHLS Academic Affairs and Research office and the NHLS has been acknowledged appropriately.
- Molebogeng Lekalakala is noted as NHLS collaborator for this study.

Please note that this letter constitutes approval by the NHLS Academic Affairs and Research Office. Any data related queries may be directed to NHLS Corporate Data Warehouse, contact number: 011 386 6074 email: <u>zarina.sabat@nhis.ac.za</u>

Die Babety) Malope-Kgokong National Manager: Academic Affairs and Research

Chairperson: Prof Eric Buch CEO: Dr Karmani Chety Physical Address: 1 Modderlontein Road, Sandningham, Johannesburg, South Africa Postal Address: Philate Bag XII, Sandningham, 2131, South Africa Tet: +27 (D) 11 305 60001 0050 00 NH4, 50457) www.nhis.ac.ta Philate number: 5200296

Append	IX O. KAW DA									
EPISOD	FACILITY_NA	AGE_DI	GEN		GRAM REACTIO	AMOXICILLIN_CLA	AMPICILLIN_A	CEFE	CIPROFL	COLI
E_NO	ME	SPLAY	DER	ORGANISM_NAME	Ν	VULANIC_ACID	MOXICILLIN	PIME	OXACIN	STIN
OA011	PIETERSBURG			ACHROMOBACTER						
07915	HOSPITAL	60	М	XYLOSOXIDANS	NEGATIVE	S	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
47439	HOSPITAL	17	F	BAUMANNII	NEGATIVE	R	R	S	S	S
NM004	MANKWENG			ACINETOBACTER						
51225	HOSPITAL	30	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
51043	HOSPITAL	0	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA009	PIETERSBURG			ACINETOBACTER						
51830	HOSPITAL	10	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
55726	HOSPITAL	26	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA009	PIETERSBURG			ACINETOBACTER						
89857	HOSPITAL	55	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
73450	HOSPITAL	0	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
84218	HOSPITAL	66	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA010	PIETERSBURG			ACINETOBACTER						
22474	HOSPITAL	32	F	BAUMANNII	NEGATIVE	R	R	R	S	S
OA010	PIETERSBURG			ACINETOBACTER						
33947	HOSPITAL	31	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA010	PIETERSBURG			ACINETOBACTER						
81446	HOSPITAL	1	F	BAUMANNII	NEGATIVE	R	R	S	S	S
OA010	PIETERSBURG			ACINETOBACTER						
96144	HOSPITAL	31	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA011	PIETERSBURG			ACINETOBACTER						
11068	HOSPITAL	8	F	BAUMANNII	NEGATIVE	R	R	R	R	S

Appendix 8: RAW DATA

NM005	MANKWENG			ACINETOBACTER						
30579	HOSPITAL	3	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			ACINETOBACTER						
60921	HOSPITAL	23	F	BAUMANNII	NEGATIVE	R	R	S	S	S
OA012	PIETERSBURG			ACINETOBACTER						
05313	HOSPITAL	31	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			ACINETOBACTER						
31721	HOSPITAL	32	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			ACINETOBACTER						
93301	HOSPITAL	0	F	BAUMANNII	NEGATIVE	R	R	S	S	S
NM005	MANKWENG			ACINETOBACTER						
95405	HOSPITAL	42	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			ACINETOBACTER						
45210	HOSPITAL	42	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			ACINETOBACTER						
51572	HOSPITAL	25	F	BAUMANNII	NEGATIVE	R	R	R	R	R
NM006	MANKWENG			ACINETOBACTER						
09293	HOSPITAL	25	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			ACINETOBACTER						
14609	HOSPITAL	36	F	BAUMANNII	NEGATIVE	R	R	S	S	S
NM006	MANKWENG			ACINETOBACTER						
21909	HOSPITAL	0,16	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			ACINETOBACTER						
97676	HOSPITAL	32	F	BAUMANNII	NEGATIVE	R	R	S	S	S
OA013	PIETERSBURG			ACINETOBACTER						
13697	HOSPITAL	33	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			ACINETOBACTER						
18277	HOSPITAL	36	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			ACINETOBACTER						
42809	HOSPITAL	37	F	BAUMANNII	NEGATIVE	R	R	S	S	S
OA013	PIETERSBURG			ACINETOBACTER						
54701	HOSPITAL	55	F	BAUMANNII	NEGATIVE	R	R	S	S	S

OA013	PIETERSBURG			ACINETOBACTER						
86090	HOSPITAL	8	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			ACINETOBACTER						
67426	HOSPITAL	36	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			ACINETOBACTER						
93332	HOSPITAL	25	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			ACINETOBACTER						
79864	HOSPITAL	0	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA014	PIETERSBURG			ACINETOBACTER						
18397	HOSPITAL	72	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA014	PIETERSBURG			ACINETOBACTER						
25474	HOSPITAL	36	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA014	PIETERSBURG			ACINETOBACTER						
25510	HOSPITAL	0	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA014	PIETERSBURG			ACINETOBACTER						
35269	HOSPITAL	57	F	BAUMANNII	NEGATIVE	R	R	S	S	S
NM006	MANKWENG			ACINETOBACTER						
94115	HOSPITAL	32	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			ACINETOBACTER						
95920	HOSPITAL	32	F	BAUMANNII	NEGATIVE	R	R	R	R	S
OA014	PIETERSBURG			ACINETOBACTER						
47070	HOSPITAL	62	F	BAUMANNII	NEGATIVE	R	R	R	R	S
NM008	MANKWENG			ACINETOBACTER						
05153	HOSPITAL	88	F	BAUMANNII	NEGATIVE	R	R	S	S	S
OA019	PIETERSBURG			ACINETOBACTER						
05159	HOSPITAL	59	F	BAUMANNII	NEGATIVE	S	S	R	R	S
NM004	MANKWENG			ACINETOBACTER						
46017	HOSPITAL	0	М	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
47753	HOSPITAL	5	М	BAUMANNII	NEGATIVE	R	R	S	S	S
NM004	MANKWENG			ACINETOBACTER						
48040	HOSPITAL	6	М	BAUMANNII	NEGATIVE	R	R	S	S	S

OA009	PIETERSBURG			ACINETOBACTER						
64467	HOSPITAL	28	М	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
62377	HOSPITAL	27	М	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
62803	HOSPITAL	0	М	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
86798	HOSPITAL	51	М	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
89405	HOSPITAL	28	М	BAUMANNII	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
90082	HOSPITAL	23	М	BAUMANNII	NEGATIVE	R	R	S	S	S
NM004	MANKWENG			ACINETOBACTER						
98545	HOSPITAL	55	М	BAUMANNII	NEGATIVE	R	R	R	R	S
OA010	PIETERSBURG			ACINETOBACTER						
49692	HOSPITAL	29	М	BAUMANNII	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			ACINETOBACTER						
07977	HOSPITAL	38	М	BAUMANNII	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			ACINETOBACTER						
07978	HOSPITAL	38	М	BAUMANNII	NEGATIVE	R	R	R	R	S
OA011	PIETERSBURG			ACINETOBACTER						
85885	HOSPITAL	23	М	BAUMANNII	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			ACINETOBACTER						
16636	HOSPITAL	60	М	BAUMANNII	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			ACINETOBACTER						
20611	HOSPITAL	15	М	BAUMANNII	NEGATIVE	R	R	S	S	S
OA012	PIETERSBURG			ACINETOBACTER						
29003	HOSPITAL	16	М	BAUMANNII	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			ACINETOBACTER						
31692	HOSPITAL	69	М	BAUMANNII	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			ACINETOBACTER						
99987	HOSPITAL	9	М	BAUMANNII	NEGATIVE	R	R	R	R	S

OA012	PIETERSBURG			ACINETOBACTER						
71671	HOSPITAL	25	Μ	BAUMANNII	NEGATIVE	R	R	S	S	S
OA012	PIETERSBURG			ACINETOBACTER						
82856	HOSPITAL	28	Μ	BAUMANNII	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			ACINETOBACTER						
22198	HOSPITAL	68	Μ	BAUMANNII	NEGATIVE	R	R	S	S	S
OA013	PIETERSBURG			ACINETOBACTER						
07658	HOSPITAL	42	Μ	BAUMANNII	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			ACINETOBACTER						
18260	HOSPITAL	44	Μ	BAUMANNII	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			ACINETOBACTER						
52345	HOSPITAL	67	Μ	BAUMANNII	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			ACINETOBACTER						
57613	HOSPITAL	34	Μ	BAUMANNII	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			ACINETOBACTER						
66658	HOSPITAL	41	Μ	BAUMANNII	NEGATIVE	R	R	S	S	S
OA013	PIETERSBURG			ACINETOBACTER						
68690	HOSPITAL	54	Μ	BAUMANNII	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			ACINETOBACTER						
60400	HOSPITAL	35	Μ	BAUMANNII	NEGATIVE	R	R	R	R	S
OA014	PIETERSBURG			ACINETOBACTER						
53409	HOSPITAL	34	Μ	BAUMANNII	NEGATIVE	R	R	R	R	S
NM007	MANKWENG			ACINETOBACTER						
00925	HOSPITAL	16	Μ	BAUMANNII	NEGATIVE	R	R	R	R	S
OA010	PIETERSBURG			ACINETOBACTER						
28504	HOSPITAL	26	F	BAUMANNII COMPLEX	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			ACINETOBACTER						
45971	HOSPITAL	6	Μ	HAEMOLYTICUS	NEGATIVE	S	S	S	S	S
NM004	MANKWENG									
79524	HOSPITAL	75	Μ	ACINETOBACTER LWOFFII	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
34766	HOSPITAL	8	Μ	ACINETOBACTER LWOFFII	NEGATIVE	S	R	S	S	S

NM005	MANKWENG			AEROMONAS						
99963	HOSPITAL	31	F	HYDROPHILA/CAVIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG			AEROMONAS						
18990	HOSPITAL	24	М	HYDROPHILA/CAVIAE	NEGATIVE	S	R	S	S	S
NM005	MANKWENG			ALCALIGENES FAECALIS						
91525	HOSPITAL	64	F	SUBSP FAECALIS	NEGATIVE	S	S	S	S	S
OA012	PIETERSBURG			ALCALIGENES FAECALIS						
62044	HOSPITAL	0,08	М	SUBSP FAECALIS	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			ALCALIGENES FAECALIS						
68719	HOSPITAL	44	М	SUBSP FAECALIS	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
30580	HOSPITAL	39	F	CITROBACTER FREUNDII	NEGATIVE	R	R	S	S	S
NM005	MANKWENG									
73825	HOSPITAL	71	F	CITROBACTER FREUNDII	NEGATIVE	R	R	S	S	S
OA014	PIETERSBURG									
14214	HOSPITAL	59	F	CITROBACTER FREUNDII	NEGATIVE	R	R	R	S	S
NM004	MANKWENG									
75956	HOSPITAL	8	Μ	CITROBACTER FREUNDII	NEGATIVE	R	R	S	S	S
OA012	PIETERSBURG									
71340	HOSPITAL	44	М	CITROBACTER FREUNDII	NEGATIVE	R	R	R	S	S
NM006	MANKWENG									
83294	HOSPITAL	25	F	CITROBACTER KOSERI	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG									
64039	HOSPITAL	42	М	CITROBACTER KOSERI	NEGATIVE	S	R	S	S	S
NM006	MANKWENG			COMAMONAS						
54886	HOSPITAL	32	М	TESTOSTERONI	NEGATIVE	S	S	S	S	S
NM006	MANKWENG			ENTEROBACTER						
95911	HOSPITAL	13	М	AEROGENES	NEGATIVE	R	R	S	S	S
NM007	MANKWENG			ENTEROBACTER						
00994	HOSPITAL	1	М	AEROGENES	NEGATIVE	R	R	S	S	S
NM004	MANKWENG									
43625	HOSPITAL	70	F	ENTEROBACTER CLOACAE	NEGATIVE	R	R	S	S	S

OA013	PIETERSBURG									
72381	HOSPITAL	27	Μ	ENTEROBACTER CLOACAE	NEGATIVE	R	R	R	R	S
OA009	PIETERSBURG			ENTEROBACTER CLOACAE						
41468	HOSPITAL	88	F	COMPLEX	NEGATIVE	R	R	S	S	S
NM004	MANKWENG			ENTEROBACTER CLOACAE						
48697	HOSPITAL	0	F	COMPLEX	NEGATIVE	R	R	S	S	S
NM004	MANKWENG			ENTEROBACTER CLOACAE						
56490	HOSPITAL	0,16	F	COMPLEX	NEGATIVE	R	R	S	S	S
OA009	PIETERSBURG			ENTEROBACTER CLOACAE						
77710	HOSPITAL	60	F	COMPLEX	NEGATIVE	R	R	S	S	S
NM004	MANKWENG			ENTEROBACTER CLOACAE						
81767	HOSPITAL	29	F	COMPLEX	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			ENTEROBACTER CLOACAE						
70135	HOSPITAL	21	F	COMPLEX	NEGATIVE	R	R	S	S	S
NM005	MANKWENG			ENTEROBACTER CLOACAE						
86483	HOSPITAL	23	F	COMPLEX	NEGATIVE	R	R	R	S	S
OA012	PIETERSBURG			ENTEROBACTER CLOACAE						
70303	HOSPITAL	44	F	COMPLEX	NEGATIVE	R	S	R	S	S
OA012	PIETERSBURG			ENTEROBACTER CLOACAE						
70304	HOSPITAL	27	F	COMPLEX	NEGATIVE	R	R	S	S	S
NM006	MANKWENG			ENTEROBACTER CLOACAE						
18241	HOSPITAL	48	F	COMPLEX	NEGATIVE	R	R	S	S	S
OA013	PIETERSBURG			ENTEROBACTER CLOACAE						
45353	HOSPITAL	77	F	COMPLEX	NEGATIVE	R	R	S	S	S
NM010	MANKWENG			ENTEROBACTER CLOACAE						
22951	HOSPITAL	0	F	COMPLEX	NEGATIVE	R	R	R	R	S
OA009	PIETERSBURG			ENTEROBACTER CLOACAE						
81851	HOSPITAL	30	М	COMPLEX	NEGATIVE	R	R	S	S	S
OA009	PIETERSBURG			ENTEROBACTER CLOACAE						
99356	HOSPITAL	19	М	COMPLEX	NEGATIVE	R	R	S	S	S
OA011	PIETERSBURG			ENTEROBACTER CLOACAE						
05175	HOSPITAL	74	М	COMPLEX	NEGATIVE	R	R	R	R	S

NM005	MANKWENG			ENTEROBACTER CLOACAE						
74671	HOSPITAL	3	Μ	COMPLEX	NEGATIVE	R	R	S	S	S
OA012	PIETERSBURG			ENTEROBACTER CLOACAE						
18238	HOSPITAL	32	Μ	COMPLEX	NEGATIVE	R	R	S	S	S
NM005	MANKWENG			ENTEROBACTER CLOACAE						
89787	HOSPITAL	0,58	Μ	COMPLEX	NEGATIVE	R	R	S	S	S
NM006	MANKWENG			ENTEROBACTER CLOACAE						
01819	HOSPITAL	7	Μ	COMPLEX	NEGATIVE	R	R	S	S	S
NM006	MANKWENG			ENTEROBACTER CLOACAE						
19744	HOSPITAL	33	Μ	COMPLEX	NEGATIVE	R	R	S	S	S
OA013	PIETERSBURG			ENTEROBACTER CLOACAE						
32116	HOSPITAL	55	Μ	COMPLEX	NEGATIVE	R	R	S	S	S
NM006	MANKWENG			ENTEROBACTER CLOACAE						
49890	HOSPITAL	0,08	Μ	COMPLEX	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			ENTEROBACTER CLOACAE						
96307	HOSPITAL	0	Μ	COMPLEX	NEGATIVE	R	S	R	S	S
OA014	PIETERSBURG			ENTEROBACTER CLOACAE						
51885	HOSPITAL	37	Μ	COMPLEX	NEGATIVE	R	R	S	S	S
OA012	PIETERSBURG			ENTEROBACTER CLOACAE						
54570	HOSPITAL	17	F	SUBSP CLOACAE	NEGATIVE	R	R	S	S	S
NM006	MANKWENG			ENTEROBACTER CLOACAE						
58422	HOSPITAL	35	Μ	SUBSP CLOACAE	NEGATIVE	R	S	R	S	S
NM006	MANKWENG			ENTEROBACTER CLOACAE						
15694	HOSPITAL	47	Μ	SUBSP DISSOLVENS	NEGATIVE	R	S	S	S	S
NM006	MANKWENG									
57076	HOSPITAL	0	Μ	ENTEROCOCCUS FAECALIS	NEGATIVE	R	S	R	R	S
OA009	PIETERSBURG									
39080	HOSPITAL	34	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM004	MANKWENG									
45178	HOSPITAL	66	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA009	PIETERSBURG									
46126	HOSPITAL	31	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S

NM004	MANKWENG									
49345	HOSPITAL	5	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA009	PIETERSBURG									
51884	HOSPITAL	80	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
NM004	MANKWENG									
57880	HOSPITAL	33	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
OA009	PIETERSBURG									
68244	HOSPITAL	26	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
NM004	MANKWENG									
62373	HOSPITAL	0,08	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	R
OA009	PIETERSBURG									
79536	HOSPITAL	35	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
OA009	PIETERSBURG									
89650	HOSPITAL	44	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
OA009	PIETERSBURG									
90142	HOSPITAL	39	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	R	S
OA009	PIETERSBURG									
92778	HOSPITAL	18	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
NM004	MANKWENG									
75788	HOSPITAL	0,75	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG									
10040	HOSPITAL	36	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
NM004	MANKWENG									
86422	HOSPITAL	48	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
OA010	PIETERSBURG									
25233	HOSPITAL	62	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
OA010	PIETERSBURG									
28175	HOSPITAL	36	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
NM004	MANKWENG									
88968	HOSPITAL	6	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG									
31128	HOSPITAL	17	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S

OA010	PIETERSBURG									
42032	HOSPITAL	38	F	ESCHERICHIA COLI	NEGATIVE	R	R	S	S	S
OA010	PIETERSBURG									
44133	HOSPITAL	37	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
NM004	MANKWENG									
95922	HOSPITAL	27	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	R	S
NM004	MANKWENG									
99439	HOSPITAL	35	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	R	S
NM005	MANKWENG									
13054	HOSPITAL	39	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
NM005	MANKWENG									
13050	HOSPITAL	68	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA010	PIETERSBURG									
87013	HOSPITAL	65	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
14120	HOSPITAL	7	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	R	S
OA011	PIETERSBURG									
18265	HOSPITAL	21	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
NM005	MANKWENG									
43169	HOSPITAL	8	F	ESCHERICHIA COLI	NEGATIVE	R	R	S	S	S
NM005	MANKWENG									
45416	HOSPITAL	32	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
OA011	PIETERSBURG									
47395	HOSPITAL	10	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG									
47196	HOSPITAL	27	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
61513	HOSPITAL	40	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG									
61919	HOSPITAL	29	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA011	PIETERSBURG									
62663	HOSPITAL	40	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	S	S

NM005	MANKWENG									
72087	HOSPITAL	18	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA011	PIETERSBURG									
98689	HOSPITAL	28	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
NM005	MANKWENG									
77274	HOSPITAL	52	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG									
11242	HOSPITAL	67	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
85740	HOSPITAL	22	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
85835	HOSPITAL	0	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
86494	HOSPITAL	3	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA012	PIETERSBURG									
49494	HOSPITAL	14	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
15690	HOSPITAL	17	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
21894	HOSPITAL	30	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG		_			_				_
99147	HOSPITAL	40	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
NM006	MANKWENG		_			_	_			-
31416	HOSPITAL	23	F	ESCHERICHIA COLI	NEGATIVE	R	R	S	S	S
OA013	PIETERSBURG		_			_			_	_
16477	HOSPITAL	54	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG	40	_			~	-		-	-
31308	HOSPITAL	12	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM006	MANKWENG		_			~	6			
43476	HOSPITAL	1	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
NM006	MANKWENG	26	_			~	-	-	-	-
46904	HOSPITAL	36	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S

NM006	MANKWENG									
46714	HOSPITAL	23	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
NM006	MANKWENG									
51959	HOSPITAL	30	F	ESCHERICHIA COLI	NEGATIVE	R	R	S	S	S
OA013	PIETERSBURG									
44695	HOSPITAL	68	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA013	PIETERSBURG									
60583	HOSPITAL	27	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
OA013	PIETERSBURG									
61797	HOSPITAL	35	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA013	PIETERSBURG									
63880	HOSPITAL	33	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
NM006	MANKWENG									
56081	HOSPITAL	0	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA013	PIETERSBURG									
66622	HOSPITAL	27	F	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
OA013	PIETERSBURG									
87885	HOSPITAL	34	F	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA013	PIETERSBURG									
90651	HOSPITAL	11	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
68965	HOSPITAL	27	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG									
14293	HOSPITAL	25	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	R	S
NM006	MANKWENG									
80673	HOSPITAL	0	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG									
29198	HOSPITAL	21	F	ESCHERICHIA COLI	NEGATIVE	R	R	R	R	S
NM006	MANKWENG									
96079	HOSPITAL	30	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG									
53644	HOSPITAL	29	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S

OA014	PIETERSBURG									
56189	HOSPITAL	49	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG									
61531	HOSPITAL	52	F	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM004	MANKWENG									
49919	HOSPITAL	43	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
OA009	PIETERSBURG									
64402	HOSPITAL	10	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM004	MANKWENG									
60943	HOSPITAL	0	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
OA009	PIETERSBURG									
82718	HOSPITAL	41	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
NM004	MANKWENG									
69607	HOSPITAL	0,83	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM004	MANKWENG									
69608	HOSPITAL	10	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG									
05473	HOSPITAL	28	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA010	PIETERSBURG									
18082	HOSPITAL	55	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG									
29904	HOSPITAL	59	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
NM004	MANKWENG									
91882	HOSPITAL	47	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM004	MANKWENG									
94814	HOSPITAL	0	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA010	PIETERSBURG									
73167	HOSPITAL	59	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA010	PIETERSBURG									
83514	HOSPITAL	62	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
NM005	MANKWENG									
18033	HOSPITAL	56	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S

OA010	PIETERSBURG									
86847	HOSPITAL	24	Μ	ESCHERICHIA COLI	NEGATIVE	R	R	S	S	S
OA010	PIETERSBURG									
86538	HOSPITAL	62	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA011	PIETERSBURG									
04130	HOSPITAL	63	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
NM005	MANKWENG									
27934	HOSPITAL	83	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
27966	HOSPITAL	0,08	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
30629	HOSPITAL	31	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA011	PIETERSBURG									
24176	HOSPITAL	59	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA011	PIETERSBURG									
28981	HOSPITAL	36	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
54648	HOSPITAL	53	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	R	R	S
OA011	PIETERSBURG									
55338	HOSPITAL	17	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
55360	HOSPITAL	50	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
58774	HOSPITAL	42	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA011	PIETERSBURG									
68438	HOSPITAL	50	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
69034	HOSPITAL	33	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
72363	HOSPITAL	51	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
74902	HOSPITAL	22	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S

OA011	PIETERSBURG									
81463	HOSPITAL	73	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
88883	HOSPITAL	45	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
OA012	PIETERSBURG									
09179	HOSPITAL	37	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
NM005	MANKWENG									
86473	HOSPITAL	0,33	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
OA012	PIETERSBURG									
85070	HOSPITAL	35	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
24594	HOSPITAL	13	М	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
NM006	MANKWENG									
31219	HOSPITAL	54	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	S	S
OA013	PIETERSBURG									
17440	HOSPITAL	68	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
OA013	PIETERSBURG									
37777	HOSPITAL	36	М	ESCHERICHIA COLI	NEGATIVE	R	R	R	R	S
NM006	MANKWENG									
43217	HOSPITAL	4	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	S	S
OA013	PIETERSBURG									
50767	HOSPITAL	55	М	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
OA013	PIETERSBURG									
39742	HOSPITAL	41	Μ	ESCHERICHIA COLI	NEGATIVE	S	S	S	R	S
NM006	MANKWENG									
65268	HOSPITAL	35	М	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
NM006	MANKWENG									
67427	HOSPITAL	44	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	R	S	S
NM006	MANKWENG									
67990	HOSPITAL	95	Μ	ESCHERICHIA COLI	NEGATIVE	S	R	S	R	S
OA013	PIETERSBURG									
89937	HOSPITAL	21	М	ESCHERICHIA COLI	NEGATIVE	S	S	S	R	S

OA013	PIETERSBURG								
89847	HOSPITAL	36	Μ	ESCHERICHIA COLI	NEGATIVE <mark>S</mark>	R	S	S	S
NM006	MANKWENG								
68569	HOSPITAL	0	Μ	ESCHERICHIA COLI	NEGATIVE S	S	S	S	S
NM006	MANKWENG								
79918	HOSPITAL	0	Μ	ESCHERICHIA COLI	NEGATIVE <mark>S</mark>	R	S	S	S
OA014	PIETERSBURG								
16331	HOSPITAL	35	Μ	ESCHERICHIA COLI	NEGATIVE S	R	S	R	S
NM006	MANKWENG								
80462	HOSPITAL	12	Μ	ESCHERICHIA COLI	NEGATIVE <mark>S</mark>	R	S	S	S
OA014	PIETERSBURG								
16330	HOSPITAL	35	Μ	ESCHERICHIA COLI	NEGATIVE <mark>S</mark>	R	S	S	S
OA014	PIETERSBURG								
20593	HOSPITAL	31	Μ	ESCHERICHIA COLI	NEGATIVE <mark>S</mark>	R	S	S	S
NM006	MANKWENG								
85294	HOSPITAL	29	Μ	ESCHERICHIA COLI	NEGATIVE R	R	S	S	S
OA014	PIETERSBURG								
32315	HOSPITAL	28	Μ	ESCHERICHIA COLI	NEGATIVE R	R	S	S	S
NM006	MANKWENG								
90074	HOSPITAL	12	Μ	ESCHERICHIA COLI	NEGATIVE S	R	S	S	S
OA014	PIETERSBURG								
34222	HOSPITAL	22	Μ	ESCHERICHIA COLI	NEGATIVE S	R	R	S	S
OA014	PIETERSBURG								
52086	HOSPITAL	34	Μ	ESCHERICHIA COLI	NEGATIVE S	R	S	S	S
OA014	PIETERSBURG								
62514	HOSPITAL	8	Μ	ESCHERICHIA COLI	NEGATIVE <mark>S</mark>	R	S	S	S
OA009	PIETERSBURG								
79250	HOSPITAL	54	F	KLEBSIELLA OXYTOCA	NEGATIVE <mark>S</mark>	R	S	S	S
NM004	MANKWENG								
82975	HOSPITAL	0,66	F	KLEBSIELLA OXYTOCA	NEGATIVE S	R	S	S	S
OA010	PIETERSBURG								
30566	HOSPITAL	27	F	KLEBSIELLA OXYTOCA	NEGATIVE <mark>S</mark>	R	S	S	S

OA010	PIETERSBURG									
37973	HOSPITAL	45	F	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG									
55900	HOSPITAL	22	F	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG									
57777	HOSPITAL	2	F	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
08136	HOSPITAL	36	F	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
43839	HOSPITAL	6	F	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
60436	HOSPITAL	39	F	KLEBSIELLA OXYTOCA	NEGATIVE	R	R	R	S	S
NM005	MANKWENG									
77265	HOSPITAL	62	F	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
24990	HOSPITAL	53	F	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG									
99235	HOSPITAL	41	F	KLEBSIELLA OXYTOCA	NEGATIVE	R	R	R	S	S
OA012	PIETERSBURG									
95262	HOSPITAL	28	F	KLEBSIELLA OXYTOCA	NEGATIVE	R	R	R	S	S
NM006	MANKWENG									
32528	HOSPITAL	2	F	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
41495	HOSPITAL	22	F	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM004	MANKWENG									
44952	HOSPITAL	50	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
OA009	PIETERSBURG									
47337	HOSPITAL	53	Μ	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM004	MANKWENG									
58502	HOSPITAL	43	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
OA009	PIETERSBURG									
73333	HOSPITAL	8	М	KLEBSIELLA OXYTOCA	NEGATIVE	R	R	S	S	S

OA009	PIETERSBURG									
85681	HOSPITAL	0,08	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM004	MANKWENG									
83666	HOSPITAL	4	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
09907	HOSPITAL	0,08	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG									
05924	HOSPITAL	19	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM005	MANKWENG									
35470	HOSPITAL	46	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG									
98100	HOSPITAL	30	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	R	S	S
NM006	MANKWENG									
30515	HOSPITAL	32	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	R
OA013	PIETERSBURG									
36532	HOSPITAL	38	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
58420	HOSPITAL	46	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
62219	HOSPITAL	8	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
65228	HOSPITAL	1	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
NM006	MANKWENG									
87980	HOSPITAL	9	М	KLEBSIELLA OXYTOCA	NEGATIVE	S	R	S	S	S
OA009	PIETERSBURG									
41300	HOSPITAL	74	F	KLEBSIELLA PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA009	PIETERSBURG									
62029	HOSPITAL	22	F	KLEBSIELLA PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA010	PIETERSBURG									
48759	HOSPITAL	37	F	KLEBSIELLA PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
41125	HOSPITAL	15	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S

NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
46925	HOSPITAL	25	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
47073	HOSPITAL	52	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
46570	HOSPITAL	3	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
45366	HOSPITAL	30	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
47958	HOSPITAL	37	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
51041	HOSPITAL	20	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
60268	HOSPITAL	29	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
58047	HOSPITAL	27	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
58994	HOSPITAL	0	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
59435	HOSPITAL	0	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
59718	HOSPITAL	21	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
67966	HOSPITAL	21	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
69797	HOSPITAL	21	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
69834	HOSPITAL	28	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
75258	HOSPITAL	59	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
79257	HOSPITAL	54	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S

OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
79661	HOSPITAL	56	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
83500	HOSPITAL	27	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
88897	HOSPITAL	63	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
01719	HOSPITAL	34	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
01837	HOSPITAL	34	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
76868	HOSPITAL	67	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	S	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
78117	HOSPITAL	3	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
79057	HOSPITAL	27	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
10055	HOSPITAL	46	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
83467	HOSPITAL	64	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
27092	HOSPITAL	6	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
30942	HOSPITAL	72	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
46126	HOSPITAL	15	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
82368	HOSPITAL	76	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
17328	HOSPITAL	0	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
19381	HOSPITAL	29	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S

NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
23549	HOSPITAL	51	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
24806	HOSPITAL	0	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
01582	HOSPITAL	31	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
16367	HOSPITAL	27	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
33484	HOSPITAL	24	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
35580	HOSPITAL	18	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
37173	HOSPITAL	1	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
26983	HOSPITAL	34	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
34965	HOSPITAL	42	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
42839	HOSPITAL	2	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
37370	HOSPITAL	21	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
40372	HOSPITAL	34	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
50364	HOSPITAL	0	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
54818	HOSPITAL	50	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
55446	HOSPITAL	0	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
54695	HOSPITAL	55	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S

OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
58323	HOSPITAL	32	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
66729	HOSPITAL	26	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
58489	HOSPITAL	41	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
68745	HOSPITAL	35	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
69157	HOSPITAL	10	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
69817	HOSPITAL	26	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
84215	HOSPITAL	35	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
71543	HOSPITAL	42	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
95086	HOSPITAL	77	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
03112	HOSPITAL	28	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
03238	HOSPITAL	18	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
13431	HOSPITAL	16	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
86492	HOSPITAL	77	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
89617	HOSPITAL	56	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
92133	HOSPITAL	58	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
41524	HOSPITAL	26	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S

OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
41300	HOSPITAL	40	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
44983	HOSPITAL	32	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
99979	HOSPITAL	33	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
08106	HOSPITAL	33	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
67129	HOSPITAL	22	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
12620	HOSPITAL	65	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
74048	HOSPITAL	17	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
79200	HOSPITAL	40	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
16218	HOSPITAL	0	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
82658	HOSPITAL	26	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
86077	HOSPITAL	45	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
01932	HOSPITAL	66	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
30770	HOSPITAL	6	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
33904	HOSPITAL	0	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
16474	HOSPITAL	53	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
20280	HOSPITAL	6	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S

OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
36583	HOSPITAL	39	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
45712	HOSPITAL	11	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
50687	HOSPITAL	45	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
66186	HOSPITAL	36	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
65900	HOSPITAL	19	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
83538	HOSPITAL	26	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
90656	HOSPITAL	34	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
69199	HOSPITAL	53	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
80651	HOSPITAL	21	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
82328	HOSPITAL	39	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
24209	HOSPITAL	25	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
84454	HOSPITAL	39	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
84674	HOSPITAL	23	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
24198	HOSPITAL	31	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
28727	HOSPITAL	77	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
29182	HOSPITAL	29	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S

NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
88600	HOSPITAL	33	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
90077	HOSPITAL	32	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
35967	HOSPITAL	52	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
37052	HOSPITAL	31	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
35182	HOSPITAL	33	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
91922	HOSPITAL	24	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
43910	HOSPITAL	40	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
96684	HOSPITAL	19	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
97957	HOSPITAL	83	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM007	MANKWENG			KLEBSIELLA PNEUMONIAE						
01008	HOSPITAL	6	F	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
61575	HOSPITAL	15	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM007	MANKWENG			KLEBSIELLA PNEUMONIAE						
59120	HOSPITAL	35	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM008	MANKWENG			KLEBSIELLA PNEUMONIAE						
32299	HOSPITAL	17	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA017	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
25113	HOSPITAL	10	F	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
52151	HOSPITAL	74	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
53788	HOSPITAL	36	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S

NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
54316	HOSPITAL	0	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
60828	HOSPITAL	0	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA009	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
91070	HOSPITAL	32	М	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
74639	HOSPITAL	10	М	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
18777	HOSPITAL	44	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
27886	HOSPITAL	23	М	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM004	MANKWENG			KLEBSIELLA PNEUMONIAE						
98258	HOSPITAL	2	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
52840	HOSPITAL	49	М	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
53854	HOSPITAL	20	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
57725	HOSPITAL	5	М	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
84145	HOSPITAL	18	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
86528	HOSPITAL	51	М	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
21049	HOSPITAL	11	М	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
21429	HOSPITAL	44	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA010	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
96799	HOSPITAL	61	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
32760	HOSPITAL	36	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S

OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
33190	HOSPITAL	18	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	S	S	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
38649	HOSPITAL	51	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
46153	HOSPITAL	39	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
47963	HOSPITAL	39	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
58488	HOSPITAL	5	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
58487	HOSPITAL	41	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA011	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
80198	HOSPITAL	50	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
69276	HOSPITAL	39	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
76724	HOSPITAL	61	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
81423	HOSPITAL	63	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
82802	HOSPITAL	6	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
86481	HOSPITAL	10	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
26287	HOSPITAL	6	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
91037	HOSPITAL	0,5	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
93299	HOSPITAL	0,58	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
92864	HOSPITAL	0	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S

OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
35623	HOSPITAL	7	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM005	MANKWENG			KLEBSIELLA PNEUMONIAE						
95042	HOSPITAL	2	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
04357	HOSPITAL	5	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
69470	HOSPITAL	75	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
11457	HOSPITAL	0	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
73918	HOSPITAL	75	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
79171	HOSPITAL	75	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
18221	HOSPITAL	52	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA012	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
85923	HOSPITAL	22	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
20357	HOSPITAL	21	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
01373	HOSPITAL	50	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
12195	HOSPITAL	35	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
14293	HOSPITAL	24	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
33179	HOSPITAL	0,75	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
23375	HOSPITAL	52	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
47102	HOSPITAL	40	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S

NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
48843	HOSPITAL	0	М	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
60584	HOSPITAL	57	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
63786	HOSPITAL	32	М	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
58621	HOSPITAL	0	М	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
73121	HOSPITAL	60	М	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
80426	HOSPITAL	21	М	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
81588	HOSPITAL	46	М	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
84464	HOSPITAL	29	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
89076	HOSPITAL	42	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
90151	HOSPITAL	9	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA013	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
92557	HOSPITAL	28	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
08504	HOSPITAL	35	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
08505	HOSPITAL	35	М	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
10385	HOSPITAL	29	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
19331	HOSPITAL	49	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
87010	HOSPITAL	23	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S

NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
92106	HOSPITAL	1	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM006	MANKWENG			KLEBSIELLA PNEUMONIAE						
97580	HOSPITAL	25	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	S	S
NM007	MANKWENG			KLEBSIELLA PNEUMONIAE						
01003	HOSPITAL	25	М	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
NM007	MANKWENG			KLEBSIELLA PNEUMONIAE						
01387	HOSPITAL	43	Μ	SUBSP PNEUMONIAE	NEGATIVE	R	R	R	R	S
NM007	MANKWENG			KLEBSIELLA PNEUMONIAE						
02788	HOSPITAL	0	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
57349	HOSPITAL	49	Μ	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG			KLEBSIELLA PNEUMONIAE						
57433	HOSPITAL	49	М	SUBSP PNEUMONIAE	NEGATIVE	S	R	S	S	S
OA014	PIETERSBURG									
52063	HOSPITAL	27	М	KLUYVERA CRYOCRESCENS	NEGATIVE	S	R	S	S	S