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ABSTRACT 

Titanium-based shape memory alloys have attracted a lot of attention due to their 

important technological applications including actuator devices, electronics, and 

medical stents. This is due to their shape memory effects (SMEs) and superelasticity. 

Ti50Pd50 system is considered as one of the potential high temperature shape memory 

alloy (HTSMA) due to their high martensitic transformation temperature at 823 K. 

Previous studies revealed that this alloy is mechanically unstable displaying a negative 

𝐶′ (𝐶′ < 0) at 0 K. Furthermore, their strength collapses above 823 K, which results in 

low ductility, extremely poor shape memory and corrosion resistance. In the current 

study, multi-scale computational methods were used to investigate the stability and 

phase transformation of binary Ti50Pd50 and the ternary Ti50Pd50-xMx alloys. The ternary 

alloying of Ru, Pt, Ir, Co, Ni, Os, Al was carried out to enhance shape memory 

properties and the transformation temperature of the Ti50Pd50. 

Firstly, density functional theory was used to investigate the stability of B2, L10, B19 

and B19′ Ti50Pd50 shape memory alloys. A plane-wave pseudopotential method within 

the Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA) was 

employed. The electronic properties, phonon dispersion curves and elastic constants 

were determined to check the stability of these alloys. It was found that the lattice 

parameters and heats of formation are well in agreement to within 5 % with the 

available experimental and theoretical data. More importantly, B19′ Ti50Pd50 was 

predicted to be the most stable structure (displaying the lowest heats of formation) as 

compared to B19, B2 and L10. This observation is consistent with the density of state 

stability trend. The elastic constants revealed mechanical instability of the B2 phase 

(𝐶′>0) while L10, B19 and B19′ were found to be stable (𝐶′<0). Furthermore, the B2 



v 
 

phase is vibrationally unstable due to the presence of soft mode emanating from the 

phonon dispersion curve. 

Secondly, the supercell approach was used to investigate the effect of ternary alloying 

with Ru, Os, Pt, Ir, Co, Al and Ni on the B2 Ti50Pd50 structure. A 2x2x2 supercell was 

used to introduce the various dopants on the Pd sub-lattice. The heats of formation 

was found to decrease with an increase in Ru, Os, Pt and Ir concentrations (condition 

of stability), consistent with the density of states trend. This is in contrast to Co, Ni and 

Al addition which indicates that the thermodynamic stability is not enhanced (heats of 

formation increases).  It was also found that an increase in Os, Ru and Co content 

stabilizes the Ti50Pd50 with a positive elastic shear modulus (𝐶′ > 0) above 18.25, 20 

and 31 at. %, respectively. The results suggest that these dopants are likely to 

decrease the martensitic transformation temperature of the Ti50Pd50 alloy. 

Interestingly, partial substitution of Pd with Ir and Pt was found more effective in 

strengthening the compound and may enhance the martensitic transformation 

temperature of the Ti50Pd50 alloy further. The calculated moduli confirm that alloying 

with Ru, Os and Co effectively enhances the ductility in Ti50Pd50 systems. Anisotropy 

factor and Vickers hardness are studied and hardness is found to increase with an 

increase in Ru, Os and Co content.  

Thirdly, the semi-empirical embedded atom interatomic potentials method 

incorporated in the LAMMPS code was employed to investigate the temperature 

dependence of the B19, B19′, B2, L10 binary Ti50Pd50 and ternary B19 Ti50Pd50-xMx 

(M= Co, Ni) structures. It was found that the B19 Ti50Pd50 gave a c/b ratio of 1.414 at 

approximately 1496 K which suggests that the B19 has transformed to a cubic B2 

phase. Furthermore, the addition of Co and Ni lowers the transformation temperature 

from the B19 to the B2 phase. 
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The DFTB+ code was used to develop the sets of parameters for Ti50Pd50 and Ti50Pd50-

xRux alloys employing the parameterization technique. As part of the validation, the 

developed set of parameters yielded results such as lattice parameters and bond 

distances that are in good agreement to within 5 % as compared to DMol3 findings. 

Furthermore, temperature dependence calculations were performed to determine the 

transformation temperature of binary Ti50Pd50 and ternary Ti50Pd50-xRux alloys. It was 

observed that the addition of Ru reduces the transformation temperature of binary 

Ti50Pd50. 

Finally, cluster expansion and Monte-Carlo simulations were employed to determine 

phase changes and high temperature properties of mixed TiPd1-xRux and Ti1-xPdRux 

shape memory alloys. A total of 27 new structures for the B2 TiPd1-xRux and 17 new 

structures for B2 Ti1-xPdRux were generated. The ground state line predicted 5 stable 

structures with negative formation energies for Ti1-xPdRux alloys, suggesting 

thermodynamic stability. It was found that TiPd2Ru (P4/mmm) is the most 

thermodynamic stable structure. All formation energies of TiPd1-xRux alloys are 

positive, showing that there is a miscibility gap in the system and thermodynamic 

instability. The result showed that Ru prefers being substituted on the Ti-site than the 

Pd-site. It was found that Ti2PdRu and TiPd2Ru mix at 1600 K and below 1400 K, 

respectively which were confirmed by the constructed phase diagram of TiPd1-xRux 

and Ti1-xPdRux. 

Thus, multi-scale approaches were successfully used to understand the structural, 

electronic, elastic and vibrational stability, as well as the transformation behaviour of 

both binary and ternary alloys. 
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Introduction 

 

This chapter provides some background information of shape memory alloys from 

previous theoretical and experimental studies. Firstly, the concept of shape 

memory alloys with regard to binary TiPd alloys are introduced; then the various 

other related binary and ternary alloys are discussed. The intentions of the study, 

aim, and objectives of the thesis are set out. Finally, the outline of the thesis is 

given. 

 

 Shape memory alloys 

 

Shape memory alloys (SMAs) have the ability to remember their shape after 

being deformed and play an important role in many industries such as 

automotive, aerospace and medical [1, 2], this is due to their shape memory 

effects (SMEs) and superelasticity [1]. These alloys undergo a reversible 

martensitic phase transformation from the high symmetry austenite to the low 

symmetry martensite phase upon the influence of temperature or stress field [3, 

4]. Note that the martensite phase transformation refers to a diffusionless solid-

state phase transition occurring in alloys, where the parent phase changes into 

the product phase through coordinated lattice deformation. Amongst the SMAs, 

the Ti-Ni has been studied for a long period and is useful because of their unique 

sufficient ductility and shape memory properties [5]. However, these alloys have 
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a limited temperature around 373 K, so their applications are limited [6]. Copper-

based SMAs such as Cu–Zn, Cu–Al, and their related alloys are also of 

commercial importance because of their low price, but they suffer instability of 

martensitic phase and brittleness [7]. 

Recently, SMAs are being developed to suit many applications in many fields, 

especially for engineering properties. There is an increasing demand for high 

temperature shape memory alloys (HTSMAs) for use in automobiles, pipe 

couplings and aircrafts engines and other applications. In order to design better 

SMAs, it requires that their working temperature and functional stability must be 

enhanced. The working temperature is critical for designing of HTSMAs, while 

the functional stability is important for improving their reliability of SMAs [8]. The 

working temperature and functional stability of SMAs can be adjusted by 

replacing their constituent elements with others, in particular precious metals 

such as Pt, Pd, Al, Ru, Ir, Os and Ni. For example, the working temperature of 

TiNi alloys can be increased to the range of 400–1200 K, when Ni is replaced 

with the same group elements, namely Pd or Pt [9, 10]. In recent studies, 

intermetallic compounds such as NiAl [11], TiPt [12, 13] and TiPd [14] have been 

given more attention for future HTSMAs development. This is due to their 

martensitic transformation temperature above 373 K. 

 

 TiPd SMAs 

 

Titanium-based alloys in particular Ti50Pd50 are being developed for high 

temperature applications. Ti50Pd50 systems are considered as one of the potential 
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HTSMA’s due to their high martensitic transformation temperature [15, 16]. The 

Ti50Pd50 has two stable phases - the high-temperature phase, called austenite 

and the low-temperature phase called martensite [17]. A high temperature phase 

of Ti50Pd50 has a simple cubic CsCl-type (cP2, B2) structure [18], while at ambient 

temperature the martensite phase has been reported as the orthorhombic AuCd-

type (oP4, B19) structure [19, 20]. These alloys have excellent chemical and 

physical properties such as lightweight, oxidation resistance and ductility at 823 

K [21, 22]. However, their strength collapses above 823 K, which results in low 

ductility, extremely poor shape memory and poor corrosion resistance [4, 14, 23, 

21]. Consequently, the binary Ti50Pd50 alloy has no strength for use in actuators 

and aeronautic industry and ternary alloys will need to be established to improve 

their properties [24, 25]. The collapse is due to a possible phase transformation 

from body centered cubic (bcc) to other tetragonal and orthorhombic phases such 

as L10 and B19, similar to those reported in TiPt alloy [26]. Nonetheless, their 

transformation behaviour has not been ascertained explicitly. Furthermore, there 

is still a lack of knowledge to understand the equilibrium phase diagram especially 

in the near-equiatomic region that is the most important for practical applications 

as HTSMAs.  

In order to enhance the transformation temperature and performance of the 

Ti50Pd50 SMA’s which include hardening, forgeability, corrosion resistance and 

thermal stability, ternary alloying has been suggested. The elements such as Au, 

Ni, Ru, Rh, Ir, Pt, Zn, Rc, Tc, Os and Co were reported as the best site preference 

for both Ti and Pd substitution with less than 50 atomic percentage (at. %), while 

Ag and Cd prefer the Ti substitution site in B2 Ti50Pd50 structure [27]. The addition 
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of the third elements such as Ru, Ir, Pt, Co and Ni elements showed high work 

output and good workability [28]. The addition of such elements may enhance the 

transformation temperature of Ti50Pd50 to above 1000K [29]. Previously, the 

addition of Ni to Ti50Pd50 has shown improvement in shape memory 

characteristics for Ti50Pd30Ni20 composition [21].   

Cobalt and other PGMs elements have been in use for the production of various 

components such as vanes or combustion chambers in gas turbines for their 

exceptional heat-resistant properties [30]. Ru, in particular, is one of the most 

effective hardeners for platinum and palladium and is alloyed with these metals 

to increase resistance to heat and resistance to corrosion [31]. It can also be used 

to enhance the mechanical properties and corrosion resistance for titanium-

based alloys and high-temperature single-crystal superalloys for application in jet 

engines [31, 32]. These alloys have a higher temperature capability and lower 

creep rate which will make the actuator more durable and increases aircraft 

efficiency [31]. Osmium is most often used as an alloying agent with other PGMs 

and found in electrical contacts, styluses and medical devices and in other 

applications that need great strength and stiffness [33]. The additions of Os, Ru, 

Ir, Pt, Co, Al and Ni may enhance the transformation temperature of Ti50Pd50 to 

above 1000 K. 

In this thesis, the ternary alloying of Ti50Pd50 with Os, Ru, Ir, Pt, Co, Al and Ni 

have been performed using different approaches to investigate the 

thermodynamic, electronic, mechanical and thermal stability. Furthermore, the 

effect of Os, Ru, Ir, Pt, Co, Al and Ni on the ductility/brittleness has been deduced 

from the Poisson's ratio, Debye temperature and Cauchy pressure, which 
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confirms the strength of the systems. The calculated results will provide useful 

and practical guidance for further experimental and theoretical investigations on 

the future ternary shape memory alloys. 

 

 Structural properties 

 

The TiPd system has various compositions, however, the focus on SMAs 

development at 50:50 composition where B2, B19, B19′ and L10 TiPd structures 

are observed. The B2 phase is a cubic high temperature structure with the space 

group Pm-3m while the B19 phase is an orthorhombic low temperature structure 

with the space group Pmma. The positions of B2 atoms are denoted by the 

Pearson symbol cP2 and the prototype is CsCl with all angles being 90⁰. The 

positions of B19 atoms are denoted by the Pearson symbol of oP4 and the 

prototype of AuCd with all angles being 90⁰. B2 experimental observed unit cell 

parameters are a=b=c=3.180 Å [23] while B19 experimental observed unit cell 

parameters are a=4.550 Å, b=2.780 Å and c=4.860 Å [20].  

 

The B19′ structure is monoclinic with the space group P21/m while the L10 

structure is tetragonal having the space group P4/mmm. B19′ theoretical lattice 

parameters are a=2.744, b=4.797, c=4.460 [34], with prototype NiTi. 

Furthermore, L10 theoretical lattice parameters are a=b=2.855, c=3.907 [34] with 

the prototype of AuCu. This is detailed in Table 1-1 and the atomic arrangements 

of these structures are shown in Figure 1-1. 
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Table 1-1 Structural properties of B2, B19, B19′, L10 Ti50Pd50 from theoretical and 
experimental observations. 

 B2 [20]  B19 [23] B19′ [34] L10 [34] 

Lattice parameter (Å)
  

a=b=c=3.180 a=4.550 

b=2.780 

c=4.860 

a=2.744 

b=4.797 

c=4.460 

a=b=2.855 

c=3.907 

Space group Pm-3m Pmma P21/m P4/mmm 

Prototype CsCl AuCd NiTi AuCu 

Pearson symbol cP2 oP4 mP4 tP2 

 

 
 

  
 

Figure 1-1 The Ti50Pd50 (a) B19 with 4 atoms per unit cell (b) B2 with 2 atoms per 
unit cell (c) L10 with 4 atoms per unit cell (d) B19′ with 4 atom per unit cell. 

 

 

B19 B2 

(b) 
(a) 

L10 
B19′ 

(c)  (d)  
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 Intentions of the study 

 

The study of Ti50Pd50 alloy is of interest mainly in automotive and aerospace 

applications for quite some time due to higher martensitic transformation at 823 

K [21, 22]. This alloy continues to gain popularity due to many favourable shape 

memory properties such as high melting temperature, high yield strength at high 

temperatures, good resistance to oxidation and corrosion. Previous studies 

showed that B2 Ti50Pd50 is unstable displaying a negative elastic shear modulus 

(𝐶′) at 0 K [24, 35]. Furthermore, Ti50Pd50 displays poor shape memory behaviour 

during transformation, which results in poor corrosion resistance [4, 14, 21, 23, 

36]. This then instigates a need to enhance their mechanical properties and 

understand the transformations behaviour in binary and ternary additions. 

 

The intention of the study is to use computational modelling methods to determine 

the stability of binary Ti50Pd50 and ternary Ti50Pd50-xMx (M= Ru, Os, Pt, Ir, Al, Ni, 

Co). The equilibrium ground state properties will be determined using DFT based 

planewave pseudopotential [37] VASP code [38] employing the GGA-PBE [39]. 

Different equilibrium ground state properties such as lattice parameters and heats 

of formation of these alloys will be deduced. The elastic properties, thermal 

properties, electronic density of states and the phonon dispersions curves will be 

determined to check the stability of the ternaries. Effect of Ru, Os, Ir, Pt, Co, Ni 

and Al additions on Ti50Pd50 will be investigated using supercell approach to 

observe the stability at different compositions at 0 K. A 2x2x2 supercell will be 

constructed on the binary Ti50Pd50 and a substitutional search tool within the 

Medea software platform will be used to substitute Pd with Ru, Os, Ir, Pt, Co, Ni 
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and Al. A supercell approach will be performed mainly for up to five compositions 

6.25, 18.75, 25, 31.25 and 43.75. Full geometry optimization will be performed to 

find the ground state properties for all the compositions. The electronic and 

mechanical properties will be determined from optimized structures. It will be 

established that Ru and Os substitutes are mostly favourable. This is in line with 

previous studies as Ru addition has shown to improve different properties such 

as Hardness in PtAl [40].  

Furthermore, the temperature dependence of the lattice parameters, XRDs and 

the elastic constants for the Ti50Pd50-xMx (M= Co and Ni) will be studied using the 

LAMMPS code. The lattice parameters and XRDs will be used to determine the 

phase transformation as the temperature is increased. Mechanical properties will 

be determined to identify the strength of the structures at a higher temperature. 

  

The DFTB+ technique will be used to derive interatomic potentials of both binary 

Ti-Pd and ternary Ti-Pd-Ru alloys. In order to obtain the set of parameters for Ti-

Pd and Ti-Pd-Ru, the potential confinement radius for Ti, Pd, and Ru elements 

will be constantly adjusted until the suitable radii are obtained. Geometry 

optimization will be carried out to obtain the ground state properties. This will be 

considered converged if structural properties produced are in good agreement 

with available theoretical and experimental results. During geometry optimization, 

GGA-PBE and LDA-PWC exchange-correlation functionals will be used to check 

their suitability for describing the properties of the systems. The thermodynamic, 

electronic and elastic properties will be determined from optimized structures to 

deduce the possible stability and be compared with the results obtained using 
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standard DFT. The derived potential will be explored to determine the 

transformation occurrence and stability. A transformation temperature will be 

investigated to establish at what temperature does the system change, using the 

NPT ensemble within DFTB. The time step and simulation time will be determined 

before any temperature calculations would be done, which is critical for making a 

meaningful prediction.  

Furthermore, the Cluster expansion and Monte Carlo simulations will be explored 

to generate new stable phases on B2 Ti-Pd-Ru. A flowchart will be used to 

generate ground-state structures which are compared with previous approach i.e. 

DFT, DFTB and LAMMPS. In order to assess the accuracy of the cluster 

expansion, the cross-validation score (CVS) will be considered. A cluster 

expansion with CVS< 5 meV/atom will be considered accurate. Monte Carlo 

simulations will be used to construct the ternary phase diagrams from the critical 

temperature of each concentration.  

 

 Aim 

 

The aim of the study is to investigate the stability and phase transformation of 

binary Ti50Pd50 and the ternary Ti50Pd50-x M (M= Ru, Pt, Ir, Co, Ni, Os, Al) shape 

memory alloys.  
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 Objectives 

 

In this study, we investigate the stability and phase transformation of binary 

Ti50Pd50 and the ternary Ti50Pd50-x M alloys. Different codes such as VASP, 

LAMMPS, DFTB+ and Universal Cluster-Expansion (UNCLE) are used. 

 The objectives of the study are to: 

i determine the structural, thermodynamic and electronic stability of binary 

Ti50Pd50 and ternary Ti50Pd50-xMx (M= Ru, Pt, Ir, Co, Ni, Os, Al) SMAs,  

ii investigate the mechanical stability from the elastic properties and the phonon 

dispersion curves of the binary Ti50Pd50 and ternary Ti50Pd50-xMx, 

iii determine the thermal stability by investigating the Debye temperature, heat 

capacity, thermal coefficient of linear expansion of the binary Ti50Pd50 and 

ternary Ti50Pd50-xMx, 

iv investigate temperature dependence on the lattice parameters and XRDs to 

check the transformation temperature of binary Ti50Pd50 and B19 Ti50Pd50-xMx 

(Co, Ni) structures using LAMMPS code, 

v  derive reliable interatomic potentials that can effectively describe stability and 

transformation temperature of the binary Ti50Pd50 and ternary Ti50Pd50-xRux 

systems using DFTB+ code, 

vi generate new stable phases of Ti-Pd and Ti-Pd-Ru system using UNCLE 

code, 

vii use Monte carlo simulation to predict the ternary Ti-Pd-Ru phase diagrams. 
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 Hypothesis 

 

If ternary alloying enhance the stability and martensitic transformation of Ti50Pd50 

then possible alloys that can be used for high temperature application can be 

developed. 

  

 Research questions 

 

The questions to be answered by this project are:  

i. Which alloying elements would be more effective in enhancing the 

thermodynamic, electronic and mechanical stability of Ti50Pd50?  

ii. Which alloying elements can be used to determine the thermal stability of 

Ti50Pd50 alloy? 

iii. Which alloying elements can be utilised to enhance the transformation 

temperature of Ti50Pd50 alloy above 1400 K? 

iv. Which interatomic potential are suitable to describe the stability and 

transformation temperature of binary Ti-Pd and ternary Ti-Pd-Ru alloys be 

determined? 

v. What are the other possible binary and ternary structures that may exist in the 

new ground state line of both binary Ti-Pd and ternary Ti-Pd-Ru alloys? 

vi. At what temperature and concentration range would Ti-Pd-Ru systems mix 

well using Monte Carlo simulation? 

 



12 
 

 Outline 

 

In chapter 1, we dealt with the background and introduction of the Ti-based shape 

memory alloys (SMAs).  

 

In chapter 2, we give a brief summary of the literature review in terms importance 

and uses of the SMAs from previous experimental and computational 

approaches. 

 

 Chapter 3 give the detail of the methods that were used to perform the 

calculations in this study. We briefly introduce the density functional theory (DFT) 

and the approximation methods used such as the generalised gradient 

approximation (GGA) and the local density approximation (LDA). The plane-wave 

pseudopotential approach is outlined. We also introduce computational codes 

used such as VASP, PHONON, DMol3, DFTB+, LAMMPS and UNCLE and their 

implementation in this study. Lastly, we give a brief theoretical background on the 

calculated properties, i.e. heats of formation, density of states, and elastic 

properties. 

 

Chapter 4 present the results and discussion on the structural, thermodynamic, 

the density of states, phonon dispersion, phonon density and mechanical 

properties for Ti50Pd50 alloy and compare with the available experimental values.  

 

In chapter 5, we discuss the temperature dependence of the Ti50Pd50 alloy. The 

temperature dependence of the lattice parameters and the XRD patterns of the 
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binaries are plotted and discussed. We also discuss the elastic properties of the 

Ti50Pd50 alloy. 

 

Chapter 6 presents the structural, thermodynamic and electronic properties of 

Ti50Pd50-xMx alloys generated using the supercell approach. The equilibrium 

lattice parameters, heats of formation and densities of states are discussed in 

detail and compared with the available experimental results.  

 

Chapter 7 focuses on the mechanical properties of the ternaries Ti50Pd50-xMx. We 

discuss in detail the mechanical properties i.e. elastic constants, moduli (Bulk, 

Shear and Young’s), Pugh (B/G) and Poisson‘s ratio as well as Cauchy pressure 

of the ternaries Ti50Pd50-xMx. We also compare the trend of mechanical stability 

amongst the ternaries. 

 

Chapter 8 presents the vibrational and thermal properties of Ti50Pd50-xMx alloys. 

In particular the phonon dispersion curves, Debye temperature, heat capacity and 

thermal coefficient of linear expansion.  

 

In chapter 9, we present the temperature dependence of the Ti50Pd50-xMx (M = 

Co, Ni). The volume, density, lattice parameters and XRD patterns of the 

ternaries B19 Ti50Pd50-xMx are investigated and discussed. We also discuss the 

mechanical properties of the Ti50Pd50-xMx ternaries.  
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Chapter 10 focuses on the parameterization of the self-consistent-charge density 

functional tight-binding (SCC-DFTB) set of parameters for the binary Ti50Pd50 and 

ternary Ti50Pd50-xRux. The validation of the developed set of parameters is given. 

We also present transformation temperature for both Ti50Pd50 and Ti50Pd50-xRux 

using the derived parameters. 

 

In chapter 11, Cluster expansion and Monte carlo results on phase stability are 

discussed for binary Ti-Pd, ternary TiPd1-xRux and Ti1-xPdRux alloys. We present 

generated new ground state structures for both binary Ti-Pd, ternary TiPd1-xRux 

and Ti1-xPdRux systems. Furthermore, we discuss constructed phase diagrams 

of the TiPd1-xRux and Ti1-xPdRux alloys.   

 

Lastly, in chapter 12, we give the summary and conclusion of the study, 

recommendations and future work are also listed. 
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Literature review 

 

In this chapter, we give a review of previous studies on shape memory alloys 

(SMAs) and their applications. Furthermore, the transformation temperature of 

TiPd SMAs will be reviewed. Various binary and ternary SMAs that have been 

investigated previously using both experimental and computational studies are 

presented. Finally, a background on the ternary SMAs and the methods used to 

assess the properties of binary and ternary SMAs will be reviewed. 

 

 History of shape memory alloys  

 

SMAs fall into the category of smart materials and are capable of recovering their 

shape, after being deformed at low temperatures, when the temperature is 

increased. The leading SMAs on the market are TiNi-based alloys which are used 

in the medical sector and, other applications where the application temperatures 

do not exceed 373 K [41]. Given the potential of SMAs at low temperatures, 

national aeronautics and space administration (NASA) and others have 

developed HTSMAs for use in higher temperature applications such as sensors 

and actuators in jet engines, including, core exhaust chevrons, flow control 

devices, and active clearance control devices, etc. The shape memory effect in 

these alloys is related to the reversibility of the martensitic transformation [42]. 

The SME was first observed on gold-cadmium alloys as a result of shape change 

enabling the ability to create macroscopic strains that lead to the production of a 



16 
 

large number of different alloys [43]. Furthermore, Chang and Read showed the 

reverse transformation of AuCd in terms of resistivity changes and metallurgical 

observation [44]. They also studied the effects of stress and temperature on 

diffusionless phase transformations which are responsible for shape memory 

effect and superelasticity [44]. It was also revealed that the nucleation in this 

diffusionless transformation is strongly influenced by the state of stress present 

in the specimen. Furthermore, it was found that the electrical resistivity of the 

tetragonal phase after transformation decreases slowly with time (finally reaching 

a stabilised value). A breakthrough in the medical application was made with 

regard to the treatment of bone fracture [45]. They managed to design and built 

bone holders using novel TiNi wires for 20 patients.   

 

 Application of shape memory alloys 

 

The major applications of Ti-based alloys are in the medical sector, engineering 

and technical field and are used as stents, bone plates, eyeglasses, couplings 

and fasteners, actuators, thermal power plants, aircraft turbine engines, etc. This 

is mainly because these alloys are less expensive, easier to work with, have high 

fatigue strength and have a lot of shape-changing potential [46]. For example, 

TiNi alloys are used for noiseless operation in vehicles. Furthermore, nitinol was 

first used to create a reactive pipe coupler to join hydraulic lines on the F-14 

aircraft with a low transition temperature below 153 K [47].  

In the medical field, Nitinol is used in two ways: the development of stents [48] to 

treat narrow or weak arteries and secondly for implants in dentistry [49]. The first 

superelastic braces were developed three decades ago [49]. The coil spring in 
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cars was first outlined and developed in 1990 [1, 50]. In 2013, the first car to 

incorporate SMA actuators was developed and these actuators replace heavier 

motorised actuators in order to reduce the hatch vest from the trunk that releases 

air [51]. The recent applications of shape memory alloys are found in civil 

infrastructures including steel, concrete and timber structures [52]. It was 

revealed that SMA in civil infrastructures enhances the structural behaviour and 

energy dissipation of external excitation in seismic loads [52]. 

 

 Transformation temperature in SMAs  

 

Transformation temperature is the temperature at which there is a phase change 

in the structure [1]. The martensitic transformation occurs from austenite to 

martensite or vice versa by means of a lattice shearing mechanism [1]. An 

austenite phase has a high symmetry with a cubic lattice and occurs at high 

temperature while martensite is the lowest symmetry occurs in tetragonal or 

monoclinic at low temperature [1]. The sputter deposition of TiNi, TiNiPd and TiPd 

films was reported to display the two-way SME in sensors and actuators [53]. 

This behave is a common property of SMA, it is called Two Way SME. Two-way 

SME refers to the SMAs that are able to remember their shape above austenite 

final at high temperature and another shape below martensite finish (Mf) at low 

temperature on both heating and cooling. It was reported that TiPd transformation 

temperature is from austenite to martensitic as shown in Figure 2-1. The Ms 

represents the martensitic start temperature which implies that the initial phase 

change to martensite upon cooling occurs, while Mf represents the martensite 

finish temperature which means that the complete phase change to martensite 
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upon cooling. The As represents austenite start temperature which means that 

the initial phase change to martensite upon heating, while Af represent the 

austenite finish temperature which means that is the complete phase change to 

austenite upon heating [1, 53]. 

 

Figure 2-1 Show austenite to martensitic transformation temperature for 

TiPd [53]. 

 

 Binary systems 

 

In Table 2-1, we show various binary SMAs that exist or form. This Table is 

presented in order to indicate binary alloys which have been investigated 

previously either computationally or experimentally. The sign right ( ) indicate 

that the alloy has been investigated or its availability and cross (×) indicates 

unavailability or the alloy does not form. 
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Table 2-1 Various different binary SMAs. 

 Ti Zr Hf Mo Fe Ru Co Rh Ir Os 

Ni                     

Pd                     

Pt                     

Cu                     

Ag                     

Au                     

Ti ×                   

 

 Zr (Pd, Pt, Ni, Ag, Ti) alloy 

 

The compounds ZrPd and ZrPt were reported to have the B2 or B33 (BCr-type) 

structures [54]. Furthermore, the ZrPd alloy was observed to transform to a 

monoclinic phase at 473 K before it undergoes a martensitic transformation from 

high temperature B2 to B33 at 875 K [55]. At room temperature, the martensitic 

phase in equiatomic ZrPd alloy is Cm [55]. It was previously reported that ZrNi 

and ZrPd amorphous alloys absorb an extensive amount of hydrogen [56]. The 

ZrPt alloy was reported to undergo a martensitic transformation from the B2-type 

structure to the B33-type phase near 1730 K [57]. Previously, the ZrPt system 

showed to have a B33 structure at low temperature [54] and have B2 structure at 

high temperature [54]. A recent study investigated the use of AgZr alloys as active 

brazers in composite materials suitable for applications requiring aggressive 

thermal and mechanical conditions [58, 59]. Furthermore, TiZr alloy has been 



20 
 

used for endosseous dental implant applications as tested in vitro, in animals and 

clinically [60]. 

 

 Hf (Ni, Pd, Pt, Cu, Ti) alloy 
 

Hf-based alloys, in particular, the equiatomic HfNi alloy was reported to exhibits 

a martensitic transformation from the B2-type structure to the B33-type structure 

near 1420 K [61]. Studies done by Stalick et al. [62] reported that the space group 

in equiatomic HfPd alloy at room temperature is identified as P21/m. This was 

done using the powder neutron diffraction data. Martensitic transformation in 

equiatomic HfPd alloy was found to be Ms=819 K, Mf=794 K, As= 928 K, Af= 954 

K, this was tested using differential scanning calorimetry measurement [63]. In 

the Hf–Pt systems, their spin-orbit and the prototypes for TlI and B33 were found 

to remain degenerate and the most stable. Furthermore, a considerable gap was 

preserved to the less stable B2 structure.  

Previously, ab initio method was used to study the Cu-Hf systems employing the 

VASP code with Vanderbilt-type ultrasoft pseudo-potentials [64]. Furthermore, 

twenty-eight different structures have been studied, of which four, Cu5Hf; Cu8Hf3; 

Cu10Hf7 and CuHf2, were identified as stable. Previously, there was no 

experimental information about the structure of Cu5Hf [65].  

In the previous years, Ti and Hf have been proven to have good biocompatibility 

and osteoconductivity in both soft and hard tissues [66]. Furthermore, other 

studies focused on the effects of Hf content and heat treatment to understand the 

mechanical properties of Ti-Hf alloys [67]. It was found that the beta-quenched 

structures have higher strengths than the beta-furnace-cooled structures. 
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Another study conducted by Zhou [68] revealed that an increase in Hf content 

gently reduces the dynamic Young’s modulus but strongly enhances the strength 

of Ti-Hf alloys. Furthermore, the Ti60Hf40 alloy was found to have the highest 

strength-to-modulus ratio among other structures [68]. 

 Ti-based shape memory alloys 
 

Previously, the Ti-Mo alloys were arc-melted and their compositions were 

analyzed by EDX, XRF and SEM from 4 to 20 at. % Mo [69]. It was found that 

their surfaces were without defects, while the Mo mapping showed a 

homogeneous distribution. Furthermore, significant retention of the β-phase was 

found for the alloy containing 10 at. % Mo, while at higher Mo concentrations (15 

and 20 at. %), retention of β-phase was only verified. Lui et al. have studied the 

microstructures and mechanical properties of Ti-Mo alloys [70]. It was found that 

the addition of Mo can refine the microstructure of TiMo alloy greatly and raise 

sintering temperature which can effectively increase the alloy density without 

grain coarsening. On the other hand, Zhang et al. [71] studied the formation of 

stress-induced α martensite in a metastable TiMo-based alloy. This was done 

using X-ray diffraction and transmission electron microscopy. It was found that 

the growth of martensite laths from the resultant stacking faults occurs by the 

motion of interfacial disconnections. Davis et al. [72] reported that in Ti-Mo 

systems, the martensitic structure changes from hexagonal 𝛼 ′ to orthorhombic 

𝛼′′ at Mo rates of approximately 6 %. More recently, Bania [73] reported that a 

minimum of 10 at. % Mo was required to completely stabilize the 𝛽 phase at room 

temperature.   
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Previously, Niinomi et al. [74] conducted a study on the corrosion wear fracture 

of new β-type biomedical titanium alloys. It was indicated that 𝛽-titanium alloys 

composed of non-toxic elements such as Nb, Ta, Zr, Mo, and Sn showed lower 

elasticity modulus [74]. However, it was recommended that alloys with greater 

strength should be developed [74]. 

Mazhuga et al. reported thermodynamic calculation of phase equilibria in the Ti-

Ru, Ti-Os, Ni-Ru binary systems [75]. It was reported that Ti-Os and Ti-Ru alloy 

phase diagrams could not be achieved using a sub regular solution model. 

The studies showed that the Os-based structures particularly TiOs have 

considerably higher melting temperatures of 2433 K [54]. Furthermore, the B33 

structure was found to be the least stable phase as it gave the highest heat of 

formation value [54]. Raman et al. on the other hand investigated the stability of 

Ti-Rh. It was reported that L10, B19 and B33 are stable at a lower temperature 

while the B2 phase was stable at high temperature [76]. Tan et al. [77] examined 

elastic properties and electronic structures of Ti-based binary and ternary shape 

memory alloys using first-principles study. It was found that both NiTi and TiCo 

are mechanically stable with positive 𝐶′ (𝐶′> 0) [77]. The melting point and phase 

transformation temperature of Ti-Au were reported to be ~ 100 K higher than that 

of Ti-Pd and Ti-Ni [78].  

Equiatomic TiPt was reported to transform from B2 to B19 orthorhombic 

martensitic phase at 1300 K [9]. Furthermore, it was found to exhibit low strength 

(~450 MPa) in martensite and very low strength (~20 MPa) in the B2 phase region 

[9]. The martensitic start temperature was found as follows; TiNi have (Ms≈ 350 

K), then TiAu (Ms≈ 900 K), also TiPt (Ms≈ 1200 K) and TiPd (Ms≈ 800 K) [79]. 
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Table 2-2 shows the melting temperature and martensite start (Ms) temperature 

of TiNi, TiPd and TiPt alloys.  

Table 2-2 Melting temperature and martensitic start temperature of TiNi, TiPd and 
TiPt [80]. 

B2 phase Melting Temperature (K) Ms (K) 

TiNi 1583 333 

TiPd 1673 783 

TiPt 1830 1343 

 

 Recent research on Ti-Pd alloys 

 

The Ti-Pd alloys have brought more attention due to their interesting mechanical 

properties and technological importance for engineering and medicine, 

particularly for the shape-memory effect [4, 19]. These alloys were observed to 

undergo a martensitic transformation temperature at about 800K, but transition 

temperature can be reduced to 410K with 8% substitution of Cr for Pd [22]. The 

TiPd had been reported to exist as a high temperature phase (austenite phase) 

which has a simple cubic B2 with a CsCl type-structure while at low temperature 

is known as the martensite phase with an orthorhombic B19 structure with AuCd 

prototype [22]. It has been reported that TiPd undergoes a B2-to-martensite 

phase transformation with Ms between 783 and 836 K [80].   

Previous ab initio studies on TiPd SMAs system mainly focused on the structural 

properties, optical properties and the structural energies of (B2, B19, B19′ and 

L10) phase [34]. Ab initio approach was used to study the ground state, phase 

stabilities, enthalpies of formation, electronic and elastic properties [34]. The 

monoclinic B19′ TiPd was found to be the most stable structure with the lowest 
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value of heat of formation (-0.552 eV/atom). Furthermore, TiPd2 orthorhombic 

MoPt2-type structure was also reported to be stable but with slightly lower energy 

than the tetragonal MoSi2-type structure above 1553 K [34].  

Another study reported the enthalpies of formation of refractory intermetallic 

compounds TM and TM3 formed between Group IV elements (T = Ti, Zr, Hf) and 

platinum group elements (M = Ru, Rh, Pd, Os, Ir, Pt) using first-principles 

calculation [54]. It was found that the trends of structural stabilities and the 

magnitudes of formation enthalpies were in good agreement with theoretical and 

experimental findings. For example, the formation energies of B19′ and B2 were 

found to be -0.552 (-0.552) [34] and -0.454 (-0.455) [34] eV/atom, respectively. 

 

The accepted experimental binary Ti-Pd phase diagram was produced by Murray 

[81] and is shown in Figure 2-2. The phase diagram predicted four solutions 

(liquid, bbc, fcc, hcp) and eight intermetallic compounds (TiPd3, TiPd2, Ti3Pd5, 

Ti2Pd3, α-TiPd, β-TiPd, Ti2Pd, and Ti4Pd) [81].  At 50 at. % Pd two phases exist 

which are the α-TiPd with B19-type structure (lower phase) and β-TiPd with B2-

type structure (higher phase). The α-TiPd phase was found to be  stable up to 

783 K while the β-TiPd phase was found stable up to 1673 K [81]. At the Pd-rich 

side, only four phases exist namely: Ti3Pd with two space groups P63/mmc and 

Pm-3m, Ti3Pd5 with space group P4/mmm and lastly Ti2Pd3 with Space group 

Cmcm. The study showed that Ti3Pd exists being from 23 to 28 at. % Pd and 

forms peritectoidally at a temperature between 723 and 823 K [81]. At the Ti-rich 

site, only one phase exists Ti2Pd with space group I4/mmm. 
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Figure 2-2 The binary Ti-Pd phase diagram [81]. 

 

On the other hand, Jankowski [82] the formation of thin films of vapour phases in 

Pd-Ti alloys containing 20, 25 and 30 at. % Pd using magnetron sputter 

deposition. It was revealed that PdTi3 exists within a range from 23 to 28 at. % 

Pd and forms peritectoidally at a temperature between 723 and 823 K.  

Yamamuro et al. [83] used differential scanning calorimetry (DSC), transmission 

electron microscopy (TEM), and scanning electron microscopy (SEM) to 

reconfirm the Pd-Ti phase diagram in the Ti-rich side. A peritectoid reaction at 

963 K was confirmed to form the PdTi3 structure [83]. 

 

 

https://www.sciencedirect.com/topics/materials-science/sputter-deposition
https://www.sciencedirect.com/topics/materials-science/sputter-deposition
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 Ternary shape memory alloys 

 

In Table 2-3, we give a summary of ternary SMAs. The alloy systems are 

categorized as available and non-existent and are indicated by right ( ) and 

cross (×), respectively. Four major Ti-based binary SMAs are listed, that is TiAu, 

TiNi, TiPd and TiPt. These alloys are checked if they can form ternary alloys with 

eight alloying elements (Cr, Co, Hf, Ir, Ni, Pt, Pd, Zr). The alloying elements have 

been suggested to have the potential to improve the transformation temperature. 

Those are the most common elements used in the development of SMAs.  

It can be clearly seen that only five ternary alloys are either not possible or have 

not been studied or have no shape memory properties that is TiAu-Hf and TiAu-

Ir, while TiNi-Ni, TiPd-Pd and TiPt-Pt can only for binary alloy. Thus the majority 

of the alloying elements are likely to form SMAs for a variety of industrial 

applications. 

 

Table 2-3 Summary of ternary SMAs. 

 Cr Co Hf Ir Ni Pt Pd Zr 

TiAu     × ×         

TiNi         ×       

TiPd             ×   

TiPt           ×     
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 Ti-Ni-M (M=Pt, Pd, Cu, Zr, Hf) SMAs 

 

Previously, ternary TiNi-based alloys have been investigated [84]. Amongst 

these, TiNiPd, TiNiPt and TiNiAu alloys are known to exhibit SME at high 

temperatures along with a small hysteresis. Their transformation temperature 

ranges were found between 373 and 1073 K depending on the amount of ternary 

alloying elements [84]. It was reported that the TiNiHf and TiNiZr alloys are less 

costly and also exhibit high transformation temperatures [85, 86]. As a result, they 

are unsuitable for actuator applications due to their large thermal hysteresis (~45 

K). Moreover, it was found that the addition of Hf or Zr causes drastic deterioration 

in the ductility, which makes them difficult to process [85, 86].  

Other studies reported that Pd is considered a better choice as a third alloying 

element in TiNi-based ternary HTSMAs because it offers an attractive 

combination of high transformation temperatures, small hysteresis, adequate 

workability and a relatively lower cost compared with Au and Pt [21, 10].  

Another study examined the mechanical and physical properties of TiNiPt and 

TiNiPd HTSMAs to find which materials have the best mechanical and physical 

properties for high temperature applications, especially in the actuation industry 

[87]. Furthermore, TiNiPt and TiNiPd alloys showed viability and value in terms 

of capability and performance in actuator application up to 573K [87]. Davis 

revealed that the addition of Cu has the ability to improve fatigue and the low cost 

material for TiNiCu alloys, which enable the material to be used for different 

engineering applications [71]. The studies show that TiNiZr and TiNiHf have 

brought much attention to high temperature material industries because of the 

low cost of buying the material [79]. Currently, the findings show that TiNiHf and 
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TiNiZr were found to have nanoscale form precipitates which result in an increase 

of strength and having superelasticity at around 523 K [79]. Many researches 

have been done on martensite transformation temperature by the addition of Pt, 

Pd, Au, Hf, and Zr to TiNi [88]. Recent development in shape memory alloys 

found that NiTi has shown to have fragile phases which depend on the 

composition during the addition of Zr or Hf while the addition of Pd does not have 

a fragile phase [27]. 

 Ti-Pt-M (M= Co, Ru, Hf, Ir Ni, Zr) SMAs 
 

Wadood et al. [9] investigated the TiPt-Co and TiPt-Ru high temperature shape 

memory alloys. It was found that the partial substitution of Pt with Co and Ru 

enhances the high temperature strength and also SMA properties in Ti50Pt50 alloy 

[9]. Furthermore, Ti50Pt45Co5 and Ti50Pt45Ru5 were found as the most stable 

structures which can be used for high temperature shape memory materials 

applications [9]. They also [89] studied the effect of partial substitution of Zr and 

Ru in Ti50Pt50 on strength and shape memory properties above 1073 K. It was 

revealed that partial substitution of Ti with Zr, Hf and Ir improve the high-

temperature strength and properties. Furthermore, Ti45Zr5Pt50, Ti45Hf5Pt50 and 

Ti50Pt25Ir25 were found to be the most stable structures [89]. In another study, 

Wadood et al. [90] also investigated the mechanical properties of TiPt-Zr and 

TiPt-Ru alloys with temperature. It was found that partial substitution of Ti and Pt 

with Zr and Ru improves the strength of the martensitic phase as well as B2 

phase, respectively. Yamabe-Mitarai et al. studied the Ti (Pt, Pd, Au) based high 

temperature shape memory alloys. They found that the yield stress of TiPt-Zr was 

almost triple compared to the TiPt yield stress [91]. 
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Modiba et al. [92] investigated the stability of Ti50Pt50-XMX (M=Co, Ni, Pd, Ir) 

ternary using both solid solution and supercell approaches. It was found that 

Ti50Pt40Co10 is the most electronic stable structure using a solid solution 

approach. Furthermore, Ti50Pt25Pd25, Ti50Pt25Ni25, and Ti50Pt43.75Co6 systems 

were found to be the most stable structures in terms of elastic and electronic 

properties when using the supercell approach [92].  

 Ti-Pd-M (M= V, Fe, Zr, W, Cr, Hf, Ni) SMAs 
 

There are few studies conducted computationally and experimentally to evaluate 

the mechanical stability and martensitic transformation of Ti50Pd50 alloy, 

especially the B2 phase. This was done through ternary alloying with V, Fe, Zr, 

W, Cr, Hf, Ni, etc. For example, Yamabe-Mitarai et al. studied compositions with 

5 at.% of transition elements such as V, Cr, Zr, Nb, Mo, Hf, Ta, W, Co, Ru, and Ir 

when added to Ti50Pd50 [93]. It was found that martensitic transformation 

temperatures (MTTs) decreased when adding the elements, resulting in ranges 

between 673 and 873 K, except for Cr and Mo. Furthermore, the MTTs of Cr and 

Mo were found to decrease drastically to the range 533–673 K. It was also found 

that Zr and Hf are the most effective alloying element in improving shape recovery 

[93]. In the case of 5 at. % Ru addition, the transformation temperature was found 

to be 708 K for Ms, 665 K for Mf, 713 K for As and 754 K for Af [93]. 

Arockiakumar et al. investigated the microstructure, mechanical and shape 

memory properties of Ti-55Pd-5x (at. %) (x=Zr, Hf, V, Nb) alloys to identify 

potential alloy systems for functional applications in the temperature range of 

673–873 K [94]. It was revealed that the yield strength of martensite and 

austenitic phases is improved as compared to binary TiPd alloy. 
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The studies of Ti50Pd30Ni20 have received much attention for some engineering 

applications. This was due to their higher martensitic transformation temperature 

found above 473 K [95]. It was found that the B19′ phase exhibits a much higher 

elastic modulus than B19. 

In another study, Nakayama et al. [96] investigated the characteristics of Ti50Pd50-

xWx HTSMA. It was reported that the composition of the TiPd matrix was almost 

the same in the Ti50Pd47W3 and Ti50Pd45W5 samples, and the transformation 

temperatures were also almost the same. Furthermore, the transformation 

temperatures in Ti50Pd47W3 alloys are Ms= 767 K, Mf= 748 K, As= 792 K and Af= 

812 K which was the same as Ti50Pd45W5 alloys [96]. 

Another study has been conducted experimentally to improve the mechanical 

stability and transformation temperature of TiPd by adding alloying elements such 

as Hf, Zr, V, Nb, Ta, Cr, Mo, W, Ir and Co [4]. Interestingly, the transformation 

temperature decreased with perfect shape recovery being obtained. As found by 

Yamabe-Mitarai et.al, the transformation temperature of the alloys decreased 

minimally with W, Co and Ta addition. Furthermore, it was found that the 

transformation temperature of Ti50Pd50-xIrx (x=2, 4, 8) decreases with an increase 

in compositions. For example, the transformation temperature values of 

Ti50Pd48Ir2 were found to be 781 K for Ms, 773 K for Mf, 829 K for As and 854 K 

for Af. Recently, there has been work reported on the transformation temperature 

of Ti50Pd50-xCox (x=2, 4, 8) experimentally [4]. The transformation temperature 

values of Ti50Pd50-xCox were found to be 860 K, 766 K and 671 K for x=2, 4 and 

8, respectively, which is much lower than the pure Ti50Pd50 system. Another study 

has been done on the effect of martensite aging in TiPd and TiPdNi high 
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temperature shape memory alloys using DSC measurements and TEM 

observations [97]. As found by Cai et al., the magnitude of the aging effect in the 

Ti50Pd40Ni10 alloy was much greater than that of Ti50Pd50 alloy with a decrease in 

transformation temperature. The transformation temperature was found to be 

668.8 K for Ms, 645.1 K for Mf, 678.8 K for As and 692.8 K for Af [97]. 

Based on the literature review above, it is clear that not much has been done on 

the stability and phase transformation of binary Ti50Pd50 and the ternary Ti50Pd50-

xMx shape memory alloys. This then initiated the need to study various properties 

in particular structural, thermodynamic, electronic and mechanical properties, as 

well as the martensitic transformation of both binary and ternary alloys. The other 

reason is that Ti50Pd50 alloy display poor shape memory behaviour during 

transformation, which resulted in poor corrosion resistance [4, 14, 23, 21, 36]. 

Thus the development of ternary shape memory alloys with better shape memory 

effect for application in actuators has been considered in this study. In particular, 

focusing on the addition of precious metals Pt, Ru, Ir, Ni, Os and other elements 

with better melting temperature such as the Co and Al. The findings will add to 

the current knowledge of Ti50Pd50 as a potential high temperature shape memory 

alloy for industrial applications like automotive space.  
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Methodology 

 

In this chapter, we give a brief review of density functional theory (DFT) [98, 99], 

density functional based tight-binding method (DFTB) [100] and Molecular 

dynamics (MD) [101, 102] approaches that have been used to investigate 

properties of Ti50Pd50 and Ti50Pd50-xMx shape memory alloys. DFT has become 

the most widely used tool to study the electronic structure of atoms, molecules 

and solids and can predict the ground-state energy of many-body systems. The 

DFTB approach is capable of investigating the electronic structure of large 

systems over long timescales which cannot be exploited with the standard DFT 

methods. In this study, DFTB is used to determine the interatomic potentials of 

binary Ti50Pd50 and ternary Ti50Pd50-xMx alloys. The code is also capable to 

simulate temperature dependences. 

Furthermore, the LAMMPS code [103]  was used employing the embedded atom 

method (EAM) [104]. The embedded atom method is computationally efficient for 

large scale simulations in describing structural, and mechanical properties of 

metallic systems and is used to investigate the temperature dependence on the 

structures.  

The cluster expansion method [105] is used to generate stable multi-component 

crystal structures and ranks metastable structures by the formation energy. This 

method maintains the accuracy of density functional theory. Monte Carlo 

simulations [105] will be used to construct phase diagrams of ternary Ti-Pd-Ru 

from critical temperature at each concentration.  
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Thus a multi-scale multi-model approach has been used to understand the shape 

memory behaviour, phase transformation, martensitic transformation 

temperature and alloy compositions. These techniques have been described in 

detail in the next sections. 

 

 Density functional theory 

 

Density functional theory (DFT) is a quantum-mechanical method used for 

calculating ground state properties of condensed matter systems without dealing 

directly with many electron states. DFT was first formulated by Hohenberg and 

Kohn in 1964 [98] then secondly developed by Kohn and Sham in 1965 [99]. 

Using DFT, independent particle methods have been developed that take into 

account particle correlations and interactions. The first theorem of Hohenberg-

Kohn showed that the ground state properties of a many-electron system are 

determined by an electron density that is dependent only on three spatial 

coordinates, 

  rEE


 ,                                                                                                (3-1) 

where E  is the total energy and   is the density.  

Kohn and Sham derived different set of differential equations which enable the 

calculation of ground state density  r


0  to be found. The ground state energy of 

the electronic structure is calculated from the four equations as follows: 

     
   
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
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 The kinetic energy of non-interacting electron gas with density  r


  is 

represented by sT   r


  as follows: 

       ,
2

1 2

1

rdrrrT i

N

i

is


  





                                                                  
(3-3) 

The kinetic energy is not for real system and equation (3-2) is defined as 

exchange-correlation energy functional  XCE . Introducing a normalization 

constraint on the electron density,   ,Nrdr 


  we get: 

 
      0  rdrrE

r


 




,                                                                        (3-4) 
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rE
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

.                                                                                               (3-5) 

The above equation can be rewritten in terms of an effective potential,  rVeff


: 
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,                                                                                      (3-6) 

where    
 

 rVrd
rr

r
rVrV XCexteff


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The ground state energy, 0E  and the ground state density, 0  the one electron 

SchrÖdinger equation is written as follows: 

    0
2

1 2 







 rrV iieffi


 .

                                                                       
(3-8) 
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So, solving  r


  we get: 

    2

1

|| rr
N

i

i





  ,                                                                                          (3-9) 

The self-consistent solution is required due to the dependence of  rVeff


 on

 r


 . Calculations of electronic structures XCE  are generally approximated 

through local density approximations or generalized gradient approximations 

[106]. 

 

 The exchange-correlation functionals 

 

The two main types of exchange-correlation functionals used in DFT are the local 

density approximation (LDA) [107] and the generalized gradient approximation 

(GGA) [108], which will be discussed in sections 3.2.1 and 3.2.2. 

 Local density approximation 
 

The local density approximation (LDA) is an approximation in which the 

exchange-correlation (XC) energy functional in density functional theory (DFT) 

depends upon the value of the electronic density at each point in space [107]. It 

was first discovered by Kohn and Sham in the context of DFT which can be 

expressed as: 

        rrdrrE XCXC  ,
                                                               (3-

10) 

https://en.wikipedia.org/wiki/Exchange_interaction
https://en.wikipedia.org/wiki/Electron_correlation
https://en.wikipedia.org/wiki/Functional_(mathematics)
https://en.wikipedia.org/wiki/Density_functional_theory
https://en.wikipedia.org/wiki/Electronic_density
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where   XC  is the exchange-correlation energy per electron in a uniform 

electron gas of density n  [107]. In the uniform electron gas, electrons are 

distributed in interacting systems with an arbitrary spatial density    which acts 

as a parameter. Local density approximation quantities can be calculated 

accurately using Monte carlo techniques at a wide range of densities at the limit 

of high density. It has been demonstrated that LDA delivers accurate results even 

if the electron density in the system is not gradually varied. The function   XC  

is a combination of exchange and correlation contributions of   XC =   X  +

 C . It is possible to calculate the exchange energy per particle of a uniform 

electron gas as follows: 

  3/1 xXC c ,                                                                                  (3-

11)   

where    3/1
/34/3 xc .                                                                             (3-12) 

 Generalized gradient approximation 

 

The GGA is known to be semi-local approximations which means that the 

functional does not use the local density 𝜌(𝑟) value but its gradient ∇𝜌(𝑟). Perdew 

and Wang [108] developed generalized gradient approximation (GGA) which 

improves the total energies, atomization energies, energy barriers and also the 

difference in structural energies. GGA takes the form: 

       ,, drrrEGGA

XC                                                                                (3-13) 
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The spin-independent form is considered in GGA but practically functional is more 

generally formulated in terms of spin densities    ,  and their 

correspondence gradients of (∇𝜌 ↑, ∇𝜌 ↓). 

There are several GGA based functionals that is the PBE [39], PBEsol [109], 

RPBE [110], BLYP [111] and AM05 [112]. PBEsol functional is a simple 

modification of PBE which differs only with two parameters. It is designed to 

improve the equilibrium properties of bulk solids and their surfaces of PBE in 

physics and surface science communities. The revised version of the PBE, such 

as the RPBE functional is widely used in catalysis to improve the performance of 

PBE. In the case of AM05, it gives the best performance for applications of 

catalysis. The GGA-BLYP functional is widely used in the chemistry environment. 

Other known GGA-based functionals are meta-GGA [113], hyper-GGA and 

generalized random phase approximation. An extension of the GGA, the meta-

GGA uses the kinetic energy density and its gradient as inputs to the function and 

gradient along with the functional density. Hyper-GGA offers an accurate 

treatment of correlation that goes beyond the level of LDA or GGA when using 

exact exchange (EXX) to deal with exchange-correlation. The generalized 

random phase approximation use EXX and exact partial correlation.  

In this work, the GGA-PBE [39] functional will be used to optimize the Ti50Pd50 

and Ti50Pd50-xMx systems as it provides accurate parameters for this material.  
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 Plane-wave pseudopotential method 

 

The plane-wave pseudopotential method [114] is a powerful and reliable tool to 

study the properties of a wide class of materials such as metals, semiconductors, 

insulators, minerals, metal alloys, etc. The method is capable of simulating the 

total energy and related properties as well as structural studies based on a 

quantum-mechanical treatment of electronic systems. This method was 

developed to simplify the DFT problems by considering only valence electrons. 

Specifically, core electrons are excluded since they are not affected by changes 

in the chemical environment [114].  

 Plane-wave basis sets 
 

An infinite plane-wave basis set is employed to expand the electronic wave 

functions [115]. The method is described by using Bloch's theorem which states 

that the electronic wave functions at each k-point can be expanded in terms of a 

discrete plane-wave basis set [115]. This theorem defines the crystal momentum 

k as a good quantum number and k  as a single particle wave function which 

gives the boundary condition and can be written as:  

   ,.
reRr k

Rik

Lk
L                                                                                    (3-14) 

which is equivalent to all eigen functions ki  of a single-particle SchrÖdinger 

equation with periodic potential can be written as a periodic function kiu  

modulated by a plane-wave vector k [116] and 
LR  is a direct lattice vector. 

   ruer kj

ikr

kj  ,                                                                                           (3-15) 
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kiu  can be expanded due to its periodicity as a set of plane-wave basis as follow: 

  
G

riG

Gjkj eCru .

, ,                                                                                       (3-16) 

where G represents reciprocal lattice vectors and kiu  can be expanded in a set of 

plane waves as it is periodic. Thus, the electronic wavefunction with the 

exponential predator can be written as: 

   rGKi

G

Gkjkj eCr 

 , ,                                                                                 (3-17) 

where GkjC ,  represent the coefficient of the periodic plane waves. The number of 

wave functions used is determined by the largest wave vector in the expansion 

with an infinite number of basis functions which is required to accurately 

reproduce the real wavefunction. This is the same as imposing a cut-off on the 

kinetic energy as the kinetic energy of an electron with wave vector k as follow: 

m

Gk
Ek

2

22 



,                                                                                            (3-18) 

which obey only plane-wave in the following: 

cutk E
m

Gk
E 




2

22
,                                                                                   (3-19) 

and are included in the basis. The energy must be increased until the calculated 

energy has converged to avoid errors in the computed total energy. It is highly 

recommended to use much denser k points to reduce errors and ensure 

convergence when calculating the total energy. We write the Kohn-Sham 

equation of DFT before making use of the plane-wave expansion of the 

wavefunction in the following way [115]: 
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
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where 

         rnVrnVrVrV XCHexteff  ,                                                                (3-21) 

 ,rVext   ,rnVH
 and   rnVXC  are Fourier transforms of the external potential of 

the nuclei, Hartree and exchange-correlation potentials, respectively.  

 Pseudopotential approximation 
 

The pseudopotential approximation [117] is used to describe the complicated 

effects of the motion of the core such that the core electrons and the strong 

attractive Coulomb potential inside the ionic core are replaced by a weaker 

pseudopotential. Weaker pseudopotentials describe the silent effects occurring 

to a valence electron as it moves through a crystal, as well as relativistic effects 

[37, 118]. Therefore, the pseudo-ion cores and pseudo valence electron now 

replaces the original solid. Inside the core region, the two pseudo electrons have 

a much weaker potential than the original electrons, but outside the core region, 

they have a similar potential to the original electrons. Figure 3-1 illustrates the 

ionic potential (𝑍
𝑟⁄ ), the valence wave function 𝜑𝑣, the corresponding 

pseudopotential 𝑉𝑝𝑠𝑒𝑢𝑑𝑜, and pseudo-wave function (𝜑𝑝𝑠𝑒𝑢𝑑𝑜), respectively [115].  

The pseudopotential approximation has the advantage that fewer plane-wave 

basis states are required to expand the electronic wave function, thus saving a 

large amount of computational time [115].  

The pseudopotential takes the form: 
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lmVlmV l

lm

NL  ,                                                                                          (3-22) 

where lm  is the spherical harmonics and Vl is the pseudopotential for angular 

momentum l. Pseudopotentials that utilize the same potential for all angular 

momentum components are known as local pseudopotentials. Local 

pseudopotentials depend only on their distance dependence. 

 

Figure 3-1 Comparison between Coulomb potential of the nucleus (blue) to the 

one in the pseudopotential (red) of a wavefunction. The real and the pseudo 

wavefunctions and potentials are the same above a certain cutoff radius rc [115]. 

 

There are two types of pseudopotentials which are norm-conserving 

pseudopotential (NCP) and ultrasoft pseudopotential (USP). In the NCP [119], 

different potentials are used for each component of the angular momentum in the 

wave function, while the USP relaxes the norm-conserving constraint to reduce 

the basis-set size [117]. In the USP scheme, the pseudo wave function can be 
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as soft as possible within the core region. Currently, the USP [117] has been 

implemented in planewave calculations.  

In this study, ultrasoft pseudopotential by Vanderbilt [117] in VASP code for total 

energy calculations were used since they give an accurate result for the systems 

under investigation. 

 

 k-point sampling 

 

The k-point sampling technique is well suited to the plane wave’s method, which 

makes the calculations to be simple and accurate. The total energy is calculated 

using a denser set of k-points, which reduces errors in the calculation.  In the 

case of very close k-points, the wavefunction is almost the same for all. The 

electronic states are calculated at a finite number of k-points in order to define 

the Fermi surface precisely and hence the electronic potential and the total 

energy for solids. The computational cost increases linearly when performing a 

very dense sampling of k space with the number of k-point in the Brillouin zone 

(BZ). Monkhorst and Pack [120] developed the k-points method that uses 

symmetry properties when forming the special k-points set.  

 

 Projector augmented wave  

The projector augmented wave (PAW) is a technique used in ab initio electronic 

structure calculations which allows DFT calculations to be performed with greater 

computational efficiency. It was developed by Blöchl [121] within which an 

https://en.wikipedia.org/wiki/Ab_initio_quantum_chemistry_methods
https://en.wikipedia.org/wiki/Density_functional_theory
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accurate, all-electron, illustration of the electronic system is placed in matched 

correspondence with a pseudopotential-like treatment of the valence electrons. 

PAW methodology relies on the transformation between the all electron Kohn-

Sham wave functions, and the smooth pseudo-wave-functions with frozen core 

states of the atoms. This methodology is a significant upgrade over earlier norm-

conserving (NC) and ultra-soft (US) pseudopotential methods because it is 

derived directly from an all-electron formalism. The PAW formalism is well-

founded theoretically and computationally efficient, though it’s additionally 

advanced to implement than an NC or US one. 

Implementing this methodology allows DFT to calculate the electronic structure 

of periodic solids, as well as the forces and stresses associated with them. The 

essential transformation of this methodology happens once all-electron wave 

functions nk , with the n index resembling a summation over the bands and k 

indexing the k-points, are obtained ranging from pseudo ones  nk~  by using 

linear transformation: 

  nkii iinknk p  ~~~~   .                                                            (3-23) 

The index 𝑖 represents the atomic position, the angular momentum  ml,  and an 

additional index 𝑛 to label differential partial waves for the same site and angular 

momentum. Throughout transformation, the all-electron i  and pseudopotential 

i
~

 partial waves are equal outside the PAW sphere. Therefore, as within the 

norm-conserving and ultra-soft pseudopotential scheme, nn  ~  outside a core 
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radius  l

cr . So, the projector functions  ip~  are equal to the pseudopotential 

partial waves as follows: 

ijjip 
~~ ,                                                                                                  (3-24) 

This methodology uses two grids, a radial one inside the PAW sphere and a 

regular one in the whole simulation cell. In correspondence, partial waves and 

projector functions are grouped according to angular and radial parts as follows:  
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                                                                                     (3-26) 

with  rSlm
ˆ  representing the real spherical harmonics. On the other hand, plane-

wave basis sets are used to expand the pseudowave functions as follow:

      RGKi

G nknk eGcr




 .1~ 


 ,                                                                        (3-27) 

With   representing the volume of the unit cell. 

In this study, the PAW method has been employed as implemented within the 

VASP code [38].  

 

 Molecular Dynamics 

 

Molecular dynamics (MD) is a computer simulation that is used to study the 

physical movements of atoms and molecules. The atoms and molecules are 

allowed to interact at a given period, providing a view of the motion of the atoms 

and molecules. This is done numerically by solving Newton's equations of motion 

for a system of interacting particles, based on molecular mechanics force fields, 
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which define forces between different particles and potential energy. In MD, laws 

of classical mechanics are considered, and most especially Newton's law:  

iii amF 


,                                                                                                      (3-28)               

where mi represents atom mass, Fi represents force acting upon it, due to the 

interactions with other atoms and ia  represent the acceleration of the atom given 

by: 

  2

2

dt

rd
a i

i   .                                               (3-29) 

After the acceleration has been determined, the equation of motion has to be 

Integrating using the Verlet algorithm [122] to describe the dynamic behaviour. 

The Verlet algorithm is derived from the simplest second-order difference equation 

in terms of atomic positions and velocities. Integrating Newton's equation (3-28) 

using the Verlet algorithm in the form of atomic positions and velocity is given by: 

       ,
2

1 2 tattttrttr                                                                        (3-30)                  

        ,
2

1
ttatatttt                                                                   (3-31)      

This algorithm needs storage of  ,tr  t  and  ta . More importantly, the errors in 

calculated positions  tr  are of the order of 4t while those in calculated velocities 

 t  are of the order of 2t . The algorithm is exactly reversible in time and easy 

to program. 

Therefore, MD has been used to study the temperature dependence and time 

evolution of the alloy systems and other materials of interest. This is possible when 

an initial set of positions and velocities are known [101]. During the MD run, a 

measurement of a physical quantity is calculated as an arithmetic average of the 
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values assumed by that quantity. 

By using MD simulations, one can determine a material's thermodynamic 

properties and phase diagram. Beyond the known use, MD is used to study non-

equilibrium processes. In the past, molecular dynamics methods have been 

studied using canonical ensembles [123, 124]. 

The various quantities that are necessary to describe the properties of a system 

within MD simulation are explained in the next sections. 

 

 Energy 
 

The internal energy is easily achieved as the ensemble average of the energies 

during the simulation as follow: 

 


M

i iE
M

EU
1

1
.                                                                    (3-32) 

The average potential energy V is achieved through an average of its 

instantaneous value, which is obtained at the same time as the force computation 

is made. Thus, potential energy is defined as: 

 |)()(|)( 1 trtrtV jiji  
,                                                      (3-33) 

The kinetic energy is given by: 

 2)(
2

1
)( tVmtK ii i ,                                     (3-34) 

where mi is the mass of atom i and ⊽i is the velocity of atom i. For given velocities, 

positions, and kinetic energies, the system's total energy can be calculated as 

follows: 

)()( tVtKEtot  .                                              (3-35) 
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 Temperature 

 

The temperature of a system depends on the kind of ensemble used for that 

simulation. For example, in a canonical ensemble, the total temperature remains 

constant, but in a microcanonical ensemble, the temperature varies. The kinetic 

energy of a system is related to temperature in the following way: 

)3(
22
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c
BN

i
i

i

NN
TK

m

P

K 
,                                             (3-36) 

Where Pi is the total of particle i, mi is its mass and Nc is the number of constraints 

on the system. According to the principle of equipartition of energy, each degree 

of freedom contributes kBT/2. If there are N particles, each with three degrees of 

freedom, then the kinetic energy is equal to 3NkBT/2. It is very common in 

molecular dynamics simulations to constrain the system 's total linear momentum 

to zero, which results in the elimination of three degrees of freedom and Nc equals 

to 3. 

 Pressure 

 

In computer simulations, pressure is calculated based on the Clausius-virial 

theorem. Virials are calculated from the sum of the products of the coordinates of 

the particles and their forces. Usually, this is written as: 

 ixi pxW
'

,                                                (3-37) 

where xi is a coordinate and ṕxi is the first derivative of the momentum along that 

coordinate (ṕi is the force, according to Newton’s second law). According to the 

virial theorem, the virial is equal to -3NkBT. The only forces in an ideal gas are 

those arising from the interaction between the gas and container, therefore a virial 
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of -3PV is present. This result can be obtained directly from the following equation: 

TNkPV B .                                                          (3-38) 

The force between the particles in the actual gas or liquid affects the viral force 

and therefore the pressure. The total virile of the real system is equal to the sum 

of the ideal gas fraction (-3PV), which is attributed to the interaction between the 

particles. The result obtained is: 
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.                        (3-39) 

If d(rij)/drij is written as fij the force acting between i and j then pressure can be 

written as follows: 
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It takes very little extra effort to calculate the virial and thus the pressure since 

these forces are calculated as part of the molecular dynamics simulation. In the 

NPT setting, the total system pressure is constant, while in the NVT setting, the 

pressure fluctuates throughout the simulation process. 

 Ensembles 

 

Integrating Newton's equations of motion allows you to explore the constant 

energy surface of a system. There are three most common ensembles that are 

often used in MD simulations known as NVT, NVE and NPT ensembles.  

 Constant temperature molecular dynamics 

 

In a molecular dynamic simulation, we often encounter limitations and 

inconsistencies which arise from the use of the micro-canonical ensemble 

corresponding to simulations at constant energy. Many molecular dynamics 
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simulations are performed at constant energy and volume, while in ordinary 

laboratory experiments, they are performed at constant temperature and 

pressure. So, the temperature T can be related to the average kinetic energy: 
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                                                                                            (3-41) 

Using constant-energy molecular dynamics, the temperature can only be 

determined after calculating and calculating the average kinetic energy. To solve 

this problem, constant temperature and constant volume (NVT) simulation 

methods have been developed. 

 Microcanonical ensemble   
 

The microcanonical ensemble is the thermodynamic state known by a fixed 

number of atoms, fixed volume, and a fixed energy E. Microcanonical ensemble 

corresponds to an isolated system with constant energy. The degeneracy of the 

system is the total number of microscopic states corresponding to this value of 

the system‘s energy as indicated by: 

 VNE ,, .                                                                                        (3-42) 

So, the temperature of the system is calculated by 
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(3-43) 

Where T  is the temperature, N  is the number of particles and Bk  is the 

Boltzmann constant. Each energy in a microcanonical ensemble corresponds to 
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a different temperature, so to calculate the dynamics of the system at a given 

temperature, the energy must be determined correctly. 

 Isothermal-isobaric ensemble  
 

NPT ensemble is also called an isothermal-isobaric ensemble. In the NPT 

ensemble, pressure and temperature are kept constant. In most cases, the NPT 

ensemble is used to compare MD simulations with experiments. Langevin method 

in NPT ensemble is used to control temperature. The partition function can be 

written as the weighted sum of the partition function of canonical ensemble, Z (N, 

V, T) as follows: 

 
 CdVpVeTVNZTPN )(),,(),,(  ,                                      (3-44) 

where  

TkB

1
 ,                                                                                      (3-45) 

Bk  is the Boltzmann constant and V is the volume of the system. 

 

 Cluster expansion formalism 

 

Cluster expansion is a technique used to construct an efficient Hamiltonian to 

predict the energy of a precisely defined system that takes into account its 

multiple degrees of freedom. In this technique, there can be different types of 

excitation, such as vibrations, electrons, etc. This technique verifies the 

properties of the system based on its composition and atomic disorder. 

Crystalline solids, crystal lattices, crystallographic positions, and interstitial 

positions must be well defined. In the case of solids, due to the relaxation of the 
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ions, the atoms do not occupy exact lattice positions. We are studying 

configurational disorder in order to understand how the arrangement of species 

in the system affects the total amount of energy in the system. For example, in a 

crystal with m sites and two species potentially occupying those sites, there would 

be a total of 2m
 possible arrangements. For each cluster, we can write a cluster 

function as the product of the occupation variables at the cluster sites: 

  





 
i

i


.                                                                                                                                (3-46) 

Equation 3-44 defines specifically for the paired cluster. If we wanted to evaluate 

   the configuration, it would be 

   11121    .                                                                        (3-47) 

Sanchez et al. [125] have indicated that these cluster functions form a complete 

orthonormal basis in configuration space. Then, the expression for the energy of 

a given configuration known as the effective Hamiltonian or Cluster Expansion 

(CLEX) can be written as: 

    ,0 


 


VVE                                                                                   (3-48) 

where V0 and V  represent the constant expansion coefficients, much like in a 

Fourier series are referred to as Effective Cluster Interactions (ECI). Otherwise, 

we can write: 

      
kji

kjiijk
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jiijii VVVVE
,,,
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                                                             (3-49) 

where i; j; k; represent the individual cluster sites. Note that equations (3-48) and 

(3-49) are the generalized Ising Hamiltonian that contains all multi-body 

interactions in the entire infinite crystal.  
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 Determination of effective cluster interaction coefficients 

 

In order to calculate the energy of a definite structure, the cluster expansion 

equation (3-49) needs two inputs. Equation (3-50) is just the result of a complete 

crystal basis, and the cluster expansion can be condensed to include no more 

than four or five terms. Calculating the ECI requires fitting a set of formation 

energies calculated using DFT with the least squares. In order to assess the 

quality of the parameterization, two metrics are used: root mean square (RMS) 

error, which measures reproducability of formation energies, and cross validation 

score (CVS), which determines how closely the fit follows a given model [126]. 

The CVS is calculated as follows: 

    ,1
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ii EE
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                                                                          (3-50) 

where  iE 


 represent energy of the configuration i  calculated using first principle 

(DFT),  iE 


'
 is the predicted value of  iE 


 obtained by performing a least-

squares fit to the data from the other N-1 configurations and then evaluating the 

resulting expansion at i


. The optimal set of crystal basis functions to describe 

the system will minimize the CVS. By using RMS values and CVS values in 

expansion, some configurations could be predicted as stable, even when they 

are classified by first principles methods as unstable or metastable. 
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 Monte carlo simulations 

 

Monte carlo (MC) simulation is an approach that is used to determine phase 

transition properties because the integration process in calculating the equations 

of motion will overshoot a transition point due to the discontinuity in energy during 

a first order phase transition. In this work, the MC technique is used without lattice 

vibrations. Since the phase points chosen are spread over the whole phase 

space, this procedure does not produce a very efficient result for tasks such as 

finding a global minimum. It can be used to describe a thermodynamical system 

at finite temperatures since the configurational entropy can be calculated. In the 

MC calculation, there are two possible ensembles namely; grand-canonical and 

canonical ensemble. Calculations are being performed on atoms in a box with a 

given extension and bounds: the box is a unit cell. Grand-canonical and canonical 

calculations are different in this implementation and are discussed in the next 

detail in sections 3.8.1 and 3.8.2. 

 

 

 Grand canonical ensemble 
 

The grand canonical ensemble is utilized which simulates the system at constant 

chemical potential, μ, temperature, T and volume, V. Both the number and energy 

of particles fluctuate in the grand canonical ensemble. This study employs the 

Metropolis algorithm, which is a relatively fast method for reading successive 

states of a Markov chain starting with an arbitrary configuration [127]. The 
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following rule gives the probability of transition from the current configuration A to 

the next configuration B: 

 
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,                                                                      (3-51) 

where 
AB   is the difference in energy between the two states, kB is 

the Boltzmann constant, and T is the temperature. The grand canonical energy 

is defined as follows: 

  NE  


,                                                                                                (3-52) 

where  


E  represents the average energy,   is the chemical potential, and N 

is the number of atoms.  

 Canonical ensemble 
 

In canonical MC, the number of particles and volume is fixed, specified as inputs 

to the simulation. Averaging over a large number of simulation runs, we can then 

calculate the pressure using the virial relation. The pressure and density (i.e. the 

volume of a simulation box based on a fixed number of particles) need to be 

specified. A task of this type naturally leads to the isothermal-isobaric ensemble. 

When the composition changes its state, its energy changes, resulting in the 

following transition rate: 
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The random walkthrough phases are carried out until either a chosen number of 

steps has been taken or a given limit in energy has been reached.  
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 Computational codes and implementation 

 

This study uses the plane-wave VASP [38] and PHONON [128] codes to 

investigate the properties of Ti50Pd50 and Ti50Pd50-xMx alloys. A detailed 

explanation of these two codes is explained in sections 3.9.1 and 3.9.2. DFTB+ 

and LAMMPS codes were used to deduce the transformation temperature of 

alloys and these codes are explained in detail in sections 3.9.5 and 3.9.7. The 

DMol3 code is used to optimize structures before parameterization and is 

discussed in section 3.9.4. Furthermore, UNCLE code is used to generate ground 

state structures and phase diagrams of precious metals alloys and the theory is 

given in section 3.9.8. 

 VASP code 
 

The Vienna Ab initio Simulation Package (VASP) [38]  is a computer program for 

atomic scale materials modelling which deals with electronic structure 

calculations and quantum-mechanical molecular dynamics using first principles. 

VASP can compute an approximate solution by solving the Kohn-Sham 

equations within DFT. In VASP central quantities such as one electron orbitals, 

electron change density and local potential are expressed in the form of plane-

wave basis sets. The ultra-soft pseudopotentials (US-PP) [129] or by the 

projector-augmented-wave (PAW) method [121] is used to describe the 

interactions between the electrons and an ion in VASP. The US-PP method (and 

the PAW method) are effective in reducing the number of plane waves per atom 

in transition metals and first row elements. The code consists of two main loops 

namely: the outer and inner loop, where the outer loop optimizes the charge 
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density while the inner loop optimizes the wavefunction. VASP code uses a wide 

range of exchange-correlation functionals such as LDA and GGA as well as Meta- 

and hyper-GGA and hybrid functionals. All functionals found in VASP have spin-

degenerate and also spin-polarized versions. 

In this study, the VASP code [38] was used to calculate structural, 

thermodynamic, electronic and mechanical properties of binary B2, L10, B19, 

B19′ Ti50Pd50 and ternary Ti50Pd50-xMx (M=Ru, Pt, Ir, Co, Ni, Al, and Os) alloys. A 

convergence test was done as shown in section 4.1 before calculating any 

properties. A precision was set at ″accurate″ to make errors of the calculation into 

a reasonable scale. Before the calculations of elastic constants, electronic 

structure, and phonon dispersion curves, the structures were fully relaxed with 

respect to the volume, shape, and internal atomic positions until the atomic forces 

were less than 0.01 eV/Å for the unit cell. This was done in order to prepare the 

structures to be at their ground state energy before determining any property. The 

effects of exchange-correlation interaction are treated with the generalized 

gradient approximation (GGA) [99] of Perdew–Burke–Eruzerhof (PBE) [39] and 

the local density approximation (LDA) [107] were used with the PAW potential 

[121]. After geometry optimization, the density of states and mechanical 

properties of B2, L10, B19, and B19′ Ti50Pd50 were determined. The strain value 

of 0.005 was chosen for the deformation of the lattice when calculating elastic 

properties. 

In the case of ternary Ti50Pd50-xMx, the calculations were carried out using a 2x2x2 

supercell with 16 atoms. The ternary Ti50Pd50-xMx alloys were constructed using 

a substitutional search tool within the Medea software platform which provided 
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the most stable composition at the desired symmetry. A convergence test was 

also done and a plane-wave cutoff energy of 500 eV and a 12X12X12 k-point 

were found to converge the total energy of Ti50Pd50-xMx. Full geometry 

optimization was performed to find the ground state at different compositions. 

Then, the density of states and elastic properties were determined from optimized 

structures. The implementation of the VASP code is summarised in Figure 3-2. 

 PHONON code 

 

The PHONON code is a software used to calculate phonon dispersion curves 

and phonon density spectra of crystals, mainly those crystals with defects, 

surfaces, adsorbed atoms on surfaces, etc [128] from either a set of force 

constants or from a set of Hellmann-Feynman forces calculated within an ab initio 

calculations. By using this code, a supercell can be optimized and the Hellmann-

Feynman forces can be calculated, either using VASP, Wien2k, Medea, or 

another ab initio code. Note that Phonon builds a crystal structure using one of 

the 230 crystallographic space groups, finds the force constant and calculates 

the phonon dispersion relations and intensities, using the Hellmann-Feynman 

forces. In the Phonon, the total and partial phonon density of states are calculated 

based on the polarization vectors, as well as the irreducible representations of 

phonon modes (the Gamma points). It plots the internal energy, free energy, 

entropy, heat capacity and tensor of mean-square displacements (Debye-Waller 

factor).  

PHONON code [128] as implemented in Materials Design within the MedeA 

software platform was used to evaluate the phonon dispersion curves. Using the 
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same code, we calculated thermal properties such as Debye temperature, heat 

capacity, and thermal coefficient of linear expansion. 

 

 VASP and PHONON code flowchart 
 

In this section, we use a flowchart to summarise how VASP and PHONON codes 

were used in this study (the details are described in sections 3.9.1 and 3.9.2).  

1. The flowchart begins with the determination of functional using VASP code- a 

GGA-PBE was selected. 

2. A convergence test was conducted to determine the suitable cut-off energy 

and k-point mesh parameter for systems. 

3. A full geometry optimization was performed to determine the ground state 

parameters for the binary systems. 

4. Determine the structural, thermodynamic, electronic and elastic properties of 

binary systems. 

5. A 2X2X2 supercell was built on B2 Ti50Pd50 alloy. 

6. Use the substitutional search tool to generate ternary alloys, i.e. substitution 

of Pd with Ru, Os, Ir, Al, Co, Pt and Ni. 

7. A full geometry optimization was performed on ternary systems. 

8. Evaluate the properties of interest, such as thermodynamic- heats of 

formation, electronic density of states, elastic constants and moduli. 

9. Use the PHONON code to determine the phonon dispersion curves, thermal-

Debye temperature, heat capacity and thermal coefficient of linear expansion.
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Figure 3-2 Flowchart on implementation of VASP and PHONON codes.
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 DMol3 
 

DMol3 is a commercial software package that uses DFT to predict various 

properties such as structural and electronic [130, 131]. The study of DMol3 is 

broad which includes organic and inorganic molecules, molecular crystals, 

metallic solids, covalent solids, and the surfaces of material which enable the 

prediction of structure, reaction energies, reaction barriers, thermodynamic 

properties, optics and vibrational spectra. The DMol3 method has long been used 

for solving quantum mechanical equations since it offers a unique way to deal 

with these equations. This code can handle larger systems that contain over 500 

atoms. The code can be used to study both molecular and solid-state problems, 

offering a way to study the widest range of problems in one package. DMol3 can 

perform both All Electron and pseudo-potential calculations.  

In this study, DMol3 was used for geometry optimization of binary Ti50Pd50 and 

Ti50Pd50-xRux structures before deriving the interatomic potentials. This was done 

in order to prepare the structures to be at their ground state energy before being 

used for the self-consistent-charge density functional tight-binding (SCC-DFTB) 

parameterization process. Both the GGA-PBE and LDA-PWC exchange-

correlation functionals were used. The implementation of the DMol3 code is 

summarized in Figure 3-3.  
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 Density functional based tight-binding method  
 

Density functional based tight-binding (DFTB+) is a useful software package that 

can carry out atomistic quantum mechanical calculations fast and can also 

perform calculations for larger systems that contain up 10 000 atoms. The 

density-functional tight-binding (DFTB) was developed by Seifert and Co-workers 

[132]. DFTB and SCC-DFTB can be used to calculate electronic properties, 

binding energies, and relative energies of several kinds of systems, and their 

geometries can be determined using these procedures [133]. 

In DFTB, a series of models are derived using Taylor series expansion of Kohn-

Sham density functional total energy around a properly selected reference 

density  r . Instead of finding the electron density that minimizes the energy a 

reference density 
0  is assumed which is perturbed by some density fluctuation 

[100] and  r  is represented as follow: 

     rrr   0
.                                                                                      (3-54) 

The standard DFTB approach is suitable when the electron density of a structure 

with many atoms may be represented as a sum of atomic-like densities [134]. 

According to this method, the Kohn-Sham total energy is expanded with the 

second order with respect to the fluctuations in charge density [134, 135, 136] as 

follow:  

 ,,2   EEEE repBStot                                                                       (3-

55) 
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where totE  represent the total energy which includes the electrostatic-interaction 

term   ,2E  to the standard tight-binding BSE , which is the sum over the 

occupied electronic eigenstates of the tight-binding Hamiltonian and the short 

range repulsive two-particle interaction repE  terms. When the electrostatic-

interaction fluctuate it can be written as:  

  .
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,2 yx

M

yx xy qqE                                                                            (3-56) 

This term is represented by the Mulliken charges-based atomic charge fluctuation 

xq  and yq  together with the analytical interpolating function xy .  

Parameterization is the process of developing Slater-Koster files which contain 

electronic parameters, short range potentials and Hubbard terms, selected for a 

set of element pairs for a particular system. It involves the fitting of the repulsive 

potentials in the repulsive term repE  and expressed as: 

 ijji

ij

reprep RVE  
 ,                                                                                       (3-57) 

where ij represents pair of atoms and  RV ij

rep  are the pair-wise repulsive functions 

depending only on the atomic numbers [137]. The selected cutoff radius is then 

used in the fitting of the  RVrep

'
 and the repulsion is then expressed as: 

   drrVRV
cutR

R
reprep 
'' .                                                                               (3-58) 

Self-consistent-charge density functional tight-binding parameterization and 

geometry optimization were carried out with a DFTB+ program [134]. In the 
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DFTB+ code, atomic parameters for the interaction between atoms were 

considered before performing various calculations such as geometry optimization 

and molecular dynamics. The SCC parameters were developed for both binary 

Ti50Pd50 and ternary Ti50Pd50-xRux. The set of parameters for Ti-Pd and Ti-Pd-Ru 

were obtained by constantly adjusting the potential confinement radius for Ti, Pd, 

and Ru elements until the suitable radii were obtained. During geometry 

optimization, thermal smearing was varied from 0.003 to 0.008 Ha. The 

successful SCC-DFTB parameterization implies that the structural properties 

produced are in good agreement with available theoretical and experimental 

results. Both the GGA-PBE and LDA-PWC exchange-correlation functionals 

were used. The electronic and elastic properties were calculated from optimized 

structures and analysed.  

Lastly, the temperature dependence of binary and ternary was also determined 

from the SCC parameters using the NPT ensemble. Before any temperature 

calculations were done, the time step and simulation time were determined and 

10 fs and 30 ps were found to be sufficient enough for the binary and ternary 

systems.  

 DMol3 and DFTB+ code flowchart 
 

In this section, we give a summary of how DMol3 and DFTB+ code were used 

and is given in the form of a flowchart as shown in Figure 3-3. Implementation 

details are explained in sections 3.9.4 and 3.9.5. Figure 3-3 shows a schematic 

diagram indicating step by step calculations done using both codes as follows:   
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1. The flowchart starts with the computational code (DMol3) which was used to 

determine ground state properties. 

2. A suitable functional GGA-PBE was found appropriate to predict the structural 

parameters. 

3. A convergence test was carried out to determine the suitable cut-off energy 

and k-point mesh parameter for the systems. 

4. A full geometry optimization was performed for binary Ti50Pd50 and Ti50Pd50-

xRux structures. 

5. Determine the structural properties (lattice parameters and bond distances) 

of systems. 

6. Use the DFTB+ code to carry out the parameterization process. 

7. Parameterization was performed to find a suitable set of parameters by 

varying the potential confinement radius. 

8. A full geometry optimization was again performed using a suitable set of 

parameters for both binary and ternary systems.  

9. Determine properties such as structural-lattice parameters, electronic-density 

of states and elastic-elastic constants and moduli. 

10.  Temperature dependence calculation was carried out. 

11.  Determine suitable time step and simulation time-10 time steps and 30 

simulation times were selected. 

12.  Evaluate the transformation temperature from lattice parameters of binary and 

ternary systems. 
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Figure 3-3 Flowchart on implementation of DMol3 and DFTB+ codes.
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 LAMMPS code 
 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a 

classical molecular dynamics code that can model solid-state materials (metals, 

semiconductors) and soft matter (biomolecules, polymers) and coarse-grained 

from Sandia National Laboratories [103]. It works on a single processor and also 

on multiple processors using message-passing techniques and also a spatial-

decomposition of the simulation domain into small 3d subdomains. Many models 

have versions that provide accelerated performance on CPU‘s, and Intel Xeon 

Phis. It combines spatial-decomposition of the simulation domain over the nodes 

and thread-based parallelization within each node to achieve both high parallel 

efficiency and single-node performance.  

The LAMMPS model has new capabilities, such as force fields, types of atoms, 

boundary conditions, or diagnostics which can be modified or extended as 

needed. In LAMMPS, Newton's equations of motion are integrated with atoms, 

molecules, or macroscopic particles interacting with either short- or long-range 

forces and a variety of initial and boundary conditions. LAMMPS uses neighbour 

lists to keep track of nearby particles to maximize computational efficiency. In 

LAMMPS, the particles that are repulsive at short distances are so that the local 

density of particles becomes suitable for the calculation. LAMMPS also has many 

built-in quantities, like translational and rotational kinetic energy, helpful for 

evaluating the system [103]. 

The LAMMPS uses the powerful flowchart interface which enables the easy 

setting up of the complex calculations by connecting the stages. A stage can be 
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a computation, e.g. energy minimization, NVT and NPT dynamics, as well as an 

operation such as setting the density to that computed by the previous stage or 

building a larger simulation box. It is possible to chain together any number of 

stages to perform detailed calculations that are reproducible. LAMMPS is capable 

of automatically analysing the results, including graphs, fitting to appropriate 

forms, and statistical analysis. The summary of this method is described using a 

flowchart as depicted in Figure 3-4. It is worth noting that the flowchart has eight 

(08) significant steps which are duly indicated in the Figure. 

In this study, the temperature dependence calculations of binary B2, L10, B19, 

B19′ Ti50Pd50 and Ti50Pd50-xMx (M= Co, Ni) alloys were achieved by utilizing the 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an 

Embedded Atom Method (EAM) module. For this simulation, large supercells of 

8X8X8 were constructed for both binary and ternary alloys. This code uses a 

flowchart which is highlighted in Figure 3-4. NPT ensemble and Nose Hoover 

thermostat and barostat were employed for 100 ps with a time step of 2 fs. The 

temperature is varied from 73 to 1800 K.   

 



68 
 

 

Figure 3-4 Flowchart of simulation procedures in LAMMPS code. 

 

 Embedded atom method 
 

The embedded atom method (EAM) [104] is a semi-empirical method which 

provide a computationally efficient description of structural, mechanical, and 

thermal properties of metallic systems. Daw and Baskes developed the EAM for 

scheming the full energy of an absolute arrangement of atoms in metal [104, 138]. 

EAM forcefield is able to predict structural, thermal and mechanical properties of 

varied metallic structures. Regardless of atom size, EAM can evaluate energy 

associated forces even faster than first-principles calculations that are linearly 

proportional to the number of atoms. 

An EAM describes how an atom behaves when positioned in an electron density 

that is exceedingly outlined. In the following equation, the total energy is shown 
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as two additive terms representing the pairwise sum of the electron densities of 

the atoms and an electron density by the atomic site: 

   
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metallicu  is the total energy of the system, i and j indicate the unique pair of atoms 

within the N atoms of the system, ijr is their interatomic separation  ijr is a 

pairwise potential, and F  i is the embedding function for atom I which depends 

on the electron density, 𝜌𝑖𝑗 experienced by that atom. One must calculate the 

electron density at the position of an atom i in order to assess its embedding 

function. In equation (3-60), atomic densities are superimposed and their 

densities are in turn described by a density function,  rj . When electron density 

increases, embedding energies become more negative until a minimum is 

reached beyond which increasing electron density results in less favorable 

system energies. These massive scale simulations will be readily undertaken by 

EAM, which is a computationally economical method. 

For the purpose of this study, Zhou [139] interatomic forcefields were applied. 
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 Universal cluster expansion code 
 

All the CE calculations of the present work were done by making use of the 

program package Universal Cluster-Expansion (UNCLE) which was developed 

by the group of S. Muller, now at the Technical University of Harburg-Hamburg. 

With this code, a complete CE fit can be performed using a genetic algorithm, 

and the ground state of systems containing up to three elements can be 

predicted. Configurational entropies are thus taken into consideration. Currently, 

the UNCLE code‘s format for structural information has been designed to match 

that of the VASP code and adopted. Figure 3-5 illustrates a working scheme of 

cluster expansion. 

 

Figure 3-5 Self-consistent working plan as used by UNCLE for the cluster 

expansion for finding new input structures [105]. 
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The ground-state structure of binary Ti-Pd, ternary TiPd1-xRux and Ti1-xPdRux 

alloys were performed using the UNCLE code. This code is used as a script 

interface to VASP which defines a parameter that automatically sets up the k-

point mesh for similar systems which we used 0.2 k-spacing. A flowchart is used 

to determine ground-state structures and is illustrated in Figure 3-6. To assess 

the accurate fit of the cluster expansion, the cross-validation score (CVS) is 

considered. A cluster expansion is considered accurate if the CVS is <5 

meV/atom. The code employ step by step flowchart which consists of 4 steps as 

shown in Figure 3-6. 
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Figure 3-6 Flowchart of simulation procedures using UNCLE code. 

 

 Theoretical background on calculated properties 

 

 Heats of formation 
 

The heat of formation (∆𝐻𝑓) is the enthalpy change when one mole of a compound 

is formed from the elements in their stable states is essential in determining the 

structural stabilities of the different crystal structures. The heat of formation is 

estimated by the following expression: 

∆𝐻𝑓  = ii iC ExE   ,                                                                                   (3-61) 
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where CE  is the calculated total energy of the compound and iE  is the calculated 

total energy of the element in the compound. In order for a structure to be stable, 

the heat of formation must have the lowest negative value (∆𝐻𝑓 < 0). The heat of 

formation will be used to determine the stability trend of Ti50Pd50 for B2, B19, B19′ 

and L10 structures as well as ternary Ti50Pd50-xMx alloys (M= Ru, Pt, Ir, Co, Ni, 

Os, Al). 

 . Density of states 

 

The term density of states (DOS) refers to the occupancy and density of the 

electronic states in a crystalline solid. It is described by a function, g (E), as the 

number of electrons per unit volume and energy with electron energies near E. 

At a specific energy level, a high DOS means many states are open for 

occupation. In the case of states with DOS of zero, there is no state that can be 

occupied. In general, a DOS is an average over all the spaces and times that the 

system occupies. The local density of states (LDOS) is a measure of variation 

due to distortion of the original system. LDOS can locally be non-zero if the DOS 

of an undisturbed system is zero due to the presence of local potential. 

In that case, the DOS are the total number of states that are available in the 

system within the plane-wave framework of DFT. It is possible to calculate each 

orbital's contribution (partial DOS) to determine which orbitals are occupied or 

involved in bonding. The electrical behaviour of a material is determined by the 

location of Ef within the DOS. Metal alloys stability can be predicted using the 

density of states (DOS). Any material’s electronic density of states can be viewed 

as a qualitative measure of its electronic structure. 
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It is especially useful from the perspective of the partial density of states (PDOS). 

In PDOS, states are attributed to the basic functions and then to the atoms 

constituting the unit cell. DOS is then calculated as the sum of atomic 

contributions. The DOS is calculated by using the following expression: 

      
n

k

n

BZkn

k

n dk
V

n 
2

2
,

,                                                      (3-62) 

where   is the Dirac delta function and the k is integral extends over the BZ. 

The number of the electron in the unit cell is given by,   .


dn

f




 

  Elastic properties 
 

 Theory of elasticity 
 

 The elastic constants (Cij) contain some of the more important information that 

can be obtained from ground-state total-energy calculations. For a structure to 

exist in a stable phase, certain relationships must be observed between the 

elastic constants. The Cij also determines how a crystal will respond to external 

forces, such as Bulk modulus, Shear modulus, Young’s modulus, and Poisson's 

ratio, which are all factors of strength [140]. A compound's mechanical stability 

can also be verified using elastic constants. The existence and properties of new 

materials can therefore be predicted using first principle calculations. 

 Elastic stability criteria 
 

There is various criterion established to deduce elastic stability of crystals for 

different lattice crystals. Accurately determining the elasticity of a compound is 
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vital in understanding its mechanical stability and elastic properties. The elastic 

constants depend on the type of lattice i.e. for the cubic, tetragonal, orthorhombic 

and monoclinic crystals, there are three (c11, c12, c44), six (c11, c12, c13, c33, c44, 

c66), nine (c11, c22, c33, c12, c13, c23, c44, c55, c66) and thirteen (c11, c22, c33, c12, c13, 

c23, c44, c55, c66, c15, c25, c35, c46) independent elastic constants, respectively [26, 

141]. As an example, applying two types of strains  1 and 4  to the cubic system 

gives stresses relating to three elastic coefficients, this is a useful method for 

obtaining elastic constants. The mechanical stability condition for the cubic 

system as outlined [141] is given as follows: 

44c >0; 11c > 12c and 11c +2 12c >0,                                                        (3-63)   

As for tetragonal crystal stability condition is as follows: 

 44c >0, 66c >0, 11c >| 12c |and 11c + 12c −
33

2

132

c

c
>0,                           (3-64)   

For orthorhombic stability condition as outlined [142] is as follows: 

  122211 2ccc  >0,  133311 2ccc  >0,  233322 2ccc  >0, 11c

>0, 22c >0, 33c >0, 44c >0, 55c >0, 66c >0, 

 231312332211 222 cccccc  >0,                                                           (3-65) 

Lastly monoclinic crystal stability condition outlined [143] is as follows:  

  231312332211 2 cccccc  >0,  2

355533 ccc   >0,  2

466644 ccc  >0,

 233322 2ccc  >0,   33

2

2555

2

23352523

2

35553322 2 ccccccccccc  >0,

             02 55

2

122211

2

2511

2

233322

2

15131223113525231213223515231312332515  gcccccccccccccccccccccccccccc
     

 231312

2

1233

2

1322

2

2311332211 2 ccccccccccccg 
                          (3-66) 
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 Phonon calculation 
 

 Phonon Dispersion and Polarization Vectors 
 

Based on the diagonalization of the supercell dynamical matrix, the frequencies 

 jk,2  of phonon modes j are calculated along the identified Brillouin zone path, 

which creates phonon dispersion curves, 

       jkejkjkekD ,,,. 2 .                                                                               (3-67) 

At the Γ (0, 0, 0) point, it is possible to determine all the phonon modes, as well 

as the Raman and infrared activity for the modes. Orthonormality is satisfied by 

the vectors of complex polarization: 

     ,

* ;,.;, ill

j

i jkejke  ,                                                                       (3-68) 

    jii

i

i jkejke ,

* ;,.;, 


 .                                                                                              (3-69) 

In reciprocal space, the polarization vectors  ;, jke  associated with the wave 

vector k centered at the origin differ from those associated with the wave vector 

k  pointing from the center of a Brillouin zone labelled by the reciprocal vector . 

Because of  kk   the relation between these differently defined polarization 

vectors is: 

      rjkejke .2exp;,;,  .                                                                    (3-70) 

By calculating the polarization vectors of phonons, we can determine their 

displacement and intensity. Considering the amplitude Qk  and phase 10  k  
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of the displacement wave, the displacements U (n, μ) of atoms (n, μ) for a given 

wave vector k and phonon branch j can be calculated from the equation: 

              .,.2sin;,Im,.2cos;,Re
2

, kk
k nRkjkenRkjke

M

Q
nU 



      

                                                                                                                     (3-71) 

The intensity of phonon modes is found from the form factors. On the wave 

vector, the form factor is well defined as follows: 

  
 

2

2
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 



M

jkek

k
jkF p

.                                                                         (3-72) 

However, the simple form factors can provide insight into the intensity of phonon 

modes: 

   
 
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

M

jke

k
jkF s

,                                                                        (3-73) 

which may be applied to eliminate unnecessary phonon branches originating 

from back folding, or to estimate relative intensities of all modes in varying 

Brillouin zones. Using the MedeA-Phonon code [128], you can work directly on 

the lattice dynamics of systems without relying on any particular code to construct 

forces and total energies. However, together with VASP, MedeA provides a highly 

automatic and parallel procedure. 
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Structural, electronic and mechanical properties 

for the binary Ti50Pd50 

 

In this chapter, firstly we discuss the convergence test with respect to the cutoff 

energy and k-points for the binary Ti50Pd50 alloys. We also discuss the equilibrium 

properties such as the lattice constants and heats of formation and where 

possible the results are compared with the available experimental data. 

Secondly, the elastic constants, Bulk moduli, Young moduli, Shear moduli, 

anisotropy ratio, Cauchy pressure, Bulk to Shear modulus ratio (B/G), Poisson ′s 

ratio (𝜎)  and Vickers Hardness (HV) of the binary B19′, B19, L10 and B2 Ti50Pd50 

alloys are discussed. Lastly, the phonon dispersion curves are presented to 

evaluate the vibrational stability of Ti50Pd50 structures. The phonon density of 

states are also presented to indicate the orbital contribution of individual atoms, 

in particular which atom is responsible for soft modes.  

 

 Cutoff energy and k-point convergence 

 

  Cutoff energy 
 

In order to determine the appropriate cutoff energy of Ti50Pd50 structures, single 

point energy calculations were performed for different kinetic energy cutoffs at 

the default number of k-points for each system. The cutoff energy is necessary 

for determining the accurate ground state of the system. This was then calculated 

for B2, B19, B19′ and L10 Ti50Pd50 structures (see Figure 1-1) using the plane-
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wave pseudo potential within the GGA-PBE functional. The energy cutoff was 

varied from 200 eV up to 700 eV at fixed k-point for B2, B19, B19′, and L10 

structures. For example, the energies gave a constant slope at certain points and 

energy change with a difference of less than 1 meV/atom was found from 400 

eV, the cutoff energy of 500 eV was chosen in all structures for the purpose of 

this study. Figure 4-1 shows the curve of total energy per atom against cutoff 

energy for B2, B19, B19′, and L10 structures. It is clear that all curves show a 

similar trend with a zero slope from 400 eV, thus a choice of 500 eV cutoff energy 

will be used for the binary as well as ternary systems.  

  

Figure 4-1 The graph of total energy against energy cutoff for (a) B19, (b) B2, (c) 

L10 and (d) B19'. 
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 k-point 
 

In this section, we show the convergence of the total energies with respect to the 

k-point sampling set size, as illustrated in Figure 4-2. We have carried out a total 

energy calculation at fixed cutoff energy of 500 eV for each structure (as 

determined in Figure 4-1) while the number of k-points was varied. The total 

energy with respect to the number of k-points was considered converged when 

the energy change per atom (between two consecutive points) was within 1meV 

per atom. The separations were varied to find a suitable number of k-points of 

Ti50Pd50 for B2, B19, B19′ and L10. The k-points chosen were 12×12×12 for B2 

(cubic), 12×12×9 for L10 (tetragonal), 9×15×9 for B19 (orthorhombic), 12×7×6 

for B19′ (monoclinic) as shown in Figure 4-2.  

  

Figure 4-2 The total energy against k-points for (a) B19, (b) B2, (c) L10, and (d) 

B19'. 
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 Equilibrium thermodynamic properties for Ti-Pd alloys  

 

In order to determine the equilibrium properties, we performed full geometry 

optimization calculations within the GGA using the energy cutoff of 500 eV and 

chosen k-points as indicated in section 4.1 above. The equilibrium lattice 

parameters were determined from relaxed structures, where the volume and unit 

cell were allowed to change. This was done for all the Ti-Pd structures found in 

the binary phase diagram.  

Table 4-1 shows the results of the equilibrium lattice parameters and the heats of 

formation. The results of equilibrium lattice parameters were in agreement with 

available experimental values to within 5% agreement. For example, the B2 gave 

a lattice parameter of 3.170 Å while compares with 3.180 Å. 

Now, the thermodynamic stability of these systems is deduced from the heats of 

formation (∆𝐻𝑓) calculations. In order for a structure to be stable, the heat of 

formation value must have the lowest negative value otherwise a positive value 

implies instability. The heats of formation (∆𝐻𝑓) is estimated by the following 

expression: 

∆𝐻𝑓 = ii iC ExE                                                                                        (4-1) 

where CE  is the calculated total energy of the compound and iE  is the calculated 

total energy of the element in the compound. The results of the heats of formation 

are plotted in Figure 4-3 for Ti-Pd alloys. The Ti3Pd phase was found to be the 

least stable than the other phases with the heat of formation of -0.350 eV/atom. 

However, P63/mmc TiPd3 was found to be the most stable phase with the heat of 
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formation of -0.620 eV/atom and their results accord well with the previous 

experimental and theoretical data. The trend of Ti-Pd alloys is compared on the 

graph of heats of formation against atomic percentage in Figure 4-3.  

At 50 at. % Pd, the most stable structure is found to be monoclinic B19′ Ti50Pd50 

phase with the heat of formation of -0.533 eV/atom. The calculated ∆𝐻𝑓 results 

agree well with those found theoretically to within 5 %. The least stable structure 

was found to be cubic B2 Ti50Pd50 with a heat of formation of -0.454 eV/atom 

(since the structure has the highest negative value). The calculated ∆𝐻𝑓 results 

of the B2 phase agree well with the theoretical value to within 1%. The predicted 

∆𝐻𝑓 for tetragonal phase L10 agrees well with the findings from the theoretical 

view within 1%. The results show that at low temperature B19′ and B19 phases 

are more stable than B2. The calculated heats of formation were also in 

agreement with available theoretical values within 5% agreement.  

Now, the predicted order of stability of TiPd at 50 at. % Pd: B19′>B19>L10>B2 

which coincide with theoretical values as highlighted in section 2.5. 
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Table 4-1 Lattice parameters and heats of formation for Ti-Pd alloys. The 

experimental and theoretical values are given in parenthesis. 

Structure Prototype Space 
group 

a (Å) b (Å) c (Å) ∆Hf 
(eV/atom) 

Ti3Pd Cr3Si Pm3-n 5.045 

(5.055) 
[144] 

5.045 

(5.055) 
[144] 

5.045 

(5.055) 
[144] 

-0.350  

(-0.375) 
[145] 

Ti2Pd Si2Mo I4/mmm 3.100 
(3.090) 
[82] 

3.100 
(3.090) 
[82] 

9.897 
(10.054) 
[82] 

-0.433  

(-0.466) 
[34] 

TiPd B2 CsCl Pm-3m 3.170 
(3.180) 
[23] 

3.170 
(3.180) 
[23] 

3.170 
(3.180) 
[23] 

-0.454  

(-0.455) 
[54] 

         L10 AuCu P4/mmm 2.826  
(2.855) 
[34] 

2.826 
(2.855) 
[34] 

3.891 
(3.907) 
[34] 

-0.523  

(-0.522) 
[54] 

        B19 AuCd Pmma 4.587 
(4.550) 
[20] 

2.789 
(2.780) 
[20] 

4.897 
(4.860) 
[20] 

-0.531  

(-0.542) 
[54] 

       B19′ NiTi P21/m 2.792 
(2.744) 
[34]  

4.912 
(4.797) 
[34] 

4.582 
(4.460) 
[34] 

-0.533  

(-0.552) 
[54] 

Ti2Pd3 Ti2Pd3 Cmcm 14.338 
(14.330) 
[144] 

4.615 
(4.610) 
[144] 

4.689 
(4.640) 
[144] 

-0.598  

(-0.600) 
[34] 

TiPd3 TiNi3 P63/mmc 5.554 
(5.489) 
[144] 

5.554 
(5.489) 
[144] 

9.001 
(8.964) 
[144] 

-0.620 

(-0.650) 
[34] 
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Figure 4-3 Graph of the heats of formation (eV/atom) against the atomic % 

composition for Ti-Pd. The insert shows the contribution at 50 at. % Pd. 

 

 Elastic properties 

 

Table 4-2 lists the results on elastic constants, bulk, Shear, Young moduli, Pugh 

and anisotropic ratios of TiPd structures at 50 at. % Pd. In order to describe the 

mechanical stability of the binary Ti50Pd50 systems, we follow the stability criteria 

as set for each lattice, and this was outlined in chapter 3 (section 3.10.3). 

However, cubic B2 appears to have the highest value of c12 which is greater than 

c11, and this leads to 𝐶′ being negative which indicates the instability of the B2. 

This can be observed from the results of our calculations shown in Table 4-2. So, 

the negative shear modulus of the B2 phase is due to its instability at low 

temperatures.  

The L10 phase is stable with the positive c44, c66 and shear modulus which 

satisfies the tetragonal stability criteria. However, the B19 phase has a positive 
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shear modulus (condition of stability) and also meets the orthorhombic stability 

criteria which agree well with the heat of formation. The monoclinic B19′ appears 

to have the highest value of c11 compared to B19, L10 and B2 phases. Thus, from 

the results, we see that the monoclinic B19′ appears to be the most stable phase 

since the structure has the highest positive value of 𝐶′ compared to other phases 

and also meets the stability criteria as described in section 3.10.3.2. suggesting 

mechanical stability of monoclinic systems.  

Now, we consider the anisotropy behaviour of the structures. The elastic 

anisotropy of crystals is highly correlated with the possibility to induce 

microcracks in the materials [146]. For a completely isotropic material, the A 

factor takes the value of 1, while values smaller or greater than unity measure 

the degree of elastic anisotropy [147].  

Elastic anisotropy for cubic phase is indicated by A while for non-cubic is 

indicated by A1, A2 and A3. The calculated A of the B2 phase shows anisotropic 

behaviour. The calculated A2 of L10 and A1 for the B19 phase show isotropic 

behaviour. Furthermore, the calculated A1 of the B19′ phase (A≈1) shows 

isotropic behaviour. There is a good agreement with the heats of formation and 

elastic properties as they predict the same stability trend.  
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Table 4-2 Elastic constants and anisotropic ratios for B2, L10, B19, B19'. 

Elastic constants (GPa) B2 L10 B19 B19′ 

c11 149.10 228.83 240.82 300.88 

c12 159.83 105.48 125.19 80.10 

c13  128.31 124.42 85.18 

c15    -0.05 

c22   262.65 265.43 

c23   90.00 136.46 

c25    -0.06 

c33  251.16 250.62 244.70 

c35    -0.06 

c44 43.74 91.81 30.52 41.57 

c46    32.33 

c55   39.17 53.82 

c66  17.42 48.52 112.04 

𝐶′ -5.37 61.91 57.82 110.39 

A=2c44/(c11-c12) -8.15    

A1=2c66/(c11-c12)  0.282 0.840 1.015 

A2=2c44/(c11+c33-2c13)  0.822 0.252 0.222 

A3=c44/c66  5.270 0.629 0.371 

 

Table 4-3, shows the calculated Bulk, Shear, Young, Pugh and Poisson (𝜎) ratio 

and Vickers Hardness (Hv) for Ti50Pd50 alloy. The Bulk modulus (B) can be used 

to measure hardness while the Shear modulus (G) provides a measure of the 

ability to resist shape change caused by shear stress and the Young modulus (E) 

can be used to estimate the stiffness of a material. The orthorhombic B19 

structure appears to be the hardest since it has the highest bulk moduli of 

elasticity and is followed by tetragonal L10. Furthermore, the B19′ structure has 

the highest Young ′s and Shear moduli as compared to orthorhombic B19, while 
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the cubic B2 appears to have the lowest Young ′s modulus which indicates its 

weakness stiffness. The cubic B2 structure appears to be easily compressible 

(soft) as the results have the lowest shear modulus values which imply that the 

structure is not stable at low temperature. The calculated Cauchy pressure (c12-

c44), Pugh (B/G) ′s ratio and Poisson ′s ratio are used to assess the 

ductility/brittleness of the materials. For the deduced Cauchy pressure, a positive 

value reveals their ionic character and ductile behaviour whereas a negative 

value indicates weak covalent bond character and exhibits brittle behaviour [148]. 

As shown in Table 4-3, the calculated Cauchy pressure is positive for all phases 

which reveals their ionic character and ductile behaviour.  

Furthermore, we calculated the ratio of Bulk to Shear modulus (B/G) to 

investigate the extent of fracture range in these structures. Pugh [149] proposed 

that material is predicted to be ductile behaviour if the value of Pugh ′s criterion 

B/G> 1.75. It is clear that all structures satisfy the ductile conditions since B/G 

values are greater than 1.75. Poisson ′s ratio can be used to estimate the ductility 

and brittleness of the compound [140]. The results showed that all four phases 

satisfy the stability criteria as Poisson ′s ratio is greater than 0.26. Furthermore, 

Poisson‘s ratio is also used to analyse the bonding of Ti50Pd50 alloy. For 

covalently bonded structure have a small value of ~ 0.10, for the ionic bonded 

structure have a value of 0.25 while for metallic materials is above 0.33 [150]. 

The values of 𝜎 are all greater than 0.33 which suggests that the structures are 

metallic. The Vickers hardness (HV) of Ti50Pd50 alloys are also calculated and 

shown in Table 4-3. The calculated hardness of B19′ is 5.40, which indicates that 

B19′ is expected to be the hardest among other phases (L10, B19 and B2).  
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Table 4-3 The calculated Bulk modulus B (GPa), Shear modulus G (GPa), Young 

′s modulus E (GPa), Cauchy pressure (c12-c44) in GPa, Bulk to Shear modulus 

ratio (B/G), Poisson ′s ratio (σ), and Vickers Hardness (HV) (GPa) of Ti50Pd50 alloy.  

Phase B G E c12-c44 B/G 𝜎 Hv 

B2 156.25 3.83 8.81 116.09 47.16 0.49 0.03 

L10 159.80 57.86 154.80 61.65 2.762 0.34 5.13 

B19 159.11 47.62 132.13 94.67 3.26 0.36 3.70 

B19′ 157.10 58.82 174.29 38.53 2.66 0.33 5.40 

 

 Thermal properties 

 

The heat capacity at constant volume (CV) plays an important role to reflect the 

thermal properties of Ti50Pd50 alloy. The heat capacity at constant volume CV is 

expressed as [151]: 

𝐶𝑣 = 3𝑛𝑘 [4𝐷(Θ
𝑇⁄ ) −

3Θ
𝑇⁄

𝑒
Θ

𝑇⁄ −1
]                                                                          (4-2) 

where 4𝐷(𝛩
𝑇⁄ ) represents the Debye integral and n is the number of atoms per 

formula unit and k is Boltzmann‘s constant.  

Figure 4-4 illustrates the CV for B19’, B19, B2 and L10 Ti50Pd50 alloy. It is observed 

that CV rises sharply as the temperatures range of 0-1000 K and reaches a zero 

slope above this temperature. A weaker bond state is reached due to bigger 

thermal vibrations of atoms above 1000 K as shown in Figure 4-4. The present 

results suggest that the electron excitation occurs at a very low temperature 

below 1000 K for all phases (B19’, B19, B2 and L10). A stronger CV is observed 

for B2 Ti50Pd50 while the weakest heat capacity was observed for B19’ Ti50Pd50 

alloy. The values of CV for temperature range from 0-1000 K the sequence or 

trend is as follows: B2> L10> B19 > B19´. 
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Figure 4-4 The heat capacity at the constant volume CV of B19′, B19, B2 and 
L10 Ti50Pd50 alloy. 

 

A thermal coefficient of linear expansion (𝛼) for B19’, B19, B2 and L10 is shown 

in Figure 4-5. It is also observed that the thermal expansion increases at a lower 

temperature (<500 K) and approaches similar values above. The thermal 

coefficient of linear expansion for the B2 Ti50Pd50 alloy is higher than that of B19’ 

and other compositions (L10 and B19) at low temperatures below 500 K. The 

result indicate that the material expands more at a low content of B2 expand more 

compared to other phases (L10, B19 and B19’).  

The 𝛼 show the following stability sequence from 0-500 K: B2> L10> B19 > B19’ 

while for temperature range from 500-3000 K, show the following stability trend: 

B19’> L10> B19> B2.  
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Figure 4-5 The linear thermal expansion coefficient of B19', B19, B2 and L10 
Ti50Pd50 alloy. 

 

 

  Phonon dispersion and phonon density 

 

  Phonon dispersion 

 

Phonon dispersion curves for B19, B19′, B2 and L10 were calculated and are 

shown in Figure 4-6. The dispersion curves exhibit two types of phonons namely 

the optical and acoustic modes corresponding to the upper and lower sets of 

curves in the diagram, respectively. As has been seen in the heats of formation 

and elastic properties, our phonon dispersion calculations (Figure 4-6) confirm 

that B2 structure is unstable since there are soft modes observed in the phonon 

calculations. The soft modes are observed along M and R directions. The 

negative slope of the acoustic Γ-M branch corresponds to a pure elastic instability 

(𝐶′=1/2 (c11-c12)<0). There is a gap between acoustic and optical phonon 
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branches of 1.74 THz which indicates the instability of the B2 phase. The highest 

value of frequency is 7.4 THz along the X branch. The soft modes observed on 

the B2 phase along gamma point (0, 0, 0) could be attributed to the negative 

shear moduli as observed in the elastic properties calculations. This can also be 

observed from the anisotropy ratio being negative for the B2 phase.  

Furthermore, orthorhombic B19 structure display imaginary soft mode (negative 

frequency) along Z in the phonon dispersion curve which corresponds to less 

stable structure behaviour as shown by the heats of formation and the elastic 

constants. However, in the L10 and B19′ phonon dispersion spectra, no soft 

modes are observed which means that the structures are vibrationally stable. This 

also confirms the predicted order of stability as B19′> L10 > B19> B2, in 

agreement with the elastic constants and heats of formation.  
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Figure 4-6 Phonon dispersion curves for (a) B2, (b) B19, (c) B19' and (d) L10. 

 

 

 

(a) (b) 

(c)  (d) 
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  Phonon density of states 

 

The phonon density of states for B19, B19′, B2 and L10 were calculated and are 

shown in Figures 4-7. Recall that there were no negative vibrations observed for 

B19, B19′ and L10 (condition of stability). Thus, it is clear that the phonon DOS of 

the B19, B19′ and L10 structures have shifted to the higher frequency above zero 

indicating that the phases are stable.  

In the case of B19, there is a small sharp peak along 2.5 THz which indicates the 

contribution of Pd while the contribution of Ti is ascribed to the DOS peak around 

5 THz. This behaviour is similar to that of B19′. There is a slight shift for the L10, 

the sharp peak observed at about 3 THz corresponds to the contribution of Pd 

while the contribution of Ti is observed at around 6 THz.  

Now, considering the B2 phonon DOS. The vibrational sharp peak at -2 THz and 

2 THz are contribution of Pd with a very minimal contribution of Ti. It is noted that 

the negative frequency (vibrations) is a contribution of Pd. This suggests that Pd 

vibrations are responsible for the instability of the B2 Ti50Pd50 structure. 
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Figure 4-7 Phonon densities of states for (a) B19, (b) B19', (c) L10 and (d) B2 
structures. 
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 Total and partial density of state  

 

 Total density of states 

 

The total density of states (tDOS) is shown in Figure 4-8 for B2, B19, B19′ and 

L10. The tDOS are used to predict the electronic stability by observing the 

behaviour of states near the Fermi level (E-Ef=0) with respect to the pseudogap. 

This analysis has been adopted from previous work [26]. The structure with the 

highest and lowest density of states at Ef is considered the least and most stable, 

respectively [26]. The calculation of density of states was performed using VASP 

code and the graphs of B2, B19, B19′ and L10 Ti50Pd50 are compared in Figure 

4-8. In the case of the orthorhombic B19 structure, the total DOS shows that the 

pseudogap shifted to the right Fermi level and similarly for B19′. The total DOS 

of the B19′ structure has the lowest states at Ef which suggests that it is the most 

stable as compared to B19, L10 and B2.  

The L10 structure hits the top of the total DOS peak indicating instability of the 

structure. It is clear that the B2 phase has the highest number of density of states 

at Ef as compared to the other structures which confirm that it is the least stable. 

The B2 structure hits the total DOS in the middle of the peak near the Fermi level 

indicating instability of the structures at low temperature. The results suggest that 

B2 is less stable compared to other structures and this is consistent with the 

prediction of heats of formation. 
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Figure 4-8 (a) Total density of states for B19, L10, B2 and B19' against total 
energy. (b) Is the enlargement of the DOS graph near the Fermi energies. 

 

 Partial density of states 
 

The calculation of partial density of states was performed to indicate the 

contribution of Ti and Pd atomic orbitals. The graphs of B2, B19, B19′ and L10 

Ti50Pd50 are plotted in Figure 4-9. We note that the lower energy side is occupied 

by the sets of peaks coming mainly from d-states of Pd and the higher energy 

peaks are due to the d-states of Ti. The peaks at the Ef are mainly from both Pd 

d and Ti d-orbital. In B19′ and B19 phases, the Ef hits the DOS at the shoulder of 

the dropping peak contributed mainly by the Ti d-states, as can be clearly seen 

in the Ti PDOS. The s and p orbital contributions are negligible since they play a 

little role in donating some electrons to the Ti d-states. It is clear that the Ti d-

states rise gradually below the Ef which results in the cubic B2 being unstable. In 

L10, the lower energy peaks are mainly due to the Pd d-states. 

(a) 
(b) 
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Figure 4-9 Partial densities of state against total energy for (a) B19, (b) B2, (c) 
B19', and (d) L10. 
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Temperature dependence of the binary Ti50Pd50 

 

In this chapter, the volume, density, lattice expansion, x-ray diffraction and elastic 

properties for the binary B19, B19′, L10 and B2 Ti50Pd50 alloys are investigated at 

varied temperatures. The LAMMPS code which employs the embedded atom 

method (EAM) [104] was used to investigate the temperature dependence of 

these alloys. The calculations were performed at a varied temperature range from 

100 to 1800 K to check the possible transformation from martensitic to the 

austenite phase. So, the findings in this chapter will provide a better 

understanding of the transformation that occurs between the orthorhombic B19 

(known as martensite phase) and the cubic B2 phase (known as the austenite 

phase).  

 

 Temperature dependence of the volume and density  

 

The graphs of volume and density against temperature are shown in Figures 5-1 

and 5-2, respectively. Firstly, from the graph of volume against temperature 

(Figure 5-1), we note that the volume increases with an increase in temperature. 

The volume of the four phases increases with the same trend and reaches a 

transformation temperature at 1600 K (B19 and L10) while B2 and B19′ are 

slightly at a higher temperature of about 1700 K. This behaviour may suggest 

structural deformation at these temperatures. 
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Figure 5-1 Volume against temperature for B2, B19', B19 and L10. 

 

Secondly, in Figure 5-2 the graph of density against temperature shows that the 

density decrease with an increase in temperature as expected. The density of the 

four phases decreases with the same trend until the melting temperature at about 

1600 K, and the structures become less dense.  

Table 5-1 Shows the effect of temperature on the (B2, B19', B19 and L10) 

structures at different temperatures (1000-1800 K). At temperatures below 1600 

K, structures are ordered or show a uniform pattern, however, these patterns 

change at high temperature above 1600 K. In the case of B2, we observed that 

the atoms are well arranged in patterns below 1600 K. However, as the 

temperature is increased from 1700-1800 K, the atoms become randomly 

distributed indicating that the bond between atoms are broken which suggest that 

the melting temperature have been reached. 
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Figure 5-2 Density against temperature for B2, B19', B19 and L10. 

 

We observed similar behaviour for B19 and B19' as the temperature is increased 

from 1600-1800 K. This behaviour is due to B19 and B19' attempting to adapt to 

a high temperature phase since the maximum operating temperature of B19 was 

found to be 773 K [152]. Moreover, the B19 and B19' structures start to lose their 

shape and patterns above 1600 K (melting temperature is reached). We also 

observe a change in the L10 structure at 1600 K since atoms start to move 

randomly and display a similar trend as observed above 1700 K. 
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Table 5-1 The structures of B2, B19, B19' and L10 with 1024 atoms at a temperature 
from 1600- 1800 K. 

Temperature 

(K) 

B2 B19 B19' L10 

 

1000 

 
 

  

1200 

 
  

 

1400 

 
  

 

1600 

   
 

1700 

  
 

 

1800 

    

 

 B19 Ti50Pd50  
 

The effect of temperature on the lattice parameters of the B19 phase was 

investigated and is shown in Figure 5-3. This is to show the extent of lattice 

expansion and transformation behaviour at different temperatures. The size of 

the supercell was 1024 atoms since it gives results close to the experimental 
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findings. From the results, we note that the a and c lattice parameters increase 

minimally with an increase in temperature up to 1400 K. However, the lattice 

parameters collapses drastically above 1400 K (1496 K) for both a and c (give a 

similar value of 4.66 Å) which suggest a possible transformation from B19 to B2 

phase. The b lattice parameter also shows an increase with an increase in 

temperature. The a/b and c/b ratios decrease with an increase in temperature 

and there is an extreme decrease in the ratio at approximately 1496 K. 

In order for transformation to occur from orthorhombic B19 to cubic B2, the ratios 

of a/b and c/b must be close to 1.414 [13]. The decrease of a/b and c/b with 

increasing temperature in orthorhombic B19 is reasonable and is significant to 

describe the structural change from B19 to cubic B2 above 1496 K. It is clearly 

seen that the a/b and c/b ratios are above 1.41, indicating that the phase is still 

orthorhombic B19 up to 1397 K. The ratio c/b of the B19 Ti50Pd50 is 1.414 at 

approximately 1496 K which suggests that B19 phase has transformed to the 

cubic B2 phase. 

 B19′ Ti50Pd50 
 

In Figure 5-4, we show the lattice parameter against temperature for the B19′ 

Ti50Pd50 structure. We note that the a and c lattice parameters increase with an 

increase in temperature similar to the b lattice. Furthermore, we note that the a 

and c lattice parameters collapse at 1798 K while b increases monotonically at 

this temperature. This resulted in the a/b and c/b ratios to give a decreasing trend 

with an increase in temperature. This behaviour predicted the ratio of c/b and a/b 
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as 0.931 and 0.537, respectively. At above 1798 K, no transformation was 

observed. 

Figure 5-3 The effect of temperature on the (a) a and c (b) b (c) a/b and c/b lattice 
parameters of the B19 Ti50Pd50. 
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Figure 5-4 Lattice expansions (a) a and c (b) b (c) a/b and c/b against temperature 
for B19'. 

 

 L10 Ti50Pd50 
 

The dependence of the lattice parameters of the L10 on temperature is plotted in 

Figure 5-5. Similar to the B19 and B19', the a lattice parameter increase with an 

increase in temperature as shown in Figure 5-5 (a). In the case of the c lattice 

parameter, we observe a slight increase in temperature. The b lattice parameter 

increases linearly with an increase in temperature. A drastic increase in the b 

lattice parameter is observed between 700 to 900 K as shown in Figure 5-5 (b). 

Furthermore, the a/b and c/b ratios are also shown in Figures 5-5 (c). In order for 
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transformation to occur from tetragonal L10 to cubic B2, the ratios a/b and c/b 

should be closer to 1.00 since a=b=c. In the c/b ratio, there is an extreme 

decrease observed at 897 K which suggests that the L10 phase has transformed 

to the B2 phase. The plots of c/b and a/b ratios collapse to a ratio of 1.00 and 

remain the same with an increase in temperature. It can be clearly seen that the 

L10 to B2 transformation has occurred at 897 K, and hence for the B2 phase is 

observed on a temperature range of 897- 1696 K. The structure then reached the 

melting temperature above 1696 K. The temperature at which the transformation 

occurs for L10 (L10-B2) is lower (897 K) as compared to B19 phase (B19-B2) at 

1497 K. 

 

Figure 5-5 Lattice parameters (a) a and c (b) b (c) a/b and c/b against temperature 
for L10. 
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 B2 Ti50Pd50 
 

Figure 5-6 show the effect of temperature on the lattice parameters for the B2 

phase. It is observed that the a, b and c parameters increase slightly as the 

temperature is increased (below 800 K). The results suggest that the 

transformation is suppressed and remains B2 below 800 K. The B2 structure 

transforms to B19 between 800-1300 K since abc as shown in Figure 5-6 (a). 

Interestingly, as the temperature is increased to 1490 K, the structure transforms 

back to the B2 phase (a=b=c). This suggests a possible transformation from the 

B19 martensite phase into the B2 phase.  

The ratios of c/b and a/b collapse to a ratio of 1.00 and remain the same with an 

increase in temperature above 1490 K. Similar behaviour was observed when the 

B19 phase transforms to the B2 phase at 1490 K (as discussed in Figure 5-3). It 

is noted that the structure remains stable up to 1698 K and beyond this point, a 

possible deformation occurs, as shown in Table 5-2. The predicted melting 

temperature for the B2 (1695 K) and is in good agreement with the experimental 

finding of 1673 K [80], this has been shown in chapter 2 (see Table 2-2). 

The lattice parameter ratios at a temperature from 1598-1898 K and predicted 

phases are summarised in Table 5-2. The c/b, a/b and c/a ratios are close to 1, 

indicating the phase is still B2 phase below 1698 K. Furthermore, we observe 

that c/b=1.260, a/b=0.923 and c/a=1.265 with increasing temperature in cubic 

which suggest that the melting temperature have been reached.  
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Figure 5-6 Lattice expansions (a) a, b and c (b) a/b and c/b against temperature 
for B2. 

 

Table 5-2 Lattice parameters and predicted phases at a temperature from 1598-
1898 K. 

Lattice parameter (Å) 1598 1698 1798 1898 

c/b 0.998 0.999 1.260 1.401 

a/b 0.998 0.999 0.923 1.085 

c/a 1.000 1.000 1.265 1.302 

Predicted phase B2 B2 deformed deformed 

(a) 

(b) 

(C) 
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 X-Ray diffraction patterns 

 

X-ray diffraction (XRD) is a rapid analytical technique primarily used for phase 

identification of a crystalline material and can provide information on unit cell 

dimensions [153]. In this section, we analyse the XRD for B19, L10, B19′ and B2 

Ti50Pd50 from ambient to high temperatures. The temperature was increased from 

100- 1800 K at a difference of 100 K steps. However, for the purpose of 

discussion, we selected only a significant plot showing the transformation or 

changes in the XRD patterns for the four phases (B19, L10, B19′ and B2). 

 B19 X-ray diffraction patterns 
 

A simulation of the temperature dependence of the XRD patterns was conducted 

on the pure B19 Ti50Pd50, with 1024 atoms, as shown in Figure 5-7. The B19 X-

ray indices, 001, 101, 010, 011 and 002 are observed at different temperatures. 

The structure remains B19 phase from 100 to 1298 K with the same set of peaks 

observed. As the temperature is increased, there is an increase in intensity and 

number of peaks (< 40 2𝜃) at 1368 K which suggests a possible transformation 

from B19 to B19′. The transformation from B19 to B19′ structure, characterized 

by XRD indices 001, 101, 010, 011 and 002 at elevated temperatures with an 

increase in intensity at 101 peak (1368 K).  

Interestingly, the number of peaks reduces at 1447 K and assumes the patterns 

of the B2 phase. At this temperature, the peaks (001 and 101) are close to each 

other and shift to the left of the 2θ to 26° and 30°. This observation suggests a 

possible transformation from the B19′ to the B2 phase. The transformation from 
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B19-B19′ and B19′-B2 suggest that the B19′ phase exists in a narrow or 

temperature (1368-1447 K).  

A transformation is observed where there is the disappearance of the 101 peak 

close to 30° at a temperature of about 1496 -1596 K, the disappearance of the 

peak suggests possible transformation from B19′ to B2. At a temperature of 1696 

K and above, the peaks are broad and suggesting that the structure melted at 

this temperature and thus the structure is lost. It is interesting that the 

transformation temperature of the B19 phase correlates well with the a/b and c/b 

ratios change, which is at approximately 1496 K (section 4.1.2). A similar 

observation is true for B19′. 
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Figure 5-7 Diffraction patterns at a various temperatures from 399-1696 K for 
B19. 

 

 L10 X-ray diffraction patterns 
 

In Figures 5-8, the simulated XRD patterns of L10 are shown from 399-1697 K. 

The L10 X-ray indices, 001, 100 and 011 are observed below 30° at different 

temperatures. It can be clearly seen that the structure remains L10 phase from 

399 to 778 K with the same set of peaks observed. At a temperature above 897 

K, the number of peaks reduces and the B2 phase patterns are observed. 
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Furthermore, when the temperature is increased above 897 K, the disappearance 

of the 100 peak close to 30° is observed. At this temperature possible 

transformation has occurred from the L10 phase to the B2 phase since the peaks 

are assumed to be the patterns of the B2 phase. This agrees reasonably well with 

the ratio of a/b and c/b where the transformation is occurring at approximately 

897 K (Figure 5-5). The melting temperature of B2 Ti50Pd50 from the phase 

diagram was found to be 1673 K  [80]. From the XRD patterns, the structure above 

1597 K is lost which means that the structure has reached the melting 

temperature at 1697 K.  

 B19′ X-ray diffraction patterns 
 

The temperature variations of XRD patterns for the B19′ are shown in Figure 5-

9. The observed B19′ X-ray indices are 010, 011,100 and 110 are found below 

40° from 399-1697 K. At approximately 898 K, the intensity of the peak [011] 

becomes smaller at 25°. The result suggests that no transformation takes place; 

rather the structure remains unchanged below 1000 K. Furthermore, above 1696 

K the peaks are broad and the structure is lost suggesting that the structure 

melted. This observation is similar to the results of the lattice expansion 

discussion above. 
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Figure 5-8 Diffraction patterns at various temperature from 399 K-1697 K for L10. 
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Figure 5-9 Diffraction patterns at various temperatures from 399-1697 K for B19'. 
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be of the B19 phase. As the temperature is increased to 1497 K, the patterns 

decreases which suggests a transformation of B19 to B2 phase as shown in 

Figure 5-10. The structure remains B2 phase from 1497 to 1596 K with the same 

set of peaks observed. There are two transformations observed from B2 to B19 

martensite phase as well as from B19 to B2 Austine phase and this agrees very 

well with the ratio of a/b and c/b until melting is reached.  

 

Figure 5-10 Diffraction patterns at various temperatures from 399-1696 K for B2. 
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 Temperature dependence of the elastic properties 

In order to understand the mechanical stability of B19, B19′, B2 and L10 Ti50Pd50 

at various temperatures, related elastic constants and shear moduli were 

calculated using forcefield based LAMMPS code. 

 B2 Ti50Pd50  
 

Temperature variation of elastic constants of B2 structure was calculated and 

shown in Figure 5-11. In the first region of the plot, the elastic constants (c11, c12) 

decrease minimally with an increase in temperature and tend to converge above 

1695 K. This behaviour can be attributed to the initially B2 specified structure 

attempting to reach melting temperature. The second region, elastic constant 

(c44) decrease linearly with an increase in temperature and converge above 1695 

K. It is observed that as the temperature is increased, from ambient values, the 

predicted shear modulus 𝐶′= (c11 - c12)/2 of the B2 phase is initially positive, and 

approaches zero above 1695 K. The shear modulus (𝐶′) decreases with 

increasing temperature, suggesting less stability of the B2 phase. So, above 1695 

K the structure is mainly characterised by 𝐶′ becoming less positive, as the 

magnitude of c11= c12, hence suggesting mechanical stability of the B2 phase at 

high temperature, consistent with the experimental of 1673 K.     
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Figure 5-11 (a) elastic constants and (b) 𝑪′ against temperature for B2. The dotted 
line is used to guide an eye with respect to stability and possible transition 
temperature. 
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was observed. Such convergence suggest melting temperature is reached, 

where c11 = c22 = c33 and c12 = c13 = c23. Furthermore, elastic moduli c44, c55, c66, 

c25, and c35 constitute the third group and decrease minimally with an increase in 

temperature. However, they all tend to converge at the highest calculated 

temperatures above 1798 K.  

The shear moduli (c11 + c22+ c33 + 2(c12+c13 + c23)), (c33c55 –c2
35), (c44c66-c2

46) and 

(c22 + c33 -2c23) are positive at lower temperature, and negative at high 

temperature, which does not satisfying the requirements for mechanical stability 

of monoclinic systems as discussed in section 3.10.3. The shear moduli c33c55 –

c2
35 decrease linearly up to the highest calculated temperature and tend to 

converge around 1798 K. It is clear that the shear moduli c44c66-c2
46 and c22+ c33-

2c23 decrease minimally and become negative below 1300 K which indicates the 

instability of structure at high temperature. 
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Figure 5-12 (a) elastic constants and (b) 𝑪′ against temperature for B19'. The 
dotted lines are used as a guide to an eye with respect to stability criteria. 
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phase. The shear moduli (c11 + c22), (c11 + c33 -2c13) and (2c11 + c33 + 2c12+ 4c13) 

have positive shear moduli throughout the temperature which shows the stability 

of L10. Furthermore, the results satisfying the requirements for mechanical 

stability of tetragonal alloys as discussed in section 3.10.3.  

 

Figure 5-13 (a) elastic constants and (b) 𝑪′ against temperature for L10. The dotted 
lines are used as a guide with respect to stability. 
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same trend was observed with the second group of elastic constants c12, c13 and 

c23. The last group of elastic moduli c44, c55 and c66 decrease minimally with an 

increase in temperature below 1696 K. The c55 moduli become negative at 

temperature 1696 K which shows the instability of the structure at high 

temperature. Furthermore, three shear moduli (c11 + c22 -2c12), (c11 + c33 -2c13) 

and (c22 + c33 -2c23) are positive at lower temperatures and reduce as the 

temperature is increased.  

The shear moduli become smaller with the increase in temperature and converge 

to a common value at 1696 K which shows the instability of B19 at high 

temperatures. Furthermore, we note sudden collapse from the three shear moduli 

from 1598 -1696 K which is due to the melting temperature being reached at 1680 

K. It can be suggested that from the elastic properties, the B19 structure tends to 

be mechanically unstable at a temperature higher than 1696 K as it undergoes 

melting temperature. Furthermore, the calculated elastic constants and moduli of 

the B19 phase satisfy conditions of the mechanical stability of the orthorhombic 

symmetry at low temperatures below 1696 K as stated in section 3.10.3. In an 

enlarged insert, the instability of B19 is clearly indicated. 
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Figure 5-14 (a) elastic constants and (b) 𝑪′ against temperature for B19. The dotted 
line is used to guide the eye with respect to stability.  
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Structural, thermodynamic and electronic 

properties for B2 Ti50Pd50-xMx 

 

In this chapter, we present DFT results on the B2 Ti50Pd50-xMx alloys, where M 

represent the alloying elements i.e. Ru, Pt, Ir, Co, Ni, Al and Os. A supercell 

approach was used to generate their various compositions. These structures 

were constructed from B2 Ti50Pd50 using a 2x2x2 supercell with 16 atoms (as 

shown in Figure 6-1). The substitutional search tool embedded in VASP was used 

to substitute Pd with Ru, Pt, Ir, Co, Ni, Al, and Os atoms which provided the most 

stable compositions at the desired symmetry. There are five possible 

compositions that will be considered in these calculations namely; 6.25, 18.75, 

25, 31.25, and 43.75 at. % M.  

The calculations were performed using VASP code. The structures were 

subjected to full geometry optimization (by allowing both lattice parameter and 

volume to vary) in order to achieve ground state properties with precision. 

Structural and thermodynamic properties, such as equilibrium lattice parameters 

and heats of formation were investigated. Furthermore, the electronic properties 

in particular the total and partial density of states will also be analysed and 

discussed to show stability by monitoring the trend of the Fermi level with respect 

to the possible pseudogap [154]. 
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Figure 6-1 (a) The B2 Ti50Pd50 structure with 2 atoms per unit cell and (b) a 2X2X2 
supercell with 16 atoms per unit cell structures.  

 

 Structural and thermodynamic properties of B2 Ti50Pd50-xMx. 

 

In Figure 6-2, the calculated equilibrium lattice parameters for the B2 Ti50Pd50-xMx 

(M=Ru, Pt, Ir, Co, Ni, Al, and Os) systems are shown. It is observed that the 

partial substitution of Pd with Ru reduces the lattice parameters of the Ti50Pd50-

xRux minimally (Figure 6-2). The lattice parameters or volume decreases with the 

addition of Ru content and this may be attributed to the small atomic radius of Ru 

as compared to that of Pd.   

Furthermore, the lattice parameters of the Ti50Pd50-xMx system decrease as the 

Ni, Ir, Co, and Os content is increased. This can be understood since the atomic 

radius of Pd is larger in size than Ni, Ir, Co, and Os. Recall that the lattice 

parameter of binary Ti50Pd50 was predicted to be 3.170 Å which is larger than 

those calculated for the Ti50Pd50-xMx systems. The lattice parameters of the 

Ti50Pd50-xCox behave similarly to that of Ti50Pd50-xNix and this is due to their 

comparable atomic numbers and masses, both Co and Ni are transition elements 

on the same period.  
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The heats of formation for the B2 Ti50Pd50-xMx systems are shown in Figure 6-3. 

As discussed in chapter 4, the heats of formation are calculated to check the 

thermodynamic stability of the system. We observe that the ∆Hf decreases as Ru 

is increased this implies that the structure becomes stable at high Ru 

concentration (thermodynamically stable). Similar behaviour was observed for Ir, 

Pt, and Os as their values decrease with an increase in concentration indicating 

thermodynamic stability. Furthermore, the addition of Al, Ni and Co 

concentrations becomes less stable since the values of heats of formation 

increase as the content is increased. It is seen that Al, Ni and Co substitution 

show less stability, while the addition of Os, Ru, Ir and Pt enhances the stability 

of the Ti50Pd50 system at high concentration (0 ≤ 𝑥 ≤50). More importantly, Ir 

addition is the most favourable (most stable) below 40 at. % Ir.  

 

Figure 6-2 Equilibrium lattice parameter against atomic percent (at. % M) 

for 0 ≤ 𝑥 ≤ 50 composition range. 
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Figure 6-3 Heats of formation against atomic percent (at. % M) for 0 ≤ 𝑥 ≤ 

50 composition range. 
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Furthermore, as the amount of Os is added to the system, the values of heats of 

formation decrease for both B2 and B19 phases. It is noted that at concentrations 

below 20 at. % Os the heats of formation for B2 is greater than that of the B19 

phase as shown in Figure 6-4 (c). Interestingly, we observed that at 25 at. % Os 

the B19 is favourable than the B2 Ti50Pd50-xOsx system. Furthermore, it is 

observed that above 25 at. % Os the values of heats of formation are identical for 

both B2 and B19 Ti50Pd50-xOsx systems. This behaviour suggests that Os can be 

used to improve the thermodynamic stability of both B2 and B19 phases above 

20 at. % Os. Similar behaviour was observed when Ru was added to the system 

as the values of heats of formation decreases with an increase in Ru content for 

both B2 and B19 systems (Figure 6-4 (d)). Thus the addition of Os and Ru 

enhances the stability of Ti50Pd50 for both the B2 and B19 in a more similar 

manner. This may be attributed to their similar atomic radius. 

In contrast to the above, we see that the calculated heat of formation increases 

as the concentrations of Ni is increased. This suggests that the structures are 

becoming thermodynamically less stable which indicates weak chemical 

interactions between Pd and Ni. The results showed that heats of formation 

increase with an increase in Ni content implying the B2 and B19 Ti50Pd50 are less 

preferable compared to the B2 and B19 Ti50Ni50 alloys (Figure 6-4 (e)). To note 

that the addition of Ni has been shown to improve the thermodynamic stability of 

the B19 phase better compared to the B2 phase (𝐵19∆𝐻𝑓
> 𝐵2∆𝐻𝑓

).  

Similar behaviour was observed with Co, and Al additions as shown in Figure 6-

4 (f) and Figure 6-4 (g), respectively. The findings suggest that Ni, Co and Al are 

not favourable for improving the thermodynamic stability of both B2 and B19 
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Ti50Pd50 alloys. Based on the comparison between B2 and B19 Ti50Pd50-xMx, it 

can be concluded that the addition of Pt, Ir, Os, and Ru enhances the 

thermodynamic stability of both B2 and B19 phases while Ni, Co, and Al display 

less stability as the concentration is increased.  

 

 

 

 

 

 

 



 
 

128 
 

 

 

 

 

 

 

 

Figure 6-4 Trend of heats of formation against composition between B2 and B19 
Ti50Pd50-xMx (M=Ru, Pt, Ir, Co, Ni, Al, and Os) ternary alloys (a) Pt, (b) Ir (c) Os (d) 
Ru (e) Ni (f) Co and (g) Al are substitute. 
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 Total density of states (tDOS) of B2 Ti50Pd50-xMx  

 

Electronic structure calculations have been performed to investigate the stability 

of Ti50Pd50-xMx alloys by observing the trend of the total density of states (tDOS) 

near the Fermi level (Ef) with respect to the pseudogap. Similar approaches have 

been used to describe the electronic stability trend for structures of the same 

composition [26, 155, 156]. The structure with the highest and lowest density of 

state at Ef is considered the least and most stable, respectively. The DOS is 

expressed as the number of states per atom per energy interval.  

 B2 Ti50Pd50-xMx alloys: (M= Ru, Os) 
 

The total DOS for Ti50Pd50-xRux is shown in Figure 6-5. We observe that the DOS 

shift towards the conduction band (CB) when Ru is added to the system. It is 

clearly seen that at 50 at. % Ru (Ti50Ru50) the Fermi level coincides with the 

pseudogap displaying the lowest states at Ef. This confirms the stability of the 

system in agreement with the predicted heats of formation (Figure 6-3). Contrary 

to the Ti50Ru50 structure, the Fermi level hits the top of the total DOS peak 

indicating instability of the Ti50Pd50 structure. As the composition of Ru is added, 

the pseudogap moves toward the Fermi level showing that the Ti50Pd50-xRux 

became electronically stable, in particular for composition above 20 at. % Ru. 

This observation suggests that Ti50Pd50-xRux is electronically stable at the high 

content of Ru. It is noted that there is a good agreement between the heats of 

formation (Figure 6-3) and the density of state stability trend. Figure 6-5 has been 

published in an accredited journal [35]. 
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In Figure 6-5, we plot the total DOS for B2 Ti50Pd50-xOsx (0 ≤ 𝑥 ≤ 50) alloys. As 

the composition of Os is added, the pseudogap moves towards the EF which may 

imply that the system becomes electronically stable above 18.75 at. % Os. It is 

seen that at 50 at. % Os (Ti50Os50) the Ef coincides with the pseudogap. This is 

consistent with the fact that Os has fewer electrons compared to Pd. The stability 

trend according to the density of states agrees very well with the predicted heats 

of formation (∆Hf) results, this Figure has been published [24].  

 

Figure 6-5 The total density of states of Ti50Pd50-xRux SMAs against energy (0 ≤ 
𝑥 ≤ 50). The Fermi level is taken as the energy zero (E-Ef=0) [35]. 
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Figure 6-6 Comparison of the total density of state for Ti50Pd50-xOsx systems (0 ≤ 

𝑥 ≤ 50) against energy. The Fermi level is taken as the energy zero (E-Ef=0) [24]. 

 

  B2 Ti50Pd50-xMx alloys: (M= Pt, Ir) 

 

Figures 6-6 and 6-7 show the calculated total density of states at various 

compositions (0≤ 𝑥 ≤ 50) for Ti50Pd50-xMx alloys. As the composition of Pt is 

added, the pseudogap moves towards the Ef indicating that the electronic stability 

is enhanced. It is seen that Ti50Pt50 is more stable than other compositions since 

it has the lowest density of states near the Ef. Furthermore, Ti50Pd43.75Pt6.25 has 

the highest density of states at Ef as compared to the other structures which 

confirm the least stable. The predicted density of states analysis is consistent 

with the stability trend as predicted by the ∆Hf.  

As Ir content is added, the DOS for Ti50Pd43.75Ir6.25 hits the peak at the shoulder 

near the Ef as shown in Figure 6-7. Furthermore, at 18.75 at. % Ir, the pseudogap 

moves toward the Ef with the lower energy which may suggest that the system 

starts to stabilize. Similar behaviour was observed with other compositions such 

E
f
-E (eV)

-2 -1 0 1 2

D
e

n
s

it
y
 o

f 
s

ta
te

s
 (

e
le

c
tr

o
n

s
/e

V
)

0

10

20

30

Ti50Pd50

Ti50Pd43.75Os6.25

Ti50Pd31.25Os18.75

Ti50Pd25Os25

Ti50Pd18.75Os31.25

Ti50Pd6.25Os43.75

Ti50Os50

Ef

E-Ef (eV) 



132 
 

as Ti50Pd25Ir25, Ti50Pd18.75Ir31.25, and Ti50Pd6.25Ir43.75. It is noted that Ti50Ir50 has the 

lowest DOS at the Ef which suggests that it is the most stable while the 

Ti50Pd43.75Ir6.25 is the least stable compared to other compositions. The result 

suggests that Ti50Pd50-xMx is electronically stable at higher content of Pt and Ir, 

consistent with the predicted ∆Hf.   

 

Figure 6-7 (a) Comparison of the total density of state for Ti50Pd50-xPtx systems 
against energy and (b) is the enlargement of the DOS near the Fermi energies. 
The Fermi level is taken as the energy zero (E-Ef=0). 

 

(a) 
(b) 
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Figure 6-8 Comparison of the total density of state for Ti50Pd50-xIrx systems 
against energy. The Fermi level is taken as the energy zero (E-Ef=0). 

 

 

 B2 Ti50Pd50-xMx alloys: (M= Ni, Co, Al) 
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that Co is not preferable to enhancing the electronic stability of Ti50Pd50 in good 

agreement with the predicted ∆Hf. A similar trend is observed for Al additions as 

shown in Figure 6-11. This suggests that Ti50Pd50-xAlx is electronically unstable 

at the higher content of Al. The stability trend agrees very well with the predicted 

heats of formation (Figure 6-2).  

 

Figure 6-9 Comparison of the total density of state against energy for Ti50Pd50-xNix 

systems (0 ≤ 𝑥 ≤ 50). The Fermi level is taken as the energy zero (E-Ef=0). 
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Figure 6-10 Comparison of the total density of state against energy for Ti50Pd50-

xCox systems (0 ≤ 𝑥 ≤ 50). The Fermi level is taken as the energy zero (E-Ef=0). 

 

 

Figure 6-11 Comparison of the total density of state against energy for Ti50Pd50-

xAlx systems (0 ≤ 𝑥 ≤ 50). The Fermi level is taken as the energy zero (E-Ef=0). 
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Mechanical properties for B2 Ti50Pd50-xMx 

 

In this chapter, we discuss the mechanical properties in particular the elastic 

constants, elastic moduli, ductile/brittle behaviour and elastic anisotropy of 

Ti50Pd50-xMx (M=Ru, Pt, Ir, Co, Ni, Al, and Os). Similar to the previous chapter, 

we used the supercell approach to explore their stability. The elastic properties 

were performed using the VASP code as discussed in detail in chapter 3. The 

elastic properties were calculated to check the elasticity and strength of the 

alloys.  

The study of elasticity such as elastic constants, elastic moduli, ductile/brittle 

behaviour and elastic anisotropy is of critical importance in various industries 

such as medical and aerospace amongst others. So, the elastic properties are 

determined to check the elasticity as well as the strength of the material systems. 

The elastic stiffness constants are obtained from the linear finite strain–stress 

method within the VASP code [38]. The predicted independent elastic stiffness 

constants (Cij) of the Ti50Pd50-XMX (M= Ru, Os, Co, Ni, Ir, Pt, and Al) alloys are 

shown in Figures 7-1 to 7-5. 

 

 Elastic constants of Ti50Pd50-xMx  

 

The elastic constants (Cij) contain some of the more important information that 

can be obtained from ground-state total-energy calculations. In order for a 

https://www.sciencedirect.com/topics/materials-science/elastic-moduli
https://www.sciencedirect.com/topics/materials-science/anisotropy
https://www.sciencedirect.com/topics/materials-science/elastic-moduli
https://www.sciencedirect.com/topics/materials-science/anisotropy
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structure to exist in a stable phase, the elastic constants must obey certain 

relationships. The stability conditions for the cubic system is outlined in section 

3.10.3. 

 Ti50Pd50-xRux 

 

In Figure 7-1, the calculated elastic constants of the Ti50Pd50-xRux alloys (0 ≤

𝑥 ≤50) are shown. Recall that in order for the structure to be stable, it must satisfy 

certain stability criteria as discussed in chapter 4. The positive 𝐶′  ((1/2(c11-c12)>0) 

indicates the mechanical stability of the crystal, otherwise, it is unstable. As 

indicated in chapter 4, the binary B2 Ti50Pd50 alloy is mechanically unstable at 0 

K due to negative elastic shear modulus (𝐶′= -5.37 GPa). So, the addition of a 

third element has been suggested in order to stabilise the B2 Ti50Pd50 alloy. In 

this case, the addition of Ru shows that the elastic constants 𝑐11, 𝑐12 and 𝑐44 are 

positive for the entire concentration range (0≤ 𝑥 ≤50) (Figure 7-1). The c11 and 

c44 increase with the addition of Ru content while c12 decreases suggesting that 

the structure is becoming mechanically stable (satisfying the stability condition, 

c11>c12).  

However, at small Ru content (6.25 and 18.75 at. % Ru), the 𝐶′ is negative which 

renders the structures elastically unstable at these concentrations. Furthermore, 

the calculated 𝐶′ value gives rise to negative anisotropy, thus indicating the 

instability of the B2 Ti50Pd50-xRux for 6.25 and 18.75 at. % Ru which is contributed 

by c11 being less than c12. It is clearly seen that above 20 at. % Ru, the 𝐶′ is 

enhanced leading to a mechanical stable system. As such Ru addition may 

decrease the martensitic transformation temperature of the B2 Ti50Pd50 alloy due 
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to an increase in 𝐶′ above 20 at. % Ru. The coupling of c11 and c12 is found when 

x >20 at. % Ru corresponding to the observed stability trend. The coupling of c44 

and 𝐶′ can also be seen when x >37 at. % Ru, and a possible phase 

transformation occur as shown in Figure 7-1. This observation has also been 

discussed in the previous study [77] and Figure 7-1 has been published [35]. 

 

Figure 7-1 The elastic constants (GPa) as a function of the atomic % Ru 
composition of Ti50Pd50-xRux SMAs. 

 

 Ti50Pd50-xOsx 

 

The calculated elastic properties of the Ti50Pd50-xOsx alloys (0 ≤ 𝑥 ≤50) is shown 

in Figure 7-2. It is noted that all the independent elastic constants c11, c12 and c44 

are positive in the entire range of Ti50Pd50-xOsx alloys (0 ≤ 𝑥 ≤50). At small Os 

content (below 6.25 at. % Os), the 𝐶′ is negative suggesting that the structure is 

elastically unstable at this concentration. Interestingly, the elastic shear modulus 
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(𝐶′) is positive above 18.75 at. % Os which indicates the structures are 

mechanically stable at high Os content. Note that Figure 7-2 has been published 

[24]. 

 

Figure 7-2 The elastic constants (GPa) as a function of the atomic % 

Os composition of Ti50Pd50-xOsx SMAs. 

 

Figure 7-3 shows the comparison of the elastic constant c11 and c12 for Ti50Pd50-

xMx (M= Ru, Os) alloys against concentrations. Below 20 at. % Ru, it is noted that 

c11<c12 suggests elastic instability. In the case of Os, it is found that c11<c12 below 

18 at. % which indicates instability. Interestingly, it is noted that Os stabilise faster 

as compared to Ru since c11>c12 above 18.75 at. % which resulted in positive 𝐶′.  
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Figure 7-3 The elastic constants (c11 and c12) against the composition 
of Ti50Pd50-xMx alloys. 

 

 Ti50Pd50-xMx (M= Ni, Co) 

 

Figure 7-4 (a) shows the comparison of elastic constant c11 and the c12 for the 

Ti50Pd50-xMx (M= Co, Ni) at different concentrations. From the results, it is noted 

that the c11 is less than c12 below 25 at. % Co which suggests instability at those 

compositions. Furthermore, it was also found that the c11<c12 below 31.25 at. % 

Ni which implies that the system is unstable. This is confirmed in Figure 7-4 (b). 

It is clearly seen that the 𝐶′ curve is below zero (𝐶′< 0) at lower concentrations. 

However, the elastic constants satisfy the stability criterion above 43.75 at. % Ni 

and 31.25 at. % Co indicating elastic stability (since 𝐶′> 0) of Ti50Pd50-xMx alloys.  
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Figure 7-4 (a) the elastic constant and (b) elastic shear modulus against the 
composition of B2 Ti50Pd50-XMX (Co, Ni) alloys. 

 

 Ti50Pd50-xMx (M= Ir, Al, Pt) 
 

In Figure 7-5 (a), all the predicted Cij does not satisfy the stability criteria for 

Ti50Pd50-xAlx since c11 is less than c12 which resulted in negative elastic shear 
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range (Figure 7-5 (b)). Clearly, the Cij for ternary addition is less than those for 

the binary Ti50Pd50 structure, which indicates that the doping element (Al, Ir, and 

Pt) have no potential to improve the Cij of pure structure.  

 

 

Figure 7-5 (a) the elastic constant and (b) elastic shear modulus as a function of 
compositions for B2 Ti50Pd50-xMx (M=Al, Ir, Pt) alloys. 

 

 

 

 

 

at. % M (M= Al, Ir, Pt)

10 20 30 40

c
1
1
, 
c

1
2
 (

G
P

a
)

50

100

150

200

250

c11

c12

c11

c12

c11

c12

Al

Ir

Al

Pt

Pt

Ir

at. % M (M= Al, Ir, Pt)

10 20 30 40

c
4
4
, 
C

' (
G

P
a
)

-60

-40

-20

0

20

40

60

80

c44

C'

c44

C'

c44

C'

Ir

Al

Pt

Pt

Al

Ir

(a) 

(b) 



143 
 

 Anisotropy ratio: Ti50Pd50-xMx (M= Ru, Os, Co, Ni) 

 

This section focuses on the anisotropy ratio to describe isotropic behaviour and 

transformation of the Ti50Pd50-xMx systems. Note that the anisotropic ratio for Pt, 

Ir and Al are not shown because their c11<c12 resulted in a negative anisotropy 

value for the entire concentration range. 

 Isotropic and anisotropy behaviour 
 

It is important to study the elastic anisotropy of the systems in order to understand 

material properties and improve their mechanical durability. The anisotropy can 

be calculated as: 

                              𝐴 =
𝑐44

𝐶′
                                                                              (7-1)                                                                                       

 For an isotropic crystal, the factor (A) must be 1, while any value small or large 

than unity is a measure of the degree of elastic anisotropy.  

The anisotropic plot depicts anisotropic behaviour below 25 at. % for Ru, Os, Co 

and Ni additions. However, A approaches unity (A≈1) for both Ru and Os 

between 25 and 50 at. % composition. These alloy systems have isotropic 

behaviour at this composition range. The Co and Ni additions are highly 

anisotropic in the entire composition ranges (Figure 7-6). 
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Figure 7-6 Predicted Anisotropy ratio against the composition of B2 Ti50Pd50-

xMX. 

 

 Anisotropy and martensite transformation 
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above which suggest stability (Figure 7-7). The results suggest that the 

transformation temperature increases below 6 at. % due to negative elastic shear 

modulus (𝐶′) and decreases above (since 𝐶′ > 0). It is noted that the entire Zener 

anisotropy factors are less than 10 for Os and Ru at. % composition which 

indicates a possibility and reliability of prediction of Ms (see Figure 7-6). 

Furthermore, it was observed that the Zener anisotropy ratio is less than 10 for 

the addition of 6.25, 18.75, 43.75 and 50 at. % Co (except 25 and 31.25 at. % 

Co) as shown in Figure 7-8. 

 

Figure 7-7 The elastic constants c44 and C′ against the composition of 

Ti50Pd50-xMx alloys. 
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Figure 7-8 The elastic constants c44 and C′ against the composition of 

Ti50Pd50-xMx alloys 
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results in a reversible martensitic transformation that is from B2 to B19, and B19 

to B2. 

Os addition 

In the case of Os addition, A is higher for 18.75 at. % Os, which may suggest the 

transformation from B2 to B19 (Figure 7-6). There is a strong coupling observed 

between the c44 and  𝐶′ at 43.75 at. % Os which leads to the transformation from 

B19 to B19′ (since A is small). It can be concluded that Ti50Pd50-xOsx alloys 

transform from B2 to B19 (18.75 at. % Os) and then B19 transform into B19′ 

(43.75 at. % Os) due to a coupling of the c44 and  𝐶′ at 0 K.  This is a similar 

observation with TiNi and TiNi-based alloys [158]. 

Co and Ni addition 

 In the case of Co addition, it was observed that A is negative below 18.75 at. % 

Co indicating that the martensite transformation is suppressed and the B2 phase 

is preserved (Figure 7-6). As the composition of Co is increased to 31.25 at. %, 

A is higher than other compositions showing the transformation from B2 to B19. 

It can be deduced that B2 Ti50Pd50-xCox alloys transform to B19 phase above 31 

at. % Co. 

It is also noted that A is negative below 31.25 at. % Ni indicating that there is no 

transformation observed in those compositions. Interestingly, it is seen that A is 

higher for Ti50Pd6.25Ni43.75 which suggests transformation from parent B2 to 

martensite B19.  
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 Anisotropy and ductility 
 

The calculated A can also be used to check the ductility in metals. Thus for a 

material to be considered ductile, the anisotropy ratio should be greater than 0.8 

otherwise brittle [159]. The anisotropy values were found to be greater than 0.8 

for 25 and 31.75 at. % Ru (Figure 7-6). The results imply that the alloy becomes 

ductile at this composition‘s ranges and brittle elsewhere. It was also found that 

the anisotropy ratio is greater than 0.8 above 18.75 at. % Os which reveals ductile 

behaviour. Furthermore, the Co and Ni additions are favourable above 25 at. % 

and 43.75 at. %, respectively (condition of ductility). 

 

 Modulus: Bulk, Shear, and Young 

 

In order to determine the strength, compressibility, and stiffness of the Ti50Pd50-

xMx, we calculated the various moduli. The predicted Bulk, Shear, Young ´s 

modulus, Pugh and Poisson ratios are shown in Figure 7-9. 

 Bulk modulus 
 

Generally, the Bulk modulus (B) is a measure of the hardness or strength in 

materials. A high B value is associated with high strength otherwise less 

hardness. We note that the bulk modulus increase with an increase in Os, Ir and 

Ru concentrations which suggests that the hardness is enhanced. It appears that 

the Os addition gave the highest B followed by Ir and Ru, while the addition of Pt, 

Co and Ni showed a minimal increase in B. It can also be noted that there is a 

close comparison between Ir and Ru, particularly at about 25 at. %. On the 
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contrary, the calculated Bulk modulus decreases with an increase in Al content, 

indicating that the resistance to volume change by applied pressure is eventually 

lowered. Thus, Al addition gave the lowest Bulk modulus compare to other 

alloying elements. The predicted trend of hardness is Os< Ir< Ru< Pt < Co < Ni< 

Al.   

 Shear modulus 
 

The Shear modulus (G) plays an important role in checking the compressibility of 

the material. It provides a measure or ability to resists shape change caused by 

shear stress. A lower value of Shear modulus demonstrates lower shear 

resistance and weaker covalent bond while a higher value possesses larger 

shear resistance corresponding to more notable directional bonds between 

atoms.  

It is clearly seen that the shear modulus increase with an increase in Os and Ru 

content above 6.25 at. % which indicates higher shear resistance of the material 

at these compositions as shown in Figure 7-9 (b). In the case of Co and Ni, the 

shear modulus increase with an increase in composition above 18.75 at. %, 

suggesting an increase in the ability to resists shape change. This behaviour 

demonstrates that there are more notable directional bonds between 

neighbouring atoms. Similar behaviour has been observed previously [160]. 

Furthermore, at low concentration (6.25 at. %) the addition of Al and Pt resulted 

in the reduced shear modulus (Figure 7-9 (b)). Moreover, it is observed that as 

the concentration of Ir is increased above 31.25 at. % Ir, the G is enhanced. 

Similar analyses have been found by Wu et al. [160]. 
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 Young‘s modulus 
 

 Young‘s modulus (E) of the Ti50Pd50-xMx alloys are shown in Figure 7-9 (c). It is 

used to measures the physical stiffness of the material, a higher value of Young‘s 

modulus can be classified as rigid and it is less likely to get deformed. 

It can be noted that the Ti50Pd43.75O6.25 alloy has the lowest value (-16.07 GPa) 

of Young modulus which indicates the weakest stiffness and the alloy can be 

easily deformed. The results suggest that Os addition is the stiffest with the 

highest value of Young modulus (317.38 GPa), particularly at the high 

composition i.e. Ti50Pd6.25Os43.75, followed by Ru addition. The stiffness 

decreases for the case of Al and Pt indicating weak stiffness and the structure is 

likely to deform easily. Furthermore, it is noted that Young‘s modulus increases 

minimally above 18.75 at. % Co and Ni possessing the strongest resistance to 

uniaxial tensions [161].  
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Figure 7-9 The calculated (a) Bulk (B), (b) Shear (G), and (c) Young’s (E) modulus 

against various atomic percent M (at. % M) for (0 ≤ 𝑥 ≤ 50) compositions range. 
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 Ductility: B/G ratio, Poisson‘s ratio and the Cauchy pressure 

 

Now, in order to relate the ductility and brittleness behaviour of the B2 Ti50Pd50-

xMx alloys, we have calculated the B/G ratio, Poisson‘s ratios and the Cauchy 

pressure at different compositions. These are three major quantities that can also 

be used to describe the strength of the material. 

 The B/G ratio 

 

We have calculated the ratio of bulk to shear modulus (B/G) to investigate the 

extent of fracture in the Ti50Pd50-xMx alloys and is shown in Figure 7-10. The 

material is considered to be ductile if B/G> 1.75, otherwise brittle [149]. This is a 

measure proposed by Pugh and is referred to as the ratio of brittle and ductility 

[149]. It is clear that above 18 at % Ru, Os and Co, the structures satisfy the 

ductile conditions since B/G values are greater than 1.75. However, below 18 at 

% Ru, Os and Co composition, the structures are regarded as less ductile with 

the B/G less than 1.75. In the case of Ni and Ir, the B/G is greater than the unit 

above 25.00 and 31.25 at. %, respectively which reveals ductile behaviour.   

Furthermore, the values for Ti50Pd50-xMx with Al and Pt addition present brittle 

behaviour due to lower B/G ratios (<1.75) for the entire concentration range (0≤

𝑥 ≤ 50). This observation suggests that the addition of Al and Pt cannot transform 

the brittleness of Ti50Pd50 into ductility as indicated by the lower B/G ratio. 
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Figure 7-10 The B/G ratio against the composition of B2 Ti50Pd50-xMX alloys (0 ≤
𝒙 ≤50). 

 

 Poisson‘s ratio 
 

The Poisson‘s ratio (𝜎) was also evaluated to check the ductility of the material. 

The structure is considered as ductile material when 𝜎 is greater than 0.26 

otherwise brittle [140]. We see that as the composition of Ru, Os, Co, Ni, Al, Pt 

and Ir is increased, the 𝜎 values were found to be greater than 0.26 which 

suggests that the structures are ductile (see Figure 7-11).  

Furthermore, Poisson‘s ratio is also used to analyse the bonding behaviour of 

Ti50Pd50-xMx alloys. Note that a covalently bonded structure has a small value of 

~ 0.1, an ionic bonded structure has a value of 0.25 while for metallic materials 

is above 0.33 [162]. It is noted that the Poison‘s ratio (𝜎) is greater than 0.33 

at. % M (M= Pt, Ir, Ru, Os, Co, Ni, Al)

0 10 20 30 40 50

T
h

e
 B

/G
 r

a
ti
o

-20

-10

0

10

20

30

Pt

Ir

Ru

Os

Co

Ni

Al

Ti
50

Pd
50 Ti

50
M

50



154 
 

when Ru and Os concentration is increased up to 31 at. % Ru and Os, 

respectively (see Figure 7-11). This implies that the structures show metallic 

bonding behaviour below 31 at. % Ru and Os while above this concentration the 

structure show ionic bonding behaviour characteristics with a value of 0.31. In the 

case of Co, Ni, Al, Ir and Pt, the Poison‘s ratio (𝜎) is greater than 0.33 which 

implies that the structures have metallic bonding characteristics.  

 

Figure 7-11 The Poisson’s ratio against atomic percent M (at. % M) for (0 ≤
𝒙 ≤50)  
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As the composition of Ru is added to the system, the Cauchy pressure values 

are positive for the entire range (0 ≤ 𝑥 ≤50) which confirms the ductility behaviour 

as shown in Figure 7-12. The results indicate that the structures are mechanically 

stable under normal pressure and room temperature conditions (as discussed in 

section 7-1). Similar behaviour was observed for Ni, Al, Co, Pt and Ir. 

In Figure 7-12, the calculated Cauchy pressure is positive below 40 at. % Os 

which reveals the ionic character and ductile behaviour. At high concentration 

above 40 at. % Os, the Cauchy pressure is negative which suggests the brittle 

nature. The results agree very well with the conclusion drawn from Pugh‘s ratio 

above. The increasing ductility trend predicted from Cauchy pressure is Os< Ru< 

Al< Ni< Co < Pt < Ir.  

 

Figure 7-12 Cauchy pressure against the composition of B2 Ti50Pd50-xMx 

alloys. 
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 Vickers hardness 

Vickers hardness (Hv) is an important parameter of materials, which can be used 

to estimate the ability to resists localized deformation [163]. The Vickers hardness 

(HV) can be calculated as follows: 

 𝐻𝑉 =
𝐸(1−2𝑣)

6(1+𝑣)
                                                                   (7-2) 

where E is Young‘s modulus and 𝑣 is Poisson‘s ratio.                                                                                

The HV of Ti50Pd50-xMx has been calculated and is shown in Figure 7-13. It was 

found that the HV increases as the concentration of Os and Ru are increased, 

particularly above 18.75 at. %. This suggests that the hardest material can be 

obtained at high content of Os and Ru for example, Ti50Pd6.25Os43.75 and 

Ti50Pd6.25Ru43.75 with the HV of 12.49 and 8.51, respectively. In the case of Co and 

Ni, it is clearly seen that the HV increase above 25 and 31 at. %, respectively.  

Furthermore, we note that hardness increases minimally with an increase in Al 

and Ir concentration whereas Pt shows a decrease (Figure 7-13). The predicted 

results revealed that Os addition has the strongest ability to enhance the 

hardness of the binary Ti50Pd50 system as compared to other alloying elements 

(Ru, Co, Ni, Al, Pt, and Ir). Thus the predicted trend in the decreasing order is 

Ti50Pd50-xOsx >Ti50Pd50-xRux> Ti50Pd50-xAlx> Ti50Pd50-xIrx >Ti50Pd50-xCox >Ti50Pd50-

xNix >Ti50Pd50-xPtx. 



157 
 

 

Figure 7-13 Vickers hardness against atomic percent M (at. % M) for (0 ≤
𝒙 ≤50). 
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Vibrational and thermal properties for B2 Ti50Pd50-

xMx 

 

In this section, we discuss the vibrational and thermal properties in particular the 

phonon dispersion curves, Debye temperature, heat capacity and thermal 

coefficient of linear expansion of Ti50Pd50-xMx (M=Ru, Pt, Ir, Co, Ni, Al, and Os). 

The phonon dispersion curves are presented and discussed to highlight 

vibrational stabilities. The thermal properties of Ti50Pd50-xMx alloys are calculated 

by the quasi-harmonic model with temperatures ranging from 0 to 3000 K to 

check the thermal conductivity and thermal expansion of the systems. The 

calculated results are compared with the available experimental and theoretical 

findings. 

 

 Phonon dispersion curves and phonon density of states for B2 

Ti50Pd50-xMx alloys. 

 

Phonon dispersion curves for the B2 Ti50Pd50-xMx system were calculated to 

determine the vibrational stability using a PHONON code [128]. The structure is 

considered stable if there are no soft modes along high symmetry directions in 

the Brillouin zone (Bz), otherwise, it is unstable (presence of soft modes). The 

Phonon dispersion curves are shown in Figures 8-1 to 8-7. 
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 Ti50Pd50-xMx alloys: (M= Ru, Os) 
 

Figures 8-1 and 8-2 show the phonon dispersion curves of B2 Ti50Pd50-xMx with 

Ru and Os addition, respectively. In Figure 8-1, the phonon curves display soft 

modes along all the high symmetry directions for Ti50Pd43.75Ru6.25 and 

Ti50Pd31.25Ru18.75. It is observed that the phonon soft modes at 18.75 at. % Ru is 

reduced showing improved vibrational stability. The presence of soft modes 

corresponds with the negative elastic shear moduli (𝐶′< 0 in Figure 7-1). At 25 at 

% Ru the soft modes disappeared, only imaginary soft mode was observed along 

M which suggests that at this concentration the structure is vibrational stable. 

Interestingly, at 31.25, and 43.75 at. % Ru there are no soft modes observed 

which confirm vibrational stability in agreement with the predicted Cij. Figure 8-1 

was published [35]. 

In the case of Ti50Pd50-xOsx (Figure 8-2), the soft modes are observed at lower Os 

content of 6.25 at. % which suggests vibration instability.  The stability is observed 

at higher Os content of 25 at % and above (25 ≤ x ≤ 50). It is noted that Os has 

the potential for enhancing stability compared to Ru. Our results are consistent 

with the predicted Cij.  
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Figure 8-1 The phonon dispersion curves of the Ti50Pd50-xRux (6.25 ≤ x ≤ 50) ternary 
structures [35].  
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Figure 8-2 The phonon dispersion curves of the Ti50Pd50-xOsx (6.25 ≤ x ≤ 50) ternary 
structures.  
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  Ti50Pd50-xMx (M= Ir, Pt) alloys 
 

The phonon dispersion curves of B2 Ti50Pd50-xMx alloys are shown in Figures 8-

3 and 8-4. It is clearly seen that the structure is vibrationally unstable since it 

displays soft modes along high symmetry direction in the Brillouin zone (Bz). 

Furthermore, vibrational instability is observed for all composition range (0 ≤ x ≤ 

50). The presence of negative vibrations or soft modes suggests mechanical 

instability in agreement with the elastic shear modulus (as discussed in chapter 

7, section 1.4).  

Similar to the case of Ir addition, when the concentration of Pt is increased, the 

structure remains vibrationally unstable due to the presence of soft modes. The 

negative vibrations may be attributed to the negative elastic shear modulus 

(Figure 7-5 (b)) which confirms that the system is vibrationally unstable.  

 

 Ti50Pd50-xMx (M= Co, Ni, Al) alloys 
 

The phonon dispersion curves for Ti50Pd50-xMx (M= Co, Ni, Al) alloys are shown 

in Figures 8-5 to 8-7. The Ti50Pd50-xCox system is vibrationally unstable at a lower 

concentration of Co, due to the presence of soft modes (Figure 8-5). However, 

the increase in Co content has a significant effect since the soft mode becomes 

reduced. Possible stability could be attained at 31.25 at. % Co, since no soft 

mode was observed at Γ (0, 0, 0). At 43.75 at. % Co, the structure is vibrational 

stable (Soft mode disappears). The Ti50Co50 system is vibrationally stable, 

consistent with the calculated Cij (Figure 7-8). 
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Figure 8-3 The phonon dispersion curves of the Ti50Pd50-xIrx (6.25 ≤ x ≤ 50) ternary 
structures.  
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Figure 8-4 The phonon dispersion curves of the Ti50Pd50-xPtx (6.25 ≤ x ≤ 50) ternary 
structures.  

 

In the case of Ti50Pd50-xNix (Figure 8-6), the structure remains vibrationally 

unstable due to the presence of soft modes for all composition range (0 ≤ x ≤ 50). 

Interestingly, at 43.75 at. % Ni, the soft modes are reduced and are only observed 

along M and R-X directions. The negative vibrations are attributed to the negative 
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elastic shear modulus (Figure 7-8), which confirms that the system is 

mechanically unstable.  

Similar to the case of Ni addition, Ti50Pd50-xAlx structures are vibrationally 

unstable due to the presence of soft modes along high symmetry direction in the 

Brillouin zone (Figure 8-7). The results are consistent with predicted Cij.  

   

   

Figure 8-5 The phonon dispersion curves of the Ti50Pd50-xCox (6.25 ≤ x ≤ 50) ternary 
structures.  
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Figure 8-6 The phonon dispersion curves of the Ti50Pd50-xNix (6.25 ≤ 𝑥 ≤ 50) ternary 
structures.  
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Figure 8-7 The phonon dispersion curves of the Ti50Pd50-xAlx (6.25 ≤ 𝑥 ≤ 50) ternary 
structures.  
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 Thermal properties: Debye temperature, heat capacity, thermal 

coefficient of linear expansion.  

 

 Debye temperature 
 

Debye temperature is a very important fundamental parameter which is closely 

related to the thermodynamic properties of materials, such as entropy, thermal 

expansion and vibrational internal energy [150, 164, 165]. It can be estimated 

from the elastic constants using the average sound velocity 𝜈𝑚 as follows:  

Θ𝐷 =
ℎ

𝑘𝐵
(

3𝑛

4𝜋𝑉𝑎
)1/3𝜈𝑚,                                                                            (8-1) 

where h is Plank‘s constant, kB is Boltzmann‘s constant, n is the number of atoms 

per unit cell and Va is the atomic volume. The average sound velocity 𝜈𝑚 is 

obtained from:   

𝜈𝑚 = [
1

3
(

2

𝜈𝑙
3 +

1

𝜈𝑡
3)]-1/3,                                                                                                             (8-2) 

where 𝜈𝑙 and 𝜈𝑡 are the longitudinal and transverse sound velocities of an 

isotropic aggregate obtained by using the shear modulus (G) and the Bulk 

modulus (B) as follows: 

𝜈𝑙 = (
3𝐵+4𝐺

3𝜌
)1/2,                                                                                     (8-3) 
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𝜈𝑡 = (
𝐺

𝜌
)1/2.                                                                                                                                           (8-4) 

 The Θ𝐷 for Ir, Pt, Ni and Al additions are not included, because one of the moduli 

is negative, and thus calculating the speed of sound is not possible [166].  

Figure 8-8 shows the Θ𝐷 against concentration for Ti50Pd50-xMx (M= Ru, Os, Co) 

alloys. A higher Θ𝐷 implies a single normal vibration which results in a better 

thermal conductivity [164]. In general, the Θ𝐷 is calculated from elastic moduli 

(Bulk and Shear modulus). It is noted from Figure 8-8 that Θ𝐷 increases with an 

increase in Ru concentrations (0≤ 𝑥 ≤ 50). It should be noted that the Θ𝐷 for 6.25 

at. % Ru cannot be attained due to negative elastic moduli.  

In Figure 8-8, a sharp exponential increase in Θ𝐷 is observed between 20 and 30 

at. % Ru, and continue to increase slightly above this point. Thus a better thermal 

conductivity is reached at 25 at. % Ru corresponding to the sharp peak. This 

accord well with the increased ductility as confirmed by Poisson and Pugh‘s ratio. 

Above this concentration, the thermal conductivity increases slightly up to 50 at. 

% Ru. Therefore thermal conductivity of Ti50Pd50-xRux alloys may be favourable 

between 25 and 31.25 at. % Ru.  

It is observed that Θ𝐷 increases with an increase in Os contents (0≤ 𝑥 ≤ 50) 

under normal pressure as shown in Figure 8-8. This behaviour suggests that the 

thermal conductivity of the structure is effectively improved with an increase in 

Os content. The Θ𝐷 is mostly favourable between 18.75 and 25 at. % Os. There 

is a slight decrease in Θ𝐷 as Os content is increased above 43.75 at. %, however 
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the thermal conductivity of the structure is still favourable as compared to other 

compositions.  

Furthermore, it is noted from Figure 8-8 that Θ𝐷 increases with an increase in Co 

concentrations (0≤ 𝑥 ≤ 50). This may imply that the Θ𝐷 is enhanced remarkably 

with an increase in Co concentration. It can be inferred that thermal conductivity 

could be effectively improved by the increase in Co concentration of 43.75 at. %. 

At 6.25 at. % Co, no Θ𝐷 was recorded due to negative moduli which imply poor 

thermal conductivity at that composition.  

 

Figure 8-8 Debye temperature against the composition of Ti50Pd50-xMx (M= Ru, 
Os, Co) alloys (6.25 ≤ 𝑥 ≤ 50). 
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reflects the inherent properties of the system, serving as a bridge between 

thermodynamics and microscopic structure [163].  

The heat capacities at constant volume (CV) of the Ti50Pd50-xMx (Ru, Os, and Co) 

alloys are shown in Figure 8-9. The calculations were done at various 

compositions for temperature ranging from 0 to 3000 K, and pressure at 0 GPa. 

It is observed that CV rises sharply with the increase in Ru content at 

temperatures below 300 K and reaches a zero slope above this temperature, in 

agreement with the Dulong–Petit limit, which is common to all solids at high 

temperatures [166]. This limit is proposed by Dulong–Petit [167] and is observed 

at sufficiently low temperatures when CV does not depend much on temperature 

and converges to a near-constant (CV is proportional to T3). This behaviour 

implies that the bond state is weaker and reaches bigger thermal vibrations of 

atoms above 300 K. Similar behaviour was obtained from nickel-based cast 

superalloys [168].  

The current results indicate that the electron excitation occurs at a very low 

temperature below 300 K and the contributions from phonon excitations are 

significant at high temperatures for all compositions in Ti50Pd50-xRux alloys (Figure 

8-9 (a)). The Ti50Pd31.25Ru18.75 system, in particular, has the strongest heat 

capacity (high value) while the weakest heat capacity (low value) was observed 

for Ti50Ru50. The CV tends to the Dulong-Petit limit (approaches of 398.5 Jmol-1K-

1) at about 300 K. The Dulong-Petit limit is observed for all compositions (6.25 ≤

𝑥 ≤ 50) for the temperature above the Debye temperature.  
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A similar trend is observed when the amount of Os is added to the system (Figure 

8-9 (b)). Moreover, the strongest heat capacity is observed for 6.25 at. % Os while 

the weakest heat capacity was observed for 50 at. % Os. At higher temperatures 

(>300 K) the CV reaches the Dulong-Petit limit. The Dulong-Petit limit is observed 

for all compositions (6.25 ≤ 𝑥 ≤ 50) the temperature below the Debye 

temperature for the entire concentrations. 

It is noted that the CV in Figure 8-9 (c) increases with an increase in Co content 

when the temperature is below 300 K and reaches a zero slope above that 

temperature (>300 K). Similar bond state behaviour was observed for 

compositions (31.25, 43.75 and 50 at. % Co) except for 25 at. % Co. However, 

the strongest heat capacity was observed for 18.75 at. % while the weakest heat 

capacity was observed for 50 at. % Co. 
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Figure 8-9 The heat capacity (CV) against temperature for Ti50Pd50-xMx (Ru, Os and 
Co) alloys. 
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 Thermal coefficient of linear expansion 
 

The thermal coefficient of linear expansion expresses the tendency of a structure 

to change in volume due to a temperature change. A larger value of α implies that 

the material expands moreover a chosen temperature range. Thermal expansion 

generally decreases with increasing bond energy; hence materials with high 

melting temperatures are more likely to have lower thermal expansion. The 

thermal expansion (𝛼) are expressed as [151]: 

𝛼 =
𝛾𝐶𝑉

𝐵𝑇𝑉
                                                                                                            (8-6) 

where BT is the isothermal bulk modulus, V is volume and  𝛾 is the 𝐺𝑟𝑢𝑛𝑒𝑖𝑠𝑒𝑛̈  

parameter which is defined as [151]: 

𝛾 = −
𝑑𝐼𝑛Θ(𝑉)

𝑑𝐼𝑛𝑉
                                                                                                    (8-7) 

Figure 8-10 shows a thermal coefficient of linear expansion (𝛼) with temperature 

for Ti50Pd50-xMx (Ru, Os, Co) alloys. The coefficient of linear expansion displays 

a similar trend for all alloying elements (Ru, Os, Co). The addition of dopants 

reduces the thermal coefficient of linear expansion. An increase in the 

concentration of the alloying element results in less expansion. This observation 

is necessary for the development of the alloys. However, the expansion rates are 

different.  

For example, the thermal coefficient of linear expansion for the Ti50Pd31.25Ru18.75 

is higher than that of 43.75 at. % Ru below 500 K (Figure 8-10 (a)). Furthermore, 

we note that the material expands more at a low content of 18.75 at. % Ru than 

at higher content. It is also observed that as the Ru content is increased the 
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thermal expansion increases at a lower temperature (<300) and reaches a zero 

slope at a high temperature range. At this region, no further expansion is 

observed (Figure 8-10 (a)). In the case of Os, we observe a similar trend, however 

with a high expansion rate. It is clearly seen that 6 at. % Os is the highest. The 

highest thermal coefficient of linear expansion is observed for Co addition (Figure 

8-10 (c)), compared to that of Ru and Os. 
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Figure 8-10 The linear thermal expansion coefficient (𝛼) as a function of 
temperature for Ti50Pd50-xMx (M= Ru, Os, Co) alloys.  
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The temperature dependence of the Ti50Pd50-xMx 

 

In this chapter, the temperature dependence on the volume, density, lattice 

parameters and elastic properties of B19 Ti50Pd50-xMx (x = 6.25, 18.75 and 25) 

are presented. The alloying elements i.e. Co and Ni were chosen due to their 

promising thermodynamical and mechanical properties which were discussed in 

chapter 6. Pt and Al were not conducted since they display mechanical instability. 

LAMMPS code [103] which employs the embedded atom method (EAM) [104] 

was used, where the Zhou [139] interatomic potentials were invoked. 

Previously, the LAMMPS code was successfully used to describe the 

temperature dependence of TiPt and TiPt- (Co, Ni) and the results were in 

agreement with experiments [4, 9, 13]. It was reported that Co addition decreases 

the transformation of TiPt in both computational and experimental findings. 

In this chapter, a supercell containing 2048 atoms was constructed for the B19 

Ti50Pd50-xCox alloys and the systems were treated with NPT [124] ensemble, 

Nose Hoover thermostat [123] and barostat [169]. The temperature was varied 

between 273 and 1773 K to determine the transformation temperature of the 

systems, their lattice parameters and XRDs were determined. We will highlight 

an understanding of the transformation from the orthorhombic B19 (martensite 

phase) to the cubic B2 phase (austenite phase) using XRDs. In addition, the 

temperature dependence with the elastic properties is investigated to determine 

the elasticity strength of the material.   
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 Temperature dependence of the volume and density of the Ti50Pd50-

xMx (Co, and Ni). 

 

Figure 9-1 shows volume against the temperature of the Ti50Pd50-xCox (0≥

𝑥 ≥25). The volume of the structures increases linearly with an increase in 

temperature as depicted by the plots in Figures 9-1 and 9-2; respectively. As Co 

content is added to the Ti50Pd50 system, the volume is lowered with 25 at. % Co 

having the lowest volume. Similar behaviour was observed with the addition of Ni 

for the concentration range of 6.25 to 25 at. % (see Figure 9-1 (b)). The obtained 

volume is lowered as Co and Ni content is added as compared to the pure 

Ti50Pd50 system which indicates that their lattice parameters expand more with 

an increase in temperature.  

 

 

Figure 9-1 Volume against temperature for Ti50Pd50-xCox alloys. 

Temperature (K)

200 400 600 800 1000 1200 1400 1600 1800

V
o
lu

m
e
 (

Å
3
/a

to
m

)

16

17

18

19

B19 Ti50Pd50

Ti50Pd43.75Co6.25

Ti50Pd31.25Co18.75

Ti50Pd25Co25



179 
 

 

Figure 9-2 Volume against temperature for Ti50Pd50-xNix alloys. 

 

The density of Ti50Pd50-xCox alloys is shown and compared in Figure 9-3. As the 

amount of Co is added, the density decrease with an increase in temperature 

which may suggest that the system becomes less dense with temperature for the 

composition range (0≥ 𝑥 ≥25). A similar trend was noted with the addition of Ni 

additions as shown in Figure 9-4. The finding suggests that the addition of Co 

resulted in less dense structures which agrees well with the fact that Co (8.86 

g/cm3) and Ni (8.90 g/cm3) are less dense compared to Pd (12.02 g/cm3).  

 

Temperature (K)

200 400 600 800 1000 1200 1400 1600 1800

V
o
lu

m
e

 (
Å

3
/a

to
m

)

16

17

18

19

B19 Ti50Pd50

Ti50Pd43.75Ni6.25

Ti50Pd31.25Ni18.75

Ti50Pd25Ni25



180 
 

 

Figure 9-3 Density against temperature for Ti50Pd50-xCox alloys. 

 

Figure 9-4 Density against temperature for Ti50Pd50-xNix alloys. 
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shows the effect of temperature on the lattice parameters of B19 Ti50Pd50-xMx 

alloys. 

In this section, we evaluate X-ray diffraction patterns to determine the 

transformation temperature of B19 Ti50Pd50-xMx alloys with respect to the intensity 

of the peaks and temperature is varied from 273 to 1670 K. A supercell which 

consists of 2048 atoms was used for various composition ranges (0≤ 𝑥 ≤ 25) of 

B19 Ti50Pd50-xMx alloys and is shown below. 

 

 Lattice expansion and XRD’s for the B19 Ti50Pd50-xCox alloys 
 

Figure 9-5 shows the graph of lattice parameters with temperature for the B19 

Ti50Pd50-xCox (0≥ 𝒙 ≥25). As discussed in chapter 5, the temperature 

transformation of the pure Ti50Pd50 from B19 to B2 was found to be at 1496 K as 

indicated by a ratio of 1.414. Mitarai et.al [13] reported on the temperature 1473 

K and the same trend was observed on their lattice parameters. They also 

suggested that for a structure to transform the cubic B2 phase, the a/c and c/b 

ratio should be closer to 1.41. As 6.25 at. % Co is added to Ti50Pd50, the a, c and 

b lattice parameters increase linearly with temperature as shown in Figure 9-5 

(a). Interestingly, a collapse is observed at temperatures around 971 K for both a 

and c and a sharp increase for b lattice parameters. At these temperatures, a 

transformation from B19 to B2 is predicted for the Ti50Pd43.75Co6.25.  

 

 In the case of Ti50Pd31.25Co18.75, a collapse is observed at 572 K on the a and c 

lattice parameters. The a/c and c/b ratio become 1.31 at a temperature around 
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672 K suggesting that at this temperature, the structure has transformed to the 

B2 phase. Similarly with 25 at. % Co, the a and c lattice parameters increase with 

an increase in temperature and there is a drastic drop observed at 472 K. There 

is coupling observed between a/b and c/b ratio for 25 at. % Co at 472 K, 

suggesting transformation from B19 to B2 phase. Recently, Mitarai et al [4] 

investigated the martensitic and austenite transformation of Ti50Pd50-xCox (x= 2, 

4, and 8) experimentally and their results agree very well with our observations. 

It is noted that above 25 at. % Co, the transformation temperature occurs at a 

very low temperature which is shown in appendix A (Figure A-1). As Co is alloyed 

on the Ti50Pd50, the martensitic transformation of the system is reduced. The 

reported Ti50Co50 [170] transformation temperature is lower as compared to 

Ti50Pd50 which suggests that indeed Co reduces the transformation temperature.   
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Figure 9-5 The effect of temperature on the (a) a and c (b) b (c) a/b and c/b 
lattice parameters of the B19 Ti50Pd50-xCox (x = 0, 6.25, 18.75 and 25). 
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B2 phase (as shown in Figure 5-7). As 6.25 at. % Co is added, we observe the 

same set of peaks of the B19 phase from the XRD patterns below 872 K. It is 

noted that when the temperature is increased to 972 K, the number of peaks 

reduces which may suggest a possible transformation from B19 to B2 phase. 

Furthermore, it is noted that the same set of peaks of the B19 phase is obtained 

from 972 to 1572 K with the same set of peaks of the B19 phase which indicates 

B2 phase patterns. As the temperature is increased above 1672 K, the peaks are 

broader and the structure becomes deformed which suggests that the melting 

temperature is reached. 

Figure 9-6 shows the XRD patterns of B19 Ti50Pd31.25Co18.75 alloy calculated at a 

temperature range from 273 to 1572 K. The same set of peaks of the B19 phase 

is observed from 273 to 472 K which implies that there is no transformation. A 

transformation is observed at 572 K as the number of peaks reduces. At 1572 K, 

the peak becomes broader and reaches the melting temperature. In the case of 

25 at. % Co, it is observed that the number of peaks reduces at 472 K which 

implies transformation from B19 to B2 phase (see Figure 9-7). It is clearly seen 

that the transformation temperatures observed at 18.75 and 25 at. % Co were 

found very small and close to each other which suggests that those compositions 

do not enhance the transformation temperature of the pure system. The melting 

temperature is reached above 1572 K as the peak becomes broad and the 

intensity peaks are lost. It is interesting that the transformation temperature of the 

B19 Ti50Pd50-xCox alloy correlates well with the a/b and c/b ratios change, as 

discussed above (see section 9.2.1). 
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 Lattice expansion and XRD‘s for the B19 Ti50Pd50-xNix alloys 

 

The effect of temperature on lattice parameters of B19 Ti50Pd50-xNix (x =6.25, 

18.75 and 25) is shown in Figure 9-8. At temperature below 871 K, the a, c and 

b lattice parameters of Ti50Pd43.75Ni6.25 increases linearly. A drastic decrease in a 

and c lattice parameters is observed from 871-971 K while the b lattice parameter 

increase sharply from 871- 971 K. It is observed that the a/b and c/b ratio for 

Ti50Pd43.75Ni6.25 decreases with an increase in temperature with a sudden drop 

observed at approximately 971 K. There is coupling observed between a/b and 

c/b ratio and the ratio was found to be 1.43 at 971 K which is comparable to the 

expected value of 1.41. The results infer that there is a transformation from the 

B19 to B2 phase with an a/b and c/b ratio of 1.43 at 971 K.  

It is clearly seen that the a, c and b lattice parameters of Ti50Pd31.25Ni18.75 increase 

with an increase in temperature and there is a coupling observed between the a 

and c lattice parameters from 272-1572 K. The a/b and c/b ratio become 1.38 at 

a lower temperature (272 K), suggesting possible transformation from B19 to B2. 

A similar trend was observed for B19 Ti50Pd25Ni25 as the transformation from B19 

to B2 phase occurs at a very low temperature (see Figure 9-8 (c)). Note that 

above 25 at. % Ni the transformation temperature occurs at very low temperature 

which is highlighted in appendix A (Figure A-2). 
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Figure 9-6 The simulated B19 Ti50Pd43.75Co6.25 and Ti50Pd31.25Co18.75 
diffraction patterns from 273 to 1670 K.  
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Figure 9-7 The simulated B19 Ti50Pd25Co25 diffraction patterns from 273 to 
1572 K 
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Figure 9-8 The effect of temperature on the (a) a and c (b) b (c) a/b and c/b 
lattice parameters of the B19 Ti50Pd50-xNix (x = 0, 6.25, 18.75 and 25). 
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transformation at that temperature range. Furthermore, it is noted that the number 

of peaks reduces with an increase in temperature above 971 K which implies 

transformation from B19 to B2 phase. It is noted that the melting temperature is 

reached above 1669 K as the patterns become broad and deform. The result 

agrees very well with the predictions from lattice expansion as discussed in 

Figure 9-8. The simulated XRD patterns of B19 Ti50Pd31.75Ni18.75 alloy at various 

temperature ranges (73-1572 K) are shown in Figure 9-9. As the temperature is 

increased from 73-472 K, it is observed that 18.75 at. % Ni maintains the same 

set of peaks of the B19 phase. It is clearly seen that above 572 K, the number of 

peaks for 18.75 at. % Ni is reduced and assumed to be the B2 phase patterns. 

The result suggests that there is a transformation from B19 to the B2 phase above 

572 K and the structure becomes deformed at 1572 K.  

 

In the case of B19 Ti50Pd25Ni25 alloy, it is noted that the same set of peaks of the 

B19 phase are maintained below 172 K as shown in Figure 9-10. At 273 K, the 

number of peaks is reduced and are assumed to be B2 phase patterns. 

Furthermore, it is noted that when the temperature is increased to 1569 K, the 

peaks are broad which suggests that the melting temperature is reached. The 

transformation and the melting temperatures of B19 Ti50Pd50-xNix alloys obtained 

are lowered compared to the pure B19 Ti50Pd50. 
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Figure 9-9 The simulated B19 Ti50Pd43.75Ni6.25 and Ti50Pd31.25Ni18.75 
diffraction patterns from 73 to 1669 K.  
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Figure 9-10 The simulated B19 Ti50Pd25Ni25 diffraction patterns from 73 to 
1569 K.  
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 Elastic properties of B19 Ti50Pd50-xMx alloys with temperature.  

 

The elastic properties are investigated to determine the strength of the material. 

The obtained nine independent elastic stiffness constants (Cij) of the Ti50Pd50-xMx 

(M= Co and Ni) alloys are shown in Figures 9-11 to 9-14.  

 Elastic constants of B19 Ti50Pd50-xCox with temperature 

 

The temperature dependence of elastic constants for Ti50Pd50-xCox (x= 6.25, 

18.75 and 25) is calculated and shown in Figures 9-11. The elastic constants (c11, 

c12, c13, c22, c23, c33, c44, c55 and c66) decrease linearly with increase in temperature 

as 6.25 at. % Co is added to the system and all tend to converge to a common 

value at 1670 K. It is clearly seen that the values are very closer to each other 

between c12 and c13 for the entire temperature range.  In the case of 18.75 at. % 

Co, the orthorhombic mechanical stability conditions are satisfied below 1572 K. 

It is noted that the elastic constants c55 and c66 are negative at 1670 K which 

implies instability of the structure at high temperature as the stability condition is 

not satisfied for 18.75 at. % Co.  

At 18.75 at. %, almost similar values are observed between c22 and c33 at 273 K 

which may suggest possible transformation. The stability conditions of 

orthorhombic crystals are satisfied below 1572 K. A similar trend was observed 

with 25 at. % Co. We see a coupling between c22 and c33 at 273 K. Another 

coupling is observed between c23 and c33 above 1172 K indicating possible 

transformation. The last elastic constants (c44, c55 and c66) reduces minimally with 

an increase in temperature. The instability is observed at 25 at. % Co as the c55 

and c66 moduli become negative (-0.17 and -0.15 GPa) at temperature 1570 K.  
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Figure 9-11 simulated elastic constants against temperature for Ti50Pd50-

xCox alloys (6.25 ≤ 𝑥 ≤ 25). The dotted lines are used as a guide with respect 
to stability. 
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The elastic constant (c44) becomes negative (-149.44 GPa) at 1370 K which 

suggests instability of structure at that temperature as shown in appendix A 

(Figure A-3). Again as shown in appendix A, the c44 and c55 moduli become 

negative (-0.35 and -0.06 GPa) at 1770 K for 50 at. % Co which suggests 

instability of the structure at a higher temperature. 

The elastic shear moduli (𝑪′) are calculated and shown in Figure 9-12 at different 

temperature range (273-1800 K) for ternary B19 Ti50Pd50-xCox alloys. There are 

three shear moduli (c11 + c22 -2c12), (c11 + c33 -2c13) and (c22 + c33 -2c23) for the 

orthorhombic system. At 6.25 at. % Co, it is noted that the shear moduli are 

positive below 1670 K and reduce as the temperature is increased to a negative 

value above. We observe a coupling between (c11 + c22 -2c12) and (c22 + c33 -2c23) 

at 18.75 at. % Co for the entire temperature range. We note sudden collapse from 

the three shear moduli from 1598 -1696 K which is due to the melting temperature 

being reached at 1680 K.  

In the case of 25 at. % Co, it is noted that elastic shear modulus (c11+c22-2c12) is 

negative at 1670 K which implies the mechanical instability of the structure. It is 

clearly seen that there is a coupling between (c11 + c22 -2c12) and (c22 + c33 -2c23) 

from 972 to 1273 K which suggest possible transformation from B19 to B2 phase. 

The mechanical stability of orthorhombic alloys is satisfied below 1670 K for 6.25 

at. % Co and 1572 K for 18.75 and 25 at. % Co, respectively. 
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Figure 9-12 Calculated elastic shear modulus (𝑪′) against temperature for 
Ti50Pd50-xCox alloys (6.25 ≤ 𝑥 ≤ 25). The dotted lines are used as a guide with 
respect to stability. 
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and c13 have a common value for the entire temperature range while c23 and c33 

are observed at 1472 K. On the other hand, the elastic constants (c44, c55 and c66) 

of 18.75 at. % Ni decreases minimally and tends to a common value above 1472 

K.  

In the case of 25 at. % Ni, the elastic constants decreases and tend to a common 

value at 1569 K. It is clearly seen that there is a coupling observed between c11 

and c13 at 1372 K and between c23 and c33 at 1272 K. Furthermore, another 

coupling is found between c12 and c22 for the entire temperature range. This 

behaviour suggests possible transformation from the B19 B2 phase. The elastic 

constant (c44) is negative above 1670 K while the elastic constant (c55) becomes 

negative at 1769 K which indicates instability of the structure at high temperature 

as the stability condition is not satisfied.  

 

Figure 9-14 shows the calculated shear moduli (𝑪′) of B19 Ti50Pd50-xNix alloys 

(6.25 ≤ 𝒙 ≤ 25) at different temperature range (273-1800 K). It is noted that the 

shear moduli of Ti50Pd43.75Ni6.25 are all positive below 1570 K and reduce to a 

common value as the temperature is increased above. The shear moduli (c11 + 

c22 -2c12), (c11 + c33 -2c13) became negative above 1670 K while (c22 + c33 -2c23) 

become negative above 1769 K, which indicate instability of 6.25 at. % Ni. The 

result indicates that Ti50Pd43.75Ni6.25 is stable below 1570 K. In the case of 

Ti50Pd31.25Ni18.75 and Ti50Pd25Ni25 alloys, the result show stability below 1470 K 

and unstable above 1570 K. The orthorhombic mechanical stability conditions are 

satisfied below 1470, 1371 and 1569 K for Ti50Pd18.75Ni31.25, Ti50Pd6.25Ni43.75 and 

Ti50Ni50, respectively as shown in appendix A (Figure A-4). 
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Figure 9-13 Simulated elastic constants against temperature for Ti50Pd50-

xNix alloys (6.25 ≤ 𝑥 ≤ 25). The dotted lines are used as a guide with respect 
to stability. 
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Figure 9-14 Calculated elastic shear modulus (𝑪′) against temperature for 

Ti50Pd50-XNiX alloys (6.25 ≤ 𝑥 ≤ 25). The dotted lines are used as a guide with 
respect to stability. 
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deformations such as resistances to bulk deformation, elastic deformation, and 

shear deformation.  

 Elastic moduli of B19 Ti50Pd50-xMx alloys with temperature 

 

Figure 9-15 and Figure 9-16 show the calculated elastic modulus (Bulk, Young‘s 

and Shear modulus) with respect to temperature. It is found that as the 

temperature is increased, the values of Bulk modulus (B) decreases which 

suggests that high temperature does not enhance the ability to resist volume 

deformation for the entire concentrations of B19 Ti50Pd50-xCox alloys. It is clearly 

seen that the B of 18.75 and 25 at. % Co is higher than 6.25 at. % Co below 600 

K and lower above. A sudden drop is observed above 1600 K which suggests 

that the melting temperature is reached for 6.25 at. % Co. There is a fluctuation 

observed in B above1400 K for 18.75 at. % Co and above 1200 K for 25 at. % Co 

indicating that the material becomes soft before the melting temperature is 

reached. A similar trend was observed with the addition of Ni as shown in Figure 

9-14. Interestingly, the B for the pure system, 6.25, 18.75 and 25 at. % Ni is similar 

and the same at 1572 K between the pure system and 6.25 at. % Ni. This 

behaviour suggests that the addition of Ni does not enhance hardness with 

temperature. 

 

From the calculated results of Young‘s modulus (E) and Shear modulus (G), it 

can be seen that they all decrease with an increase in temperature which means 

that temperature can produce the weakest ability  to resist elastic and shear 

deformations of  B19 Ti50Pd50-xCox alloys. The results indicate that the weakest 
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resistance to uniaxial tension and Shear deformation is observed above room 

temperature. It is clearly seen that G and E have the same values for the pure 

Ti50Pd50 system and Ti50Pd43.75Co6.25 in the entire temperature range. A sudden 

drop is observed for both G and E at 1770 K for the pure system and 1670 K for 

the 6.25 at. % Co indicating that the melting temperature is reached. In the case 

of 18.75 and 25 at. % Co, a drop in G and E is observed at 1572 K. Similar trend 

is observed with Ni addition as indicated in Figure 9-14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-15 The predicted Bulk (B), Shear (G) and Young's (E) modulus 

against the temperature of Ti50Pd50-XCoX alloys (0 ≤ 𝑥 ≤ 25). 
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Figure 9-16 The calculated Bulk modulus, shear modulus G and Young's 

modulus E against temperature for Ti50Pd50-XNiX alloys (0 ≤ 𝑥 ≤ 25). 
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calculated B/G ratio for the entire concentrations is greater than 1.75 from 271-

1771 K indicating that the ductility is improved with temperature. Poisson‘s ratio 

(𝝈) was evaluated to check the ductility of the material. If the 𝝈 exceeds 0.26 the 

structure is regarded as ductile otherwise, it is brittle. The calculated Poisson‘s 

ratio of Ti50Pd50-xCox alloys is calculated and shown in Figure 9-17 (b). In Figure 

9-17 (b), the calculated 𝝈 of Ti50Pd50-xCox increases with an increase in 

temperature and the ratio is greater than 0.26. The results demonstrate that 

ductile behaviour with an increase in temperature. There is a good correlation 

between the B/G and Poisson‘s ratios as they show a similar trend. 

The Poisson‘s ratio can be used to measure the compressibility of the material 

[171]. The materials will be considered incompressible if 𝝈=0.5 and compressible 

when 𝝈 range from 0.2-0.49 [172]. The calculated 𝝈 of Ti50Pd43.75Co6.25 alloy 

ranges from 0.38-0.42 as shown in Figure 9-17 (b). The result indicates that the 

material is compressible with an increase in temperature. It is noted that 𝝈 varies 

from 0.39-0.42 as the temperature is increased from 271-1470 and 𝝈=0.5 above 

1570 K. The finding implies that Ti50Pd31.25Co18.75 is compressible below 1470 K 

and incompressible above 1570 K. 

 In Figure 9-17 (b), the 𝝈 of Ti50Pd25Co25 range from 0.40-0.49 is compressible 

between 272-1470 K and incompressible as 𝝈=0.5. The result suggests that the 

material is compressible below 1470 K and incompressible above 1570 K.  
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Figure 9-17 Simulated the (a) B/G and (b) Poisson’s ratio against the 
temperature of Ti50Pd50-XCoX alloys. 

 

As shown in Figure 9-18 (a), the calculated B/G ratio of Ti50Pd50-xNix alloys is 

greater than 1.75 which implies that the ductility is improved with temperature. 
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compressible when 𝝈 range from 0.2-0.49 [172]. The measured 𝝈 of 

Ti50Pd43.75Ni6.25 alloy vary from 0.38-0.42 below 1570 K which indicates that the 

material is compressible. It is observed that when the temperature is increased 

above 1670 K, the 𝝈= 0.50 which implies that Ti50Pd43.75Ni6.25 is incompressible. 

At 18.75 at. % Ni, the 𝝈 range from 0.38-0.42 with an increase in temperature 

from 271-1470 K which suggests that the material is compressible and 

incompressible above 1570 K as 𝝈= 0.5. 

In Figure 9-18 (b), the 𝝈 of Ti50Pd25Ni25 vary from 0.39-0.43 from 272-1371 K 

revealing that the material is compressible while 𝝈= 0.5 above 1470 K which 

indicates incompressible. The result of Ti50Pd50-XNiX alloys suggests that the 

material is incompressible at a higher temperature depending on the 

compositions.  
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Figure 9-18 The predicted (a) B/G and (b) Poisson’s ratio against 

temperature for Ti50Pd50-XNiX alloys (0 ≤ 𝑥 ≤ 25). 
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Parameterization and transformation temperature 

of Ti50Pd50 and Ti50Pd50-xRux systems 

 

In this chapter, we present and discuss the parameterization of the self-

consistent-charge density functional tight-binding (SCC-DFTB) set of parameters 

for the binary Ti50Pd50 and ternary Ti50Pd50-xRux. Ru was chosen due to its higher 

temperature capability as well as mechanical and thermal stability which was 

observed in chapters 7 and 8 as compared to other alloying elements. The 

parameterization technique is used to describe the suitable SCC sets of 

parameters necessary to describe the interactions within the systems. To 

describe the Ti50Pd50 structure, the Ti-Pd, Pd-Ti, Ti-Ti and Pd-Pd interactions are 

considered while for the Ti50Pd50-xRux system the Ti-Pd, Pd-Pd, Pd-Ti, Ti-Ru, Pd-

Ru, Ru-Ti, Ru-Pd, Ru-Ru and Ti-Ti interactions are described. These parameters 

are then used to calculate the structural, electronic and elastic properties of 

Ti50Pd50 and Ti50Pd50-xRux. The calculated bond distances and lattice parameters 

are compared with the available experimental and theoretical findings. 

Furthermore, the SCC sets of parameters were also used to determine the lattice 

expansions for both binary and ternary systems. Detailed illustration of the SCC-

DFTB method has been described previously in chapter 3.  
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 Development and validation of a SCC-DFTB set of parameters 

 

Before any parameters can be deduced, parameterization of the systems is 

carried out. Firstly, parameterization is done in order to find the pairwise 

interaction set. Secondly, derived parameters are used to describe the 

interactions in the Ti-Pd and Ti-Pd-Ru systems. In particular the Ti-Pd, Pd-Pd, 

Pd-Ti, Ti-Ru, Pd-Ru, Ru-Ti, Ru-Pd, Ru-Ru and Ti-Ti interactions. The 

parameterization of the binary Ti50Pd50 and ternary Ti50Pd50-xRux structures was 

performed by adjusting the wave function confinement radius (Radii 1). This is 

done until the bond distance and lattice parameter are comparable with the 

theoretical (initial optimization of structure) and experimental results, to the 

allowed difference of < 10 %. These parameters are stored in a Slater-Koster 

library file of the program [173]. In addition, the Slater-Koster library file contains 

electronic parameters, short range potentials and the Hubbard terms for the 

element pairs of the structure.  

 

Note, different exchange-correlation functionals were used to develop sets of the 

parameter that is the GGA-PBE and LDA-PWC. This was done to check which 

functional is suitable to describe the structural properties accurately. It is clearly 

seen that GGA overestimates the lattice parameters while LDA underestimates 

the value as expected [174], see Table 10-1. The GGA functional gave values 

close to the experimental as compared to LDA. Thus the GGA will be used in all 

calculations. 
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 Binary Ti50Pd50 alloys 
 

The SCC sets of parameters to describe the binary Ti50Pd50 systems were 

achieved when the wave function confinement radii were set to 1.500 Bohr for 

both Ti and Pd. The Hubbard terms for Ti was found to be (0.201 0.144 0.350) 

and (0.210 0.336 0.336) for Pd. 

Table 10-1 shows the predicted structural properties for the Ti50Pd50 systems. In 

order to validate the developed sets of parameters, we have compared our results 

with the available experimental and theoretical results. The lattice parameters of 

B19 obtained using DFTB+ (GGA) are larger than those from VASP, DMol3 and 

literature [54], but they are within the acceptable range of < 5-10 %. We note that 

the B19′, B2 and L10 gave lattice parameters that are in good agreement with 

those from VASP and DMol3 code.  

Table 10-2 shows the Ti-Pd, Ti-Ti and Pd-Pd bond distances. It was observed 

that the Ti-Pd bond distance is shorter (2.660 Å) for B19′ which leads to stronger 

interaction as compared to other phases (B19, L10 and B2). It was found that the 

bond distances are well reproduced to within 5 % with the values obtained from 

the literature. Interestingly, the bond distances obtained using DFTB+ gave 

similar values as compared to the DMol3 findings. Furthermore, the calculated 

bond distance using the VASP code is in reasonable agreement with the literature 

to within 2 %. The obtained SCC parameters are reliable since the bond distances 

gave better comparison with the DMol3, VASP and literature to within 2 % 

agreement. 
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Table 10-1 Comparison of the equilibrium lattice parameters (a, b, c) using LDA 
and GGA functional with available experimental values of the B19, B19′, B2 and 
L10 Ti50Pd50 alloy. 

Structure Method a (Å) b (Å) c (Å) 

B19 DMol3 (GGA) 4.649 2.851 4.966 

 DFTB+ (LDA) 4.587 2.545 4.687 
 

DFTB+ (GGA) 4.710  2.879 4.899 

 VASP (GGA) 4.587  2.789 4.897 
 

Exp. [20] 4.550 2.780 4.860 

B19′ DMol3 (GGA) 2.848 4.983 4.638 

 DFTB+ (LDA) 2.631 4.670 4.452 
 

DFTB+ (GGA) 2.815 4.831 4.684 

 VASP (GGA) 2.792  4.912 4.582 

B2 DMol3 (GGA) 3.165 3.165 3.165 

 DFTB+ (LDA) 3.127 3.127 3.127 
 

DFTB+ (GGA) 3.168 3.168 3.168 

 VASP (GGA) 3.170  3.170 3.170 
 

Exp. [23] 3.180 3.180 3.180 

L10 DMol3 (GGA) 2.855 2.855 3.907 

 DFTB+ (LDA) 2.579 2.579 3.671 
 

DFTB+ (GGA) 2.708 2.708 3.986 

 VASP (GGA) 2.826  2.826 3.891 
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Table 10-2  Comparison of the bond distance of B2, L10, B19 and B19' Ti50Pd50 
alloy using GGA functional. 

Structure Bond distance (Å) 

               Ti-Pd Pd-Pd Ti-Ti 

B2 DFTB 2.744 3.168 3.168 

 DMol3 2.744 3.168 3.168 

 VASP 2.754 3.180 3.180 
 

Exp. [23] 2.743 3.168 3.168 

L10 DFTB 2.710 2.803 2.803 

 DMol3 2.710 2.803 2.803 

 VASP 2.701 2.855 2.855 
 

Theo. [34] 2.701 2.855 2.855 

B19 DFTB 2.719 2.796 3.031 

 DMol3 2.719 2.796 3.031 

 VASP 2.717 2.810 3.023 
 

Exp. [20] 2.747 2.796 3.030 

B19′ DFTB 2.600 3.413 3.460 

 DMol3 2.600 3.413 3.460 

 VASP 2.661 3.391 3.469 
 

Theo. [34] 2.660 3.391 3.469 

 

 

 B2 and B19 Ternary Ti50Pd50-xRux alloys 
 

In the case of B2 and B19 Ti50Pd50-xRux alloys, the SCC-DFTB approach has 

been used to accurately calculate their ground state properties. Firstly, 

parameterization was performed to establish the appropriate interaction 

parameters for the Ti50Pd50-xRux system. The developed SCC-DFTB set of 
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parameters for Ti-Pd, Pd-Pd, Pd-Ti, Ti-Ru, Pd-Ru, Ru-Ti, Ru-Pd, Ru-Ru and Ti-

Ti pair of elements for describing Ti50Pd50-xRux system was validated by 

performing a geometry optimization using DFTB+ code. The validation was done 

using GGA-PBE exchange-correlation functionals. Smearing was varied from 

0.003 to 0.008 to help improve the accuracy of the results. It is noted that 

smearing of 0.007 Ha gave better structural properties as compared to the 

literature [54] to about 3 % agreement. 

The calculated lattice parameters are summarized in Table 10-3. It was found 

that DFTB results are in reasonable agreement with the DMol3 results when the 

Radii 1 of Ti, Pd and Ru were set to be 1.900 Bohr. The resultant Hubbard terms 

were (0.201 0.144 0.351) for Ti, (0.210 0.336 0.336) for Pd and (0.212 0.118 

0.329) for Ru.  

It is noted that the lattice parameters decrease with the addition of Ru content 

and this may be attributed to the small atomic radius of Ru, compared to that of 

Pd (as shown in Table 10-3). The lattice parameters obtained using DFTB+ code 

are larger than those from VASP code, to within 5 % agreement.  

 

In the case of B19 Ti50Pd50-xRux alloys, it is noted that a and c parameters 

decrease with an increase in Ru while the b increases as shown in Table 10-4.  

The lattice parameters from the derived potentials are in good agreement to 

within 3 % with those from standard DFT calculations. 
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Table 10-3 The equilibrium lattice parameters of the B2 Ti50Pd50-XRuX alloys. The 
experimental value is shown in parenthesis. 

Structure a (Å) 

DFTB+ DMol3 VASP 

Ti50Pd43.75Ru6.25 3.216 3.208 3.200 

Ti50Pd31.25Ru18.75 3.195 3.179 3.158 

Ti50Pd25Ru25 3.171 3.161 3.132 

Ti50Pd18.75Ru31.25 3.152 3.145 3.120 

Ti50Pd6.25Ru43.75 3.130 3.117 3.108 

Ti50Ru50  3.113  (3.085) [54] 3.106 3.084 

 

 

Table 10-4 The equilibrium lattice parameters of the B19 Ti50Pd50-XRuX alloys 

Structure a (Å) b (Å) c (Å) 

 DFTB+ VASP DFTB+ VASP DFTB+ VASP 

Ti50Pd43.75Ru6.25 4.532 4.528 2.859 2.856 4.826 4.822 

Ti50Pd31.25Ru18.75 4.478 4.478 2.959 2.959 4.638 4.638 

Ti50Pd25Ru25 4.422 4.416 3.099 3.092 4.826 4.433 

Ti50Pd18.75Ru31.25 4.418 4.391 3.146 3.112 4.420 4.392 

Ti50Pd6.25Ru43.75 4.414 4.353 3.126 3.088 4.412 4.350 

Ti50Ru50 4.398 4.338 3.110 3.071 4.399 4.348 

 

 Binding energy 

 

The binding energy was calculated to validate our set parameters in order to 

determine the stability of Ti50Pd50 and Ti50Pd50-xRux alloys. It also plays an 

important role in understanding the properties of materials, such as diffusion 

kinetics and age-hardening response [175].  
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The binding energy is determined by the following expression: 

bE ,
i

i

atomtot EE                                                                                       (10-1) 

where totE  is the calculated total energy of the system under consideration and 


i

i

atomE  is the sum of energies of the atoms constituting the system. Note that 

negative binding energy indicates an energetically favourable system otherwise 

unstable [175]. 

 Binary Ti50Pd50 alloy 
 

The binding energy of the binary systems is shown in Figure 10-1. All the 

structures displays negative binding energy which suggests that these structures 

(B2, L10, B19, B19') are stable and can be found experimentally. The results show 

that among all phases, the B19' display the lowest binding energy and B2 has the 

highest binding energy. This suggests that B19' binds strongly and is considered 

the most stable phase while B2 is the least stable. The order of stability is B19'> 

B19> L10> B2. 
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Figure 10-1 Calculated binding energy per atom for Ti50Pd50 systems: 
B2, L10, B19 and B19'.  

 

 Ternary B2 and B19 Ti50Pd50-xRux alloys 
 

Figure 10-2 compares the binding energy for B2 and B19 Ti50Pd50-xRux systems 

(0≤ 𝑥 ≤ 50). It is clearly seen that the binding energy decreases as the 

concentration of Ru are increased. At a small composition below 6.25 at. % Ru, 

the binding energy of B19 is more negative compared to B2. However, as the 

amount of Ru is increased above 18.75 at. %, the B2 phase becomes more stable 

at higher Ru compositions as compared to the B19 phase. This behaviour may 

suggest a possible transformation from B2 to the B19 phase. The results show 

that among all compositions, the B2 Ti50Pd6.25Ru43.75 have the lowest binding 

energy and as compared to B19 Ti50Pd50-xRux alloys. The observations suggest 

that B2 Ti50Pd6.25Ru43.75 binds strongly and is considered the most stable 

structure, while B2 Ti50Pd43.75Ru6.25 is the least stable.  
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Similar behaviour was observed in B19 Ti50Pd50-xRux alloys since the binding 

energy curve decreases and becomes more negative with Ru additions. This 

shows that the additions of Ru stabilise the B2 phase, and are thus important for 

enhancing the properties of the system. Our results are consistent with the ∆Hf 

trend except for 6.25 and 18.75 at. % Ru as shown in Figure 6-4 (d). The energy 

difference between B2 and B19 at 25 at. % is -0.05 and -0.02 eV/atom for 43.75 

at. % Ru which suggests that the values are very close to each other. 

 

Figure 10-2 Trend of binding energy for B19 and B2 Ti50Pd50-XRuX 

alloys (0≤ 𝒙 ≤ 𝟓𝟎). 
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The electronic density of states for the binary Ti50Pd50 and ternary Ti50Pd50-xRux 
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of the compound by observing the behaviour of states near the Fermi level (E-

Ef=0) with respect to the pseudogap. The structure with the highest and lowest 

density of states at Ef is considered the least and most stable, respectively [26]. 

This will show how the tDOS calculated using standard DFT are comparable with 

those using the potential parameter in DFTB+. 

 Total DOS for binary Ti50Pd50 alloy 
 

The electronic density of states calculations of B2, B19, B19′ and L10 Ti50Pd50 are 

compared in Figure 10-3 (a). It is noted that the total DOS peak of B19′, B19 and 

L10 structures shifted to the right of the Fermi level and a similar behaviour was 

observed for B19 and L10. As a result, the Ef hits the shoulder of the dropping 

total DOS peak which indicating less stability of the structure. Interestingly, 

amongst the three phases, the B19′ has the lowest states at the Ef followed by 

B19 then L10. In the case of the B2 structure, we see that the Ef hits the total DOS 

peak on the right shoulder near the Ef. The results suggest that B2 is less stable 

compared to other structures and this is consistent with the prediction of binding 

energy. The order of stability is predicted to be B19′> B19> L10> B2. The tDOS 

plot is similar to those predicted using standard DFT (as shown in Figure 10-3 

(b)). However, DFTB+ does not distinguish clearly between B19 and B19’, this 

may be due to similar potential parameters used. Furthermore, we obtained the 

improved tDOS behaviour which may be attributed to the effectiveness of the 

potential parameters. Particularly with regard to B2 tDOS which are lowered at Ef 

as compared to those in VASP. The derived potential parameters are able to 

reproduce the similar tDOS behaviour compared to the standard DFT. 
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Figure 10-3 A comparison of the total density of states for B19, L10, B2 and B19' 
Ti50Pd50 system calculated from a) derived potentials using the DFTB+ code and 
b) first principle method with the VASP code. The Fermi level is taken as the zero 
energy (E-Ef=0).  

 

 Total DOS for B2 and B19 Ti50Pd50-xRux alloys 
 

The B2 Ti50Pd50-xRux DOS are also presented in Figure 10-4 (a) to show precisely 

the behaviour near Ef as Ru is added to the system. It was observed that the DOS 

peak shift towards the conduction band (CB) when Ru content is increased. Note 

that the Ti50Ru50 tDOS are lowered at Ef, similar to the VASP results (Figure 6-5) 

(a) 

(b) 



218 
 

(showing the stability of the system). As the composition of Ru is added, the 

pseudogap moves toward the Ef showing that the Ti50Pd50 became electronically 

stable. It is clearly seen that the 43.75 at. % of Ru displays the lowest DOS at Ef 

which confirms that it is the most stable composition. This observation suggests 

that Ti50Pd50-xRux is electronically stable at high content of Ru. The stability trend 

according to the density of states agrees very well with binding energy results.  

The tDOS of B19 Ti50Pd50-xRux alloys calculated using our derived potentials is 

also given in Figure 10-4 (b). Our derived potentials were able to produce the 

tDOS of B19 Ti50Pd50-xRux alloys. More importantly, the trend of the DOS peak is 

similar except that the intensities peak size is reduced as compared to the B2 

Ti50Pd50-xRux alloys tDOS (Figure 10-4 (a)). These differences in the tDOS can 

be due to the SCC set parameters of the derived potentials. 
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Figure 10-4 A comparison of the total densities of states (DOS) of (a) B2 and (b) 
B19 Ti50Pd50-xRux SMAs (0≤x≤50) calculated using a) DFTB+ code. The Fermi level 
is taken as the energy zero (E-Ef=0). 

 

 Elastic properties of Ti50Pd50 and ternary Ti50Pd50-xRux alloys 

 

Now, we show the elastic properties of binary and ternary alloys, using DFTB 
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 Binary Ti50Pd50 alloy 
 

Table 10-5 shows a comparison of the elastic properties of Ti50Pd50 for B19, L10, 

B2 and B19'. The DFTB elastic constants (determined using the interatomic 

potentials) are in good agreement with those calculated using DFT calculations 

to within 3 %. We pay attention specifically to the  𝐶′. The B2 showed negative 

elastic shear modulus (condition of instability) for both DFTB and VASP 

calculations. These values are comparable, with a slight improvement for the 

DFTB. The elastic constants of L10, B19 and B19′ satisfy the elastic stability 

criteria for tetragonal, orthorhombic and monoclinic crystals (as discussed in 

chapter 3). 

Furthermore, we see that the DFTB Bulk modulus is in good agreement with the 

VASP values to within 3 %. It is clear that the L10 and B19 structures are ductile 

since the B/G is greater than 1.75 and less ductile for B19' (since B/G< 1.75) 

[149]. It can also be seen that the B2 structure shows a brittle manner as the B/G 

ratio is less than 1.75. This shows that the derived SCC sets of parameters are 

reasonably good since they are able to give comparable results. 
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Table 10-5 Elastic constants and Bulk modulus (B) for B2, L10, B19, B19'. 

Cij 
(GPa) 

B2 L10 B19 B19′ 

DFTB+ VASP DFTB+ VASP DFTB+ VASP DFTB+ VASP 

c11 145.30 149.10 230.56 228.83 245.82 240.82 311.16 300.88 

c12 160.67 159.83 108.23 105.48 128.60 125.19 84.32 80.10 

c13   129.68 128.31 125.71 124.42 86.55 85.18 

c15       -0.01 -0.05 

c22     274.05 262.65 268.50 265.43 

c23     80.17 90.00 140.46 136.46 

c25       -0.01 -0.06 

c33   261.45 251.16 242.80 250.62 249.56 244.70 

c35       -0.01 -0.06 

c44 45.03 43.74 95.02 91.81 28.45 30.52 43.00 41.57 

c46       33.00 32.33 

c55     38.65 39.17 54.76 53.82 

c66   19.32 17.42 50.44 48.52 115.12 112.04 

𝐶′ -7.69 -5.37 61.17 61.91 54.61 57.82 113.42 110.39 

Bulk 
(GPa) 

157.96 156.25 158.61 158.52 160.23 159.11 160.89 157.10 

B/G -20.54 -29.09 2.59 2.56 2.93 2.75 1.42 1.42 

 

 Ternary B2 and B19 Ti50Pd50-xRux alloys 
 

Figure 10-5 shows the elastic properties of Ti50Pd50-xRux alloys. These were also 

calculated from our derived interatomic potentials employing the DFTB+ code. In 

a similar manner, the VASP results are used to benchmark. The SCC-DFTB 

elastic constants prediction is in good agreement with those from VASP 

calculations to within 3 %. In addition, the B2 Ti50Pd50-xRux values satisfy the 

generalized elastic stability criteria, particularly for cubic crystals. We observe that 

the alloy system is unstable below 20 at. % Ru (since 𝐶′ < 0), and stable above 
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this composition (𝐶′ > 0). Similar behaviour was observed with VASP (as shown 

in Figure 7-1). The DFTB results gave a better trend due to the effectiveness of 

the derived potentials. 

 
Figure 10-5 The elastic constants (GPa) and elastic shear modulus, C′ (GPa) 
obtained from the derived interatomic potentials for B2 Ti50Pd50-xRux alloys.  

 

The calculated Bulk modulus and the B/G ratio from derived potential are also 

compared in Figure 10-6 (a) and (b). It is noted that the Bulk modulus increases 

with an increase in Ru composition. This suggests that the hardest system can 

be obtained at higher composition i.e. Ti50Pd6.25Ru43.75.  More importantly, the 

DFTB and VASP plots show a similar trend. However, it can be noted that the 

DFTB gives larger values (harder system) than the VASP results. This implies 

that the derived potential overestimates the bulk modulus of the system.  

Figure 10-6 (b) on the other hand reveals that the structures are ductile above 18 

at. % Ru since B/G values are greater than 1.75 for both DFTB and VASP codes. 

The structure is brittle at 6.25 at. % Ru. Thus, it can be concluded that our derived 
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interatomic potential was able to reproduce the B/G ratio of B2 Ti50Pd50-xRux 

alloys, to within 2 % agreement as compared to the standard DFT results.  

 

 
Figure 10-6 Comparison of the bulk modulus and the B/G ratio against the 

composition of B2 Ti50Pd50-xRux, obtained from (a) the derived interatomic 
potentials, with the other calculated from (b) VASP code. 

 

Figure 10-7 shows a comparison of the elastic properties of B19 Ti50Pd50-xRux 

alloys calculated using DFTB+ and VASP code. We see that the elastic constants 

satisfy the generalized elastic stability criteria for orthorhombic crystal as outlined 

in chapter 3. We found a good agreement of the results for both approaches.  
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Figure 10-7 Comparison of elastic constants (GPa) obtained from (a) the derived 
interatomic potentials, with the other calculated (b) VASP code for B19 Ti50Pd50-

xRux alloys. 

 

Figure 10-8 shows a comparison of the elastic shear moduli (𝐶′). Note that for 

the orthorhombic system, there are three types of elastic shear modulus as 

shown on the plot. The calculated shear moduli (c11 + c22 -2c12), (c11 + c33 -2c13) 

and (c22 + c33 -2c23) compared very well to within 3 % with VASP results. It can 

be clearly seen that the structure is stable for the entire composition range (𝐶′ >
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0). The predicted elastic shear moduli (𝐶′) correspond very well (displaying a 

similar trend) with the standard DFT results using the VASP code. 

 

 
Figure 10-8 Comparison of the calculated elastic shear moduli (𝑪′) using (a) DFTB+ 
and (b) VASP data against composition. 

 

In Figure 10-9 (a) and (b), we compare the Bulk modulus and the B/G ratio of B19 

Ti50Pd50-xRux. We see that our DFTB+ calculations predict the Bulk modulus to 

within 5 % agreement with the VASP code, which is an acceptable approximation. 

We also found that the predicted B/G ratio is greater than 1.75 for the entire 

concentration range (0≤x≤50), suggesting ductile behaviour.  
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Figure 10-9 Comparison of the bulk modulus and the B/G ratio against the 
composition of B19 Ti50Pd50-xRux, obtained from (a) DFTB+ code, with calculated 
from (b) VASP code. 

 

 DFTB: Temperature dependence 

 

The molecular dynamics simulations have been performed using the SCC-DFTB 

approach. The Isothermal-isobaric (NPT) was chosen since the number of 

particles N, pressure P and temperature T are kept constant which enables us to 

see a change in volume or lattice parameters. We aim to gain knowledge on how 

the derived SCC set of parameters can influence the Ti-Pd and Ti-Pd-Ru 
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properties, particularly at increased temperatures. Before any calculations could 

be performed, it is important to establish the time step.  

In order to determine the time step, the Newton equations of motion were 

integrated with the velocity Verlet algorithm, which varied from 0.5 to 12 fs. We 

see that the graph energy decreases as the time step is increased. At 8 fs, the 

plot is constant up to 12, suggesting that the energy does not change further (zero 

slopes). Thus the time step of 10 fs was found to be sufficient enough for this 

calculation (as shown in Figure 10-10 (a)). The Nosé-Hoover thermostat (time 

constant of 0.04 ps) and the system were allowed to evolve for 30 ps. The 

determined simulation time with respect to energy is shown in Figure 10-10 (b). 

In order to determine the appropriate simulation time of the Ti50Pd50 structure, 

dynamics calculations were performed for different simulation times at default 

temperature (100 K). The simulation time is necessary for determining the 

accuracy of the results at the ground state level. We see that at simulation time 

of 16 ps and above, the energy change is minimal (zero slopes), which suggests 

that the system has reached its equilibrium state (equilibration). Thus, the 

simulation time of 16 ps was chosen for all the MD calculations in this work. 
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Figure 10-10 Total energy against (a) time step and (b) 
simulation time for B19 Ti50Pd50 alloy. 

 

 B19 Ti50Pd50 alloy 
 

The effect of temperature on the lattice parameters of the B19 phase was 
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melting point, Mp= 1673 K) using velocity scale thermostats with a temperature 

difference of 10.0 K.  

From the results, it can be noted that the lattice parameters increase minimally 

with an increase in temperature up to 1400 K. However, the a and c lattice 

parameters collapse to a common value (a=c= 4.555 Å) at about 1473 K which 

suggest a possible transformation. The lattice parameter b increases to 3.201 Å 

at this temperature. It can be noted that the a/b and c/b ratios decrease with an 

increase in temperature and the two ratios collapse to a common value of 1.423 

at 1473 K. In order for transformation to occur from orthorhombic B19 to cubic 

B2, the ratios of a/b and c/b must be close to 1.414 [13]. The decrease in a/b and 

c/b is reasonable and significant to describe the structural change from B19 to 

cubic B2 above 1473 K. This implies that the B19 phase has transformed to the 

cubic B2 phase.  

The result suggests that the DFTB derived potentials were able to predict phase 

transformation of B19 Ti50Pd50 alloy. This is in good agreement with the 

experimental phase diagram [81], where the B2 phase is stable at high 

temperatures. Similarly, the transformation behaviour is comparable with those 

predicted using a LAMMPS code, where the ratio a/b and c/b were predicted to 

be 1.426 at 1496 K (see Figure 5-6). The transformation temperatures are very 

close, suggesting that the derived interatomic potential managed to predict the 

transformation temperature. 
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Figure 10-11 The effect of temperature on the (a) a and c (b) b (c) a/b and c/b 

lattice parameters of the B19 Ti50Pd50 alloy. 

 

Furthermore, we show the density of B19 Ti50Pd50 alloy with temperature in 

Figure 10-12. It can be noted that the density decrease with an increase in 

temperature as expected. This behaviour may imply that the system becomes 
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potential parameter (DFTB) predicted structures to be less dense than the 

LAMMPS code. 

 

Figure 10-12 Density against temperature for B19 Ti50Pd50 alloy 

 

 B19 Ti50Pd50-xRux alloys 

 

The temperature dependence on the lattice parameters of the B19 Ti50Pd50-xRux 
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Ru, respectively. This behaviour suggests a possible transformation in the 

system. Furthermore, there is a coupling observed between a and c lattice 

parameters above these temperatures which suggest that transformation from 

B19 to the B2 has taken place.  

The ratio a/b and c/b of 6.25, 18.75, 25 at. % Ru is approximately 1.448 (at 1274 

K), 1.446 (1074 K) and 1.430 (873 K), respectively. These values are comparable 

to the expected value of 1.414. The results suggest that the B19 phase has 

transformed to the B2 phase. Furthermore, it is clearly seen that the addition of 

Ru decreases the transformation temperature (Figure 10-13). As Ru 

concentration is increased to 31.25, 43.75 and 50 at. %, their transformation 

temperature is reduced to 774, 675 and 573 K, respectively. Our findings agree 

very well with previous work [93]. It can be deduced from the results that our 

derived potentials were able to predict phase transformation from B19 to B2 

phase for B19 Ti50Pd50-xRux alloys. Unfortunately, the predicted transformation 

temperature cannot be compared with LAMMPS code results as there are no 

forcefields available for Ti-Pd-Ru currently.
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Figure 10-13 The effect of temperature on the a and c, b and, a/b and c/b lattice parameters of the B19 Ti50Pd43.75Ru6.25 and 
Ti50Pd31.25Ru18.75 and Ti50Pd25Ru25 alloys. 
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Figure 10-14 The effect of temperature on the (a) a and c (b) b (c) a/b and c/b lattice parameters of the B19 Ti50Pd18.75Ru31.25, 
Ti50Pd6.25Ru43.75 and Ti50Ru50 alloys.
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Figure 10-15 shows the density against the temperature of Ti50Pd50-xRux alloys. 

Similar to the case of binary alloy, the density decreases minimally with 

temperature suggesting that the alloys become less dense at a higher 

temperature. This minimal decrease in the density is expected since the density 

of Ru (12.37 g/cm3) is closer to that of Pd (12.03 g/cm3). Unfortunately, there are 

no experimental and theoretical findings to compare our findings, and we 

consider this predictive data. 

 

 

Figure 10-15 Density against temperature for B19 Ti50Pd50-xRux alloy. 

 

 

 

 

 

Temperature (K)

200 400 600 800 1000 1200 1400 1600 1800

D
e
n

s
it

y
 (

g
/m

L
)

6,0

6,5

7,0

7,5 B19 Ti50Pd50

Ti50Pd43.75Ru6.25

Ti50Pd31.25Ru18.75

Ti50Pd25Ru25

Ti50Pd18.75Ru31.25

Ti50Pd6.25Ru43.75

Ti50Ru50



236 
 

   

Cluster Expansions and Monte-Carlo Simulations 

for binary and ternary alloys 

 

In this chapter, the Universal Cluster Expansion (UNCLE) [105] has been used 

to generate new ground state structures for both binary Ti-Pd and ternary Ti-Pd-

Ru systems. Furthermore, we present lattice parameters and heats of formation 

from optimized ground state structures of ternary TiPd1-xRux and Ti1-xPdRux 

alloys. We also discuss constructed phase diagrams and high temperature 

properties of the mixed TiPd1-xRux and Ti1-xPdRux alloys for the entire range of 

Ru concentrations using Monte carlo simulation [125]. Detailed illustrations for 

this method can be found in chapter 3. 

 

 Cluster expansion 

 

The UNCLE code as implemented in MedeA was used to search for the ground 

state structures of binary Ti-Pd and ternary Ti-Pd-Ru systems. Note that the code 

is able to perform a complete cluster expansion (CE) fit that contains up to two or 

more elements. During fitting the CE was allowed to run until the maximum 

number of iterations is reached while adding a maximum of four or more 

structures on each iteration and start from the initial training set of those four or 

more structures. So, this process continues until the energies of all structures are 

predicted by the CE at each concentration and the standard deviation of 96 % of 
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the structures is less than 5 meV of the cross validation score (CVS). The CVS 

is used to evaluate the predictive power of the cluster expansion. The smallest 

CVS (CVS<5 meV) value indicates that the predictive power of cluster expansion 

is excellent in the calculation [176].  

In this study, accurate models were built for both binary Ti-Pd and Ti-Pd-Ru 

systems to predict the formation energy of atom site occupancy. More 

importantly, ground state curves were obtained in a self-consistent way by adding 

structures whose energy is predicted by cluster expansion to be lower than the 

energies of the structure already in the training set [177]. This is done iteratively 

until no new structures are predicted by cluster expansion to be more favourable 

than those already included in the training set. At this point, the cluster expansion 

has converged and all structures considered by the cluster expansion are 

thermodynamical. The most stable structures are the one which constitutes the 

convex hull (ground state line) of the composition dependent phase diagram. The 

output of CE generates ground state structures with different concentrations and 

symmetries.  

 Binary cluster expansion of Ti-Pd 

 

Table 11-1 shows the predicted number of structures and cross validation score 

(CVS) on each alteration for Ti-Pd system. During full structural optimization in 

the minimisation stages, the DFT total energy values were calculated in the VASP 

flowchart with plane-wave basis cut-off of 500 eV in the GGA stage and k-spacing 

of 0.2 in the second minimisation stage. The cluster expansion generated 23 new 

structures of the Ti-Pd system. The CE truncated at iteration 6 since the proper 
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convergence was revealed. This is evident from the corresponding CVS. It is 

noted that CVS is 0.98 meV/pos., which is acceptable as prescribed above since 

CVS< 5 meV indication of a good cluster expansion. 

Table 11-2 shows the predicted structures and their corresponding symmetries 

and formation energies (∆𝐸𝑓). Note that the predicted twenty one (21) structures 

exist and they are thermodynamically stable due to negative formation energies. 

The predicted structures are summarized in Figure 11-1. 

Table 11-1 shows the number of structures and CVS determined in the cluster 
expansion for the binary Ti-Pd. 

Iteration No. of structures No. of new 
structures 

CVS (meV/pos.) 

0 0 2 - 

0 0 6 - 

1 6 4 77.00 

2 10 4 2.40 

3 14 2 2.00 

4 16 3 13.00 

5 19 2 0.44 

6 21 0 0.98 
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Table 11-2 Ground state formation energies (∆𝑬𝒇) as derived by CE for the binary 

Ti-Pd. 

Compositions Cell formula Space group ∆𝐸𝑓 (eV/atom) 

0.00 Pd I4/mmm 0.000 

25.00 TiPd3 I4/mmm -0.538 

25.00 TiPd3 P4/mmm -0.555 

25.00 TiPd3 Pmmm -0.561 

25.00 TiPd3 Immm -0.656 

25.00 TiPd3 Cmmm -0.689 

33.33 TiPd2 Fmmm -0.575 

33.33 TiPd2 C2/m -0.584 

33.33 TiPd2 Immm -0.685 

50.00 Ti2Pd2 C2/m -0.523 

50.00 Ti2Pd2 Imma -0.539 

50.00 TiPd P4/mmm -0.554 

50.00 TiPd Cmmm -0.594 

66.67 Ti2Pd C2/m -0.279 

66.67 Ti2Pd Fmmm -0.505 

66.67 Ti2Pd Immm -0.522 

75.00 Ti3Pd I4/mmm -0.268 

75.00 Ti3Pd Immm -0.378 

75.00 Ti3Pd C2/m -0.380 

75.00 Ti3Pd Pmmm -0.400 

100.00 Ti I4/mmm 0.000 
 

The ground state structures and formation energy of the Ti-Pd system are shown 

in Table 11-3. As indicated in section 11.1, the CE indeed predicted stable 

structures with different compositions, space groups, lattice parameters, and 

different formation energies. The predicted ground state structures are TiPd3, 

TiPd2, Ti2Pd and Ti3Pd with different space groups. Thus, the results show that 

the TiPd3 (Cmmm) is the most thermodynamically stable structure since it gave 

the lowest formation energy (∆𝐸𝑓 = −0.690) compared to other compositions. 

However, it can be seen that there is a competing phase TiPd2 (Immm). These 

results are reliable since a proper CE convergence was attained. 
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Table 11-3 list of the ground state stable structures contained in Ti-Pd system. 

Composition Structure ∆𝐸𝑓 (eV/atom) Space group 

0.00 Pd 0.000 I4/mmm 

25.00 TiPd3 -0.690 Cmmm 

33.33 TiPd2 -0.685 Immm 

66.66 Ti2Pd -0.524 Immm 

75.00 Ti3Pd -0.398 Pmmm 

100.00 Ti 0.000 I4/mmm 

 

Figure 11-1 shows the ground state structure of Ti-Pd. Note that the ground state 

structures are those in the highlighted red line and are considered 

thermodynamically stable. The ground state line predicted four (4) stable 

structures relative to the predicted enthalpies of formation. The circles represent 

energies for a specific configuration as calculated by DFT and predicted by the 

CE. It can be noted that all the formation energies are negative for all ordered 

structures which indicates that the predicted structures are thermodynamically 

stable.  
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Figure 11-1 The convex hull plot of binary Ti-Pd (I4/mmm) obtained 

using cluster expansion. The grey and green crosses are predicted 

structures by CE and the red line is the ground-state line.  

 

 

 Ternary cluster expansion 

 

The cluster expansion was used to determine the ground state structure for the 

ordered B2 Ti-Pd-Ru alloys. For the purpose of this study, the ternary cluster 

expansion is done on B2 TiPd1-xRux and Ti1-xPdRux alloys. In this case, we 

explore the effect of Ru addition on the Pd and Ti sub-lattice. 

 

 Ternary B2 TiPd1-xRux alloy 

 

Table 11-4 shows the predicted number of structures and their CVS. The same 

plane-wave basis cut-off in the GGA stage and the k-spacing in the second 
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minimisation stage were used as in Figure 11-1. It is clearly seen that the fully 

optimized ternary ground state diagram produced 27 new structures. 

Unfortunately, there is no new ground state structures were produced by the DFT 

ground-state line (red) found by CE. Note that a proper convergence is observed 

at iteration 5 from CE as there was no new structure predicted by CE in the last 

iteration. The cluster expansion of B2 TiPd1-xRux was found to have CVS of 0.10 

meV per atom suggesting good cluster expansion prediction (see Table 11-4).  

Figure 11-4 shows the predicted formation energies (∆𝐸𝑓) which were used to fit 

the cluster expansion Hamiltonians. It can be noted that the formation energies 

of TiPd1-xRux ordered structures are positive, which indicates the presence of a 

miscibility gap system. This behaviour implies that the generated structures are 

thermodynamically unstable (∆𝐸𝑓). 

The predicted twenty seven (27) structures, compositions, space groups and 

formation energies of ternary TiPd1-xRux are shown in Table 11-5. The results 

reveal that the predicted structures are thermodynamically unstable due to the 

positive formation energies (∆𝐸𝑓 > 0) at different symmetries.  

Table 11-4 Show the number of structures and CVS determined in the cluster 
expansion for the ternary TiPd1-xRux. 

Iteration No. of structures No. of new 
structures 

CVS 
(meV/pos.) 

0 0 2 - 

0 0 7 - 

1 7 5 0.13 

2 12 5 0.09 

3 17 5 0.00 

4 22 5 0.03 

5 27 0 0.10 
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Table 11-5 Ground state formation energies as derived by CE for the ternary 
TiPd1-xRux. 

Compositions Cell formula Space group ∆𝐸𝑓 (eV/atom) 

0.00 TiRu Pm-3m 0.000 

25.00 Ti4Ru3Pd R-3m 0.073 

25.00 Ti4Ru3Pd Pmmm 0.061 

25.00 Ti4Ru3Pd Cmmm 0.058 

25.00 Ti4Ru3Pd Im-3m 0.054 

25.00 Ti4Ru3Pd P4/mmm 0.053 

25.00 Ti4Ru3Pd P4/mmm 0.049 

25.00 Ti4Ru3Pd P4/mmm 0.044 

33.33 Ti3Ru2Pd P-3m1 0.089 

33.33 Ti3Ru2Pd Cmmm 0.075 

50.00 Ti4Ru2Pd2 Cmcm 0.088 

50.00 Ti4Ru2Pd2 I4/mmm 0.087 

50.00 Ti2RuPd P4/mmm 0.071 

50.00 Ti4Ru2Pd2 Pmma 0.070 

50.00 Ti4Ru2Pd2 P4/mmm 0.053 

66.67 Ti3RuPd2 P-3m1 0.076 

66.67 Ti3RuPd2 Cmmm 0.058 

75.00 Ti4RuPd3 R-3m 0.057 

75.00 Ti4RuPd3 Cmmm 0.054 

75.00 Ti4RuPd3 P4/mmm 0.051 

75.00 Ti4RuPd3 Im-3m 0.050 

75.00 Ti4RuPd3 P4/mmm 0.048 

75.00 Ti4RuPd3 I4/mmm 0.047 

75.00 Ti4RuPd3 Pmmm 0.046 

75.00 Ti4RuPd3 Cmmm 0.045 

75.00 Ti4RuPd3 P4/mmm 0.034 

100.00 TiPd Pm-3m 0.000 
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Figure 11-2 Ground state line of the ternary B2 TiPd1-xRux systems enthalpy of 
formation against Ru concentration. The grey and green crosses predicted 
structures by CE and the red line is the DFT ground-state line. 

 

 Ternary B2 Ti1-xPdRux alloys  
 

The number of new structures and cross validation score (CSV) are represented 

in Table 11-6. It can be observed that the CE converged at alteration 4 as there 

are no new ground state structures predicted. Cluster expansion predicted 17 

new structures for B2 Ti1-xPdRux alloy at 0 K. A cross validation score is found to 

be 0.11 meV/pos., which is an indication of a good cluster expansion (since CVS< 

5 meV). 

Table 11-7 show the predicted seventeen (17) structure with their space group 

and formation energies of ternary Ti1-xPdRux. The formation energies predicted 

by CE are negative revealing thermodynamically stability for any composition that 
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exists in Table 11-7. It is clearly seen that the lowest formation energy is observed 

for 25 at. % Ru suggesting that the structure is the most stable as compared to 

other compositions.  

Table 11-6 Show the number of structures and CVS determined in the cluster 
expansion for the ternary Ti1-xPdRux. 

Iteration No. of structures No. of new 
structures 

CVS 
(meV/pos.) 

0 0 2 - 

0 0 7 - 

1 7 5 1.70 

2 12 3 0.32 

3 15 2 0.03 

4 17 0 0.11 

 

Table 11-7 Ground state formation energies derived by CE for the ternary Ti1-

xPdRux. 

Compositions Cell formula Space group ∆𝐸𝑓 (eV/atom) 

0.00 RuPd Pm-3m 0.000 

25.00 TiRu3Pd4 P4/mmm -0.102 

25.00 TiRu3Pd4 Im-3m -0.197 

33.33 TiRu2Pd3 P4/mmm -0.034 

33.33 TiRu2Pd3 P-3m1 -0.151 

50.00 TiRuPd2 P4/mmm -0.048 

50.00 Ti2Ru2Pd4 Cmcm -0.171 

50.00 TiRuPd2 Fm-3m -0.197 

50.00 Ti2Ru2Pd4 I4/mmm -0.231 

50.00 TiRuPd2 P4/mmm -0.255 

66.67 Ti2RuPd3 P4/mmm -0.011 

66.67 Ti2RuPd3 P-3m1 -0.176 

75.00 Ti3RuPd4 R-3m -0.126 

75.00 Ti3RuPd4 P4/mmm -0.144 

75.00 Ti3RuPd4 I4/mmm -0.146 

75.00 Ti3RuPd4 Im-3m -0.185 

100.00 TiPd Pm-3m 0.000 
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The formation energies for each composition are shown in Table 11-8. It is clearly 

seen that the predicted ground state structures obtained from the ternary phase 

diagram have different space groups, different lattice parameters and different 

formation energies. The cluster expansion predicted three (3) ground state 

structures for the Ti1-xPdRux system i.e. Ti3Pd4Ru, TiPd2Ru, and TiPd4Ru3 with 

negative formation energy showing thermodynamic stability. The most stable 

structure is found to be 25 at. % Ru (TiPd2Ru) due to the lowest formation energy 

(∆𝐸𝑓 < 0). 

Table 11-8 The predicted structure constituting the DFT ground state line with 
their compositions and the formation energies of Ti1-xPdRux.  

Composition Structure ∆𝐸𝑓 

(eV/atom) 

Space group 

0.00 TiPd 0.000 Pm-3m 

25.00 Ti3Pd4Ru -0.185 Im-3m 

50.00 TiPd2Ru -0.255 P4/mmm 

75.00 TiPd4Ru3 -0.197 Im-3m 

100.00 PdRu 0.000 Pm-3m 

 

Furthermore, the cluster expansion was also done on the Ti-site in order to check 

the site preference of Ru on TiPd alloy at 0 K which is highlighted in Figure 11-3. 

Once the ground states for a range of concentrations have been identified, the 

ones that are stable at T= 0 K are determined by the convexity condition, that is 

the given structure at concentration x is stable if it lies below any straight line 

connecting other compounds at concentrations [177]. From Figure 11-3, it can be 

noted that the Ti1-xPdRux structures display negative ∆𝐸𝑓 showing that the 

structures are stable, while those close to the convex hull contribute to miscible 

constituents [177].  
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Note that some CE enumerated structures (green crosses in Figure 11-3) are 

slightly below the convex hull. Stable compounds are those that form the vertices 

on the lower boundary of this convex hull. The predicted ground state structures 

as shown by the ground state line are RuPd, TiPd4Ru3, TiPd2Ru, Ti3PdRu, and 

TiPd. These results show that the TiPd2Ru is the most thermodynamically stable 

structure due to the lowest ∆𝐸𝑓 compared to other compositions. It can be 

deduced from the findings that Ru prefers or perform better when substituted on 

the Ti-site. This may be due to the fact that the atomic ratios of Ru and Ti are 

close to each other.  

 

Figure 11-3 Ground state line of the ternary of B2 Ti1-XPdRuX systems 

enthalpy of formation against Ru concentration. The grey and green crosses 

predicted structures by CE and the red line is the DFT ground-state line. 
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 Optimized ground-state Structures from Cluster Expansion 

 

We evaluate the equilibrium lattice parameters and thermodynamic stability for 

TiPd1-xRux and Ti1-xPdRux systems. This is to determine the effect of Ru addition 

on both Ti and Pd sub-lattices. The structures were subjected to full geometry 

optimization by alloying both the lattice constant and shape to change. Firstly, the 

equilibrium lattice parameters and heats of formation of B2 TiPd1-xRux structures 

are discussed. We have calculated only the binary TiPd and TiRu systems since 

there was no stable structure obtained at the ground state line. The binary 

systems TiPd and TiRu gave equilibrium lattice parameters 3.169 Å (3.180 Å) 

[34] and 3.084 Å (3.085 Å) [54], respectively. It can be noted that the result 

obtained compared very well with the experimental values (in parenthesis) to 

within 3 %.  

The heat of formation was determined to verify the existence of the two-parent or 

binary phases. Recall that for a structure to be stable, the heat of formation value 

must have the lowest negative value otherwise a positive value implies instability. 

The result of the heats of formation for TiPd and TiRu was found to be -0.453 

eV/atom and -0.753 eV/atom, respectively. The result showed that TiPd and TiRu 

alloys exist as the heats of formation for both systems are negative which 

suggests thermodynamic stability of the two systems. 

 

Now, considering Ti1-xPdRux, where substitution was done on the Ti sublattice. 

Note that the results are for the substitution on the Ti sublattice, their equilibrium 

lattice parameter and heats of formation are presented in Table 11-4. The most 

stable structure is predicted to be the TiPd2Ru phase with the lowest heat of 
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formation of -0.404 eV/atom. Furthermore, the TiPd4Ru3 structure was found to 

be unstable with the heat of formation value of 0.505 eV/atom (∆𝐻𝑓 > 0). The 

results suggest that the TiPd4Ru3 cannot be found experimentally. Similar 

behaviour was observed for the binary PdRu, with ∆𝐻𝑓 > 0  (condition of 

instability) the structure is unstable. Thus, the predicted stability trend according 

to the calculated ∆𝐻𝑓 deduced from the cluster expansions is as follows:  

TiPd2Ru > Ti3Pd4Ru > TiPd4Ru3. 

Table 11-9 The predicted lattice parameters and heats of formation of B2 Ti1-

xPdRux alloys. 

Structure  Space      
group 

a(Å) b(Å) c(Å) ∆Hf 

(eV/atom) 
PdRu Pm-3m   3.098 3.098 3.098 0.505 
TiPd4Ru3 Im-3m  2.692 2.692 2.692 0.178 
TiPd2Ru P4/mmm 4.005 3.843 3.843 -0.404 
Ti3Pd4Ru Im-3m  2.720 2.720 2.720 -0.302 
TiPd Pm-3m 3.169 3.169 3.169 -0.453 

 

 Monte carlo simulation  

 

Monte Carlo (MC) simulation was performed on the TiPd1-xRux and Ti1-xPdRux 

structures, using UNCLE code. It was used to check the mixing of the two 

structures (TiPd1-xRux and Ti1-xPdRux) as implemented. This code performs 

simulation with either the canonical or the grand canonical ensemble. In this 

simulation, a canonical ensemble was used to calculate the critical temperature 

since it is able to separate. It has been reported as the grand-canonical ensemble 

cannot separate the structures hence it was not conducted. A plot of these 

trajectories is used to reveal miscibility gaps, which are represented. In a Monte 

Carlo simulation, the energies of alloys were allowed to change in the calculation 

due to changes in the occupation (atom exchanges).  
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 MC for B2 TiPd1-xRux concentrations  

 

The Monte Carlo profiles of TiPd1-xRux alloys are computed and shown in Figures 

11-4. Note that the plots are also shown in Appendix B. In Figure 11-4, we see 

that the energy difference between atoms increases with temperature for all 

compositions (0≤x≤1). At x=0.1 concentrations (TiPd0.9Ru0.1), the energy 

difference increases minimally above 800 K which indicates that the system 

mixes very well as shown in Figure 11-4 (a). As the amount of Ru concentration 

is increased to 0.3, the energy differences increase minimally with a temperature 

above 1300 K suggesting the mixing of the system has occurred.  

As shown in Figure 11-4 (e), at low temperature, for example, at 200 K phase 

separation between TiPd and TiRu can be observed in TiPd0.5Ru0.5 alloy. This 

means that there are two phases within the TiPd0.5Ru0.5 alloy. As the temperature 

is increased above 1400 K, the TiPd0.5Ru0.5 alloy becomes more and more 

homogeneous. It means that the homogeneity of TiPd0.5Ru0.5 alloy increases with 

the increase in temperature above 1500 K. In Figure 11-4 (i), we also observe 

phase separation in TiPd0.1Ru0.9 alloy below 1600 K and the system become 

homogeneous above 1700 K.  

Our result also shows that the TiPd1-xRux alloys can exhibit phase separation at 

low temperatures below 200 K. The tendency of phase separation can cause 

alloy inhomogeneity to a certain extent [178]. The findings indicate that TiPd1-

xRux mix very well at temperatures above 1200 K, particularly for high Ru content.  

As indicated in Figures 11-4, the miscibility gaps (bimodal curves) found in TiPd1-

xRux corresponds to the coexistence of two stable phases. Inside the miscibility 
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gaps, phase separation occurs at low temperatures. The TiPd1-xRux forms a 

heterogeneous structure as Pd and Ru does not have similar properties at low 

temperature. This observation is similar to the analysis by Zhang F et al [178]. 

Unfortunately, there is no theoretical or experimental result to compare.
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Figure 11-4 Energy difference against temperature of B2 Ti-Pd-Ru at different concentrations (a) Ti-Pd0.9Ru0.1, (b) Ti-Pd0.8Ru0.2, (c) 
Ti-Pd0.7Ru0.3, (d) Ti-Pd0.6Ru0.4 (e) Ti-Pd0.5Ru0.5, (f) Ti-Pd0.4Ru0.6, (g) Ti-Pd0.3Ru0.7, (h) Ti-Pd0.2Ru0.8 and (i) Ti-Pd0.1Ru0.9. 

(i) 

(e) (f) 

(a) 

(b) 

(d) 

(g) (h) 

(c) 
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 MC for B2 Ti1-xPdRux concentrations 

 

Figures 11-5 show the energy difference of Ti1-xPdRux alloys with a temperature 

at various concentrations. It can be clearly seen that the energy difference 

between atoms increases with temperature for all compositions (0≤x≤1). At 0.1 

concentrations (Ti0.9PdRu0.1), the energy difference increases minimally above 

300 K which indicates that the system mixes very well as shown in Figure 11-5 

(a) (see Figure B-4 in Appendix B).  

A zero slope was observed at 0.3 and 0.5 concentrations and the energy 

difference increase minimally above 2000 and 2400 K, respectively. This 

indicates that the system mixes very well as shown in Figure 11-5 (c) and (e). 

Furthermore, at 0.9 concentrations the energy difference increases and reaches 

zero slopes at 1300 K as shown in Figure 11-5 (i). This observation indicates that 

the melting temperature is improved with Ru additions. This is due to the fact that 

Ti and Ru have similar properties and thus tend to mix very well [178]. The results 

suggest that Ru prefers Ti-site as compared to Pd-site in agreement with the 

predicted formation energies. The findings indicate that Ti1-xPdRux mix well very 

at low temperatures below 300 K. 
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Figure 11-5 Energy difference against temperature of B2 Ti-Pd-Ru at various concentrations (a) Ti0.9PdRu0.1, (b) Ti0.8PdRu0.2, (c) 
Ti0.7PdRu0.3, (d) Ti0.6PdRu0.4, (e) Ti0.5PdRu0.5, (f) Ti0.4PdRu0.6, (g) Ti0.3PdRu0.7, (h) Ti0.2PdRu0.8 and (i) Ti0.1PdRu0.9.

(e) (f) 

(i) 

(a) (b) (c) 

(d) 

(h) (g) 
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 Constructed phase diagram 

 

Monte carlo simulation was used to construct the phase diagram from their critical 

temperature as implemented in the UNCLE code. 

 

 Phase diagram of TiPd1-xRux  

 

The computed phase diagram of ternary TiPd1-xRux alloys is shown in Figure 11-

6. The critical temperatures determined in Figures 11-4 were used to construct a 

phase diagram concerning the compositions of Ru on Pd-site. Note that the 

critical temperature is observed when an increase in temperature resulted in the 

same energy difference of the system (Zero slope). The phase diagram consists 

of two regions, homogeneity (mixing) and heterogeneity (phase separation). The 

mixing region is observed below 50 at. % Ru while the phase separation is above 

this concentration. It is clearly seen that 50 at. % Ru mixes at a high temperature 

above 1600 K indicating that the diffusion might be too fast. Our result shows that 

the TiPd1-xRux alloys exhibit phase separation at a temperature below 1700 K 

(see Figure 11-6). The TiPd1-xRux forms a heterogeneous structure as Pd and Ru 

does not have similar properties.  
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Figure 11-6 Constructed phase diagram of B2 TiPd1-XRuX using phase 
transition temperature at different concentrations. 

 

 Phase diagram of Ti1-xPdRux 
 

In Figure 11-7, the computed phase diagram of ternary Ti1-xPdRux alloys is shown 

where there are no miscibility gaps. The phase diagram is characterized by the 

mixing region only, contrary to the Pd sublattice TiPd1-XRuX. The mixing occurs at 

high temperatures compared to Ti sublattice. There is no phase separation 

occurrence for Ti1-xPdRux and the system mixes very well at a temperature below 

2000 K. This is due to the fact that Ti and Ru have similar properties and thus 

tend to mix very well. The results suggest that Ru prefers Ti-site compared to Pd-

site in agreement with the predicted formation energies. 
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Figure 11-7 Constructed phase diagram of B2 Ti1-XPdRuX using phase transition 
temperature at different concentrations. 
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Summary and conclusion  

In this chapter, we give the summary and conclusion of the study. Furthermore, 

recommendations and future work are presented. 

Titanium-based shape memory alloys (SMAs) are being developed for high 

temperature applications in the automotive and aerospace industries due to their 

superior properties, such as shape memory effect and superelasticity [1, 2]. 

Ti50Pd50 is found as one of the promising alloy with excellent chemical and 

physical properties such as lightweight, resistance to oxidation and ductility at 

823 K [21, 22].  

The main aim of this study was to investigate stability and phase transformation 

of binary Ti50Pd50 and the ternary Ti50Pd50-xMx (M= Ru, Pt, Ir, Co, Ni, Os, Al) shape 

memory alloys using multi-scale computational methods. It was reported that the 

binary Ti50Pd50 alloy is mechanically unstable (𝐶′ < 0) at 0 K [24, 35], and 

displayed poor shape memory behaviour during a transformation from cubic to 

orthorhombic phase, which resulted in poor corrosion resistance [4, 14, 21, 23, 

36].  

We have employed the first-principles approach to study the stability of the 

Ti50Pd50 alloy using a VASP code [38]. Furthermore, the effect of Ru, Os, Ir, Pt, 

Co, Ni and Al additions on the stability of Ti50Pd50 was investigated using 

supercell approach at different compositions (6.25, 18.75, 25, 31.25 and 43.75) 

at 0 K. The LAMMPS code was used to determine the temperature dependence 
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on the lattice expansion, XRDs and elastic properties of binary Ti50Pd50 and 

ternary B19 Ti50Pd50-xMx (M= Co, Ni) alloy. The DFTB+ technique was used to 

derive interatomic potentials of both binary Ti-Pd and ternary Ti-Pd-Ru alloys. 

The Cluster expansion was used to generate new stable phases on both binary 

Ti-Pd and ternary Ti-Pd-Ru alloys. Monte carlo simulation was used to construct 

the ternary phase diagrams.  

Ab initio DFT approach was used to study the equilibrium lattice parameters, 

heats of formation, elastic properties and phonon dispersion curves of B2, L10, 

B19 and B19’ Ti50Pd50 as potential HTSMAs. Our results of lattice parameters 

were found to be in good agreement to within 5 % with the available experimental 

and theoretical values [20, 34]. Thus the ground state structures were well 

reproduced. 

The thermodynamic stability was deduced from the heats of formation analysis. 

It was found that the results are in good agreement to within 5 % with available 

experimental and theoretical findings. At Ti50Pd50, we found that the monoclinic 

B19′ is the most stable phase (lowest ∆𝐻𝑓) while the cubic B2 is the least stable 

phase displaying the highest ∆𝐻𝑓. Thus, the predicted stability trend is: 

B19′>B19>L10>B2. 

We also evaluated the density of states for the four phases and compare their 

stability with respect to the trend of Fermi level and pseudogap [26]. The B2 

phase was confirmed to be the least stable displaying the highest states at Ef. 

We also found B19’ to be more stable with the lowest number of DOS at the Fermi 
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level which is consistent with the predicted heats of formation results. Thus a 

similar stability trend was obtained as: B19′>B19>L10>B2. 

The mechanical properties were investigated to assess the strength of the four 

binary phases. The cubic B2 was found to have the highest value of c12 which is 

greater than c11. This observation resulted in a negative elastic Shear modulus 

(𝐶′<0) (condition of instability). The B19′, B19 and L10 phases were found to be 

stable since all the independent elastic constants (Cij) and elastic Shear moduli 

(𝐶′>0) were positive, satisfying the stability criteria of the system [141]. The B19′ 

showed to have the highest shear modulus compared to B19, L10 and B2 phases. 

Furthermore, B19 was found to be the hardest with the highest Bulk modulus 

while B19′ was found to have the highest value of Young and Shear suggesting 

that the structure is stiffer and ductile, respectively. Moreover, L10 was found to 

be ductile with the highest ratio of Bulk to Shear modulus value (B/G>1.75) and 

B2 as brittle (B/G<1.75), according to Pugh‘s ratio of ductility and brittleness 

[149].  

The phonon dispersion curves were determined using the PHONON code [128]. 

The B2 structure showed the presence of soft modes along the high symmetry 

direction of Bz, which may be associated with the negative elastic Shear modulus 

(condition of vibrations instability). Furthermore, the B19’ and L10 phases were 

found to be more vibrationally stable since there were no soft modes observed in 

the phonon dispersion curves and this can be attributed to the positive c44 and 

Shear modulus (condition of stability). The B19 structure displayed imaginary soft 

modes along the Z direction. However, the structure is considered stable as there 
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were no soft modes at the origin (gamma direction) in agreement with the 

predicted elastic Shear modulus (𝐶′>0).  

The temperature dependence calculations were used to evaluate the 

performance of the structure at high temperature, employing the LAMMPS code 

[103]. We observed that the volume of the B19, B19′, L10 and B2 structures 

increase with an increase in temperature while the densities decrease below the 

melting temperature (1695 K). The B19 phase has shown to transform to cubic 

B2 phase at approximately 1496 K and the c/b ratio was found to be 1.414 in 

agreement with previous work [13]. Interestingly, the L10 was found to transform 

to cubic B2 (with a c/b ratio of 1.00) at approximately 897 K. This prediction has 

never been reported before to our knowledge. 

Furthermore, structural analyses were carried out using XRD patterns. It was 

observed that the XRD patterns of the B19 phase reveal a transformation from 

B19 to monoclinic B19′ at 1368 K, and transformation to cubic B2 phase at a 

higher temperature of 1496 K. The XRDs for the L10 Ti50Pd50 were also 

investigated and it was found that the cubic XRDs patterns appear at 897 K which 

is lower compared to B19 phase (1496 K). Finally, we found a good correlation 

between predicted lattice parameters and XRD results.  

In addition, the effect of temperature on the elastic properties was investigated 

for the binary B2, B19′, L10 and B19 Ti50Pd50 structures. We observed that as the 

temperature is increased, the elastic Shear moduli of the orthorhombic B19 phase 

decrease (becoming negative). This suggests the instability of the phase at higher 

temperatures. Similar behaviour was observed for the B19′ structure. In the case 
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of L10 and B2, we note that as the temperature is increased, the elastic Shear 

moduli decrease. However, the elastic Shear modulus was positive throughout 

the entire temperature range which confirms the stability of L10 and B2 at higher 

temperatures. The predicted transformation temperatures from L10 to B2, B19 to 

B19′ and B19′ to B2 occurs at 897, 1368 and 1496 K, respectively. These 

predictions are in line with the experimental phase diagrams [19, 81], the B2 and 

B19 are stable at 1673 K and 783 K, respectively. The existence of L10 and B19′ 

has not been reflected in the current phase diagram, and this is considered as a 

new prediction that awaits experimental verification. 

Ternary alloying with Pt, Ni, Co, Ru, Al, Ir and Os were investigated. The results 

suggested that the addition of Ru, Os, Pt and Ir stabilizes the Ti50Pd50 structure, 

since the heats of formation decrease with composition (∆𝐻𝑓 < 0). This was 

confirmed from DOS analysis. It was found that the states are shifted at Ef as the 

concentration is increased. For example, as the composition of Ru is added, the 

pseudogap moved toward the Ef, indicating electronic stability especially above 

20 at. % Ru.  A similar trend was observed with Os addition.  

The effect of ternary addition revealed that Ti50Pd50-xOsx alloys are mechanically 

stable above 18.75 at. % Os according to the criteria of mechanical stability [141]. 

Furthermore, the 𝐶′ was found negative below 25 at. % Ru (𝐶′< 0, condition of 

instability) and becomes positive above this composition (𝐶′> 0, condition of 

stability). The c11, c44 and 𝐶′ for Ti50Pd50-xRux increases with an increase in Ru 

concentrations, while c12 decreases above 25 at. % Ru. It was found that the 𝐶′ 

is negative below 31 at. % Co (instability characteristics) and becomes positive 

above this composition (condition of stability). This suggests that a possible 
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HTSMAs material could be achieved above 31 at. % Co. It was noted that the 𝐶′ 

is negative for Ir, Al and Pt additions on Ti50Pd50-xMx indicating mechanical 

instability (𝐶′< 0). This analysis has a direct impact on the transformation 

temperature. For example, a decrease in 𝐶′ suggests that the Ms is likely to 

increase [158].  

An elastic anisotropy ratio (A) was used to describe the isotropic and anisotropic 

behaviour of the Ti50Pd50-xMx systems. The analysis of A proves that the B2 

Ti50Pd50-xMx (M= Co, Ni) alloys displayed elastic anisotropy behaviour (as A is 

less and greater than 1). It was found that A approaches unity (A≈1) for both Ru 

and Os between 25 and 50 at. % composition, suggesting isotropic behaviour.  

The ductile nature of Ti50Pd50-xMx alloys was confirmed from the value of the B/G 

ratio [149], Poisson ′s ratio [140], Cauchy pressure (c12–c44) [148] and anisotropy 

[159]. It was revealed that increasing Os and Ru above 6.25 at. % could 

effectively improve the ductility of the compound. At high Co content, the 

Ti50Pd6.25Co43.75 is the hardest material (1.39 GPa) amongst other compositions. 

The Pugh (B/G) and Poisson ′s ratio revealed that B2 Ti50Pd50-xCox alloy is ductile 

above 18.75 at. % Co. It was found that the calculated anisotropy ratio is greater 

than 0.8 for 25 and 31.75 at. % Ru (condition of ductility). Furthermore, the 

anisotropy ratios were found greater than 0.8 above 18.75 at. % Os and Co which 

reveal ductility behaviour.  

The Bulk modulus (B), Shear modulus (G), Young ′s modulus (E), and Vickers 

hardness (HV), for the Ti50Pd50-xMx (M= Os, Ru) alloys, showed an increasing 

tendency with an increase in Os and Ru content. This behaviour suggests that 
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Os and Ru are most preferred to enhance the strength of the Ti50Pd50. Our 

phonon dispersion calculations predicted vibrational instability below 18.75 and 

25 at. % Os and Ru, respectively at room temperature. Os is favourable above 

18.75 at. %, while Ru is preferred above 25 at %.  

Furthermore, we have also evaluated how alloying can impact the transformation 

temperature. The results suggest that the addition of Ni, Co, Ru and Os on 

Ti50Pd50 alloy reduces the transformation temperature as indicated by positive 𝐶′. 

Similar observations were reported previously [92]. In addition, the findings 

revealed that Ru addition can promote transformation from B2 to B19 phase 

below 25 at. % Ru (as indicated by negative shear modulus 𝐶′). Interestingly, the 

addition of Ir and Pt was found to increase the martensitic transformation 

temperature of the TiPd since it gives the negative 𝐶′. This analysis is similar to 

the previous studies of Ti50Pt50, where it was indicated that the addition of Ir and 

Pd enhance the martensitic transformation temperature [92]. 

The Debye temperature was used to analyse the thermal conductivity of the 

systems. This quantity is responsible for strong ionic bonds and higher thermal 

conductivity [164]. A higher Debye temperature was observed for Ti50Pd6.25Ru43.75 

as compared to other compositions. An increase in Ru, Os and Co content 

increases the thermal conductivity only at a lower temperature (<300 K). It can 

be deduced that thermal conductivity could be effectively improved by the 

increase in Ru, Os and Co concentrations above 25 at. %.   

The LAMMPS code which employs the embedded atom method was used to 

determine the temperature dependence on the lattice expansion, XRDs and 
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elastic constants for B19 Ti50Pd50-xMx ternary. Most notably, the volume increases 

with an increase in temperature while the densities decrease. At 6.25 at. % Co, it 

was found that the transformation from B19 to B2 occurs at 971 K as the a/c and 

c/b ratios are closer to 1.414. Similar behaviour was observed for 18.25 and 25 

at. % Co as the transformation temperature decreases. It was observed that when 

6.25 at. % Ni is added, the lattice parameters collapse at 970 K. This suggests 

the transformation temperature from B19 to B2 is lowered. The XRD patterns for 

B19 Ti50Pd50-xMx (Co, Ni) showed that the alloy transition occurs at a lower 

temperature. For example, at 6.25 at. % Co, it was found that the number of 

peaks reduces at 972 K which suggested a possible transformation from B19 to 

B2 phase. Furthermore, it was observed that at 6.25 at. % Ni the number of peaks 

reduces above 971 K which implies transformation from B19 to B2 phase. In 

addition, the temperature dependence of the elastic properties was investigated 

for the B19 Ti50Pd50-xMx ternary. It was observed that as the temperature is 

increased, the (c11 + c22 -2c12), (c11 + c33 -2c13) and (c22 + c33 -2c23) moduli for the 

orthorhombic B19 phase decrease for the entire concentration range and become 

negative. This suggests instability of the phase at higher temperatures.  

The self-consistent-charge density functional tight-binding set of parameters for 

describing Ti50Pd50 and Ti50Pd50-xRux systems were developed using the DFTB+ 

code. It was noted that the calculated lattice parameters for binary Ti50Pd50 and 

ternary Ti50Pd50-xRux structures are in good agreement with available 

experimental and theoretical findings to within 5 %. The developed SCC-DFTB 

set of parameters were able to reproduce the structural and elastic properties in 

reasonable agreement with theoretical data [35]. The DFTB-based Molecular 
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dynamics calculations showed that the addition of 6.25, 18.75, 25 at. % Ru 

reduce the transformation temperature from B19 to B2 phase as the a/b and c/b 

ratio is approximately 1.448 (1274 K), 1.446 (1074 K) and 1.430 (873 K), 

respectively. This is consistent with the previous work where the transformation 

temperature of Ti50Pd50 decreased with the addition of 5 at. % Ru [93]. The 

DFTB+ code was able to predict the transformation temperature of Ti50Pd50-xRux 

alloy while a LAMMPS code was able to predict for Ti50Pd50-xMx (M= Co, Ni) 

alloys. Both codes were found robust in determining the transformation 

temperature. 

We have also studied the phase stability of B2 TiPd1-XRuX and Ti1-XPdRuX alloys 

using a multi-scale approach. A combination of DFT, Cluster expansion and 

Monte carlo simulation approaches were used. The cluster expansion method 

has generated about 27 new structures on B2 TiPd1-XRuX and 17 new structures 

for B2 Ti1-XPdRuX. Their heats of formation were found to be positive, indicating 

a phase separation tendency for TiPd1-XRuX alloys. The most thermodynamically 

stable structure of Ti1-xPdRux was found to be TiPd2Ru (P4/mmm) which 

displayed the lowest heats of formation (-0.404 eV/atom).  

The phase diagrams of B2 TiPd1-XRuX and Ti1-XPdRuX were constructed using 

Monte Carlo simulations. The findings revealed that Ru prefers Ti-site as 

compared to Pd-site, consistent with the predicted heats of formation. More 

importantly, the phase diagrams of ternary B2 TiPd1-xRux and Ti1-xPdRux systems 

were constructed for the first time and then considered a prediction that awaits 

experimental investigation.  
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The stability and phase transformation of the binary Ti50Pd50 and ternary Ti50Pd50-

xMx (M= Ru, Pt, Ir, Co, Ni, Os, Al) shape memory alloys were successfully studied 

using multi-scale methods. The findings indicate that a HTSMAs material could 

be achieved between 25 and 31.25 at. % Ru concentration. The current study will 

provide valuable insights which align guide experiments on stability, ductility and 

transformation temperature of binary Ti50Pd50 and ternary Ti50Pd50-xMx. More 

importantly, to highlight where phase separation and mixing may occur in the B2 

TiPd1-XRuX and Ti1-XPdRuX systems which is important for alloy development. 
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Recommendations and future work 
 

Several recommendations for future research are listed below: 

I. Use Monte carlo simulation to determine the strain and stress for binary 

Ti-Pd and ternary Ti-Pd-Ru systems. 

II. Use UNCLE Code to generate new ground state structures of Ti-Pd-Os. 

Monte Carlo simulations can be used to determine phase separation and 

the mixing of Ti-Pd-Os system.  

III. To derive sets of parameters of the B19 and B2 TiPd-Os alloys using 

DFTB+ code. The sets of parameters are important to determine 

structural, electronic and elastic properties and compare them with 

available experimental findings. Furthermore, the transformation 

temperature and stability will be investigated.  

IV. To determine the relative stability by investigating energies of different 

site-occupancy configurations using SOD code on binary Ti-Pd and 

ternary B2 TiPd-Ru alloys. 

V. To determine the temperature dependence on lattice parameters, XRDs 

and elastic properties of the ternary B19′, B2 and L10 Ti50Pd50-xMx (Co, Ni) 

using LAMMPS code. 
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APPENDIX A 

Temperature dependence of the Ti50Pd50-xMx (M= Co, Ni) 

   
Figure A-1 Lattice expansions (a) 31.25 (b) 43.75 and (c) 50 at. % Co (Ti50Pd50-XCoX alloys) against temperature. 
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Figure A-2 Lattice expansions of (a) 31.25 (b) 43.75 and (c) 50 at. % Al (Ti50Pd50-XAlX alloys) against temperature. 
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Elastic properties of B19 Ti50Pd50-XMX (Co and Ni) alloys with temperature.  

  
Figure A-3 simulated (a) elastic constants and (b) elastic shear modulus (𝐶′) against temperature for Ti50Pd50-XCoX alloys 
(31.25≤x≤50). The dotted lines are used as a guide with respect to stability. 
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Figure A-4 Simulated (a) elastic constants and (b) elastic shear modulus (𝐶′) against temperature for Ti50Pd50-XNiX alloys 
(31.25≤x≤50). The dotted lines are used as a guide with respect to stability. 
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APPENDIX B 

Temperatures Monte Carlo profiles of the B2 Ti-Pd-Ru 

  

 

Figure B-1 Energy difference against temperature of B2 Ti-Pd-Ru at different concentrations (a) Ti-Pd0.9Ru0.1, (b) Ti-Pd0.8Ru0.2 and 
(c) Ti-Pd0.7Ru0.3. 

(a) 
(b) 

(c) 
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Figure B-2 Energy difference against temperature of B2 Ti-Pd-Ru at different concentrations (d) Ti-Pd0.6Ru0.4, (e) Ti-Pd0.5Ru0.5 and 
(f) Ti-Pd0.4Ru0.6. 

(d) 
(e) 

(f) 
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Figure B-3 Energy difference against temperature of B2 Ti-Pd-Ru at different concentrations (g) Ti-Pd0.3Ru0.7, (h) Ti-Pd0.2Ru0.8 and 
(i) Ti-Pd0.1Ru0.9. 

 

 

(g) (h) 

(i) 
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Figure B-4 Energy diffrence against temperature of B2 Ti-Pd-Ru at various concentrations (a) Ti0.9PdRu0.1, (b) Ti0.8PdRu0.2 and (c) 

Ti0.7PdRu0.3. 

(a) (b) 

(c) 
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Figure B-5 Energy difference against temperature of B2 Ti-Pd-Ru at various concentrations (d) Ti0.6PdRu0.4, (e) Ti0.5PdRu0.5 and (f) 
Ti0.4PdRu0.6. 

(d) (e) 

(f) 
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Figure B-6 Energy difference against temperature of B2 Ti-Pd-Ru at various concentrations (g) Ti0.3PdRu0.7, (h) Ti0.2PdRu0.8 and (i) 
Ti0.1PdRu0.9.

(h) (g) 

(i) 
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