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ABSTRACT

Titanium-based shape memory alloys have attracted a lot of attention due to their
important technological applications including actuator devices, electronics, and
medical stents. This is due to their shape memory effects (SMEs) and superelasticity.
TisoPdso system is considered as one of the potential high temperature shape memory
alloy (HTSMA) due to their high martensitic transformation temperature at 823 K.
Previous studies revealed that this alloy is mechanically unstable displaying a negative
C' (C' < 0) at 0 K. Furthermore, their strength collapses above 823 K, which results in
low ductility, extremely poor shape memory and corrosion resistance. In the current
study, multi-scale computational methods were used to investigate the stability and
phase transformation of binary TisoPdso and the ternary TisoPdso-xMx alloys. The ternary
alloying of Ru, Pt, Ir, Co, Ni, Os, Al was carried out to enhance shape memory

properties and the transformation temperature of the TisoPdso.

Firstly, density functional theory was used to investigate the stability of B2, L1o, B19
and B19' TisoPdso shape memory alloys. A plane-wave pseudopotential method within
the Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA) was
employed. The electronic properties, phonon dispersion curves and elastic constants
were determined to check the stability of these alloys. It was found that the lattice
parameters and heats of formation are well in agreement to within 5 % with the
available experimental and theoretical data. More importantly, B19" TisoPdso was
predicted to be the most stable structure (displaying the lowest heats of formation) as
compared to B19, B2 and L1o. This observation is consistent with the density of state
stability trend. The elastic constants revealed mechanical instability of the B2 phase

(C">0) while L1o, B19 and B19' were found to be stable (C'<0). Furthermore, the B2



phase is vibrationally unstable due to the presence of soft mode emanating from the

phonon dispersion curve.

Secondly, the supercell approach was used to investigate the effect of ternary alloying
with Ru, Os, Pt, Ir, Co, Al and Ni on the B2 TisoPdso structure. A 2x2x2 supercell was
used to introduce the various dopants on the Pd sub-lattice. The heats of formation
was found to decrease with an increase in Ru, Os, Pt and Ir concentrations (condition
of stability), consistent with the density of states trend. This is in contrast to Co, Ni and
Al addition which indicates that the thermodynamic stability is not enhanced (heats of
formation increases). It was also found that an increase in Os, Ru and Co content
stabilizes the TisoPdso with a positive elastic shear modulus (€’ > 0) above 18.25, 20
and 31 at. %, respectively. The results suggest that these dopants are likely to
decrease the martensitic transformation temperature of the TisoPdso alloy.
Interestingly, partial substitution of Pd with Ir and Pt was found more effective in
strengthening the compound and may enhance the martensitic transformation
temperature of the TisoPdso alloy further. The calculated moduli confirm that alloying
with Ru, Os and Co effectively enhances the ductility in TisoPdso systems. Anisotropy
factor and Vickers hardness are studied and hardness is found to increase with an

increase in Ru, Os and Co content.

Thirdly, the semi-empirical embedded atom interatomic potentials method
incorporated in the LAMMPS code was employed to investigate the temperature
dependence of the B19, B19', B2, L1o binary TisoPdso and ternary B19 TisoPdso-xMx
(M= Co, Ni) structures. It was found that the B19 TisoPdso gave a c/b ratio of 1.414 at
approximately 1496 K which suggests that the B19 has transformed to a cubic B2
phase. Furthermore, the addition of Co and Ni lowers the transformation temperature

from the B19 to the B2 phase.



The DFTB+ code was used to develop the sets of parameters for TisoPdso and TisoPdso-
xRux alloys employing the parameterization technique. As part of the validation, the
developed set of parameters yielded results such as lattice parameters and bond
distances that are in good agreement to within 5 % as compared to DMol® findings.
Furthermore, temperature dependence calculations were performed to determine the
transformation temperature of binary TisoPdso and ternary TisoPdsoxRux alloys. It was
observed that the addition of Ru reduces the transformation temperature of binary

TisoPdso.

Finally, cluster expansion and Monte-Carlo simulations were employed to determine
phase changes and high temperature properties of mixed TiPdi1-xRux and TiixPdRux
shape memory alloys. A total of 27 new structures for the B2 TiPdi-xRux and 17 new
structures for B2 TiixPdRux were generated. The ground state line predicted 5 stable
structures with negative formation energies for TiixPdRux alloys, suggesting
thermodynamic stability. It was found that TiPd2Ru (P4/mmm) is the most
thermodynamic stable structure. All formation energies of TiPdixRux alloys are
positive, showing that there is a miscibility gap in the system and thermodynamic
instability. The result showed that Ru prefers being substituted on the Ti-site than the
Pd-site. It was found that Ti2PdRu and TiPd2Ru mix at 1600 K and below 1400 K,
respectively which were confirmed by the constructed phase diagram of TiPdixRux

and TiixPdRux.

Thus, multi-scale approaches were successfully used to understand the structural,
electronic, elastic and vibrational stability, as well as the transformation behaviour of

both binary and ternary alloys.
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Chapter 1

Introduction

This chapter provides some background information of shape memory alloys from
previous theoretical and experimental studies. Firstly, the concept of shape
memory alloys with regard to binary TiPd alloys are introduced; then the various
other related binary and ternary alloys are discussed. The intentions of the study,
aim, and objectives of the thesis are set out. Finally, the outline of the thesis is

given.

1.1 Shape memory alloys

Shape memory alloys (SMAs) have the ability to remember their shape after
being deformed and play an important role in many industries such as
automotive, aerospace and medical [1, 2], this is due to their shape memory
effects (SMEs) and superelasticity [1]. These alloys undergo a reversible
martensitic phase transformation from the high symmetry austenite to the low
symmetry martensite phase upon the influence of temperature or stress field [3,
4]. Note that the martensite phase transformation refers to a diffusionless solid-
state phase transition occurring in alloys, where the parent phase changes into
the product phase through coordinated lattice deformation. Amongst the SMAs,
the Ti-Ni has been studied for a long period and is useful because of their unique

sufficient ductility and shape memory properties [5]. However, these alloys have



a limited temperature around 373 K, so their applications are limited [6]. Copper-
based SMAs such as Cu-Zn, Cu-Al, and their related alloys are also of
commercial importance because of their low price, but they suffer instability of

martensitic phase and brittleness [7].

Recently, SMAs are being developed to suit many applications in many fields,
especially for engineering properties. There is an increasing demand for high
temperature shape memory alloys (HTSMAS) for use in automobiles, pipe
couplings and aircrafts engines and other applications. In order to design better
SMAs, it requires that their working temperature and functional stability must be
enhanced. The working temperature is critical for designing of HTSMAs, while
the functional stability is important for improving their reliability of SMAs [8]. The
working temperature and functional stability of SMAs can be adjusted by
replacing their constituent elements with others, in particular precious metals
such as Pt, Pd, Al, Ru, Ir, Os and Ni. For example, the working temperature of
TiNi alloys can be increased to the range of 400-1200 K, when Ni is replaced
with the same group elements, namely Pd or Pt [9, 10]. In recent studies,
intermetallic compounds such as NiAl [11], TiPt [12, 13] and TiPd [14] have been
given more attention for future HTSMAs development. This is due to their

martensitic transformation temperature above 373 K.

1.2 TiPd SMAs

Titanium-based alloys in particular TisoPdso are being developed for high

temperature applications. TisoPdso systems are considered as one of the potential



HTSMA'’s due to their high martensitic transformation temperature [15, 16]. The
TisoPdso has two stable phases - the high-temperature phase, called austenite
and the low-temperature phase called martensite [17]. A high temperature phase
of TisoPdso has a simple cubic CsCl-type (cP2, B2) structure [18], while at ambient
temperature the martensite phase has been reported as the orthorhombic AuCd-
type (oP4, B19) structure [19, 20]. These alloys have excellent chemical and
physical properties such as lightweight, oxidation resistance and ductility at 823
K [21, 22]. However, their strength collapses above 823 K, which results in low
ductility, extremely poor shape memory and poor corrosion resistance [4, 14, 23,
21]. Consequently, the binary TisoPdso alloy has no strength for use in actuators
and aeronautic industry and ternary alloys will need to be established to improve
their properties [24, 25]. The collapse is due to a possible phase transformation
from body centered cubic (bcc) to other tetragonal and orthorhombic phases such
as L1lo and B19, similar to those reported in TiPt alloy [26]. Nonetheless, their
transformation behaviour has not been ascertained explicitly. Furthermore, there
is still a lack of knowledge to understand the equilibrium phase diagram especially
in the near-equiatomic region that is the most important for practical applications

as HTSMAs.

In order to enhance the transformation temperature and performance of the
TisoPdso SMA’s which include hardening, forgeability, corrosion resistance and
thermal stability, ternary alloying has been suggested. The elements such as Au,
Ni, Ru, Rh, Ir, Pt, Zn, Rc, Tc, Os and Co were reported as the best site preference
for both Ti and Pd substitution with less than 50 atomic percentage (at. %), while

Ag and Cd prefer the Ti substitution site in B2 TisoPdso structure [27]. The addition



of the third elements such as Ru, Ir, Pt, Co and Ni elements showed high work
output and good workability [28]. The addition of such elements may enhance the
transformation temperature of TisoPdso to above 1000K [29]. Previously, the
addition of Ni to TisoPdso has shown improvement in shape memory

characteristics for TisoPdsoNizo composition [21].

Cobalt and other PGMs elements have been in use for the production of various
components such as vanes or combustion chambers in gas turbines for their
exceptional heat-resistant properties [30]. Ru, in particular, is one of the most
effective hardeners for platinum and palladium and is alloyed with these metals
to increase resistance to heat and resistance to corrosion [31]. It can also be used
to enhance the mechanical properties and corrosion resistance for titanium-
based alloys and high-temperature single-crystal superalloys for application in jet
engines [31, 32]. These alloys have a higher temperature capability and lower
creep rate which will make the actuator more durable and increases aircraft
efficiency [31]. Osmium is most often used as an alloying agent with other PGMs
and found in electrical contacts, styluses and medical devices and in other
applications that need great strength and stiffness [33]. The additions of Os, Ru,
Ir, Pt, Co, Al and Ni may enhance the transformation temperature of TisoPdso to

above 1000 K.

In this thesis, the ternary alloying of TisoPdso with Os, Ru, Ir, Pt, Co, Al and Ni
have been performed using different approaches to investigate the
thermodynamic, electronic, mechanical and thermal stability. Furthermore, the
effect of Os, Ru, Ir, Pt, Co, Al and Ni on the ductility/brittleness has been deduced

from the Poisson's ratio, Debye temperature and Cauchy pressure, which



confirms the strength of the systems. The calculated results will provide useful
and practical guidance for further experimental and theoretical investigations on

the future ternary shape memory alloys.

1.3 Structural properties

The TiPd system has various compositions, however, the focus on SMAs
development at 50:50 composition where B2, B19, B19' and L1o TiPd structures
are observed. The B2 phase is a cubic high temperature structure with the space
group Pm-3m while the B19 phase is an orthorhombic low temperature structure
with the space group Pmma. The positions of B2 atoms are denoted by the
Pearson symbol cP2 and the prototype is CsCl with all angles being 90°. The
positions of B19 atoms are denoted by the Pearson symbol of oP4 and the

prototype of AuCd with all angles being 90°. B2 experimental observed unit cell

parameters are a=b=c=3.180 A [23] while B19 experimental observed unit cell

parameters are a=4.550 A, b=2.780 A and c=4.860 A [20].

The B19' structure is monoclinic with the space group P2i/m while the Llo
structure is tetragonal having the space group P4/mmm. B19’ theoretical lattice
parameters are a=2.744, b=4.797, c=4.460 [34], with prototype NiTi.
Furthermore, L1o theoretical lattice parameters are a=b=2.855, ¢=3.907 [34] with
the prototype of AuCu. This is detailed in Table 1-1 and the atomic arrangements

of these structures are shown in Figure 1-1.



Table 1-1 Structural properties of B2, B19, B19’, L1, TisoPdso from theoretical and
experimental observations.

B2 [20] B19 [23] B19'[34] L1o[34]

Lattice parameter (A) a=b=c=3.180 a=4.550 a=2.744  a=b=2.855
b=2.780 b=4.797  ¢=3.907
c=4.860 c=4.460

Space group Pm-3m Pmma P21/m P4/mmm
Prototype CsClI AuCd NiTi AuCu
Pearson symbol cP2 oP4 mP4 tP2

y T (b)

B2

(d)

L1o B19’

Figure 1-1 The TisoPdso (a) B19 with 4 atoms per unit cell (b) B2 with 2 atoms per
unit cell (c) L1, with 4 atoms per unit cell (d) B19' with 4 atom per unit cell.



1.4 Intentions of the study

The study of TisoPdso alloy is of interest mainly in automotive and aerospace
applications for quite some time due to higher martensitic transformation at 823
K [21, 22]. This alloy continues to gain popularity due to many favourable shape
memory properties such as high melting temperature, high yield strength at high
temperatures, good resistance to oxidation and corrosion. Previous studies
showed that B2 TisoPdso is unstable displaying a negative elastic shear modulus
(C") at 0 K [24, 35]. Furthermore, TisoPdso displays poor shape memory behaviour
during transformation, which results in poor corrosion resistance [4, 14, 21, 23,
36]. This then instigates a need to enhance their mechanical properties and

understand the transformations behaviour in binary and ternary additions.

The intention of the study is to use computational modelling methods to determine
the stability of binary TisoPdso and ternary TisoPdsoxMx (M= Ru, Os, Pt, Ir, Al, Ni,
Co). The equilibrium ground state properties will be determined using DFT based
planewave pseudopotential [37] VASP code [38] employing the GGA-PBE [39].
Different equilibrium ground state properties such as lattice parameters and heats
of formation of these alloys will be deduced. The elastic properties, thermal
properties, electronic density of states and the phonon dispersions curves will be
determined to check the stability of the ternaries. Effect of Ru, Os, Ir, Pt, Co, Ni
and Al additions on TisoPdso will be investigated using supercell approach to
observe the stability at different compositions at 0 K. A 2x2x2 supercell will be
constructed on the binary TisoPdso and a substitutional search tool within the

Medea software platform will be used to substitute Pd with Ru, Os, Ir, Pt, Co, Ni



and Al. A supercell approach will be performed mainly for up to five compositions
6.25, 18.75, 25, 31.25 and 43.75. Full geometry optimization will be performed to
find the ground state properties for all the compositions. The electronic and
mechanical properties will be determined from optimized structures. It will be
established that Ru and Os substitutes are mostly favourable. This is in line with
previous studies as Ru addition has shown to improve different properties such

as Hardness in PtAl [40].

Furthermore, the temperature dependence of the lattice parameters, XRDs and
the elastic constants for the TisoPdso-xMx (M= Co and Ni) will be studied using the
LAMMPS code. The lattice parameters and XRDs will be used to determine the
phase transformation as the temperature is increased. Mechanical properties will

be determined to identify the strength of the structures at a higher temperature.

The DFTB+ technique will be used to derive interatomic potentials of both binary
Ti-Pd and ternary Ti-Pd-Ru alloys. In order to obtain the set of parameters for Ti-
Pd and Ti-Pd-Ru, the potential confinement radius for Ti, Pd, and Ru elements
will be constantly adjusted until the suitable radii are obtained. Geometry
optimization will be carried out to obtain the ground state properties. This will be
considered converged if structural properties produced are in good agreement
with available theoretical and experimental results. During geometry optimization,
GGA-PBE and LDA-PWC exchange-correlation functionals will be used to check
their suitability for describing the properties of the systems. The thermodynamic,
electronic and elastic properties will be determined from optimized structures to

deduce the possible stability and be compared with the results obtained using



standard DFT. The derived potential will be explored to determine the
transformation occurrence and stability. A transformation temperature will be
investigated to establish at what temperature does the system change, using the
NPT ensemble within DFTB. The time step and simulation time will be determined
before any temperature calculations would be done, which is critical for making a
meaningful prediction.

Furthermore, the Cluster expansion and Monte Carlo simulations will be explored
to generate new stable phases on B2 Ti-Pd-Ru. A flowchart will be used to
generate ground-state structures which are compared with previous approach i.e.
DFT, DFTB and LAMMPS. In order to assess the accuracy of the cluster
expansion, the cross-validation score (CVS) will be considered. A cluster
expansion with CVS< 5 meV/atom will be considered accurate. Monte Carlo
simulations will be used to construct the ternary phase diagrams from the critical

temperature of each concentration.

1.5 Aim

The aim of the study is to investigate the stability and phase transformation of
binary TisoPdso and the ternary TisoPdsox M (M= Ru, Pt, Ir, Co, Ni, Os, Al) shape

memory alloys.



1.6 Objectives

In this study, we investigate the stability and phase transformation of binary
TisoPdso and the ternary TisoPdsox M alloys. Different codes such as VASP,

LAMMPS, DFTB+ and Universal Cluster-Expansion (UNCLE) are used.

The objectives of the study are to:

vi

Vii

determine the structural, thermodynamic and electronic stability of binary
TisoPdso and ternary TisoPdso-xMx (M= Ru, Pt, Ir, Co, Ni, Os, Al) SMAs,
investigate the mechanical stability from the elastic properties and the phonon
dispersion curves of the binary TisoPdso and ternary TisoPdso-xMx,

determine the thermal stability by investigating the Debye temperature, heat
capacity, thermal coefficient of linear expansion of the binary TisoPdso and
ternary TisoPdso-xMx,

investigate temperature dependence on the lattice parameters and XRDs to
check the transformation temperature of binary TisoPdso and B19 TisoPdso-xMx
(Co, Ni) structures using LAMMPS code,

derive reliable interatomic potentials that can effectively describe stability and
transformation temperature of the binary TisoPdso and ternary TisoPdso-xRux
systems using DFTB+ code,

generate new stable phases of Ti-Pd and Ti-Pd-Ru system using UNCLE
code,

use Monte carlo simulation to predict the ternary Ti-Pd-Ru phase diagrams.
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Vi.

1.7 Hypothesis

If ternary alloying enhance the stability and martensitic transformation of TisoPdso
then possible alloys that can be used for high temperature application can be

developed.

1.8 Research questions

The questions to be answered by this project are:

Which alloying elements would be more effective in enhancing the

thermodynamic, electronic and mechanical stability of TisoPdso?

Which alloying elements can be used to determine the thermal stability of

TisoPdso alloy?

Which alloying elements can be utilised to enhance the transformation

temperature of TisoPdso alloy above 1400 K?

Which interatomic potential are suitable to describe the stability and
transformation temperature of binary Ti-Pd and ternary Ti-Pd-Ru alloys be

determined?

What are the other possible binary and ternary structures that may exist in the

new ground state line of both binary Ti-Pd and ternary Ti-Pd-Ru alloys?

At what temperature and concentration range would Ti-Pd-Ru systems mix

well using Monte Carlo simulation?
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1.9 Outline

In chapter 1, we dealt with the background and introduction of the Ti-based shape

memory alloys (SMAS).

In chapter 2, we give a brief summary of the literature review in terms importance
and uses of the SMAs from previous experimental and computational

approaches.

Chapter 3 give the detail of the methods that were used to perform the
calculations in this study. We briefly introduce the density functional theory (DFT)
and the approximation methods used such as the generalised gradient
approximation (GGA) and the local density approximation (LDA). The plane-wave
pseudopotential approach is outlined. We also introduce computational codes
used such as VASP, PHONON, DMol®, DFTB+, LAMMPS and UNCLE and their
implementation in this study. Lastly, we give a brief theoretical background on the
calculated properties, i.e. heats of formation, density of states, and elastic

properties.

Chapter 4 present the results and discussion on the structural, thermodynamic,
the density of states, phonon dispersion, phonon density and mechanical

properties for TisoPdso alloy and compare with the available experimental values.

In chapter 5, we discuss the temperature dependence of the TisoPdso alloy. The

temperature dependence of the lattice parameters and the XRD patterns of the

12



binaries are plotted and discussed. We also discuss the elastic properties of the

TisoPdso alloy.

Chapter 6 presents the structural, thermodynamic and electronic properties of
TisoPdso-xMx alloys generated using the supercell approach. The equilibrium
lattice parameters, heats of formation and densities of states are discussed in

detail and compared with the available experimental results.

Chapter 7 focuses on the mechanical properties of the ternaries TisoPdso-xMx. We
discuss in detail the mechanical properties i.e. elastic constants, moduli (Bulk,
Shear and Young’s), Pugh (B/G) and Poisson’s ratio as well as Cauchy pressure
of the ternaries TisoPdso-xMx. We also compare the trend of mechanical stability

amongst the ternaries.

Chapter 8 presents the vibrational and thermal properties of TisoPdsoxMx alloys.
In particular the phonon dispersion curves, Debye temperature, heat capacity and

thermal coefficient of linear expansion.

In chapter 9, we present the temperature dependence of the TisoPdsoxMx (M =
Co, Ni). The volume, density, lattice parameters and XRD patterns of the
ternaries B19 TisoPdso-xMx are investigated and discussed. We also discuss the

mechanical properties of the TisoPdsoxMx ternaries.
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Chapter 10 focuses on the parameterization of the self-consistent-charge density
functional tight-binding (SCC-DFTB) set of parameters for the binary TisoPdso and
ternary TisoPdsoxRux. The validation of the developed set of parameters is given.
We also present transformation temperature for both TisoPdso and TisoPdso-xRux

using the derived parameters.

In chapter 11, Cluster expansion and Monte carlo results on phase stability are
discussed for binary Ti-Pd, ternary TiPdi-xRux and Ti1-xPdRux alloys. We present
generated new ground state structures for both binary Ti-Pd, ternary TiPdi-xRux
and TiixPdRux systems. Furthermore, we discuss constructed phase diagrams

of the TiPd1xRux and TiixPdRux alloys.

Lastly, in chapter 12, we give the summary and conclusion of the study,

recommendations and future work are also listed.
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Chapter 2

Literature review

In this chapter, we give a review of previous studies on shape memory alloys
(SMASs) and their applications. Furthermore, the transformation temperature of
TiPd SMAs will be reviewed. Various binary and ternary SMAs that have been
investigated previously using both experimental and computational studies are
presented. Finally, a background on the ternary SMAs and the methods used to

assess the properties of binary and ternary SMAs will be reviewed.

2.1 History of shape memory alloys

SMAs fall into the category of smart materials and are capable of recovering their
shape, after being deformed at low temperatures, when the temperature is
increased. The leading SMAs on the market are TiNi-based alloys which are used
in the medical sector and, other applications where the application temperatures
do not exceed 373 K [41]. Given the potential of SMAs at low temperatures,
national aeronautics and space administration (NASA) and others have
developed HTSMAs for use in higher temperature applications such as sensors
and actuators in jet engines, including, core exhaust chevrons, flow control
devices, and active clearance control devices, etc. The shape memory effect in
these alloys is related to the reversibility of the martensitic transformation [42].
The SME was first observed on gold-cadmium alloys as a result of shape change

enabling the ability to create macroscopic strains that lead to the production of a
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large number of different alloys [43]. Furthermore, Chang and Read showed the
reverse transformation of AuCd in terms of resistivity changes and metallurgical
observation [44]. They also studied the effects of stress and temperature on
diffusionless phase transformations which are responsible for shape memory
effect and superelasticity [44]. It was also revealed that the nucleation in this
diffusionless transformation is strongly influenced by the state of stress present
in the specimen. Furthermore, it was found that the electrical resistivity of the
tetragonal phase after transformation decreases slowly with time (finally reaching
a stabilised value). A breakthrough in the medical application was made with
regard to the treatment of bone fracture [45]. They managed to design and built

bone holders using novel TiNi wires for 20 patients.

2.2 Application of shape memory alloys

The major applications of Ti-based alloys are in the medical sector, engineering
and technical field and are used as stents, bone plates, eyeglasses, couplings
and fasteners, actuators, thermal power plants, aircraft turbine engines, etc. This
is mainly because these alloys are less expensive, easier to work with, have high
fatigue strength and have a lot of shape-changing potential [46]. For example,
TiNi alloys are used for noiseless operation in vehicles. Furthermore, nitinol was
first used to create a reactive pipe coupler to join hydraulic lines on the F-14
aircraft with a low transition temperature below 153 K [47].

In the medical field, Nitinol is used in two ways: the development of stents [48] to
treat narrow or weak arteries and secondly for implants in dentistry [49]. The first

superelastic braces were developed three decades ago [49]. The coil spring in

16



cars was first outlined and developed in 1990 [1, 50]. In 2013, the first car to
incorporate SMA actuators was developed and these actuators replace heavier
motorised actuators in order to reduce the hatch vest from the trunk that releases
air [51]. The recent applications of shape memory alloys are found in civil
infrastructures including steel, concrete and timber structures [52]. It was
revealed that SMA in civil infrastructures enhances the structural behaviour and

energy dissipation of external excitation in seismic loads [52].

2.3 Transformation temperature in SMAS

Transformation temperature is the temperature at which there is a phase change
in the structure [1]. The martensitic transformation occurs from austenite to
martensite or vice versa by means of a lattice shearing mechanism [1]. An
austenite phase has a high symmetry with a cubic lattice and occurs at high
temperature while martensite is the lowest symmetry occurs in tetragonal or
monoclinic at low temperature [1]. The sputter deposition of TiNi, TiNiPd and TiPd
films was reported to display the two-way SME in sensors and actuators [53].
This behave is a common property of SMA, it is called Two Way SME. Two-way
SME refers to the SMAs that are able to remember their shape above austenite
final at high temperature and another shape below martensite finish (Mf) at low
temperature on both heating and cooling. It was reported that TiPd transformation
temperature is from austenite to martensitic as shown in Figure 2-1. The Ms
represents the martensitic start temperature which implies that the initial phase
change to martensite upon cooling occurs, while Mr represents the martensite

finish temperature which means that the complete phase change to martensite
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upon cooling. The As represents austenite start temperature which means that
the initial phase change to martensite upon heating, while Ar represent the
austenite finish temperature which means that is the complete phase change to

austenite upon heating [1, 53].

TiFd
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Figure 2-1 Show austenite to martensitic transformation temperature for

TiPd [53].

2.4 Binary systems

In Table 2-1, we show various binary SMAs that exist or form. This Table is
presented in order to indicate binary alloys which have been investigated
previously either computationally or experimentally. The sign right (+v") indicate
that the alloy has been investigated or its availability and cross (x) indicates

unavailability or the alloy does not form.
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Table 2-1 Various different binary SMAs.

Ti Zr Hf Mo Fe Ru Co Rh Ir Os
Ni v v v v v v v v v v
Pd v v v v v v v v v v
Pt v v v v v v v v v v
Cu v v v v v v v v v v
Ag v v v v v v v v v v
Au v v v v v v v v v v
Ti X v v v v v v v v v

2.41 Zr (Pd, Pt, Ni, Ag, Ti) alloy

The compounds ZrPd and ZrPt were reported to have the B2 or B33 (BCr-type)
structures [54]. Furthermore, the ZrPd alloy was observed to transform to a
monoclinic phase at 473 K before it undergoes a martensitic transformation from
high temperature B2 to B33 at 875 K [55]. At room temperature, the martensitic
phase in equiatomic ZrPd alloy is Cm [55]. It was previously reported that ZrNi
and ZrPd amorphous alloys absorb an extensive amount of hydrogen [56]. The
ZrPt alloy was reported to undergo a martensitic transformation from the B2-type
structure to the B33-type phase near 1730 K [57]. Previously, the ZrPt system
showed to have a B33 structure at low temperature [54] and have B2 structure at
high temperature [54]. A recent study investigated the use of AgZr alloys as active
brazers in composite materials suitable for applications requiring aggressive

thermal and mechanical conditions [58, 59]. Furthermore, TiZr alloy has been
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used for endosseous dental implant applications as tested in vitro, in animals and

clinically [60].

2.4.2 Hf (Ni, Pd, Pt, Cu, Ti) alloy

Hf-based alloys, in particular, the equiatomic HfNi alloy was reported to exhibits
a martensitic transformation from the B2-type structure to the B33-type structure
near 1420 K [61]. Studies done by Stalick et al. [62] reported that the space group
in equiatomic HfPd alloy at room temperature is identified as P21/m. This was
done using the powder neutron diffraction data. Martensitic transformation in
equiatomic HfPd alloy was found to be Ms=819 K, M=794 K, As= 928 K, A= 954
K, this was tested using differential scanning calorimetry measurement [63]. In

the Hf-Pt systems, their spin-orbit and the prototypes for Tll and B33 were found

to remain degenerate and the most stable. Furthermore, a considerable gap was
preserved to the less stable B2 structure.

Previously, ab initio method was used to study the Cu-Hf systems employing the
VASP code with Vanderbilt-type ultrasoft pseudo-potentials [64]. Furthermore,
twenty-eight different structures have been studied, of which four, CusHf; CusHfs;
CuioHf7 and CuHf2, were identified as stable. Previously, there was no
experimental information about the structure of CusHf [65].

In the previous years, Ti and Hf have been proven to have good biocompatibility
and osteoconductivity in both soft and hard tissues [66]. Furthermore, other
studies focused on the effects of Hf content and heat treatment to understand the
mechanical properties of Ti-Hf alloys [67]. It was found that the beta-quenched

structures have higher strengths than the beta-furnace-cooled structures.
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Another study conducted by Zhou [68] revealed that an increase in Hf content
gently reduces the dynamic Young’s modulus but strongly enhances the strength
of Ti-Hf alloys. Furthermore, the TisoHf40 alloy was found to have the highest

strength-to-modulus ratio among other structures [68].

243 Ti-based shape memory alloys

Previously, the Ti-Mo alloys were arc-melted and their compositions were
analyzed by EDX, XRF and SEM from 4 to 20 at. % Mo [69]. It was found that
their surfaces were without defects, while the Mo mapping showed a
homogeneous distribution. Furthermore, significant retention of the 3-phase was
found for the alloy containing 10 at. % Mo, while at higher Mo concentrations (15
and 20 at. %), retention of B-phase was only verified. Lui et al. have studied the
microstructures and mechanical properties of Ti-Mo alloys [70]. It was found that
the addition of Mo can refine the microstructure of TiMo alloy greatly and raise
sintering temperature which can effectively increase the alloy density without
grain coarsening. On the other hand, Zhang et al. [71] studied the formation of
stress-induced a martensite in a metastable TiMo-based alloy. This was done
using X-ray diffraction and transmission electron microscopy. It was found that
the growth of martensite laths from the resultant stacking faults occurs by the
motion of interfacial disconnections. Davis et al. [72] reported that in Ti-Mo
systems, the martensitic structure changes from hexagonal «a 'to orthorhombic
a' at Mo rates of approximately 6 %. More recently, Bania [73] reported that a
minimum of 10 at. % Mo was required to completely stabilize the g phase at room

temperature.
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Previously, Niinomi et al. [74] conducted a study on the corrosion wear fracture
of new B-type biomedical titanium alloys. It was indicated that g-titanium alloys
composed of non-toxic elements such as Nb, Ta, Zr, Mo, and Sn showed lower
elasticity modulus [74]. However, it was recommended that alloys with greater
strength should be developed [74].

Mazhuga et al. reported thermodynamic calculation of phase equilibria in the Ti-
Ru, Ti-Os, Ni-Ru binary systems [75]. It was reported that Ti-Os and Ti-Ru alloy
phase diagrams could not be achieved using a sub regular solution model.

The studies showed that the Os-based structures particularly TiOs have
considerably higher melting temperatures of 2433 K [54]. Furthermore, the B33
structure was found to be the least stable phase as it gave the highest heat of
formation value [54]. Raman et al. on the other hand investigated the stability of
Ti-Rh. It was reported that L1o, B19 and B33 are stable at a lower temperature
while the B2 phase was stable at high temperature [76]. Tan et al. [77] examined
elastic properties and electronic structures of Ti-based binary and ternary shape
memory alloys using first-principles study. It was found that both NiTi and TiCo
are mechanically stable with positive C’ (C'> 0) [77]. The melting point and phase
transformation temperature of Ti-Au were reported to be ~ 100 K higher than that
of Ti-Pd and Ti-Ni [78].

Equiatomic TiPt was reported to transform from B2 to B19 orthorhombic
martensitic phase at 1300 K [9]. Furthermore, it was found to exhibit low strength
(~450 MPa) in martensite and very low strength (~20 MPa) in the B2 phase region
[9]. The martensitic start temperature was found as follows; TiNi have (Ms= 350

K), then TiAu (Ms~ 900 K), also TiPt (Ms~ 1200 K) and TiPd (Ms~ 800 K) [79].
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Table 2-2 shows the melting temperature and martensite start (Ms) temperature

of TiNi, TiPd and TiPt alloys.

Table 2-2 Melting temperature and martensitic start temperature of TiNi, TiPd and

TiPt [80].
B2 phase Melting Temperature (K) | Ms (K)
TiNi 1583 333
TiPd 1673 783
TiPt 1830 1343

2.5 Recentresearch on Ti-Pd alloys

The Ti-Pd alloys have brought more attention due to their interesting mechanical
properties and technological importance for engineering and medicine,
particularly for the shape-memory effect [4, 19]. These alloys were observed to
undergo a martensitic transformation temperature at about 800K, but transition
temperature can be reduced to 410K with 8% substitution of Cr for Pd [22]. The
TiPd had been reported to exist as a high temperature phase (austenite phase)
which has a simple cubic B2 with a CsCl type-structure while at low temperature
is known as the martensite phase with an orthorhombic B19 structure with AuCd
prototype [22]. It has been reported that TiPd undergoes a B2-to-martensite
phase transformation with Ms between 783 and 836 K [80].

Previous ab initio studies on TiPd SMAs system mainly focused on the structural
properties, optical properties and the structural energies of (B2, B19, B19' and
L1o) phase [34]. Ab initio approach was used to study the ground state, phase
stabilities, enthalpies of formation, electronic and elastic properties [34]. The

monoclinic B19' TiPd was found to be the most stable structure with the lowest
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value of heat of formation (-0.552 eV/atom). Furthermore, TiPd2 orthorhombic
MoPtz-type structure was also reported to be stable but with slightly lower energy
than the tetragonal MoSiz-type structure above 1553 K [34].

Another study reported the enthalpies of formation of refractory intermetallic
compounds TM and TMs formed between Group IV elements (T = Ti, Zr, Hf) and
platinum group elements (M =Ru, Rh, Pd, Os, Ir, Pt) using first-principles
calculation [54]. It was found that the trends of structural stabilities and the
magnitudes of formation enthalpies were in good agreement with theoretical and
experimental findings. For example, the formation energies of B19' and B2 were

found to be -0.552 (-0.552) [34] and -0.454 (-0.455) [34] eV/atom, respectively.

The accepted experimental binary Ti-Pd phase diagram was produced by Murray
[81] and is shown in Figure 2-2. The phase diagram predicted four solutions
(liquid, bbc, fcc, hcp) and eight intermetallic compounds (TiPds, TiPd2, TisPds,
Ti2Pds, a-TiPd, B-TiPd, Ti2Pd, and TisPd) [81]. At 50 at. % Pd two phases exist
which are the a-TiPd with B19-type structure (lower phase) and B-TiPd with B2-
type structure (higher phase). The a-TiPd phase was found to be stable up to
783 K while the 3-TiPd phase was found stable up to 1673 K [81]. At the Pd-rich
side, only four phases exist namely: TisPd with two space groups P63/mmc and
Pm-3m, TisPds with space group P4/mmm and lastly Ti2Pds with Space group
Cmcm. The study showed that TisPd exists being from 23 to 28 at. % Pd and
forms peritectoidally at a temperature between 723 and 823 K [81]. At the Ti-rich

site, only one phase exists Ti2Pd with space group 14/mmm.
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Figure 2-2 The binary Ti-Pd phase diagram [81].

On the other hand, Jankowski [82] the formation of thin films of vapour phases in
Pd-Ti alloys containing 20, 25 and 30 at. % Pd using magnetron sputter
deposition. It was revealed that PdTis exists within a range from 23 to 28 at. %
Pd and forms peritectoidally at a temperature between 723 and 823 K.

Yamamuro et al. [83] used differential scanning calorimetry (DSC), transmission
electron microscopy (TEM), and scanning electron microscopy (SEM) to
reconfirm the Pd-Ti phase diagram in the Ti-rich side. A peritectoid reaction at

963 K was confirmed to form the PdTi3 structure [83].
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2.6 Ternary shape memory alloys

In Table 2-3, we give a summary of ternary SMAs. The alloy systems are
categorized as available and non-existent and are indicated by right (v') and
cross (%), respectively. Four major Ti-based binary SMAs are listed, that is TiAu,
TiNi, TiPd and TiPt. These alloys are checked if they can form ternary alloys with
eight alloying elements (Cr, Co, Hf, Ir, Ni, Pt, Pd, Zr). The alloying elements have
been suggested to have the potential to improve the transformation temperature.
Those are the most common elements used in the development of SMASs.

It can be clearly seen that only five ternary alloys are either not possible or have
not been studied or have no shape memory properties that is TiAu-Hf and TiAu-
Ir, while TiNi-Ni, TiPd-Pd and TiPt-Pt can only for binary alloy. Thus the majority
of the alloying elements are likely to form SMAs for a variety of industrial

applications.

Table 2-3 Summary of ternary SMASs.

Cr Co Hf Ir Ni Pt Pd Zr
TiAu v v x X v v v v
TiNi v v v v X v v v
TiPd v v v v v v X v
TiPt v v v v v X v v
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2.6.1 Ti-Ni-M (M=Pt, Pd, Cu, Zr, Hf) SMAs

Previously, ternary TiNi-based alloys have been investigated [84]. Amongst
these, TiNiPd, TiNiPt and TiNiAu alloys are known to exhibit SME at high
temperatures along with a small hysteresis. Their transformation temperature
ranges were found between 373 and 1073 K depending on the amount of ternary
alloying elements [84]. It was reported that the TiNiHf and TiNiZr alloys are less
costly and also exhibit high transformation temperatures [85, 86]. As a result, they
are unsuitable for actuator applications due to their large thermal hysteresis (~45
K). Moreover, it was found that the addition of Hf or Zr causes drastic deterioration
in the ductility, which makes them difficult to process [85, 86].

Other studies reported that Pd is considered a better choice as a third alloying
element in TiNi-based ternary HTSMAs because it offers an attractive
combination of high transformation temperatures, small hysteresis, adequate
workability and a relatively lower cost compared with Au and Pt [21, 10].
Another study examined the mechanical and physical properties of TiNiPt and
TiNiPd HTSMAs to find which materials have the best mechanical and physical
properties for high temperature applications, especially in the actuation industry
[87]. Furthermore, TiNiPt and TiNiPd alloys showed viability and value in terms
of capability and performance in actuator application up to 573K [87]. Davis
revealed that the addition of Cu has the ability to improve fatigue and the low cost
material for TiNiCu alloys, which enable the material to be used for different
engineering applications [71]. The studies show that TiNiZr and TiNiHf have
brought much attention to high temperature material industries because of the

low cost of buying the material [79]. Currently, the findings show that TiNiHf and
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TiNiZr were found to have nanoscale form precipitates which resultin an increase
of strength and having superelasticity at around 523 K [79]. Many researches
have been done on martensite transformation temperature by the addition of Pt,
Pd, Au, Hf, and Zr to TiNi [88]. Recent development in shape memory alloys
found that NiTi has shown to have fragile phases which depend on the
composition during the addition of Zr or Hf while the addition of Pd does not have
a fragile phase [27].

2.6.2 Ti-Pt-M (M= Co, Ru, Hf, Ir Ni, Zr) SMAs

Wadood et al. [9] investigated the TiPt-Co and TiPt-Ru high temperature shape
memory alloys. It was found that the partial substitution of Pt with Co and Ru
enhances the high temperature strength and also SMA properties in TisoPtso alloy
[9]. Furthermore, TisoPtasCos and TisoPtasRus were found as the most stable
structures which can be used for high temperature shape memory materials
applications [9]. They also [89] studied the effect of partial substitution of Zr and
Ru in TisoPtso on strength and shape memory properties above 1073 K. It was
revealed that partial substitution of Ti with Zr, Hf and Ir improve the high-
temperature strength and properties. Furthermore, TissZrsPtso, TiasHfsPtso and
TisoPt2slrzs were found to be the most stable structures [89]. In another study,
Wadood et al. [90] also investigated the mechanical properties of TiPt-Zr and
TiPt-Ru alloys with temperature. It was found that partial substitution of Ti and Pt
with Zr and Ru improves the strength of the martensitic phase as well as B2
phase, respectively. Yamabe-Mitarai et al. studied the Ti (Pt, Pd, Au) based high
temperature shape memory alloys. They found that the yield stress of TiPt-Zr was

almost triple compared to the TiPt yield stress [91].
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Modiba et al. [92] investigated the stability of TisoPtso-xMx (M=Co, Ni, Pd, Ir)
ternary using both solid solution and supercell approaches. It was found that
TisoPt4s0Co10 is the most electronic stable structure using a solid solution
approach. Furthermore, TisoPt2sPd2s, TisoPt2sNizs, and TisoPts37sCos Systems
were found to be the most stable structures in terms of elastic and electronic

properties when using the supercell approach [92].

2.6.3 Ti-Pd-M (M=V, Fe, Zr, W, Cr, Hf, Ni) SMAs

There are few studies conducted computationally and experimentally to evaluate
the mechanical stability and martensitic transformation of TisoPdso alloy,
especially the B2 phase. This was done through ternary alloying with V, Fe, Zr,
W, Cr, Hf, Ni, etc. For example, Yamabe-Mitarai et al. studied compositions with
5 at.% of transition elements such as V, Cr, Zr, Nb, Mo, Hf, Ta, W, Co, Ru, and Ir
when added to TisoPdso [93]. It was found that martensitic transformation
temperatures (MTTs) decreased when adding the elements, resulting in ranges
between 673 and 873 K, except for Cr and Mo. Furthermore, the MTTs of Cr and
Mo were found to decrease drastically to the range 533-673 K. It was also found
that Zr and Hf are the most effective alloying element in improving shape recovery
[93]. In the case of 5 at. % Ru addition, the transformation temperature was found

to be 708 K for Ms, 665 K for Mr, 713 K for As and 754 K for As [93].

Arockiakumar et al. investigated the microstructure, mechanical and shape
memory properties of Ti-55Pd-5x (at. %) (x=Zr, Hf, V, Nb) alloys to identify
potential alloy systems for functional applications in the temperature range of
673-873 K [94]. It was revealed that the yield strength of martensite and

austenitic phases is improved as compared to binary TiPd alloy.
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The studies of TisoPdsoNi2o have received much attention for some engineering
applications. This was due to their higher martensitic transformation temperature
found above 473 K [95]. It was found that the B19' phase exhibits a much higher

elastic modulus than B19.

In another study, Nakayama et al. [96] investigated the characteristics of TisoPdso-
xWx HTSMA. It was reported that the composition of the TiPd matrix was almost
the same in the TisoPd47W3 and TisoPd4sWs samples, and the transformation
temperatures were also almost the same. Furthermore, the transformation
temperatures in TisoPd47W3 alloys are Ms= 767 K, Mi= 748 K, As= 792 K and A=

812 K which was the same as TisoPd4sWs alloys [96].

Another study has been conducted experimentally to improve the mechanical
stability and transformation temperature of TiPd by adding alloying elements such
as Hf, Zr, V, Nb, Ta, Cr, Mo, W, Ir and Co [4]. Interestingly, the transformation
temperature decreased with perfect shape recovery being obtained. As found by
Yamabe-Mitarai et.al, the transformation temperature of the alloys decreased
minimally with W, Co and Ta addition. Furthermore, it was found that the
transformation temperature of TisoPdso-xIrx (x=2, 4, 8) decreases with an increase
in compositions. For example, the transformation temperature values of
TisoPdaslr2 were found to be 781 K for Ms, 773 K for Mr, 829 K for As and 854 K
for Ar. Recently, there has been work reported on the transformation temperature
of TisoPdso-xCox (X=2, 4, 8) experimentally [4]. The transformation temperature
values of TisoPdso-xCox were found to be 860 K, 766 K and 671 K for x=2, 4 and
8, respectively, which is much lower than the pure TisoPdso system. Another study

has been done on the effect of martensite aging in TiPd and TiPdNi high
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temperature shape memory alloys using DSC measurements and TEM
observations [97]. As found by Cai et al., the magnitude of the aging effect in the
TisoPd4oNi1o alloy was much greater than that of TisoPdso alloy with a decrease in
transformation temperature. The transformation temperature was found to be

668.8 K for Ms, 645.1 K for My, 678.8 K for As and 692.8 K for A [97].

Based on the literature review above, it is clear that not much has been done on
the stability and phase transformation of binary TisoPdso and the ternary TisoPdso-
xMx shape memory alloys. This then initiated the need to study various properties
in particular structural, thermodynamic, electronic and mechanical properties, as
well as the martensitic transformation of both binary and ternary alloys. The other
reason is that TisoPdso alloy display poor shape memory behaviour during
transformation, which resulted in poor corrosion resistance [4, 14, 23, 21, 36].
Thus the development of ternary shape memory alloys with better shape memory
effect for application in actuators has been considered in this study. In particular,
focusing on the addition of precious metals Pt, Ru, Ir, Ni, Os and other elements
with better melting temperature such as the Co and Al. The findings will add to
the current knowledge of TisoPdso as a potential high temperature shape memory

alloy for industrial applications like automotive space.
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Chapter 3

Methodology

In this chapter, we give a brief review of density functional theory (DFT) [98, 99],
density functional based tight-binding method (DFTB) [100] and Molecular
dynamics (MD) [101, 102] approaches that have been used to investigate
properties of TisoPdso and TisoPdsoxMx shape memory alloys. DFT has become
the most widely used tool to study the electronic structure of atoms, molecules
and solids and can predict the ground-state energy of many-body systems. The
DFTB approach is capable of investigating the electronic structure of large
systems over long timescales which cannot be exploited with the standard DFT
methods. In this study, DFTB is used to determine the interatomic potentials of
binary TisoPdso and ternary TisoPdsoxMx alloys. The code is also capable to
simulate temperature dependences.

Furthermore, the LAMMPS code [103] was used employing the embedded atom
method (EAM) [104]. The embedded atom method is computationally efficient for
large scale simulations in describing structural, and mechanical properties of
metallic systems and is used to investigate the temperature dependence on the
structures.

The cluster expansion method [105] is used to generate stable multi-component
crystal structures and ranks metastable structures by the formation energy. This
method maintains the accuracy of density functional theory. Monte Carlo
simulations [105] will be used to construct phase diagrams of ternary Ti-Pd-Ru

from critical temperature at each concentration.
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Thus a multi-scale multi-model approach has been used to understand the shape
memory behaviour, phase transformation, martensitic transformation
temperature and alloy compositions. These techniques have been described in

detail in the next sections.

3.1 Density functional theory

Density functional theory (DFT) is a quantum-mechanical method used for
calculating ground state properties of condensed matter systems without dealing
directly with many electron states. DFT was first formulated by Hohenberg and
Kohn in 1964 [98] then secondly developed by Kohn and Sham in 1965 [99].
Using DFT, independent particle methods have been developed that take into
account particle correlations and interactions. The first theorem of Hohenberg-
Kohn showed that the ground state properties of a many-electron system are
determined by an electron density that is dependent only on three spatial

coordinates,
E =E[p(F)], (3-1)
where E is the total energy and p is the density.

Kohn and Sham derived different set of differential equations which enable the

calculation of ground state density ,00( ) to be found. The ground state energy of

the electronic structure is calculated from the four equations as follows:

ELo(r)] =T, [o(r)] + H%mrmm[p(r 4 [ p(F Voo (F)cF - (3-2)
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The kinetic energy of non-interacting electron gas with density o(r) is

represented by T, [(r)] as follows:

o)== 2 i (O (. a3

The kinetic energy is not for real system and equation (3-2) is defined as
exchange-correlation energy functionaIEXC[p]. Introducing a normalization

constraint on the electron density, jp(FﬁF =N, we get:

S ER -] lekir]=0 -

—H (3-5)

Ve (F) =1, (3-6)

Eyc[p(F)]

dri+Vc (F) and Vyc (F) = T(F) : (3-7)

G

|F -

h!

VoI

where Vy; (F) =V, (F)+ I

The ground state energy, E, and the ground state density, g, the one electron

SchrOdinger equation is written as follows:

1, ) )
(_Evi + Ve (r)_ eij‘//i(r)zo- (3-8)
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So, solving p(r) we get:
P(F) = Z| Vi (F) %, (3-9)

The self-consistent solution is required due to the dependence of V. (F) on

,O(F). Calculations of electronic structures E,. are generally approximated

through local density approximations or generalized gradient approximations

[106].

3.2 The exchange-correlation functionals

The two main types of exchange-correlation functionals used in DFT are the local
density approximation (LDA) [107] and the generalized gradient approximation

(GGA) [108], which will be discussed in sections 3.2.1 and 3.2.2.

3.21 Local density approximation

The local density approximation (LDA) is an approximation in which the
exchange-correlation (XC) energy functional in density functional theory (DFT)
depends upon the value of the electronic density at each point in space [107]. It
was first discovered by Kohn and Sham in the context of DFT which can be

expressed as:

E1c o) = [arp(r)esc (o(r). -.

10)
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where 8XC(,0) Is the exchange-correlation energy per electron in a uniform

electron gas of densityl [107]. In the uniform electron gas, electrons are

distributed in interacting systems with an arbitrary spatial density o which acts

as a parameter. Local density approximation quantities can be calculated
accurately using Monte carlo techniques at a wide range of densities at the limit

of high density. It has been demonstrated that LDA delivers accurate results even

if the electron density in the system is not gradually varied. The function &y, (,0)
iIs a combination of exchange and correlation contributions of &y (p):é‘x (,0) +
& (,0) It is possible to calculate the exchange energy per particle of a uniform
electron gas as follows:

1/3

SXC (p):Cxp ’ (3_

11)

where C, = —(3/4)(3/7:)1/3. (3-12)

3.2.2 Generalized gradient approximation

The GGA is known to be semi-local approximations which means that the
functional does not use the local density p(r) value but its gradient Vp(r). Perdew
and Wang [108] developed generalized gradient approximation (GGA) which
improves the total energies, atomization energies, energy barriers and also the

difference in structural energies. GGA takes the form:

Ex*[o]=[(p(r). Vo(r)hr, (3-13)
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The spin-independent form is considered in GGA but practically functional is more

generally formulated in terms of spin densites (o1,,4) and their

correspondence gradients of (Vp T,Vp ).

There are several GGA based functionals that is the PBE [39], PBEsol [109],
RPBE [110], BLYP [111] and AMO5 [112]. PBEsol functional is a simple
modification of PBE which differs only with two parameters. It is designed to
improve the equilibrium properties of bulk solids and their surfaces of PBE in
physics and surface science communities. The revised version of the PBE, such
as the RPBE functional is widely used in catalysis to improve the performance of
PBE. In the case of AMO5, it gives the best performance for applications of

catalysis. The GGA-BLYP functional is widely used in the chemistry environment.

Other known GGA-based functionals are meta-GGA [113], hyper-GGA and
generalized random phase approximation. An extension of the GGA, the meta-
GGA uses the kinetic energy density and its gradient as inputs to the function and
gradient along with the functional density. Hyper-GGA offers an accurate
treatment of correlation that goes beyond the level of LDA or GGA when using
exact exchange (EXX) to deal with exchange-correlation. The generalized

random phase approximation use EXX and exact partial correlation.

In this work, the GGA-PBE [39] functional will be used to optimize the TisoPdso

and TisoPdsoxMx systems as it provides accurate parameters for this material.
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3.3 Plane-wave pseudopotential method

The plane-wave pseudopotential method [114] is a powerful and reliable tool to
study the properties of a wide class of materials such as metals, semiconductors,
insulators, minerals, metal alloys, etc. The method is capable of simulating the
total energy and related properties as well as structural studies based on a
guantum-mechanical treatment of electronic systems. This method was
developed to simplify the DFT problems by considering only valence electrons.
Specifically, core electrons are excluded since they are not affected by changes

in the chemical environment [114].

3.3.1 Plane-wave basis sets

An infinite plane-wave basis set is employed to expand the electronic wave
functions [115]. The method is described by using Bloch's theorem which states
that the electronic wave functions at each k-point can be expanded in terms of a

discrete plane-wave basis set [115]. This theorem defines the crystal momentum
k as a good quantum number and @, as a single particle wave function which

gives the boundary condition and can be written as:
? (I’ +R, ) =" ?x (r), (3-14)

which is equivalent to all eigen functions ¢, of a single-particle SchrOdinger

equation with periodic potential can be written as a periodic function U

modulated by a plane-wave vector k [116] and R, is a direct lattice vector.

o (r)=e"uy(r), (3-15)
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U, can be expanded due to its periodicity as a set of plane-wave basis as follow:

u(r)=>C;ce"", (3-16)

where G represents reciprocal lattice vectors and U, can be expanded in a set of

plane waves as it is periodic. Thus, the electronic wavefunction with the

exponential predator can be written as:

Py (r): zcj,k+eei(K+G)ra (3-17)
G

where ijk+G represent the coefficient of the periodic plane waves. The number of

wave functions used is determined by the largest wave vector in the expansion
with an infinite number of basis functions which is required to accurately
reproduce the real wavefunction. This is the same as imposing a cut-off on the

kinetic energy as the kinetic energy of an electron with wave vector k as follow:

e _mlk+ol (3-18)
T
which obey only plane-wave in the following:
2 2
e kO ¢ (3-19)
k om cut 1

and are included in the basis. The energy must be increased until the calculated
energy has converged to avoid errors in the computed total energy. It is highly
recommended to use much denser k points to reduce errors and ensure
convergence when calculating the total energy. We write the Kohn-Sham
equation of DFT before making use of the plane-wave expansion of the

wavefunction in the following way [115]:
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2
Z{Z_m“( + G|25GG + Vet (r)j|Cj,k+G =£;Ciie (3-20)

where
Ve (1) =Vee (1) 4V [n(r)] 4V, [n(r)], (3-21)

Ve, (I’), v, [n(r)] and V¢ [n(l’)] are Fourier transforms of the external potential of

the nuclei, Hartree and exchange-correlation potentials, respectively.

3.3.2 Pseudopotential approximation

The pseudopotential approximation [117] is used to describe the complicated
effects of the motion of the core such that the core electrons and the strong
attractive Coulomb potential inside the ionic core are replaced by a weaker
pseudopotential. Weaker pseudopotentials describe the silent effects occurring
to a valence electron as it moves through a crystal, as well as relativistic effects
[37, 118]. Therefore, the pseudo-ion cores and pseudo valence electron now
replaces the original solid. Inside the core region, the two pseudo electrons have
a much weaker potential than the original electrons, but outside the core region,

they have a similar potential to the original electrons. Figure 3-1 illustrates the
ionic potential (Z/r), the valence wave function ¢,, the corresponding

pseudopotential Vyseyq0, and pseudo-wave function (<ppseud0), respectively [115].

The pseudopotential approximation has the advantage that fewer plane-wave
basis states are required to expand the electronic wave function, thus saving a
large amount of computational time [115].

The pseudopotential takes the form:
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Vi =D [Imy, (Im, (3-22)

Im

where <Im| is the spherical harmonics and V, is the pseudopotential for angular

momentum |. Pseudopotentials that utilize the same potential for all angular
momentum components are known as local pseudopotentials. Local

pseudopotentials depend only on their distance dependence.

LPpscudn /4
'
o ’
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Figure 3-1 Comparison between Coulomb potential of the nucleus (blue) to the
one in the pseudopotential (red) of a wavefunction. The real and the pseudo

wavefunctions and potentials are the same above a certain cutoff radius rc [115].

There are two types of pseudopotentials which are norm-conserving
pseudopotential (NCP) and ultrasoft pseudopotential (USP). In the NCP [119],
different potentials are used for each component of the angular momentum in the
wave function, while the USP relaxes the norm-conserving constraint to reduce

the basis-set size [117]. In the USP scheme, the pseudo wave function can be
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as soft as possible within the core region. Currently, the USP [117] has been

implemented in planewave calculations.

In this study, ultrasoft pseudopotential by Vanderbilt [117] in VASP code for total
energy calculations were used since they give an accurate result for the systems

under investigation.

3.4 Kk-point sampling

The k-point sampling technique is well suited to the plane wave’s method, which
makes the calculations to be simple and accurate. The total energy is calculated
using a denser set of k-points, which reduces errors in the calculation. In the
case of very close k-points, the wavefunction is almost the same for all. The
electronic states are calculated at a finite number of k-points in order to define
the Fermi surface precisely and hence the electronic potential and the total
energy for solids. The computational cost increases linearly when performing a
very dense sampling of k space with the number of k-point in the Brillouin zone
(BZ). Monkhorst and Pack [120] developed the k-points method that uses

symmetry properties when forming the special k-points set.

3.5 Projector augmented wave
The projector augmented wave (PAW) is a technique used in ab initio electronic
structure calculations which allows DFT calculations to be performed with greater

computational efficiency. It was developed by Blochl [121] within which an
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accurate, all-electron, illustration of the electronic system is placed in matched
correspondence with a pseudopotential-like treatment of the valence electrons.
PAW methodology relies on the transformation between the all electron Kohn-
Sham wave functions, and the smooth pseudo-wave-functions with frozen core
states of the atoms. This methodology is a significant upgrade over earlier norm-
conserving (NC) and ultra-soft (US) pseudopotential methods because it is
derived directly from an all-electron formalism. The PAW formalism is well-
founded theoretically and computationally efficient, though it's additionally
advanced to implement than an NC or US one.

Implementing this methodology allows DFT to calculate the electronic structure
of periodic solids, as well as the forces and stresses associated with them. The

essential transformation of this methodology happens once all-electron wave

functions ¥, with the n index resembling a summation over the bands and k

indexing the k-points, are obtained ranging from pseudo ones (l/7nk) by using
linear transformation:

W) =[70) + 2, (@) [ ) NP 72 (3-23)
The index i represents the atomic position, the angular momentum (1,m) and an

additional index n to label differential partial waves for the same site and angular

momentum. Throughout transformation, the all-electron @, and pseudopotential
(i)i partial waves are equal outside the PAW sphere. Therefore, as within the

norm-conserving and ultra-soft pseudopotential scheme, ¥, = l/7n outside a core
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radius(rc'). So, the projector functions (5,) are equal to the pseudopotential
partial waves as follows:

(B|®;) =5 (3-24)
This methodology uses two grids, a radial one inside the PAW sphere and a

regular one in the whole simulation cell. In correspondence, partial waves and

projector functions are grouped according to angular and radial parts as follows:

o (I’) (inil, (r)

p Slimi(f); &)i(r): r S

®,(F)= (7). (3-25)

Sym (F) (3-26)

with S|m(f) representing the real spherical harmonics. On the other hand, plane-

wave basis sets are used to expand the pseudowave functions as follow:

7 ()= JgZé ¢y (GRSIR, (3-27)

With Q representing the volume of the unit cell.
In this study, the PAW method has been employed as implemented within the

VASP code [38].

3.6 Molecular Dynamics

Molecular dynamics (MD) is a computer simulation that is used to study the
physical movements of atoms and molecules. The atoms and molecules are
allowed to interact at a given period, providing a view of the motion of the atoms
and molecules. This is done numerically by solving Newton's equations of motion

for a system of interacting particles, based on molecular mechanics force fields,

44



which define forces between different particles and potential energy. In MD, laws

of classical mechanics are considered, and most especially Newton's law:

i i (3-28)

where m; represents atom mass, Fi represents force acting upon it, due to the
interactions with other atoms and d@; represent the acceleration of the atom given

by:

d’r,
a . (3-29)

T A

After the acceleration has been determined, the equation of motion has to be
Integrating using the Verlet algorithm [122] to describe the dynamic behaviour.
The Verlet algorithm is derived from the simplest second-order difference equation
in terms of atomic positions and velocities. Integrating Newton's equation (3-28)

using the Verlet algorithm in the form of atomic positions and velocity is given by:

r(t+At)=r(t)+ Atu(t)+%At2a(t), (3-30)

ot + At) = v(t)+ %At[a(t)+ at + At)) (3-31)

This algorithm needs storage of r(t), o(t) and a(t). More importantly, the errors in
calculated positions r(t) are of the order of At*while those in calculated velocities
v(t) are of the order of At*. The algorithm is exactly reversible in time and easy

to program.

Therefore, MD has been used to study the temperature dependence and time
evolution of the alloy systems and other materials of interest. This is possible when
an initial set of positions and velocities are known [101]. During the MD run, a

measurement of a physical quantity is calculated as an arithmetic average of the
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values assumed by that quantity.

By using MD simulations, one can determine a material's thermodynamic
properties and phase diagram. Beyond the known use, MD is used to study non-
equilibrium processes. In the past, molecular dynamics methods have been
studied using canonical ensembles [123, 124].

The various quantities that are necessary to describe the properties of a system

within MD simulation are explained in the next sections.

3.6.1 Energy

The internal energy is easily achieved as the ensemble average of the energies
during the simulation as follow:

U =(E)= - S (3-32)

The average potential energy V is achieved through an average of its
instantaneous value, which is obtained at the same time as the force computation

is made. Thus, potential energy is defined as:

V) ==, e(n - ) (3-33)
The kinetic energy is given by:

K (1) — % SmMoF: (3-34)
where mij is the mass of atom i and Vi is the velocity of atom i. For given velocities,

positions, and kinetic energies, the system's total energy can be calculated as

follows:

Eo = KO +V(®). (3-35)
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3.6.2 Temperature

The temperature of a system depends on the kind of ensemble used for that
simulation. For example, in a canonical ensemble, the total temperature remains
constant, but in a microcanonical ensemble, the temperature varies. The kinetic

energy of a system is related to temperature in the following way:

g
o~~~ KT B , (3-36)
K= Zi 2mi - 2 (3N Nc)

Where Pi is the total of particle i, mj is its mass and Nc is the number of constraints
on the system. According to the principle of equipartition of energy, each degree
of freedom contributes kgT/2. If there are N particles, each with three degrees of
freedom, then the kinetic energy is equal to 3NkgT/2. It is very common in
molecular dynamics simulations to constrain the system 's total linear momentum
to zero, which results in the elimination of three degrees of freedom and Nc equals

to 3.

3.6.3 Pressure

In computer simulations, pressure is calculated based on the Clausius-virial
theorem. Virials are calculated from the sum of the products of the coordinates of

the particles and their forces. Usually, this is written as:

W =>"x bxi : (3-37)
where X; is a coordinate and pxi is the first derivative of the momentum along that
coordinate (pi is the force, according to Newton’s second law). According to the
virial theorem, the virial is equal to -3NksT. The only forces in an ideal gas are

those arising from the interaction between the gas and container, therefore a virial
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of -3PV is present. This result can be obtained directly from the following equation:

PV = Nk T . (3-38)
The force between the particles in the actual gas or liquid affects the viral force
and therefore the pressure. The total virile of the real system is equal to the sum
of the ideal gas fraction (-3PV), which is attributed to the interaction between the
particles. The result obtained is:

dv(ry)

j =i+l "ij d

W =3PV +XN = —3NK,T . (3-39)

ij
If d(rij)/dr; is written as fjj the force acting between i and j then pressure can be

written as follows:

1 1
P—=—| Nk.T — r. f. 3-40
\V/ [ B 3k, T =i Ty J ( )

It takes very little extra effort to calculate the virial and thus the pressure since
these forces are calculated as part of the molecular dynamics simulation. In the
NPT setting, the total system pressure is constant, while in the NVT setting, the

pressure fluctuates throughout the simulation process.

3.6.4 Ensembles

Integrating Newton's equations of motion allows you to explore the constant
energy surface of a system. There are three most common ensembles that are

often used in MD simulations known as NVT, NVE and NPT ensembles.

3.6.4.1 Constant temperature molecular dynamics

In a molecular dynamic simulation, we often encounter limitations and
inconsistencies which arise from the use of the micro-canonical ensemble

corresponding to simulations at constant energy. Many molecular dynamics
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simulations are performed at constant energy and volume, while in ordinary
laboratory experiments, they are performed at constant temperature and
pressure. So, the temperature T can be related to the average kinetic energy:

\ 2
lepi 3

= ° NKT.
2m, 2 (3-41)

Using constant-energy molecular dynamics, the temperature can only be
determined after calculating and calculating the average kinetic energy. To solve
this problem, constant temperature and constant volume (NVT) simulation

methods have been developed.

3.6.4.2 Microcanonical ensemble

The microcanonical ensemble is the thermodynamic state known by a fixed
number of atoms, fixed volume, and a fixed energy E. Microcanonical ensemble
corresponds to an isolated system with constant energy. The degeneracy of the
system is the total number of microscopic states corresponding to this value of

the system'’s energy as indicated by:
Q=0(E,N,V). (3-42)

So, the temperature of the system is calculated by
N 2
pr 3
= 2Nk, T
.21: 2m, 2 ° (3-43)

Where T is the temperature, N is the number of particles and kB is the

Boltzmann constant. Each energy in a microcanonical ensemble corresponds to
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a different temperature, so to calculate the dynamics of the system at a given

temperature, the energy must be determined correctly.

3.6.4.3 Isothermal-isobaric ensemble

NPT ensemble is also called an isothermal-isobaric ensemble. In the NPT
ensemble, pressure and temperature are kept constant. In most cases, the NPT
ensemble is used to compare MD simulations with experiments. Langevin method
in NPT ensemble is used to control temperature. The partition function can be
written as the weighted sum of the partition function of canonical ensemble, Z (N,

V, T) as follows:

A(N,P,T) = [Z(N,V, T)e»Ve, (3-44)
where
1
B =1 (3-45)
B

kB is the Boltzmann constant and V is the volume of the system.

3.7 Cluster expansion formalism

Cluster expansion is a technique used to construct an efficient Hamiltonian to
predict the energy of a precisely defined system that takes into account its
multiple degrees of freedom. In this technique, there can be different types of
excitation, such as vibrations, electrons, etc. This technique verifies the
properties of the system based on its composition and atomic disorder.
Crystalline solids, crystal lattices, crystallographic positions, and interstitial

positions must be well defined. In the case of solids, due to the relaxation of the
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ions, the atoms do not occupy exact lattice positions. We are studying
configurational disorder in order to understand how the arrangement of species
in the system affects the total amount of energy in the system. For example, in a

crystal with m sites and two species potentially occupying those sites, there would
be a total of 2" possible arrangements. For each cluster, we can write a cluster

function as the product of the occupation variables at the cluster sites:

¢$,(6)=]]a. (3-46)

Equation 3-44 defines specifically for the paired cluster. If we wanted to evaluate

¢, the configuration, it would be

b, =0,%x8,,=(-1f+])=-1. (3-47)
Sanchez et al. [125] have indicated that these cluster functions form a complete
orthonormal basis in configuration space. Then, the expression for the energy of
a given configuration known as the effective Hamiltonian or Cluster Expansion

(CLEX) can be written as:

E(S)=V, + YV, 4,(6) (3-48)

where Vo and Va represent the constant expansion coefficients, much like in a

Fourier series are referred to as Effective Cluster Interactions (ECI). Otherwise,

we can write:

E(S)=V, + SV, + SV,5:8, + 3 V,8.5,6., (3-49)
i 0

i,jk
where i; j; k; represent the individual cluster sites. Note that equations (3-48) and
(3-49) are the generalized Ising Hamiltonian that contains all multi-body

interactions in the entire infinite crystal.
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3.7.1 Determination of effective cluster interaction coefficients

In order to calculate the energy of a definite structure, the cluster expansion
equation (3-49) needs two inputs. Equation (3-50) is just the result of a complete
crystal basis, and the cluster expansion can be condensed to include no more
than four or five terms. Calculating the ECI requires fitting a set of formation
energies calculated using DFT with the least squares. In order to assess the
quality of the parameterization, two metrics are used: root mean square (RMS)
error, which measures reproducability of formation energies, and cross validation
score (CVS), which determines how closely the fit follows a given model [126].

The CVS is calculated as follows:

cv? =%ZN:(E(1)—E'(1)2) (3-50)

—

where E(&i)representenergy of the configuration i calculated using first principle

(DFT), E(S,) is the predicted value of E(Si) obtained by performing a least-
squares fit to the data from the other N-1 configurations and then evaluating the
resulting expansion at 5} . The optimal set of crystal basis functions to describe

the system will minimize the CVS. By using RMS values and CVS values in
expansion, some configurations could be predicted as stable, even when they

are classified by first principles methods as unstable or metastable.
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3.8 Monte carlo simulations

Monte carlo (MC) simulation is an approach that is used to determine phase
transition properties because the integration process in calculating the equations
of motion will overshoot a transition point due to the discontinuity in energy during
a first order phase transition. In this work, the MC technique is used without lattice
vibrations. Since the phase points chosen are spread over the whole phase
space, this procedure does not produce a very efficient result for tasks such as
finding a global minimum. It can be used to describe a thermodynamical system
at finite temperatures since the configurational entropy can be calculated. In the
MC calculation, there are two possible ensembles namely; grand-canonical and
canonical ensemble. Calculations are being performed on atoms in a box with a
given extension and bounds: the box is a unit cell. Grand-canonical and canonical
calculations are different in this implementation and are discussed in the next

detail in sections 3.8.1 and 3.8.2.

3.8.1 Grand canonical ensemble

The grand canonical ensemble is utilized which simulates the system at constant
chemical potential, y, temperature, T and volume, V. Both the number and energy
of particles fluctuate in the grand canonical ensemble. This study employs the
Metropolis algorithm, which is a relatively fast method for reading successive

states of a Markov chain starting with an arbitrary configuration [127]. The
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following rule gives the probability of transition from the current configuration A to
the next configuration B:

1 Qp <Q,

: 3-51
el Q. >0, (3-31)

P(A—B)z{

where AQ =0, — O, is the difference in energy between the two states, ks is

the Boltzmann constant, and T is the temperature. The grand canonical energy

is defined as follows:
Q=E[5)-4N, (3-52)
where E(g) represents the average energy, u is the chemical potential, and N

is the number of atoms.

3.8.2 Canonical ensemble

In canonical MC, the number of particles and volume is fixed, specified as inputs
to the simulation. Averaging over a large number of simulation runs, we can then
calculate the pressure using the virial relation. The pressure and density (i.e. the
volume of a simulation box based on a fixed number of particles) need to be
specified. A task of this type naturally leads to the isothermal-isobaric ensemble.
When the composition changes its state, its energy changes, resulting in the

following transition rate:

1 if ecE6 )G
Pﬁb“ ) 0 if e>’(E(5 J-E@)) - 3-53)

The random walkthrough phases are carried out until either a chosen number of

steps has been taken or a given limit in energy has been reached.
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3.9 Computational codes and implementation

This study uses the plane-wave VASP [38] and PHONON [128] codes to
investigate the properties of TisoPdso and TisoPdso-xMx alloys. A detailed
explanation of these two codes is explained in sections 3.9.1 and 3.9.2. DFTB+
and LAMMPS codes were used to deduce the transformation temperature of
alloys and these codes are explained in detail in sections 3.9.5 and 3.9.7. The
DMol® code is used to optimize structures before parameterization and is
discussed in section 3.9.4. Furthermore, UNCLE code is used to generate ground
state structures and phase diagrams of precious metals alloys and the theory is

given in section 3.9.8.
3.9.1 VASP code

The Vienna Ab initio Simulation Package (VASP) [38] is a computer program for
atomic scale materials modelling which deals with electronic structure
calculations and quantum-mechanical molecular dynamics using first principles.
VASP can compute an approximate solution by solving the Kohn-Sham
equations within DFT. In VASP central quantities such as one electron orbitals,
electron change density and local potential are expressed in the form of plane-
wave basis sets. The ultra-soft pseudopotentials (US-PP) [129] or by the
projector-augmented-wave (PAW) method [121] is used to describe the
interactions between the electrons and an ion in VASP. The US-PP method (and
the PAW method) are effective in reducing the number of plane waves per atom
in transition metals and first row elements. The code consists of two main loops

namely: the outer and inner loop, where the outer loop optimizes the charge
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density while the inner loop optimizes the wavefunction. VASP code uses a wide
range of exchange-correlation functionals such as LDA and GGA as well as Meta-
and hyper-GGA and hybrid functionals. All functionals found in VASP have spin-

degenerate and also spin-polarized versions.

In this study, the VASP code [38] was used to calculate structural,
thermodynamic, electronic and mechanical properties of binary B2, L1lo, B19,
B19' TisoPdso and ternary TisoPdsoxMx (M=Ru, Pt, Ir, Co, Ni, Al, and Os) alloys. A
convergence test was done as shown in section 4.1 before calculating any
properties. A precision was set at "accurate” to make errors of the calculation into
a reasonable scale. Before the calculations of elastic constants, electronic
structure, and phonon dispersion curves, the structures were fully relaxed with
respect to the volume, shape, and internal atomic positions until the atomic forces
were less than 0.01 eV/A for the unit cell. This was done in order to prepare the
structures to be at their ground state energy before determining any property. The
effects of exchange-correlation interaction are treated with the generalized
gradient approximation (GGA) [99] of Perdew—Burke—Eruzerhof (PBE) [39] and
the local density approximation (LDA) [107] were used with the PAW potential
[121]. After geometry optimization, the density of states and mechanical
properties of B2, L1o, B19, and B19' TisoPdso were determined. The strain value
of 0.005 was chosen for the deformation of the lattice when calculating elastic

properties.

In the case of ternary TisoPdso-xMx, the calculations were carried out using a 2x2x2
supercell with 16 atoms. The ternary TisoPdso-xMx alloys were constructed using

a substitutional search tool within the Medea software platform which provided
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the most stable composition at the desired symmetry. A convergence test was
also done and a plane-wave cutoff energy of 500 eV and a 12X12X12 k-point
were found to converge the total energy of TisoPdsoxMx. Full geometry
optimization was performed to find the ground state at different compositions.
Then, the density of states and elastic properties were determined from optimized

structures. The implementation of the VASP code is summarised in Figure 3-2.

3.9.2 PHONON code

The PHONON code is a software used to calculate phonon dispersion curves
and phonon density spectra of crystals, mainly those crystals with defects,
surfaces, adsorbed atoms on surfaces, etc [128] from either a set of force
constants or from a set of Hellmann-Feynman forces calculated within an ab initio
calculations. By using this code, a supercell can be optimized and the Hellmann-
Feynman forces can be calculated, either using VASP, Wien2k, Medea, or
another ab initio code. Note that Phonon builds a crystal structure using one of
the 230 crystallographic space groups, finds the force constant and calculates
the phonon dispersion relations and intensities, using the Hellmann-Feynman
forces. In the Phonon, the total and partial phonon density of states are calculated
based on the polarization vectors, as well as the irreducible representations of
phonon modes (the Gamma points). It plots the internal energy, free energy,
entropy, heat capacity and tensor of mean-square displacements (Debye-Waller

factor).

PHONON code [128] as implemented in Materials Design within the MedeA

software platform was used to evaluate the phonon dispersion curves. Using the

57



same code, we calculated thermal properties such as Debye temperature, heat

capacity, and thermal coefficient of linear expansion.

3.9.3 VASP and PHONON code flowchart

In this section, we use a flowchart to summarise how VASP and PHONON codes

were used in this study (the details are described in sections 3.9.1 and 3.9.2).

1. The flowchart begins with the determination of functional using VASP code- a
GGA-PBE was selected.

2. A convergence test was conducted to determine the suitable cut-off energy
and k-point mesh parameter for systems.

3. A full geometry optimization was performed to determine the ground state
parameters for the binary systems.

4. Determine the structural, thermodynamic, electronic and elastic properties of
binary systems.

5. A 2X2X2 supercell was built on B2 TisoPdso alloy.

6. Use the substitutional search tool to generate ternary alloys, i.e. substitution
of Pd with Ru, Os, Ir, Al, Co, Pt and Ni.

7. A full geometry optimization was performed on ternary systems.

8. Evaluate the properties of interest, such as thermodynamic- heats of
formation, electronic density of states, elastic constants and moduli.

9. Use the PHONON code to determine the phonon dispersion curves, thermal-

Debye temperature, heat capacity and thermal coefficient of linear expansion.

58



“Check properties
(binary):

Structural-lattice
parameters

Thermodynamic-heats of
formation

Electronic-density of
states

Elastic-elastic constants
and moduli

Figure 3-2 Flowchart on implementation of VASP and PHONON codes.
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3.9.4 DMol®

DMol® is a commercial software package that uses DFT to predict various
properties such as structural and electronic [130, 131]. The study of DMol® is
broad which includes organic and inorganic molecules, molecular crystals,
metallic solids, covalent solids, and the surfaces of material which enable the
prediction of structure, reaction energies, reaction barriers, thermodynamic
properties, optics and vibrational spectra. The DMol® method has long been used
for solving quantum mechanical equations since it offers a unique way to deal
with these equations. This code can handle larger systems that contain over 500
atoms. The code can be used to study both molecular and solid-state problems,
offering a way to study the widest range of problems in one package. DMol® can

perform both All Electron and pseudo-potential calculations.

In this study, DMol® was used for geometry optimization of binary TisoPdso and
TisoPdso-xRux structures before deriving the interatomic potentials. This was done
in order to prepare the structures to be at their ground state energy before being
used for the self-consistent-charge density functional tight-binding (SCC-DFTB)
parameterization process. Both the GGA-PBE and LDA-PWC exchange-
correlation functionals were used. The implementation of the DMol® code is

summarized in Figure 3-3.
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3.9.5 Density functional based tight-binding method

Density functional based tight-binding (DFTB+) is a useful software package that
can carry out atomistic quantum mechanical calculations fast and can also
perform calculations for larger systems that contain up 10 000 atoms. The
density-functional tight-binding (DFTB) was developed by Seifert and Co-workers
[132]. DFTB and SCC-DFTB can be used to calculate electronic properties,
binding energies, and relative energies of several kinds of systems, and their

geometries can be determined using these procedures [133].

In DFTB, a series of models are derived using Taylor series expansion of Kohn-
Sham density functional total energy around a properly selected reference

density p(r). Instead of finding the electron density that minimizes the energy a

reference density ,00 is assumed which is perturbed by some density fluctuation

[100] and p(r) is represented as follow:

plr)=p°(r)+dplr). (3-54)
The standard DFTB approach is suitable when the electron density of a structure
with many atoms may be represented as a sum of atomic-like densities [134].
According to this method, the Kohn-Sham total energy is expanded with the
second order with respect to the fluctuations in charge density [134, 135, 136] as

follow:
Etot = EBS + Erep + EZ(/O’Ap)’ (3'

55)
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where E,; represent the total energy which includes the electrostatic-interaction
term E,(p,Ap) to the standard tight-binding Egs, which is the sum over the
occupied electronic eigenstates of the tight-binding Hamiltonian and the short
range repulsive two-particle interaction Erep terms. When the electrostatic-

interaction fluctuate it can be written as:
E,(p,Ap)= ZX |79 AG,Ad,,. (3-56)
This term is represented by the Mulliken charges-based atomic charge fluctuation

AQ, and Aqy together with the analytical interpolating functiony,, .

Parameterization is the process of developing Slater-Koster files which contain
electronic parameters, short range potentials and Hubbard terms, selected for a

set of element pairs for a particular system. It involves the fitting of the repulsive

potentials in the repulsive term Erep and expressed as:
o =2 Vi (Ry), (3-57)

where ij represents pair of atoms and Vrep(R) are the pair-wise repulsive functions
depending only on the atomic numbers [137]. The selected cutoff radius is then

used in the fitting of the Vr'ep(R) and the repulsion is then expressed as:

Vep (R)= [V, () (3-58)

Self-consistent-charge density functional tight-binding parameterization and

geometry optimization were carried out with a DFTB+ program [134]. In the
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DFTB+ code, atomic parameters for the interaction between atoms were
considered before performing various calculations such as geometry optimization
and molecular dynamics. The SCC parameters were developed for both binary
TisoPdso and ternary TisoPdso-xRux. The set of parameters for Ti-Pd and Ti-Pd-Ru
were obtained by constantly adjusting the potential confinement radius for Ti, Pd,
and Ru elements until the suitable radii were obtained. During geometry
optimization, thermal smearing was varied from 0.003 to 0.008 Ha. The
successful SCC-DFTB parameterization implies that the structural properties
produced are in good agreement with available theoretical and experimental
results. Both the GGA-PBE and LDA-PWC exchange-correlation functionals
were used. The electronic and elastic properties were calculated from optimized

structures and analysed.

Lastly, the temperature dependence of binary and ternary was also determined
from the SCC parameters using the NPT ensemble. Before any temperature
calculations were done, the time step and simulation time were determined and
10 fs and 30 ps were found to be sufficient enough for the binary and ternary

systems.

3.9.6 DMol3® and DFTB+ code flowchart

In this section, we give a summary of how DMol® and DFTB+ code were used
and is given in the form of a flowchart as shown in Figure 3-3. Implementation
details are explained in sections 3.9.4 and 3.9.5. Figure 3-3 shows a schematic

diagram indicating step by step calculations done using both codes as follows:
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1. The flowchart starts with the computational code (DMol®) which was used to
determine ground state properties.

2. A suitable functional GGA-PBE was found appropriate to predict the structural
parameters.

3. A convergence test was carried out to determine the suitable cut-off energy
and k-point mesh parameter for the systems.

4. A full geometry optimization was performed for binary TisoPdso and TisoPdso-
xRux structures.

5. Determine the structural properties (lattice parameters and bond distances)
of systems.

6. Use the DFTB+ code to carry out the parameterization process.

7. Parameterization was performed to find a suitable set of parameters by
varying the potential confinement radius.

8. A full geometry optimization was again performed using a suitable set of
parameters for both binary and ternary systems.

9. Determine properties such as structural-lattice parameters, electronic-density
of states and elastic-elastic constants and moduli.

10. Temperature dependence calculation was carried out.

11. Determine suitable time step and simulation time-10 time steps and 30
simulation times were selected.

12. Evaluate the transformation temperature from lattice parameters of binary and

ternary systems.
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Figure 3-3 Flowchart on implementation of DMol® and DFTB+ codes.
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3.9.7 LAMMPS code

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a
classical molecular dynamics code that can model solid-state materials (metals,
semiconductors) and soft matter (biomolecules, polymers) and coarse-grained
from Sandia National Laboratories [103]. It works on a single processor and also
on multiple processors using message-passing techniques and also a spatial-
decomposition of the simulation domain into small 3d subdomains. Many models
have versions that provide accelerated performance on CPU's, and Intel Xeon
Phis. It combines spatial-decomposition of the simulation domain over the nodes
and thread-based parallelization within each node to achieve both high parallel

efficiency and single-node performance.

The LAMMPS model has new capabilities, such as force fields, types of atoms,
boundary conditions, or diagnostics which can be modified or extended as
needed. In LAMMPS, Newton's equations of motion are integrated with atoms,
molecules, or macroscopic particles interacting with either short- or long-range
forces and a variety of initial and boundary conditions. LAMMPS uses neighbour
lists to keep track of nearby particles to maximize computational efficiency. In
LAMMPS, the particles that are repulsive at short distances are so that the local
density of particles becomes suitable for the calculation. LAMMPS also has many
built-in quantities, like translational and rotational kinetic energy, helpful for

evaluating the system [103].

The LAMMPS uses the powerful flowchart interface which enables the easy

setting up of the complex calculations by connecting the stages. A stage can be
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a computation, e.g. energy minimization, NVT and NPT dynamics, as well as an
operation such as setting the density to that computed by the previous stage or
building a larger simulation box. It is possible to chain together any number of
stages to perform detailed calculations that are reproducible. LAMMPS is capable
of automatically analysing the results, including graphs, fitting to appropriate
forms, and statistical analysis. The summary of this method is described using a
flowchart as depicted in Figure 3-4. It is worth noting that the flowchart has eight

(08) significant steps which are duly indicated in the Figure.

In this study, the temperature dependence calculations of binary B2, L1o, B19,
B19' TisoPdso and TisoPdso-xMx (M= Co, Ni) alloys were achieved by utilizing the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an
Embedded Atom Method (EAM) module. For this simulation, large supercells of
8X8X8 were constructed for both binary and ternary alloys. This code uses a
flowchart which is highlighted in Figure 3-4. NPT ensemble and Nose Hoover
thermostat and barostat were employed for 100 ps with a time step of 2 fs. The

temperature is varied from 73 to 1800 K.
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Figure 3-4 Flowchart of simulation procedures in LAMMPS code.

3.9.7.1 Embedded atom method

The embedded atom method (EAM) [104] is a semi-empirical method which
provide a computationally efficient description of structural, mechanical, and
thermal properties of metallic systems. Daw and Baskes developed the EAM for
scheming the full energy of an absolute arrangement of atoms in metal [104, 138].
EAM forcefield is able to predict structural, thermal and mechanical properties of
varied metallic structures. Regardless of atom size, EAM can evaluate energy
associated forces even faster than first-principles calculations that are linearly

proportional to the number of atoms.

An EAM describes how an atom behaves when positioned in an electron density

that is exceedingly outlined. In the following equation, the total energy is shown
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as two additive terms representing the pairwise sum of the electron densities of

the atoms and an electron density by the atomic site:

N

Unnetallic = % iv (rij )+ Z F(pi )' (3-59)

i=1 j=i+l i=1

N
pi = ;Wj (rij)_ (3-60)

U etanic IS the total energy of the system, i and j indicate the unique pair of atoms

within the N atoms of the system,[jjis their interatomic separation (I‘ij) is a

pairwise potential, and F(,Oi )is the embedding function for atom | which depends

on the electron density, p;; experienced by that atom. One must calculate the
electron density at the position of an atom i in order to assess its embedding
function. In equation (3-60), atomic densities are superimposed and their
densities are in turn described by a density function, ¥/, (r) When electron density
increases, embedding energies become more negative until a minimum is
reached beyond which increasing electron density results in less favorable

system energies. These massive scale simulations will be readily undertaken by

EAM, which is a computationally economical method.

For the purpose of this study, Zhou [139] interatomic forcefields were applied.
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3.9.8 Universal cluster expansion code

All the CE calculations of the present work were done by making use of the
program package Universal Cluster-Expansion (UNCLE) which was developed
by the group of S. Muller, now at the Technical University of Harburg-Hamburg.
With this code, a complete CE fit can be performed using a genetic algorithm,
and the ground state of systems containing up to three elements can be
predicted. Configurational entropies are thus taken into consideration. Currently,
the UNCLE code’s format for structural information has been designed to match
that of the VASP code and adopted. Figure 3-5 illustrates a working scheme of

cluster expansion.

4 N
calculate AHy(o)
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using e.g. DFT
( set {o}s = {o}° )
T
|
e '
use GA to determine fig lm».«t F}, for
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Mo L configuration space
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Yes
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converged
. J

Figure 3-5 Self-consistent working plan as used by UNCLE for the cluster
expansion for finding new input structures [105].
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The ground-state structure of binary Ti-Pd, ternary TiPdi1xRux and TiixPdRux
alloys were performed using the UNCLE code. This code is used as a script
interface to VASP which defines a parameter that automatically sets up the k-
point mesh for similar systems which we used 0.2 k-spacing. A flowchart is used
to determine ground-state structures and is illustrated in Figure 3-6. To assess
the accurate fit of the cluster expansion, the cross-validation score (CVS) is
considered. A cluster expansion is considered accurate if the CVS is <5
meV/atom. The code employ step by step flowchart which consists of 4 steps as

shown in Figure 3-6.
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Figure 3-6 Flowchart of simulation procedures using UNCLE code.

3.10 Theoretical background on calculated properties

3.10.1 Heats of formation

The heat of formation (AHy) is the enthalpy change when one mole of a compound

is formed from the elements in their stable states is essential in determining the

structural stabilities of the different crystal structures. The heat of formation is

estimated by the following expression:

AHp = E. - ) XE ,
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where E. is the calculated total energy of the compound and E; is the calculated

total energy of the element in the compound. In order for a structure to be stable,
the heat of formation must have the lowest negative value (AH; < 0). The heat of
formation will be used to determine the stability trend of TisoPdso for B2, B19, B19’
and L1o structures as well as ternary TisoPdsoxMx alloys (M= Ru, Pt, Ir, Co, Ni,

Os, Al).
3.10.2. Density of states

The term density of states (DOS) refers to the occupancy and density of the
electronic states in a crystalline solid. It is described by a function, g (E), as the
number of electrons per unit volume and energy with electron energies near E.
At a specific energy level, a high DOS means many states are open for
occupation. In the case of states with DOS of zero, there is no state that can be
occupied. In general, a DOS is an average over all the spaces and times that the
system occupies. The local density of states (LDOS) is a measure of variation
due to distortion of the original system. LDOS can locally be non-zero if the DOS

of an undisturbed system is zero due to the presence of local potential.

In that case, the DOS are the total number of states that are available in the
system within the plane-wave framework of DFT. It is possible to calculate each
orbital's contribution (partial DOS) to determine which orbitals are occupied or
involved in bonding. The electrical behaviour of a material is determined by the
location of Ef within the DOS. Metal alloys stability can be predicted using the
density of states (DOS). Any material’s electronic density of states can be viewed

as a qualitative measure of its electronic structure.
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It is especially useful from the perspective of the partial density of states (PDOS).
In PDOS, states are attributed to the basic functions and then to the atoms
constituting the unit cell. DOS is then calculated as the sum of atomic
contributions. The DOS is calculated by using the following expression:

n(s):2;5(8—8§):%Zjé(g—gﬁ)dk, (3-62)

Bz n

where & is the Dirac delta function and the k is integral extends over the BZ.

o
The number of the electron in the unit cell is given by, In(g)jg.

3.10.3 Elastic properties
3.10.3.1 Theory of elasticity

The elastic constants (Cjj) contain some of the more important information that
can be obtained from ground-state total-energy calculations. For a structure to
exist in a stable phase, certain relationships must be observed between the
elastic constants. The Cj also determines how a crystal will respond to external
forces, such as Bulk modulus, Shear modulus, Young’s modulus, and Poisson's
ratio, which are all factors of strength [140]. A compound's mechanical stability
can also be verified using elastic constants. The existence and properties of new

materials can therefore be predicted using first principle calculations.

3.10.3.2 Elastic stability criteria

There is various criterion established to deduce elastic stability of crystals for

different lattice crystals. Accurately determining the elasticity of a compound is
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vital in understanding its mechanical stability and elastic properties. The elastic
constants depend on the type of lattice i.e. for the cubic, tetragonal, orthorhombic
and monoclinic crystals, there are three (ci1, Ci2, Caa), SiX (C11, C12, C13, C33, Caa,
Ce6), hine (Cu11, C22, C33, C12, C13, C23, C44, Cs5, Ces) and thirteen (ci1, C22, €33, C12, C13,
C23, Ca4, Cs5, Ce6, C15, C25, C35, C46) iNndependent elastic constants, respectively [26,
141]. As an example, applying two types of strains (s, and ¢, ) to the cubic system
gives stresses relating to three elastic coefficients, this is a useful method for
obtaining elastic constants. The mechanical stability condition for the cubic

system as outlined [141] is given as follows:

C44>0;C11>Cy5 and Cq4 +2 Gy, >0, (3-63)
As for tetragonal crystal stability condition is as follows:

2
C44>0,C>0,C13 >|Cy5 Jland Cy; + C4 5 % >0, (3-64)

C33
For orthorhombic stability condition as outlined [142] is as follows:
(011 +Cyy +2Cy, ) >0, (Cll +Cq3 — 2C13)>0’ (sz +Cq3 — 2C23)>0, Cia1

>0, 022 >0, 033 >0, C44 >0, C55 >0, C66 >0,

(C11 +Cyy +Cg5 +2C, +2C;; +2Cy )>01 (3-65)
Lastly monoclinic crystal stability condition outlined [143] is as follows:

[011 +Cyp +Cy5 + 2(C12 +Cy3 +Cyg )] >0, (033055 - C325) >0, (C44066 —Cig )>0,
(sz +Cg5 —2Cy ) >0, [sz (033(:55 - C§5 )"‘ 2C,3C5Ca5 — C223055 - C225C33 ] >0,
{2[C15025 (CSSCIZ =Gyl ) + CsCss (C22c13 =03 ) Gyl (Cnczz =Gyl )] - [C125 (C22C33 - C223(:11)*' C225 (Cnczz - C122 )]"‘ Css g} >0

2 2 2
(g = C13C2Cs3 = Cy3Ca3 —CppC13 —C33C, + 2C12013023) (3-66)

75



3.10.4 Phonon calculation
3.10.4.1 Phonon Dispersion and Polarization Vectors

Based on the diagonalization of the supercell dynamical matrix, the frequencies

a)z(k, j) of phonon modes j are calculated along the identified Brillouin zone path,

which creates phonon dispersion curves,

D(k)e(k, j)o* (k. jelk, j). (3-67)

Atthe I (0, 0, 0) point, it is possible to determine all the phonon modes, as well
as the Raman and infrared activity for the modes. Orthonormality is satisfied by

the vectors of complex polarization:

Zei*(kf jiu)e (K, jiv) = 510, (3-68)

]

Zze?(k, Jru)e (K, §ip)=6, ;. (3-69)

In reciprocal space, the polarization vectors e(k, j; ) associated with the wave

vector k centered at the origin differ from those associated with the wave vector
k, pointing from the center of a Brillouin zone labelled by the reciprocal vector?.

Because of k =7 +krz the relation between these differently defined polarization

vectors is:
e(k, j;y) = e(k, I y)exp[— 2mer, J (3-70)

By calculating the polarization vectors of phonons, we can determine their

displacement and intensity. Considering the amplitude Qk and phase 0<¢, <1
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of the displacement wave, the displacements U (n, y) of atoms (n, y) for a given

wave vector k and phonon branch j can be calculated from the equation:

U(n, 1) = —==1{Ree(k, j; u)cos2r(k.R(n, 1) - ¢, )] - Ime(k, j; )sin[27r(k.R(n, ) - ¢, )]}

2/M,

(3-71)

The intensity of phonon modes is found from the form factors. On the wave

vector, the form factor is well defined as follows:

ke(k, j; )

2
N
(”)(k, j)= 7 _ (3-72)

However, the simple form factors can provide insight into the intensity of phonon

modes:

2

1

kz (3-73)

Ze k J; ,U
oM,
which may be applied to eliminate unnecessary phonon branches originating
from back folding, or to estimate relative intensities of all modes in varying
Brillouin zones. Using the MedeA-Phonon code [128], you can work directly on
the lattice dynamics of systems without relying on any particular code to construct

forces and total energies. However, together with VASP, MedeA provides a highly

automatic and parallel procedure.
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Chapter 4

Structural, electronic and mechanical properties
for the binary TisoPdso

In this chapter, firstly we discuss the convergence test with respect to the cutoff
energy and k-points for the binary TisoPdso alloys. We also discuss the equilibrium
properties such as the lattice constants and heats of formation and where
possible the results are compared with the available experimental data.
Secondly, the elastic constants, Bulk moduli, Young moduli, Shear moduli,
anisotropy ratio, Cauchy pressure, Bulk to Shear modulus ratio (B/G), Poisson 's
ratio (o) and Vickers Hardness (Hv) of the binary B19', B19, L10 and B2 TisoPdso
alloys are discussed. Lastly, the phonon dispersion curves are presented to
evaluate the vibrational stability of TisoPdso structures. The phonon density of
states are also presented to indicate the orbital contribution of individual atoms,

in particular which atom is responsible for soft modes.

4.1 Cutoff energy and k-point convergence

4.1.1 Cutoff energy

In order to determine the appropriate cutoff energy of TisoPdso structures, single
point energy calculations were performed for different kinetic energy cutoffs at
the default number of k-points for each system. The cutoff energy is necessary
for determining the accurate ground state of the system. This was then calculated

for B2, B19, B19' and L1o TisoPdso structures (see Figure 1-1) using the plane-
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wave pseudo potential within the GGA-PBE functional. The energy cutoff was
varied from 200 eV up to 700 eV at fixed k-point for B2, B19, B19’, and Llo
structures. For example, the energies gave a constant slope at certain points and
energy change with a difference of less than 1 meV/atom was found from 400
eV, the cutoff energy of 500 eV was chosen in all structures for the purpose of
this study. Figure 4-1 shows the curve of total energy per atom against cutoff
energy for B2, B19, B19’, and L1o structures. It is clear that all curves show a
similar trend with a zero slope from 400 eV, thus a choice of 500 eV cutoff energy

will be used for the binary as well as ternary systems.
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© 8
3 s
> -1346,4 = -13359
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Figure 4-1 The graph of total energy against energy cutoff for (a) B19, (b) B2, (c)
L1, and (d) B19'.
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4.1.2 k-point

In this section, we show the convergence of the total energies with respect to the
k-point sampling set size, as illustrated in Figure 4-2. We have carried out a total
energy calculation at fixed cutoff energy of 500 eV for each structure (as
determined in Figure 4-1) while the number of k-points was varied. The total
energy with respect to the number of k-points was considered converged when
the energy change per atom (between two consecutive points) was within 1meV
per atom. The separations were varied to find a suitable number of k-points of
TisoPdso for B2, B19, B19' and L10. The k-points chosen were 12x12x12 for B2
(cubic), 12x12x9 for L1o (tetragonal), 9x15x9 for B19 (orthorhombic), 12x7x6

for B19' (monoclinic) as shown in Figure 4-2.

240291 - ¢
—— TiPd B19 —e— TiPd L1,
-2402,94
-2402,92 +
-2402,95 ( )
-2402,93 + (C)
-2402,96
-2402,94 4
5 20007
S -2402, = -2402,95 -
g :
3 g I
= >
> -2402,98 & -2402,96
g 3
S —e— TiPd B2 5
I o 7
B -2402,91 1 ‘1; -2402,035 —e— TiPd B19'
e
-2402,92 4 -2402,040 | (d)
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240204 -2402,050 -
-2402,95 1 -2402,055
2402.96 . . . . . -2402,060 . : : : : T
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Figure 4-2 The total energy against k-points for (a) B19, (b) B2, (c) L1o, and (d)
B19'
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4.2 Equilibrium thermodynamic properties for Ti-Pd alloys

In order to determine the equilibrium properties, we performed full geometry
optimization calculations within the GGA using the energy cutoff of 500 eV and
chosen k-points as indicated in section 4.1 above. The equilibrium lattice
parameters were determined from relaxed structures, where the volume and unit
cell were allowed to change. This was done for all the Ti-Pd structures found in

the binary phase diagram.

Table 4-1 shows the results of the equilibrium lattice parameters and the heats of
formation. The results of equilibrium lattice parameters were in agreement with
available experimental values to within 5% agreement. For example, the B2 gave

a lattice parameter of 3.170 A while compares with 3.180 A.

Now, the thermodynamic stability of these systems is deduced from the heats of
formation (AH;) calculations. In order for a structure to be stable, the heat of
formation value must have the lowest negative value otherwise a positive value

implies instability. The heats of formation (AH;) is estimated by the following

expression:

AH; = E; - . xE, (4-1)

where E. is the calculated total energy of the compound and E; is the calculated

total energy of the element in the compound. The results of the heats of formation
are plotted in Figure 4-3 for Ti-Pd alloys. The TisPd phase was found to be the
least stable than the other phases with the heat of formation of -0.350 eV/atom.

However, P6s/mmc TiPds was found to be the most stable phase with the heat of
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formation of -0.620 eV/atom and their results accord well with the previous
experimental and theoretical data. The trend of Ti-Pd alloys is compared on the

graph of heats of formation against atomic percentage in Figure 4-3.

At 50 at. % Pd, the most stable structure is found to be monoclinic B19' TisoPdso
phase with the heat of formation of -0.533 eV/atom. The calculated AH; results
agree well with those found theoretically to within 5 %. The least stable structure
was found to be cubic B2 TisoPdso with a heat of formation of -0.454 eV/atom
(since the structure has the highest negative value). The calculated AH; results
of the B2 phase agree well with the theoretical value to within 1%. The predicted
AH; for tetragonal phase L1o agrees well with the findings from the theoretical
view within 1%. The results show that at low temperature B19' and B19 phases
are more stable than B2. The calculated heats of formation were also in

agreement with available theoretical values within 5% agreement.

Now, the predicted order of stability of TiPd at 50 at. % Pd: B19'>B19>L10>B2

which coincide with theoretical values as highlighted in section 2.5.
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Table 4-1 Lattice parameters and heats of formation for Ti-Pd alloys. The

experimental and theoretical values are given in parenthesis.

Structure Prototype Space a (A) b (A) c (A) AHs
group (eV/atom)
TisPd CrsSi Pm3-n 5.045 5.045 5.045 -0.350
(5.055)  (5.055) (5.055) (-0.375)
[144] [144] [144] [145]
Tiz2Pd SizMo [4/mmm  3.100 3.100 9.897 -0.433
(3.090)  (3.090) (10.054)
(-0.466)
[82] [82] [82] [34]
TiPd B2 CsCl Pm-3m 3.170 3.170 3.170 -0.454
(3.180)  (3.180) (3.180)
(-0.455)
[23] [23] [23] (54]
Llo AuCu P4/mmm 2.826 2.826 3.891 -0.523
(2.855)  (2.855) (3.907)
(-0.522)
[34] [34] [34] [54]
B19 AuCd Pmma 4.587 2.789 4.897 -0.531
(4.550)  (2.780) (4.860)
(-0.542)
[20] [20] [20] [54]
B19" NIiTi P21/m 2.792 4912 4.582 -0.533
(2.744)  (4.797) (4.460)
(-0.552)
[34] [34] [34] [54]
Ti2Pd3 Ti2Pd3 Cmcm 14.338 4.615 4.689 -0.598
(14.330)  (4.610) (4.640)
(-0.600)
[144] [144] [144] [34]
TiPds TiNis P6s/mmc 5.554 5.554 9.001 -0.620
(5.489)  (5.489) (8.964)
[144] [144]  [144]  (0:650)

[34]
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Figure 4-3 Graph of the heats of formation (eV/atom) against the atomic %

composition for Ti-Pd. The insert shows the contribution at 50 at. % Pd.

4.3 Elastic properties

Table 4-2 lists the results on elastic constants, bulk, Shear, Young moduli, Pugh
and anisotropic ratios of TiPd structures at 50 at. % Pd. In order to describe the
mechanical stability of the binary TisoPdso systems, we follow the stability criteria
as set for each lattice, and this was outlined in chapter 3 (section 3.10.3).
However, cubic B2 appears to have the highest value of ci2 which is greater than
c11, and this leads to C’ being negative which indicates the instability of the B2.
This can be observed from the results of our calculations shown in Table 4-2. So,
the negative shear modulus of the B2 phase is due to its instability at low

temperatures.

The L1lo phase is stable with the positive ca4, ces and shear modulus which

satisfies the tetragonal stability criteria. However, the B19 phase has a positive
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shear modulus (condition of stability) and also meets the orthorhombic stability
criteria which agree well with the heat of formation. The monoclinic B19' appears
to have the highest value of ci1 compared to B19, L1o and B2 phases. Thus, from
the results, we see that the monoclinic B19' appears to be the most stable phase
since the structure has the highest positive value of C’' compared to other phases
and also meets the stability criteria as described in section 3.10.3.2. suggesting

mechanical stability of monoclinic systems.

Now, we consider the anisotropy behaviour of the structures. The elastic
anisotropy of crystals is highly correlated with the possibility to induce
microcracks in the materials [146]. For a completely isotropic material, the A
factor takes the value of 1, while values smaller or greater than unity measure

the degree of elastic anisotropy [147].

Elastic anisotropy for cubic phase is indicated by A while for non-cubic is
indicated by Al, A2 and A3. The calculated A of the B2 phase shows anisotropic
behaviour. The calculated A2 of L1o and Al for the B19 phase show isotropic
behaviour. Furthermore, the calculated A1 of the B19' phase (A=1) shows
isotropic behaviour. There is a good agreement with the heats of formation and

elastic properties as they predict the same stability trend.
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Table 4-2 Elastic constants and anisotropic ratios for B2, L1y, B19, B19'.

Elastic constants (GPa) B2 L1o B19 B19'
Ci1 149.10 228.83 240.82 300.88
Ci12 159.83 105.48 125.19 80.10
C13 128.31 124.42 85.18
Cis -0.05
C22 262.65 265.43
C23 90.00 136.46
Cos -0.06
Cs3 251.16 250.62 244.70
C3s -0.06
Cas4 43.74 91.81 30.52 41.57
Ca6 32.33
Css 39.17 53.82
Ces6 17.42 48.52 112.04
C’ -5.37 61.91 57.82 110.39
A=2cC44/(C11-C12) -8.15

A1=2Ce6/(C11-C12) 0.282 0.840 1.015
A=2C44/(C11+C33-2C13) 0.822 0.252 0.222
As=Ca4/Css 5.270 0.629 0.371

Table 4-3, shows the calculated Bulk, Shear, Young, Pugh and Poisson (o) ratio
and Vickers Hardness (Hv) for TisoPdso alloy. The Bulk modulus (B) can be used
to measure hardness while the Shear modulus (G) provides a measure of the
ability to resist shape change caused by shear stress and the Young modulus (E)
can be used to estimate the stiffness of a material. The orthorhombic B19
structure appears to be the hardest since it has the highest bulk moduli of
elasticity and is followed by tetragonal L1o. Furthermore, the B19' structure has

the highest Young 's and Shear moduli as compared to orthorhombic B19, while
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the cubic B2 appears to have the lowest Young 's modulus which indicates its
weakness stiffness. The cubic B2 structure appears to be easily compressible
(soft) as the results have the lowest shear modulus values which imply that the
structure is not stable at low temperature. The calculated Cauchy pressure (Ci2-
csa4), Pugh (B/G) 's ratio and Poisson ’'s ratio are used to assess the
ductility/brittleness of the materials. For the deduced Cauchy pressure, a positive
value reveals their ionic character and ductile behaviour whereas a negative
value indicates weak covalent bond character and exhibits brittle behaviour [148].
As shown in Table 4-3, the calculated Cauchy pressure is positive for all phases

which reveals their ionic character and ductile behaviour.

Furthermore, we calculated the ratio of Bulk to Shear modulus (B/G) to
investigate the extent of fracture range in these structures. Pugh [149] proposed
that material is predicted to be ductile behaviour if the value of Pugh s criterion
B/G> 1.75. It is clear that all structures satisfy the ductile conditions since B/G
values are greater than 1.75. Poisson 's ratio can be used to estimate the ductility
and brittleness of the compound [140]. The results showed that all four phases
satisfy the stability criteria as Poisson 's ratio is greater than 0.26. Furthermore,
Poisson‘s ratio is also used to analyse the bonding of TisoPdso alloy. For
covalently bonded structure have a small value of ~ 0.10, for the ionic bonded
structure have a value of 0.25 while for metallic materials is above 0.33 [150].
The values of ¢ are all greater than 0.33 which suggests that the structures are
metallic. The Vickers hardness (Hv) of TisoPdso alloys are also calculated and
shown in Table 4-3. The calculated hardness of B19'is 5.40, which indicates that

B19'is expected to be the hardest among other phases (L1o, B19 and B2).
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Table 4-3 The calculated Bulk modulus B (GPa), Shear modulus G (GPa), Young
‘s modulus E (GPa), Cauchy pressure (c12-C44) in GPa, Bulk to Shear modulus

ratio (B/G), Poisson s ratio (o), and Vickers Hardness (Hy) (GPa) of TisoPdso alloy.

Phase B G E C12-C44 B/G o Hv
B2 156.25 3.83  8.81 116.09  47.16 0.49 0.03
L1o 159.80 57.86 154.80 61.65 2.762 0.34 5.13
B19 159.11 47.62 132.13  94.67 3.26 0.36 3.70
B19' 157.10 58.82 17429 38.53 2.66 0.33 5.40

4.4 Thermal properties

The heat capacity at constant volume (Cv) plays an important role to reflect the
thermal properties of TisoPdso alloy. The heat capacity at constant volume Cy is

expressed as [151]:

C, = 3nk [4D(®/T) _ Dk ] 4-2)

e®/r-1

where 4D (Q/T) represents the Debye integral and n is the number of atoms per

formula unit and k is Boltzmann‘s constant.

Figure 4-4 illustrates the Cy for B19’, B19, B2 and L1o TisoPdso alloy. It is observed
that Cy rises sharply as the temperatures range of 0-1000 K and reaches a zero
slope above this temperature. A weaker bond state is reached due to bigger
thermal vibrations of atoms above 1000 K as shown in Figure 4-4. The present
results suggest that the electron excitation occurs at a very low temperature
below 1000 K for all phases (B19’, B19, B2 and L10). A stronger Cy is observed
for B2 TisoPdso while the weakest heat capacity was observed for B19’ TisoPdso
alloy. The values of Cy for temperature range from 0-1000 K the sequence or

trend is as follows: B2> L10o> B19 > B19".
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Figure 4-4 The heat capacity at the constant volume Cy of B19’, B19, B2 and
L1, Tisopdso aIon.

A thermal coefficient of linear expansion (a) for B19’, B19, B2 and L1o is shown
in Figure 4-5. It is also observed that the thermal expansion increases at a lower
temperature (<500 K) and approaches similar values above. The thermal
coefficient of linear expansion for the B2 TisoPdso alloy is higher than that of B19’
and other compositions (L1o and B19) at low temperatures below 500 K. The
result indicate that the material expands more at a low content of B2 expand more

compared to other phases (L1o, B19 and B19’).

The a show the following stability sequence from 0-500 K: B2> L10> B19 > B19’
while for temperature range from 500-3000 K, show the following stability trend:

B19'> L10> B19> B2.
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Figure 4-5 The linear thermal expansion coefficient of B19', B19, B2 and L1o
TisoPdso aIon.

4.5 Phonon dispersion and phonon density

4.51 Phonon dispersion

Phonon dispersion curves for B19, B19', B2 and L10 were calculated and are
shown in Figure 4-6. The dispersion curves exhibit two types of phonons namely
the optical and acoustic modes corresponding to the upper and lower sets of
curves in the diagram, respectively. As has been seen in the heats of formation
and elastic properties, our phonon dispersion calculations (Figure 4-6) confirm
that B2 structure is unstable since there are soft modes observed in the phonon

calculations. The soft modes are observed along M and R directions. The
negative slope of the acoustic I"-M branch corresponds to a pure elastic instability

(C'=1/2 (c11-c12)<0). There is a gap between acoustic and optical phonon
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branches of 1.74 THz which indicates the instability of the B2 phase. The highest
value of frequency is 7.4 THz along the X branch. The soft modes observed on
the B2 phase along gamma point (0, 0, 0) could be attributed to the negative
shear moduli as observed in the elastic properties calculations. This can also be

observed from the anisotropy ratio being negative for the B2 phase.

Furthermore, orthorhombic B19 structure display imaginary soft mode (negative
frequency) along Z in the phonon dispersion curve which corresponds to less
stable structure behaviour as shown by the heats of formation and the elastic
constants. However, in the L1lo and B19' phonon dispersion spectra, no soft
modes are observed which means that the structures are vibrationally stable. This
also confirms the predicted order of stability as B19'> Llo >B19> B2, in

agreement with the elastic constants and heats of formation.
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4.5.2 Phonon density of states

The phonon density of states for B19, B19', B2 and L1o0 were calculated and are
shown in Figures 4-7. Recall that there were no negative vibrations observed for
B19, B19" and L1o (condition of stability). Thus, it is clear that the phonon DOS of
the B19, B19' and L1o structures have shifted to the higher frequency above zero

indicating that the phases are stable.

In the case of B19, there is a small sharp peak along 2.5 THz which indicates the
contribution of Pd while the contribution of Ti is ascribed to the DOS peak around
5 THz. This behaviour is similar to that of B19'. There is a slight shift for the L1o,
the sharp peak observed at about 3 THz corresponds to the contribution of Pd

while the contribution of Ti is observed at around 6 THz.

Now, considering the B2 phonon DOS. The vibrational sharp peak at -2 THz and
2 THz are contribution of Pd with a very minimal contribution of Ti. It is noted that
the negative frequency (vibrations) is a contribution of Pd. This suggests that Pd

vibrations are responsible for the instability of the B2 TisoPdso structure.
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Figure 4-7 Phonon densities of states for (a) B19, (b) B19', (c) L1y and (d) B2

structures.
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4.6 Total and partial density of state

4.6.1 Total density of states

The total density of states (tDOS) is shown in Figure 4-8 for B2, B19, B19' and
Llo. The tDOS are used to predict the electronic stability by observing the
behaviour of states near the Fermi level (E-E=0) with respect to the pseudogap.
This analysis has been adopted from previous work [26]. The structure with the
highest and lowest density of states at Er is considered the least and most stable,
respectively [26]. The calculation of density of states was performed using VASP
code and the graphs of B2, B19, B19' and L1o TisoPdso are compared in Figure
4-8. In the case of the orthorhombic B19 structure, the total DOS shows that the
pseudogap shifted to the right Fermi level and similarly for B19'. The total DOS
of the B19' structure has the lowest states at Er which suggests that it is the most

stable as compared to B19, L1o and B2.

The L1o structure hits the top of the total DOS peak indicating instability of the
structure. It is clear that the B2 phase has the highest number of density of states
at Er as compared to the other structures which confirm that it is the least stable.
The B2 structure hits the total DOS in the middle of the peak near the Fermi level
indicating instability of the structures at low temperature. The results suggest that
B2 is less stable compared to other structures and this is consistent with the

prediction of heats of formation.
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Figure 4-8 (a) Total density of states for B19, L1y, B2 and B19' against total
energy. (b) Is the enlargement of the DOS graph near the Fermi energies.

4.6.2 Partial density of states

The calculation of partial density of states was performed to indicate the
contribution of Ti and Pd atomic orbitals. The graphs of B2, B19, B19' and L1o
TisoPdso are plotted in Figure 4-9. We note that the lower energy side is occupied
by the sets of peaks coming mainly from d-states of Pd and the higher energy
peaks are due to the d-states of Ti. The peaks at the Er are mainly from both Pd
d and Ti d-orbital. In B19" and B19 phases, the Es hits the DOS at the shoulder of
the dropping peak contributed mainly by the Ti d-states, as can be clearly seen
in the Ti PDOS. The s and p orbital contributions are negligible since they play a
little role in donating some electrons to the Ti d-states. It is clear that the Ti d-
states rise gradually below the Es which results in the cubic B2 being unstable. In

L1o, the lower energy peaks are mainly due to the Pd d-states.
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Chapter 5

Temperature dependence of the binary TisoPdsg

In this chapter, the volume, density, lattice expansion, x-ray diffraction and elastic
properties for the binary B19, B19’, L10 and B2 TisoPdso alloys are investigated at
varied temperatures. The LAMMPS code which employs the embedded atom
method (EAM) [104] was used to investigate the temperature dependence of
these alloys. The calculations were performed at a varied temperature range from
100 to 1800 K to check the possible transformation from martensitic to the
austenite phase. So, the findings in this chapter will provide a better
understanding of the transformation that occurs between the orthorhombic B19
(known as martensite phase) and the cubic B2 phase (known as the austenite

phase).

5.1 Temperature dependence of the volume and density

The graphs of volume and density against temperature are shown in Figures 5-1
and 5-2, respectively. Firstly, from the graph of volume against temperature
(Figure 5-1), we note that the volume increases with an increase in temperature.
The volume of the four phases increases with the same trend and reaches a
transformation temperature at 1600 K (B19 and L1o) while B2 and B19' are
slightly at a higher temperature of about 1700 K. This behaviour may suggest

structural deformation at these temperatures.
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Figure 5-1 Volume against temperature for B2, B19', B19 and L 1,.

Secondly, in Figure 5-2 the graph of density against temperature shows that the
density decrease with an increase in temperature as expected. The density of the
four phases decreases with the same trend until the melting temperature at about

1600 K, and the structures become less dense.

Table 5-1 Shows the effect of temperature on the (B2, B19', B19 and L1o)
structures at different temperatures (1000-1800 K). At temperatures below 1600
K, structures are ordered or show a uniform pattern, however, these patterns
change at high temperature above 1600 K. In the case of B2, we observed that
the atoms are well arranged in patterns below 1600 K. However, as the
temperature is increased from 1700-1800 K, the atoms become randomly
distributed indicating that the bond between atoms are broken which suggest that

the melting temperature have been reached.
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Figure 5-2 Density against temperature for B2, B19', B19 and L 1,.

We observed similar behaviour for B19 and B19' as the temperature is increased
from 1600-1800 K. This behaviour is due to B19 and B19' attempting to adapt to
a high temperature phase since the maximum operating temperature of B19 was
found to be 773 K [152]. Moreover, the B19 and B19' structures start to lose their
shape and patterns above 1600 K (melting temperature is reached). We also
observe a change in the L1lo structure at 1600 K since atoms start to move

randomly and display a similar trend as observed above 1700 K.
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Table 5-1 The structures of B2, B19, B19' and L1, with 1024 atoms at atemperature
from 1600- 1800 K.

Temperature B2 B19 B19' Llo
(K)

1000

1200

1400

1600

1700

1800

511 B19 TisoPdso

The effect of temperature on the lattice parameters of the B19 phase was
investigated and is shown in Figure 5-3. This is to show the extent of lattice
expansion and transformation behaviour at different temperatures. The size of

the supercell was 1024 atoms since it gives results close to the experimental
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findings. From the results, we note that the a and c lattice parameters increase
minimally with an increase in temperature up to 1400 K. However, the lattice
parameters collapses drastically above 1400 K (1496 K) for both a and c (give a
similar value of 4.66 A) which suggest a possible transformation from B19 to B2
phase. The b lattice parameter also shows an increase with an increase in
temperature. The a/b and c/b ratios decrease with an increase in temperature

and there is an extreme decrease in the ratio at approximately 1496 K.

In order for transformation to occur from orthorhombic B19 to cubic B2, the ratios
of a/b and c/b must be close to 1.414 [13]. The decrease of a/b and c/b with
increasing temperature in orthorhombic B19 is reasonable and is significant to
describe the structural change from B19 to cubic B2 above 1496 K. It is clearly
seen that the a/b and c/b ratios are above 1.41, indicating that the phase is still
orthorhombic B19 up to 1397 K. The ratio c/b of the B19 TisoPdso is 1.414 at
approximately 1496 K which suggests that B19 phase has transformed to the

cubic B2 phase.

5.1.2 B19' TisoPdso

In Figure 5-4, we show the lattice parameter against temperature for the B19’
TisoPdso structure. We note that the a and c lattice parameters increase with an
increase in temperature similar to the b lattice. Furthermore, we note that the a
and c lattice parameters collapse at 1798 K while b increases monotonically at
this temperature. This resulted in the a/b and c¢/b ratios to give a decreasing trend

with an increase in temperature. This behaviour predicted the ratio of c/b and a/b

102



as 0.931 and 0.537, respectively. At above 1798 K, no transformation was

observed.
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Figure 5-3 The effect of temperature on the (a) a and ¢ (b) b (c) a/b and c/b lattice
parameters of the B19 TisoPdso.
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Figure 5-4 Lattice expansions (a) a and c¢ (b) b (c) a/b and c/b against temperature
for B19'.

5.1.3 L1oTisoPdso

The dependence of the lattice parameters of the L1o on temperature is plotted in
Figure 5-5. Similar to the B19 and B19', the a lattice parameter increase with an
increase in temperature as shown in Figure 5-5 (a). In the case of the c lattice
parameter, we observe a slight increase in temperature. The b lattice parameter
increases linearly with an increase in temperature. A drastic increase in the b
lattice parameter is observed between 700 to 900 K as shown in Figure 5-5 (b).

Furthermore, the a/b and c/b ratios are also shown in Figures 5-5 (c). In order for
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transformation to occur from tetragonal L1o to cubic B2, the ratios a/b and c/b
should be closer to 1.00 since a=b=c. In the c/b ratio, there is an extreme
decrease observed at 897 K which suggests that the L1o phase has transformed
to the B2 phase. The plots of c/b and a/b ratios collapse to a ratio of 1.00 and
remain the same with an increase in temperature. It can be clearly seen that the
L1o to B2 transformation has occurred at 897 K, and hence for the B2 phase is
observed on a temperature range of 897- 1696 K. The structure then reached the
melting temperature above 1696 K. The temperature at which the transformation

occurs for L1o (L10-B2) is lower (897 K) as compared to B19 phase (B19-B2) at

1497 K.

Lattice parameter (A)

T T T T T T T T T
200 400 600 800 1000 1200 1400 1600 1800

Temperature (K)

Figure 5-5 Lattice parameters (a) a and ¢ (b) b (c) a/b and c/b against temperature
for L1,.
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5.1.4 B2 TisoPdso

Figure 5-6 show the effect of temperature on the lattice parameters for the B2
phase. It is observed that the a, b and c parameters increase slightly as the
temperature is increased (below 800 K). The results suggest that the
transformation is suppressed and remains B2 below 800 K. The B2 structure
transforms to B19 between 800-1300 K since a=b=c as shown in Figure 5-6 (a).
Interestingly, as the temperature is increased to 1490 K, the structure transforms
back to the B2 phase (a=b=c). This suggests a possible transformation from the

B19 martensite phase into the B2 phase.

The ratios of c/b and a/b collapse to a ratio of 1.00 and remain the same with an
increase in temperature above 1490 K. Similar behaviour was observed when the
B19 phase transforms to the B2 phase at 1490 K (as discussed in Figure 5-3). It
is noted that the structure remains stable up to 1698 K and beyond this point, a
possible deformation occurs, as shown in Table 5-2. The predicted melting
temperature for the B2 (1695 K) and is in good agreement with the experimental

finding of 1673 K [80], this has been shown in chapter 2 (see Table 2-2).

The lattice parameter ratios at a temperature from 1598-1898 K and predicted
phases are summarised in Table 5-2. The c/b, a/b and c/a ratios are close to 1,
indicating the phase is still B2 phase below 1698 K. Furthermore, we observe
that c/b=1.260, a/b=0.923 and c/a=1.265 with increasing temperature in cubic

which suggest that the melting temperature have been reached.
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Figure 5-6 Lattice expansions (a) a, b and ¢ (b) a/b and c/b against temperature
for B2.

Table 5-2 Lattice parameters and predicted phases at a temperature from 1598-
1898 K.

Lattice parameter (A) 1598 1698 1798 1898

c/b 0.998 0.999 1.260 1.401

a/b 0.998 0.999 0.923 1.085

cla 1.000 1.000 1.265 1.302
Predicted phase B2 B2 deformed deformed
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5.2 X-Ray diffraction patterns

X-ray diffraction (XRD) is a rapid analytical technique primarily used for phase
identification of a crystalline material and can provide information on unit cell
dimensions [153]. In this section, we analyse the XRD for B19, L1o, B19' and B2
TisoPdso from ambient to high temperatures. The temperature was increased from
100- 1800 K at a difference of 100 K steps. However, for the purpose of
discussion, we selected only a significant plot showing the transformation or

changes in the XRD patterns for the four phases (B19, L1o, B19" and B2).

5.21 B19 X-ray diffraction patterns

A simulation of the temperature dependence of the XRD patterns was conducted
on the pure B19 TisoPdso, with 1024 atoms, as shown in Figure 5-7. The B19 X-
ray indices, 001, 101, 010, 011 and 002 are observed at different temperatures.
The structure remains B19 phase from 100 to 1298 K with the same set of peaks
observed. As the temperature is increased, there is an increase in intensity and
number of peaks (< 40 26) at 1368 K which suggests a possible transformation
from B19 to B19'. The transformation from B19 to B19’ structure, characterized
by XRD indices 001, 101, 010, 011 and 002 at elevated temperatures with an

increase in intensity at 101 peak (1368 K).

Interestingly, the number of peaks reduces at 1447 K and assumes the patterns
of the B2 phase. At this temperature, the peaks (001 and 101) are close to each
other and shift to the left of the 26 to 26° and 30°. This observation suggests a

possible transformation from the B19' to the B2 phase. The transformation from
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B19-B19' and B19'-B2 suggest that the B19' phase exists in a narrow or

temperature (1368-1447 K).

A transformation is observed where there is the disappearance of the 101 peak
close to 30° at a temperature of about 1496 -1596 K, the disappearance of the
peak suggests possible transformation from B19' to B2. At a temperature of 1696
K and above, the peaks are broad and suggesting that the structure melted at
this temperature and thus the structure is lost. It is interesting that the
transformation temperature of the B19 phase correlates well with the a/b and c/b
ratios change, which is at approximately 1496 K (section 4.1.2). A similar

observation is true for B19'.
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Figure 5-7 Diffraction patterns at a various temperatures from 399-1696 K for
B19.

5.2.2 L1o X-ray diffraction patterns

In Figures 5-8, the simulated XRD patterns of L1o are shown from 399-1697 K.
The L1lo X-ray indices, 001, 100 and 011 are observed below 30° at different
temperatures. It can be clearly seen that the structure remains L1lo phase from
399 to 778 K with the same set of peaks observed. At a temperature above 897

K, the number of peaks reduces and the B2 phase patterns are observed.
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Furthermore, when the temperature is increased above 897 K, the disappearance
of the 100 peak close to 30° is observed. At this temperature possible
transformation has occurred from the L1o phase to the B2 phase since the peaks
are assumed to be the patterns of the B2 phase. This agrees reasonably well with
the ratio of a/b and c/b where the transformation is occurring at approximately
897 K (Figure 5-5). The melting temperature of B2 TisoPdso from the phase
diagram was found to be 1673 K [80]. From the XRD patterns, the structure above
1597 K is lost which means that the structure has reached the melting

temperature at 1697 K.

5.2.3 B19' X-ray diffraction patterns

The temperature variations of XRD patterns for the B19' are shown in Figure 5-
9. The observed B19' X-ray indices are 010, 011,100 and 110 are found below
40° from 399-1697 K. At approximately 898 K, the intensity of the peak [011]
becomes smaller at 25°. The result suggests that no transformation takes place;
rather the structure remains unchanged below 1000 K. Furthermore, above 1696
K the peaks are broad and the structure is lost suggesting that the structure
melted. This observation is similar to the results of the lattice expansion

discussion above.
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5.2.4 B2 X-ray diffraction

The XRD plots of the B2 TisoPdso at various temperatures are shown in Figure 5-
10. The 001 and 011 peaks are observed in the XRDs below 40 26. It is well
known that B2 TisoPdso is a high temperature phase which is unstable at room
temperature hence it will be more interesting to see the effect of low temperature
on the system. It is observed that the number of peaks in the XRD pattern

increase as the temperature is increased to 898 K. The patterns are assumed to
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be of the B19 phase. As the temperature is increased to 1497 K, the patterns
decreases which suggests a transformation of B19 to B2 phase as shown in
Figure 5-10. The structure remains B2 phase from 1497 to 1596 K with the same
set of peaks observed. There are two transformations observed from B2 to B19
martensite phase as well as from B19 to B2 Austine phase and this agrees very

well with the ratio of a/b and c/b until melting is reached.
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Figure 5-10 Diffraction patterns at various temperatures from 399-1696 K for B2.
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5.3 Temperature dependence of the elastic properties
In order to understand the mechanical stability of B19, B19’, B2 and L1o TisoPdso
at various temperatures, related elastic constants and shear moduli were

calculated using forcefield based LAMMPS code.

5.3.1 B2 TisoPdso

Temperature variation of elastic constants of B2 structure was calculated and
shown in Figure 5-11. In the first region of the plot, the elastic constants (c11, C12)
decrease minimally with an increase in temperature and tend to converge above
1695 K. This behaviour can be attributed to the initially B2 specified structure
attempting to reach melting temperature. The second region, elastic constant
(ca4) decrease linearly with an increase in temperature and converge above 1695
K. It is observed that as the temperature is increased, from ambient values, the
predicted shear modulus C'= (c11 - c12)/2 of the B2 phase is initially positive, and
approaches zero above 1695 K. The shear modulus (C') decreases with
increasing temperature, suggesting less stability of the B2 phase. So, above 1695
K the structure is mainly characterised by C’ becoming less positive, as the
magnitude of ci11= c12, hence suggesting mechanical stability of the B2 phase at

high temperature, consistent with the experimental of 1673 K.
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Figure 5-11 (a) elastic constants and (b) €’ against temperature for B2. The dotted
line is used to guide an eye with respect to stability and possible transition
temperature.

5.3.2 B19' TisoPdso

Figure 5-12, shows the effect of temperature on elastic constants and shear
moduli for the monoclinic B19' phase. In the case of B19', the first group of elastic
constants ci1, C22 and c33 decrease linearly with temperature below 1798 K and
tend to converge to a common value above 1798 K. Furthermore, the second
group of elastic constants ci2, ciz and cz3 reduces slightly with an increase in

temperature, and a possible convergence with elastic constants above 1798 K
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was observed. Such convergence suggest melting temperature is reached,
where c11 = €22 = ¢33 and ci12 = ci3 = Cz3. Furthermore, elastic moduli ca4, css, Ces,
c25, and css constitute the third group and decrease minimally with an increase in
temperature. However, they all tend to converge at the highest calculated

temperatures above 1798 K.

The shear moduli (C11 + C22+ €33 + 2(C12+C13 + C23)), (C33C55 —C?35), (C44C66-C246) and
(c22 + cs33 -2c23) are positive at lower temperature, and negative at high
temperature, which does not satisfying the requirements for mechanical stability
of monoclinic systems as discussed in section 3.10.3. The shear moduli C33Css —
c?3s decrease linearly up to the highest calculated temperature and tend to
converge around 1798 K. It is clear that the shear moduli c44Ces-C?%46 and c22+ C33-
2c23 decrease minimally and become negative below 1300 K which indicates the

instability of structure at high temperature.
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Figure 5-12 (a) elastic constants and (b) €' against temperature for B19'. The
dotted lines are used as a guide to an eye with respect to stability criteria.

5.3.3 L1oTisoPdso

Figure 5-13 shows the effect of temperature on the elastic constants and shear
moduli for tetragonal L1o phase from 100-1896 K. In the case of L1o, the first
group of elastic constants ci1, Ci2, ciz and cs3 decrease linearly whereas the
second group, ca4 and ces, reduce slightly with an increase in temperature.
However, all elastic constants tend to converge at the highest calculated
temperature above 1798 K, which proposes melting temperature being reached.
This behaviour, suggests that cii= ci2 =Ciz= C33 equals cas= cCes at that

temperature, which could be an equivalent of ci1= ci2 in the cubic B2 austenite
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phase. The shear moduli (c11 + €22), (C11 + €33 -2C13) and (2c11 + €33 + 2C12+ 4C13)
have positive shear moduli throughout the temperature which shows the stability
of Llo. Furthermore, the results satisfying the requirements for mechanical

stability of tetragonal alloys as discussed in section 3.10.3.

180

160 1 TiPd L1,

(a)

140 A

120 A

100 A

80 4

60 -

Elastic constants (GPa)

40

20 A

-20

1000 +

g(b)
800 - :

'
I

600 - ! —@— Cyy"Cpy

—8— C;;+Cy5-2C

—A— 2C,,+C33+2C,,+4C 5

C' (GPa)

400 A

200 +

T T T T T T T T W
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temperature (K)

Figure 5-13 (a) elastic constants and (b) C' against temperature for L1,. The dotted
lines are used as a guide with respect to stability.

5.3.4 B19 TisoPdso

The elastic constants and shear moduli are calculated and shown in Figure 5-14
at different temperatures (100-1895 K) for the orthorhombic B19. The first group
of elastic constants ci1, c22 and css decrease significantly and linearly with

temperature and all tend to converge to a common value at 1696 K. Similarly, the
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same trend was observed with the second group of elastic constants ci12, ci13 and
c23. The last group of elastic moduli ca4, css and ces decrease minimally with an
increase in temperature below 1696 K. The css moduli become negative at
temperature 1696 K which shows the instability of the structure at high
temperature. Furthermore, three shear moduli (c11 + C22 -2¢12), (C11 + C33 -2C13)
and (c22 + cs3 -2c23) are positive at lower temperatures and reduce as the

temperature is increased.

The shear moduli become smaller with the increase in temperature and converge
to a common value at 1696 K which shows the instability of B19 at high
temperatures. Furthermore, we note sudden collapse from the three shear moduli
from 1598 -1696 K which is due to the melting temperature being reached at 1680
K. It can be suggested that from the elastic properties, the B19 structure tends to
be mechanically unstable at a temperature higher than 1696 K as it undergoes
melting temperature. Furthermore, the calculated elastic constants and moduli of
the B19 phase satisfy conditions of the mechanical stability of the orthorhombic
symmetry at low temperatures below 1696 K as stated in section 3.10.3. In an

enlarged insert, the instability of B19 is clearly indicated.
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Chapter 6

Structural, thermodynamic and electronic
properties for B2 TisoPdso.xMx

In this chapter, we present DFT results on the B2 TisoPdso-xMx alloys, where M
represent the alloying elements i.e. Ru, Pt, Ir, Co, Ni, Al and Os. A supercell
approach was used to generate their various compositions. These structures
were constructed from B2 TisoPdso using a 2x2x2 supercell with 16 atoms (as
shown in Figure 6-1). The substitutional search tool embedded in VASP was used
to substitute Pd with Ru, Pt, Ir, Co, Ni, Al, and Os atoms which provided the most
stable compositions at the desired symmetry. There are five possible
compositions that will be considered in these calculations namely; 6.25, 18.75,

25, 31.25, and 43.75 at. % M.

The calculations were performed using VASP code. The structures were
subjected to full geometry optimization (by allowing both lattice parameter and
volume to vary) in order to achieve ground state properties with precision.
Structural and thermodynamic properties, such as equilibrium lattice parameters
and heats of formation were investigated. Furthermore, the electronic properties
in particular the total and partial density of states will also be analysed and
discussed to show stability by monitoring the trend of the Fermi level with respect

to the possible pseudogap [154].
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Figure 6-1 (a) The B2 TisoPdso structure with 2 atoms per unit cell and (b) a 2X2X2
supercell with 16 atoms per unit cell structures.

6.1 Structural and thermodynamic properties of B2 TisoPdso-xMx.

In Figure 6-2, the calculated equilibrium lattice parameters for the B2 TisoPdso-xMx
(M=Ru, Pt, Ir, Co, Ni, Al, and Os) systems are shown. It is observed that the
partial substitution of Pd with Ru reduces the lattice parameters of the TisoPdso-
xRux minimally (Figure 6-2). The lattice parameters or volume decreases with the
addition of Ru content and this may be attributed to the small atomic radius of Ru

as compared to that of Pd.

Furthermore, the lattice parameters of the TisoPdsoxMx System decrease as the
Ni, Ir, Co, and Os content is increased. This can be understood since the atomic
radius of Pd is larger in size than Ni, Ir, Co, and Os. Recall that the lattice
parameter of binary TisoPdso was predicted to be 3.170 A which is larger than
those calculated for the TisoPdso-xMx systems. The lattice parameters of the
TisoPdso-xCox behave similarly to that of TisoPdsoxNix and this is due to their
comparable atomic numbers and masses, both Co and Ni are transition elements

on the same period.
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The heats of formation for the B2 TisoPdso-xMx systems are shown in Figure 6-3.
As discussed in chapter 4, the heats of formation are calculated to check the
thermodynamic stability of the system. We observe that the AH: decreases as Ru
is increased this implies that the structure becomes stable at high Ru
concentration (thermodynamically stable). Similar behaviour was observed for Ir,
Pt, and Os as their values decrease with an increase in concentration indicating
thermodynamic stability. Furthermore, the addition of Al, Ni and Co
concentrations becomes less stable since the values of heats of formation
increase as the content is increased. It is seen that Al, Ni and Co substitution
show less stability, while the addition of Os, Ru, Ir and Pt enhances the stability
of the TisoPdso system at high concentration (0 < x <50). More importantly, Ir

addition is the most favourable (most stable) below 40 at. % Ir.
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Figure 6-2 Equilibrium lattice parameter against atomic percent (at. % M)

for 0 £ x < 50 composition range.
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Figure 6-3 Heats of formation against atomic percent (at. % M) for 0 S x <

50 composition range.

6.2 The comparison of heats of formation between the B2 and B19
phases

Figure 6-4 shows the comparison of heats of formation between B2 and B19
TisoPdso-xMx (M=Ru, Pt, Ir, Co, Ni, Al, Os) alloys at 0 K. We see that as the amount
of Pt is added to B2 TisoPdso alloy, it is observed that the heats of formation
decrease linearly. A similar trend is observed for the B19 phase. The results
suggest that Pt enhances the thermodynamic stability of the B19 TisoPdso more
compared to the B19 phase as shown in Figure 6-4 (a). In Figure 6-4 (b), it is
noted that the heats of formation decrease with an increase in Ir content for both
B2 and B19 TisoPdsoxlIrx alloys (condition of stability). The heats of formation for
the B2 phase were higher (less stable) than that of the B19 phase (more stable)

which implies that Ir addition prefers the B19 phase at O K.
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Furthermore, as the amount of Os is added to the system, the values of heats of
formation decrease for both B2 and B19 phases. It is noted that at concentrations
below 20 at. % Os the heats of formation for B2 is greater than that of the B19
phase as shown in Figure 6-4 (c). Interestingly, we observed that at 25 at. % Os
the B19 is favourable than the B2 TisoPdsoxOsx system. Furthermore, it is
observed that above 25 at. % Os the values of heats of formation are identical for
both B2 and B19 TisoPdso-xOsx systems. This behaviour suggests that Os can be
used to improve the thermodynamic stability of both B2 and B19 phases above
20 at. % Os. Similar behaviour was observed when Ru was added to the system
as the values of heats of formation decreases with an increase in Ru content for
both B2 and B19 systems (Figure 6-4 (d)). Thus the addition of Os and Ru
enhances the stability of TisoPdso for both the B2 and B19 in a more similar

manner. This may be attributed to their similar atomic radius.

In contrast to the above, we see that the calculated heat of formation increases
as the concentrations of Ni is increased. This suggests that the structures are
becoming thermodynamically less stable which indicates weak chemical
interactions between Pd and Ni. The results showed that heats of formation
increase with an increase in Ni content implying the B2 and B19 TisoPdso are less
preferable compared to the B2 and B19 TisoNiso alloys (Figure 6-4 (e)). To note
that the addition of Ni has been shown to improve the thermodynamic stability of

the B19 phase better compared to the B2 phase (Bl9AHf > BZAHf).

Similar behaviour was observed with Co, and Al additions as shown in Figure 6-
4 (f) and Figure 6-4 (g), respectively. The findings suggest that Ni, Co and Al are

not favourable for improving the thermodynamic stability of both B2 and B19
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TisoPdso alloys. Based on the comparison between B2 and B19 TisoPdsoxMx, it
can be concluded that the addition of Pt, Ir, Os, and Ru enhances the
thermodynamic stability of both B2 and B19 phases while Ni, Co, and Al display

less stability as the concentration is increased.
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Figure 6-4 Trend of heats of formation against composition between B2 and B19
TisoPdsoxMx (M=Ru, Pt, Ir, Co, Ni, Al, and Os) ternary alloys (a) Pt, (b) Ir (c) Os (d)
Ru (e) Ni (f) Co and (g) Al are substitute.
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6.3 Total density of states (tDOS) of B2 TisoPdso-xMx

Electronic structure calculations have been performed to investigate the stability
of TisoPdso-xMx alloys by observing the trend of the total density of states (tDOS)
near the Fermi level (Er) with respect to the pseudogap. Similar approaches have
been used to describe the electronic stability trend for structures of the same
composition [26, 155, 156]. The structure with the highest and lowest density of
state at Er is considered the least and most stable, respectively. The DOS is

expressed as the number of states per atom per energy interval.

6.3.1 B2 TisoPdsoxMx alloys: (M= Ru, Os)

The total DOS for TisoPdsoxRux is shown in Figure 6-5. We observe that the DOS
shift towards the conduction band (CB) when Ru is added to the system. It is
clearly seen that at 50 at. % Ru (TisoRuso) the Fermi level coincides with the
pseudogap displaying the lowest states at Er. This confirms the stability of the
system in agreement with the predicted heats of formation (Figure 6-3). Contrary
to the TisoRuso structure, the Fermi level hits the top of the total DOS peak
indicating instability of the TisoPdso structure. As the composition of Ru is added,
the pseudogap moves toward the Fermi level showing that the TisoPdso-xRux
became electronically stable, in particular for composition above 20 at. % Ru.
This observation suggests that TisoPdsoxRux is electronically stable at the high
content of Ru. It is noted that there is a good agreement between the heats of
formation (Figure 6-3) and the density of state stability trend. Figure 6-5 has been

published in an accredited journal [35].
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In Figure 6-5, we plot the total DOS for B2 TisoPdsoxOsx (0 < x < 50) alloys. As
the composition of Os is added, the pseudogap moves towards the EF which may
imply that the system becomes electronically stable above 18.75 at. % Os. It is
seen that at 50 at. % Os (TisoOsso0) the Ercoincides with the pseudogap. This is
consistent with the fact that Os has fewer electrons compared to Pd. The stability
trend according to the density of states agrees very well with the predicted heats

of formation (AHr) results, this Figure has been published [24].
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Figure 6-5 The total density of states of TisoPdsoxRux SMAs against energy (0 <
x £ 50). The Fermi level is taken as the energy zero (E-E=0) [35].
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Figure 6-6 Comparison of the total density of state for TisoPdsoxOSx systems (0 =
x < 50) against energy. The Fermi level is taken as the energy zero (E-E=0) [24].

6.3.2 B2 TisoPdso-xMx alloys: (M= Pt, Ir)

Figures 6-6 and 6-7 show the calculated total density of states at various
compositions (0< x < 50) for TisoPdso-xMx alloys. As the composition of Pt is
added, the pseudogap moves towards the Erindicating that the electronic stability
is enhanced. It is seen that TisoPtso is more stable than other compositions since
it has the lowest density of states near the Er. Furthermore, TisoPdas.75Pts.25s has
the highest density of states at Er as compared to the other structures which
confirm the least stable. The predicted density of states analysis is consistent

with the stability trend as predicted by the AHr.

As Ir content is added, the DOS for TisoPda43.7slr6.25 hits the peak at the shoulder
near the Er as shown in Figure 6-7. Furthermore, at 18.75 at. % Ir, the pseudogap
moves toward the Er with the lower energy which may suggest that the system

starts to stabilize. Similar behaviour was observed with other compositions such
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as TisoPdaslrzs, TisoPd1s.751r31.25, and TisoPds.2slr43.75. It is noted that Tisolrso has the
lowest DOS at the Er which suggests that it is the most stable while the
TisoPda3s.75lr6.25 is the least stable compared to other compositions. The result
suggests that TisoPdso-xMx is electronically stable at higher content of Pt and Ir,

consistent with the predicted AHk.
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Figure 6-7 (a) Comparison of the total density of state for TisoPdsoxPtx Systems
against energy and (b) is the enlargement of the DOS near the Fermi energies.
The Fermi level is taken as the energy zero (E-E=0).
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Figure 6-8 Comparison of the total density of state for TisoPdsoxIrx systems
against energy. The Fermi level is taken as the energy zero (E-E:=0).

6.3.3 B2 TisoPdsoxMx alloys: (M= Ni, Co, Al)

The total density of states for TisoPdsoxNix (0= x > 50) alloys are compared in
Figure 6-9. The Es hits the top of the total DOS peak which suggests the instability
at 6.25 at. % Ni. Similar behaviour was observed at 18.75 at. % Ni. Moreover, the
TisoPda43.75Nis.25s was found to have the lowest DOS peak at Er compared to
TisoPds1.25Ni1s.75. This behaviour suggests that the system is electronically
unstable with the addition of Ni for all at. % compositions. The electronic stability

trend is confirmed by the results of the AH¢ discussed above (Figure 6-2).

Figure 6-10 show and compare the calculated tDOS for TisoPdsoxCox alloys. It is
noted that as the Co content is increased the DOS hit the shoulder of the peak at
Er. The highest DOS along the Er is observed at the high composition of Co (50

at %) while 6.25 at. % Co has the lowest DOS peak. This observation indicates
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that Co is not preferable to enhancing the electronic stability of TisoPdso in good

agreement with the predicted AH:. A similar trend is observed for Al additions as

shown in Figure 6-11. This suggests that TisoPdso-xAlx is electronically unstable

at the higher content of Al. The stability trend agrees very well with the predicted

heats of formation (Figure 6-2).
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Figure 6-9 Comparison of the total density of state against energy for TisoPdso-xNix
systems (0 < x £50). The Fermi level is taken as the energy zero (E-E=0).
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Chapter 7

Mechanical properties for B2 TisoPdso-xMx

In this chapter, we discuss the mechanical properties in particular the elastic
constants, elastic moduli, ductile/brittle behaviour and elastic anisotropy of
TisoPdso-xMx (M=Ru, Pt, Ir, Co, Ni, Al, and Os). Similar to the previous chapter,
we used the supercell approach to explore their stability. The elastic properties
were performed using the VASP code as discussed in detail in chapter 3. The
elastic properties were calculated to check the elasticity and strength of the

alloys.

The study of elasticity such as elastic constants, elastic moduli, ductile/brittle
behaviour and elastic anisotropy is of critical importance in various industries
such as medical and aerospace amongst others. So, the elastic properties are
determined to check the elasticity as well as the strength of the material systems.
The elastic stiffness constants are obtained from the linear finite strain—stress
method within the VASP code [38]. The predicted independent elastic stiffness
constants (Ci) of the TisoPdso-xMx (M= Ru, Os, Co, Ni, Ir, Pt, and Al) alloys are

shown in Figures 7-1 to 7-5.

7.1 Elastic constants of TisoPdso-xMx

The elastic constants (Cj) contain some of the more important information that

can be obtained from ground-state total-energy calculations. In order for a
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structure to exist in a stable phase, the elastic constants must obey certain
relationships. The stability conditions for the cubic system is outlined in section

3.10.3.

7.1.1 TisoPdsoxRux

In Figure 7-1, the calculated elastic constants of the TisoPdso-xRux alloys (0 <
x <50) are shown. Recall that in order for the structure to be stable, it must satisfy
certain stability criteria as discussed in chapter 4. The positive €’ ((1/2(c11-C12)>0)
indicates the mechanical stability of the crystal, otherwise, it is unstable. As
indicated in chapter 4, the binary B2 TisoPdso alloy is mechanically unstable at O
K due to negative elastic shear modulus (C'= -5.37 GPa). So, the addition of a
third element has been suggested in order to stabilise the B2 TisoPdso alloy. In
this case, the addition of Ru shows that the elastic constants c;, ¢;, and c,, are
positive for the entire concentration range (0< x <50) (Figure 7-1). The ci11 and
Ca4 increase with the addition of Ru content while ci12 decreases suggesting that
the structure is becoming mechanically stable (satisfying the stability condition,

C11>C12).

However, at small Ru content (6.25 and 18.75 at. % Ru), the C' is negative which
renders the structures elastically unstable at these concentrations. Furthermore,
the calculated C’ value gives rise to negative anisotropy, thus indicating the
instability of the B2 TisoPdso-xRux for 6.25 and 18.75 at. % Ru which is contributed
by c11 being less than ci2. It is clearly seen that above 20 at. % Ru, the C' is
enhanced leading to a mechanical stable system. As such Ru addition may

decrease the martensitic transformation temperature of the B2 TisoPdso alloy due
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to an increase in €' above 20 at. % Ru. The coupling of c11 and c12 is found when
x >20 at. % Ru corresponding to the observed stability trend. The coupling of caa
and C' can also be seen when x >37 at. % Ru, and a possible phase
transformation occur as shown in Figure 7-1. This observation has also been

discussed in the previous study [77] and Figure 7-1 has been published [35].
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Figure 7-1 The elastic constants (GPa) as a function of the atomic % Ru
composition of TisoPdso-«Rux SMAS.

7.1.2 TisoPdso-xOsx

The calculated elastic properties of the TisoPdsoxOsx alloys (0 < x <50) is shown
in Figure 7-2. It is noted that all the independent elastic constants ci1, Ci2 and Ca4
are positive in the entire range of TisoPdsoxOsx alloys (0 < x <50). At small Os
content (below 6.25 at. % Os), the C' is negative suggesting that the structure is

elastically unstable at this concentration. Interestingly, the elastic shear modulus
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(C') is positive above 18.75 at. % Os which indicates the structures are

mechanically stable at high Os content. Note that Figure 7-2 has been published

[24].
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Figure 7-2 The elastic constants (GPa) as a function of the atomic %

Os composition of TisoPdso-xOsx SMAS.

Figure 7-3 shows the comparison of the elastic constant ci1 and ci2 for TisoPdso-

xMx (M= Ru, Os) alloys against concentrations. Below 20 at. % Ru, it is noted that

c11<C12 suggests elastic instability. In the case of Os, itis found that ci1<ci2 below

18 at. % which indicates instability. Interestingly, it is noted that Os stabilise faster

as compared to Ru since c11>c12 above 18.75 at. % which resulted in positive C'.
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Figure 7-3 The elastic constants (c11 and c12) against the composition
of TisoPdsoxMy alloys.

7.1.3 TisoPdsoxMx (M= Ni, Co)

Figure 7-4 (a) shows the comparison of elastic constant ci1 and the ci2 for the
TisoPdso-xMx (M= Co, Ni) at different concentrations. From the results, it is noted
that the ca1 is less than ci2 below 25 at. % Co which suggests instability at those
compositions. Furthermore, it was also found that the cii<ci2 below 31.25 at. %
Ni which implies that the system is unstable. This is confirmed in Figure 7-4 (b).
It is clearly seen that the C’ curve is below zero (C'< 0) at lower concentrations.
However, the elastic constants satisfy the stability criterion above 43.75 at. % Ni

and 31.25 at. % Co indicating elastic stability (since C'> 0) of TisoPdsoxMx alloys.
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Figure 7-4 (a) the elastic constant and (b) elastic shear modulus against the
composition of B2 TisoPdso-xMx (Co, Ni) alloys.

7.1.4 TisoPdsoxMx (M= Ir, Al, Pt)

In Figure 7-5 (a), all the predicted Cj does not satisfy the stability criteria for
TisoPdso-xAlx since ci11 is less than ci2 which resulted in negative elastic shear
modulus (€' < 0). Similar behaviour was noted for Ir and Pt addition as the C’

decrease with an increase in the concentration (C'< 0) for the entire concentration
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range (Figure 7-5 (b)). Clearly, the Cijj for ternary addition is less than those for
the binary TisoPdso structure, which indicates that the doping element (Al, Ir, and

Pt) have no potential to improve the Cjj of pure structure.
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Figure 7-5 (a) the elastic constant and (b) elastic shear modulus as a function of
compositions for B2 TisoPdsoxMx (M=Al, Ir, Pt) alloys.
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7.2 Anisotropy ratio: TisoPdsoxMx (M= Ru, Os, Co, Ni)

This section focuses on the anisotropy ratio to describe isotropic behaviour and
transformation of the TisoPdsoxMx systems. Note that the anisotropic ratio for Pt,
Ir and Al are not shown because their ci1<ci2 resulted in a negative anisotropy

value for the entire concentration range.

7.2.1 Isotropic and anisotropy behaviour

It is important to study the elastic anisotropy of the systems in order to understand
material properties and improve their mechanical durability. The anisotropy can

be calculated as:

_ Cas i
A= (7-1)

For an isotropic crystal, the factor (A) must be 1, while any value small or large

than unity is a measure of the degree of elastic anisotropy.

The anisotropic plot depicts anisotropic behaviour below 25 at. % for Ru, Os, Co
and Ni additions. However, A approaches unity (A=1) for both Ru and Os
between 25 and 50 at. % composition. These alloy systems have isotropic
behaviour at this composition range. The Co and Ni additions are highly

anisotropic in the entire composition ranges (Figure 7-6).

143



30 1 /\ Co
/ \
/ \
20 | \
| \
kel \
© / A
& 10 A Os ! N
o m ~
s | ~ v
.8 | S a
C — —
< ) O e
/
= -
''d <id
-10 A v
Ni
0 10 20 30 40 50
Ti Pd., at. % M (M=Ru, Os, Co, Ni) TigoMs,

Figure 7-6 Predicted Anisotropy ratio against the composition of B2 TisoPdso-
xMX.

7.2.2 Anisotropy and martensite transformation

Previously, Yi et al. [157] indicated that the cas and C’ can be used to predict the
change of martensitic transformation (Ms) at the Zener anisotropy factor A<10.
This factor measures the degree of anisotropy in solid and is calculated using
equation (7-1). In a cubic crystal, C’ is used to measure the basal-plane shear
along the direction of {110} <1-10> while the ca4 is along direction {001} <100>
shear (non-basal plane shear) which is equal to {001} <1-10> shear. Hence, the
Cca4 IS playing an important role in controlling the transformation temperature of
B2 to B19' [158]. Recall that the formation of the B19' phase is attributed to the
coupling between c44 and C' as proposed by Ren et al. [158]. Interestingly, as the

Os is added the C’ decreases and becomes negative below 6 at. % and positive
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above which suggest stability (Figure 7-7). The results suggest that the
transformation temperature increases below 6 at. % due to negative elastic shear
modulus (C') and decreases above (since €' > 0). It is noted that the entire Zener
anisotropy factors are less than 10 for Os and Ru at. % composition which
indicates a possibility and reliability of prediction of Ms (see Figure 7-6).
Furthermore, it was observed that the Zener anisotropy ratio is less than 10 for
the addition of 6.25, 18.75, 43.75 and 50 at. % Co (except 25 and 31.25 at. %

Co) as shown in Figure 7-8.
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Figure 7-7 The elastic constants c4s and C’ against the composition of

Tisopdso.xMx al ons.
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7.2.3 Martensite transformation

An anisotropy ratio (A) is also important for determining the martensitic
transformation of the material. A higher value of A indicates martensitic
transformation from B2 to B19 while a smaller A implies a good correlation

between c44 and C’ which leads to the transformation from B2 to B19' [158].

Ru addition

In Figure 7-6, a higher value of A is observed at 25 at. % Ru which suggests
transformation from B2 to the B19 martensite phase. There is a coupling of caa
and C' at high concentration above 37 at. % Ru which may suggest possible

phase transformation from B19 to the B19' martensite phase. Thus, their addition
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results in a reversible martensitic transformation that is from B2 to B19, and B19

to B2.

Os addition

In the case of Os addition, A is higher for 18.75 at. % Os, which may suggest the
transformation from B2 to B19 (Figure 7-6). There is a strong coupling observed
between the cs4 and C' at 43.75 at. % Os which leads to the transformation from
B19 to B19' (since A is small). It can be concluded that TisoPdsoxOsx alloys
transform from B2 to B19 (18.75 at. % Os) and then B19 transform into B19’
(43.75 at. % Os) due to a coupling of the casa and €' at 0 K. This is a similar

observation with TiNi and TiNi-based alloys [158].

Co and Ni addition

In the case of Co addition, it was observed that A is negative below 18.75 at. %
Co indicating that the martensite transformation is suppressed and the B2 phase
is preserved (Figure 7-6). As the composition of Co is increased to 31.25 at. %,
A is higher than other compositions showing the transformation from B2 to B19.
It can be deduced that B2 TisoPdso-xCox alloys transform to B19 phase above 31

at. % Co.

It is also noted that A is negative below 31.25 at. % Ni indicating that there is no
transformation observed in those compositions. Interestingly, it is seen that A is
higher for TisoPds.2sNis3.7s which suggests transformation from parent B2 to

martensite B19.
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7.2.4 Anisotropy and ductility

The calculated A can also be used to check the ductility in metals. Thus for a
material to be considered ductile, the anisotropy ratio should be greater than 0.8
otherwise brittle [159]. The anisotropy values were found to be greater than 0.8
for 25 and 31.75 at. % Ru (Figure 7-6). The results imply that the alloy becomes
ductile at this composition‘s ranges and brittle elsewhere. It was also found that
the anisotropy ratio is greater than 0.8 above 18.75 at. % Os which reveals ductile
behaviour. Furthermore, the Co and Ni additions are favourable above 25 at. %

and 43.75 at. %, respectively (condition of ductility).

7.3 Modulus: Bulk, Shear, and Young

In order to determine the strength, compressibility, and stiffness of the TisoPdso-
xMx, we calculated the various moduli. The predicted Bulk, Shear, Young s

modulus, Pugh and Poisson ratios are shown in Figure 7-9.

7.3.1 Bulk modulus

Generally, the Bulk modulus (B) is a measure of the hardness or strength in
materials. A high B value is associated with high strength otherwise less
hardness. We note that the bulk modulus increase with an increase in Os, Ir and
Ru concentrations which suggests that the hardness is enhanced. It appears that
the Os addition gave the highest B followed by Ir and Ru, while the addition of Pt,
Co and Ni showed a minimal increase in B. It can also be noted that there is a

close comparison between Ir and Ru, particularly at about 25 at. %. On the
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contrary, the calculated Bulk modulus decreases with an increase in Al content,
indicating that the resistance to volume change by applied pressure is eventually
lowered. Thus, Al addition gave the lowest Bulk modulus compare to other
alloying elements. The predicted trend of hardness is Os< Ir< Ru< Pt < Co < Ni<

Al

7.3.2 Shear modulus

The Shear modulus (G) plays an important role in checking the compressibility of
the material. It provides a measure or ability to resists shape change caused by
shear stress. A lower value of Shear modulus demonstrates lower shear
resistance and weaker covalent bond while a higher value possesses larger
shear resistance corresponding to more notable directional bonds between

atoms.

It is clearly seen that the shear modulus increase with an increase in Os and Ru
content above 6.25 at. % which indicates higher shear resistance of the material
at these compositions as shown in Figure 7-9 (b). In the case of Co and Ni, the
shear modulus increase with an increase in composition above 18.75 at. %,
suggesting an increase in the ability to resists shape change. This behaviour
demonstrates that there are more notable directional bonds between
neighbouring atoms. Similar behaviour has been observed previously [160].
Furthermore, at low concentration (6.25 at. %) the addition of Al and Pt resulted
in the reduced shear modulus (Figure 7-9 (b)). Moreover, it is observed that as
the concentration of Ir is increased above 31.25 at. % Ir, the G is enhanced.

Similar analyses have been found by Wu et al. [160].
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7.3.3 Young‘s modulus

Young‘s modulus (E) of the TisoPdso-xMx alloys are shown in Figure 7-9 (c). It is
used to measures the physical stiffness of the material, a higher value of Young's

modulus can be classified as rigid and it is less likely to get deformed.

It can be noted that the TisoPd43.7506.25 alloy has the lowest value (-16.07 GPa)
of Young modulus which indicates the weakest stiffness and the alloy can be
easily deformed. The results suggest that Os addition is the stiffest with the
highest value of Young modulus (317.38 GPa), particularly at the high
composition i.e. TisoPds.250s43.75, followed by Ru addition. The stiffness
decreases for the case of Al and Pt indicating weak stiffness and the structure is
likely to deform easily. Furthermore, it is noted that Young‘s modulus increases
minimally above 18.75 at. % Co and Ni possessing the strongest resistance to

uniaxial tensions [161].
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Figure 7-9 The calculated (a) Bulk (B), (b) Shear (G), and (c) Young’s (E) modulus
against various atomic percent M (at. % M) for (0 < x < 50) compositions range.
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7.4 Ductility: B/G ratio, Poisson‘s ratio and the Cauchy pressure

Now, in order to relate the ductility and brittleness behaviour of the B2 TisoPdso-
xMx alloys, we have calculated the B/G ratio, Poisson‘s ratios and the Cauchy
pressure at different compositions. These are three major quantities that can also

be used to describe the strength of the material.

7.41 The B/G ratio

We have calculated the ratio of bulk to shear modulus (B/G) to investigate the
extent of fracture in the TisoPdsoxMx alloys and is shown in Figure 7-10. The
material is considered to be ductile if B/G> 1.75, otherwise brittle [149]. This is a
measure proposed by Pugh and is referred to as the ratio of brittle and ductility
[149]. It is clear that above 18 at % Ru, Os and Co, the structures satisfy the
ductile conditions since B/G values are greater than 1.75. However, below 18 at
% Ru, Os and Co composition, the structures are regarded as less ductile with
the B/G less than 1.75. In the case of Ni and Ir, the B/G is greater than the unit

above 25.00 and 31.25 at. %, respectively which reveals ductile behaviour.

Furthermore, the values for TisoPdsoxMx with Al and Pt addition present brittle
behaviour due to lower B/G ratios (<1.75) for the entire concentration range (0<
x < 50). This observation suggests that the addition of Al and Pt cannot transform

the brittleness of TisoPdso into ductility as indicated by the lower B/G ratio.
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Figure 7-10 The B/G ratio against the composition of B2 TisoPdsoxMx alloys (0 <
x <50).

7.4.2 Poisson‘s ratio

The Poisson’s ratio () was also evaluated to check the ductility of the material.
The structure is considered as ductile material when o is greater than 0.26
otherwise brittle [140]. We see that as the composition of Ru, Os, Co, Ni, Al, Pt
and Ir is increased, the ¢ values were found to be greater than 0.26 which

suggests that the structures are ductile (see Figure 7-11).

Furthermore, Poisson‘s ratio is also used to analyse the bonding behaviour of
TisoPdso-xMx alloys. Note that a covalently bonded structure has a small value of
~ 0.1, an ionic bonded structure has a value of 0.25 while for metallic materials

is above 0.33 [162]. It is noted that the Poison's ratio (o) is greater than 0.33
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when Ru and Os concentration is increased up to 31 at. % Ru and Os,
respectively (see Figure 7-11). This implies that the structures show metallic
bonding behaviour below 31 at. % Ru and Os while above this concentration the
structure show ionic bonding behaviour characteristics with a value of 0.31. In the
case of Co, Ni, Al, Ir and Pt, the Poison’‘s ratio (o) is greater than 0.33 which

implies that the structures have metallic bonding characteristics.
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Figure 7-11 The Poisson’s ratio against atomic percent M (at. % M) for (0 <
x <50)

7.4.3 The Cauchy pressure: TisoPdso-xMx

The Cauchy pressure was calculated to describe the angular and brittle/ductile
characters of the TisoPdso-xMx alloys. Note that when Cauchy pressure has a
positive value, the results reveal their ionic character and ductile behaviour, and

the negative value reveals weak covalent and brittle behaviour [148].
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As the composition of Ru is added to the system, the Cauchy pressure values
are positive for the entire range (0 < x <50) which confirms the ductility behaviour
as shown in Figure 7-12. The results indicate that the structures are mechanically
stable under normal pressure and room temperature conditions (as discussed in

section 7-1). Similar behaviour was observed for Ni, Al, Co, Pt and Ir.

In Figure 7-12, the calculated Cauchy pressure is positive below 40 at. % Os
which reveals the ionic character and ductile behaviour. At high concentration
above 40 at. % Os, the Cauchy pressure is negative which suggests the brittle
nature. The results agree very well with the conclusion drawn from Pugh’s ratio
above. The increasing ductility trend predicted from Cauchy pressure is Os< Ru<

Al Ni< Co< Pt<Ir.
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Figure 7-12 Cauchy pressure against the composition of B2 TisgPdso-xMx

alloys.
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7.5 Vickers hardness

Vickers hardness (Hv) is an important parameter of materials, which can be used
to estimate the ability to resists localized deformation [163]. The Vickers hardness
(Hv) can be calculated as follows:

_ E(1-2v)

Hy = 6(1+v) (7-2)

where E is Young's modulus and v is Poisson's ratio.
The Hv of TisoPdsoxMx has been calculated and is shown in Figure 7-13. It was
found that the Hv increases as the concentration of Os and Ru are increased,
particularly above 18.75 at. %. This suggests that the hardest material can be
obtained at high content of Os and Ru for example, TisoPds.2s0s43.75 and
TisoPds.25Rua43.75 with the Hy of 12.49 and 8.51, respectively. In the case of Co and

Ni, it is clearly seen that the Hv increase above 25 and 31 at. %, respectively.

Furthermore, we note that hardness increases minimally with an increase in Al
and Ir concentration whereas Pt shows a decrease (Figure 7-13). The predicted
results revealed that Os addition has the strongest ability to enhance the
hardness of the binary TisoPdso system as compared to other alloying elements
(Ru, Co, Ni, Al, Pt, and Ir). Thus the predicted trend in the decreasing order is
TisoPds0-xOsx >TisoPdso-xRux> TisoPdso-xAlx> TisoPdso-xIrx >TisoPdso-xCox >TisoPdso-

xNix >TisoPdso0-xPtx.
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Figure 7-13 Vickers hardness against atomic percent M (at. % M) for (0 <
x <50).
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Chapter 8

Vibrational and thermal properties for B2 TisoPdso-
XMX

In this section, we discuss the vibrational and thermal properties in particular the
phonon dispersion curves, Debye temperature, heat capacity and thermal
coefficient of linear expansion of TisoPdsoxMx (M=Ru, Pt, Ir, Co, Ni, Al, and Os).
The phonon dispersion curves are presented and discussed to highlight
vibrational stabilities. The thermal properties of TisoPdso-xMx alloys are calculated
by the quasi-harmonic model with temperatures ranging from 0 to 3000 K to
check the thermal conductivity and thermal expansion of the systems. The
calculated results are compared with the available experimental and theoretical

findings.

8.1 Phonon dispersion curves and phonon density of states for B2
TisoPdso-xMx alloys.

Phonon dispersion curves for the B2 TisoPdso-xMx system were calculated to

determine the vibrational stability using a PHONON code [128]. The structure is

considered stable if there are no soft modes along high symmetry directions in

the Brillouin zone (Bz), otherwise, it is unstable (presence of soft modes). The

Phonon dispersion curves are shown in Figures 8-1 to 8-7.
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8.1.1 TisoPdsoxMx alloys: (M= Ru, Os)

Figures 8-1 and 8-2 show the phonon dispersion curves of B2 TisoPdsoxMx with
Ru and Os addition, respectively. In Figure 8-1, the phonon curves display soft
modes along all the high symmetry directions for TisoPd4s.7sRus.2s and
TisoPds1.25Ruz1s.75. It is observed that the phonon soft modes at 18.75 at. % Ru is
reduced showing improved vibrational stability. The presence of soft modes
corresponds with the negative elastic shear moduli (C'< 0 in Figure 7-1). At 25 at
% Ru the soft modes disappeared, only imaginary soft mode was observed along
M which suggests that at this concentration the structure is vibrational stable.
Interestingly, at 31.25, and 43.75 at. % Ru there are no soft modes observed
which confirm vibrational stability in agreement with the predicted Cj. Figure 8-1

was published [35].

In the case of TisoPdsoxOsx (Figure 8-2), the soft modes are observed at lower Os
content of 6.25 at. % which suggests vibration instability. The stability is observed
at higher Os content of 25 at % and above (25 < x < 50). It is noted that Os has
the potential for enhancing stability compared to Ru. Our results are consistent

with the predicted Ci.

159



TisoPd4s 75Rug 25 TisoPd31.25Ru18.75 TisoPd;sRuys

8 8 8
—_—t et =
= S = 7 ? 7 == =
6 6 6 é g
— i
5 e 51 5
z T = = g 7
E 4| E 4] E ., N
z z = g %
c c c
£~ N N
o g /d 2
<o, ﬁ <, P
1 1 ?% 1 4 ; ;
0 ¥ 0 ﬁ 0 \U
N A VLTI
R xT ™M R r R X I M R T R X I M R T
Brillouin Zone Direction Brillouin Zone Direction Brillouin Zone Direction
TisoPd15 75RUs1 55 TisoPds 2sRU43 75 TisgRusg
g 8 = | | 8 1
7 - 7 7
e
6 %j’"é; 6 7 6
/ _/—/,f:\‘_‘
5 5 =< .
£ - £ = \'. ) >
E E E
= 4 L] = 1 >Q v =4
o o %)
H 7 5 % = g
3 3 3 3 3 34
g \S;Z g . i
; 7 % j . ) “]
11 1 1
0 0 0
1 -1 -1 -
R X T M R I R X T M R r F I B G I
Brillouin Zone Direction Brillouin Zone Direction Brillouin Zone Direction

Figure 8-1 The phonon dispersion curves of the TisoPdso.xRux (6.25 < x < 50) ternary
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8.1.2 TisoPdsoxMx (M= Ir, Pt) alloys

The phonon dispersion curves of B2 TisoPdso-xMx alloys are shown in Figures 8-
3 and 8-4. It is clearly seen that the structure is vibrationally unstable since it
displays soft modes along high symmetry direction in the Brillouin zone (Bz).
Furthermore, vibrational instability is observed for all composition range (0 < x <
50). The presence of negative vibrations or soft modes suggests mechanical
instability in agreement with the elastic shear modulus (as discussed in chapter

7, section 1.4).

Similar to the case of Ir addition, when the concentration of Pt is increased, the
structure remains vibrationally unstable due to the presence of soft modes. The
negative vibrations may be attributed to the negative elastic shear modulus

(Figure 7-5 (b)) which confirms that the system is vibrationally unstable.

8.1.3 TisoPdsoxMx (M= Co, Ni, Al) alloys

The phonon dispersion curves for TisoPdso-xMx (M= Co, Ni, Al) alloys are shown
in Figures 8-5 to 8-7. The TisoPdsoxCox system is vibrationally unstable at a lower
concentration of Co, due to the presence of soft modes (Figure 8-5). However,
the increase in Co content has a significant effect since the soft mode becomes
reduced. Possible stability could be attained at 31.25 at. % Co, since no soft
mode was observed at I" (0,0,0). At 43.75 at. % Co, the structure is vibrational
stable (Soft mode disappears). The TisoCoso system is vibrationally stable,

consistent with the calculated Cj (Figure 7-8).
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Figure 8-4 The phonon dispersion curves of the TisoPdso.xPtx (6.25 < x < 50) ternary
structures.

In the case of TisoPdsoxNix (Figure 8-6), the structure remains vibrationally
unstable due to the presence of soft modes for all composition range (0 < x < 50).
Interestingly, at 43.75 at. % Ni, the soft modes are reduced and are only observed

along M and R-X directions. The negative vibrations are attributed to the negative
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elastic shear modulus (Figure 7-8), which confirms that the system is

mechanically unstable.

Similar to the case of Ni addition, TisoPdso-xAlx structures are vibrationally
unstable due to the presence of soft modes along high symmetry direction in the

Brillouin zone (Figure 8-7). The results are consistent with predicted Ci;.
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Figure 8-5 The phonon dispersion curves of the TisoPdsoxCox (6.25 < x < 50) ternary
structures.
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8.2 Thermal properties: Debye temperature, heat capacity, thermal
coefficient of linear expansion.

8.2.1 Debye temperature

Debye temperature is a very important fundamental parameter which is closely
related to the thermodynamic properties of materials, such as entropy, thermal

expansion and vibrational internal energy [150, 164, 165]. It can be estimated
from the elastic constants using the average sound velocity v,, as follows:

h 3n
Op = — (—)1’31/ 8-1
D = kg \anv, ms (8-1)

where h is Plank’s constant, ks is Boltzmann‘s constant, n is the number of atoms

per unit cell and Va is the atomic volume. The average sound velocity v,, is

obtained from:

11 (2, 1|, i
=[5+ ) ©2

where v; and v, are the longitudinal and transverse sound velocities of an
isotropic aggregate obtained by using the shear modulus (G) and the Bulk

modulus (B) as follows:

3B+4G
Vl=( y )1’2, (8-3)
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Ve = (9) 12, (8-4)

The 0, for Ir, Pt, Ni and Al additions are not included, because one of the moduli

is negative, and thus calculating the speed of sound is not possible [166].

Figure 8-8 shows the 0, against concentration for TisoPdso-xMx (M= Ru, Os, Co)
alloys. A higher 0, implies a single normal vibration which results in a better
thermal conductivity [164]. In general, the 0, is calculated from elastic moduli
(Bulk and Shear modulus). It is noted from Figure 8-8 that ©, increases with an
increase in Ru concentrations (0< x < 50). It should be noted that the ©, for 6.25

at. % Ru cannot be attained due to negative elastic moduli.

In Figure 8-8, a sharp exponential increase in ©,, is observed between 20 and 30
at. % Ru, and continue to increase slightly above this point. Thus a better thermal
conductivity is reached at 25 at. % Ru corresponding to the sharp peak. This
accord well with the increased ductility as confirmed by Poisson and Pugh's ratio.
Above this concentration, the thermal conductivity increases slightly up to 50 at.
% Ru. Therefore thermal conductivity of TisoPdsoxRux alloys may be favourable

between 25 and 31.25 at. % Ru.

It is observed that 0, increases with an increase in Os contents (0< x < 50)
under normal pressure as shown in Figure 8-8. This behaviour suggests that the
thermal conductivity of the structure is effectively improved with an increase in
Os content. The 0, is mostly favourable between 18.75 and 25 at. % Os. There

is a slight decrease in 0, as Os content is increased above 43.75 at. %, however
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the thermal conductivity of the structure is still favourable as compared to other

compositions.

Furthermore, it is noted from Figure 8-8 that ®, increases with an increase in Co
concentrations (0< x < 50). This may imply that the ©, is enhanced remarkably
with an increase in Co concentration. It can be inferred that thermal conductivity
could be effectively improved by the increase in Co concentration of 43.75 at. %.
At 6.25 at. % Co, no 0, was recorded due to negative moduli which imply poor

thermal conductivity at that composition.
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Figure 8-8 Debye temperature against the composition of TisoPdsoxMx (M= Ru,
Os, Co) alloys (6.25 < x < 50).

8.2.2 Heat capacity

Heat capacity is an important physical parameter of materials, which provides

essential information about vibration properties, heat transmission process and
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reflects the inherent properties of the system, serving as a bridge between

thermodynamics and microscopic structure [163].

The heat capacities at constant volume (Cv) of the TisoPdso-xMx (Ru, Os, and Co)
alloys are shown in Figure 8-9. The calculations were done at various
compositions for temperature ranging from 0 to 3000 K, and pressure at 0 GPa.
It is observed that Cv rises sharply with the increase in Ru content at
temperatures below 300 K and reaches a zero slope above this temperature, in
agreement with the Dulong—Petit limit, which is common to all solids at high
temperatures [166]. This limit is proposed by Dulong—Petit [167] and is observed
at sufficiently low temperatures when Cy does not depend much on temperature
and converges to a near-constant (Cy is proportional to T3). This behaviour
implies that the bond state is weaker and reaches bigger thermal vibrations of
atoms above 300 K. Similar behaviour was obtained from nickel-based cast

superalloys [168].

The current results indicate that the electron excitation occurs at a very low
temperature below 300 K and the contributions from phonon excitations are
significant at high temperatures for all compositions in TisoPdso-xRux alloys (Figure
8-9 (a)). The TisoPds1.25Ru1s.7s system, in particular, has the strongest heat
capacity (high value) while the weakest heat capacity (low value) was observed
for TisoRuso. The Cv tends to the Dulong-Petit limit (approaches of 398.5 JmolK-
1) at about 300 K. The Dulong-Petit limit is observed for all compositions (6.25 <

x < 50) for the temperature above the Debye temperature.
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A similar trend is observed when the amount of Os is added to the system (Figure
8-9 (b)). Moreover, the strongest heat capacity is observed for 6.25 at. % Os while
the weakest heat capacity was observed for 50 at. % Os. At higher temperatures
(>300 K) the Cv reaches the Dulong-Petit limit. The Dulong-Petit limit is observed
for all compositions (6.25 < x <50) the temperature below the Debye

temperature for the entire concentrations.

It is noted that the Cv in Figure 8-9 (c) increases with an increase in Co content
when the temperature is below 300 K and reaches a zero slope above that
temperature (>300 K). Similar bond state behaviour was observed for
compositions (31.25, 43.75 and 50 at. % Co) except for 25 at. % Co. However,
the strongest heat capacity was observed for 18.75 at. % while the weakest heat

capacity was observed for 50 at. % Co.
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8.2.3 Thermal coefficient of linear expansion

The thermal coefficient of linear expansion expresses the tendency of a structure
to change in volume due to a temperature change. A larger value of a implies that
the material expands moreover a chosen temperature range. Thermal expansion
generally decreases with increasing bond energy; hence materials with high
melting temperatures are more likely to have lower thermal expansion. The

thermal expansion (a) are expressed as [151]:

a =Ly (8-6)

" Brv

where Br is the isothermal bulk modulus, V is volume and v is the Gruneisen

parameter which is defined as [151]:

_ _ din® W)

dinv (8-7)

Figure 8-10 shows a thermal coefficient of linear expansion («) with temperature
for TisoPdso-xMx (Ru, Os, Co) alloys. The coefficient of linear expansion displays
a similar trend for all alloying elements (Ru, Os, Co). The addition of dopants
reduces the thermal coefficient of linear expansion. An increase in the
concentration of the alloying element results in less expansion. This observation
is necessary for the development of the alloys. However, the expansion rates are

different.

For example, the thermal coefficient of linear expansion for the TisoPds1.25Ru18.75
is higher than that of 43.75 at. % Ru below 500 K (Figure 8-10 (a)). Furthermore,
we note that the material expands more at a low content of 18.75 at. % Ru than

at higher content. It is also observed that as the Ru content is increased the
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thermal expansion increases at a lower temperature (<300) and reaches a zero
slope at a high temperature range. At this region, no further expansion is
observed (Figure 8-10 (a)). In the case of Os, we observe a similar trend, however
with a high expansion rate. It is clearly seen that 6 at. % Os is the highest. The
highest thermal coefficient of linear expansion is observed for Co addition (Figure

8-10 (c)), compared to that of Ru and Os.
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Chapter 9

The temperature dependence of the TisoPdso-xMx

In this chapter, the temperature dependence on the volume, density, lattice
parameters and elastic properties of B19 TisoPdsoxMx (X = 6.25, 18.75 and 25)
are presented. The alloying elements i.e. Co and Ni were chosen due to their
promising thermodynamical and mechanical properties which were discussed in
chapter 6. Pt and Al were not conducted since they display mechanical instability.
LAMMPS code [103] which employs the embedded atom method (EAM) [104]

was used, where the Zhou [139] interatomic potentials were invoked.

Previously, the LAMMPS code was successfully used to describe the
temperature dependence of TiPt and TiPt- (Co, Ni) and the results were in
agreement with experiments [4, 9, 13]. It was reported that Co addition decreases

the transformation of TiPt in both computational and experimental findings.

In this chapter, a supercell containing 2048 atoms was constructed for the B19
TisoPdso-xCox alloys and the systems were treated with NPT [124] ensemble,
Nose Hoover thermostat [123] and barostat [169]. The temperature was varied
between 273 and 1773 K to determine the transformation temperature of the
systems, their lattice parameters and XRDs were determined. We will highlight
an understanding of the transformation from the orthorhombic B19 (martensite
phase) to the cubic B2 phase (austenite phase) using XRDs. In addition, the
temperature dependence with the elastic properties is investigated to determine

the elasticity strength of the material.
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9.1 Temperature dependence of the volume and density of the TisoPdso-
xMx (Co, and Ni).

Figure 9-1 shows volume against the temperature of the TisoPdsoxCox (0=
x =25). The volume of the structures increases linearly with an increase in
temperature as depicted by the plots in Figures 9-1 and 9-2; respectively. As Co
content is added to the TisoPdso system, the volume is lowered with 25 at. % Co
having the lowest volume. Similar behaviour was observed with the addition of Ni
for the concentration range of 6.25 to 25 at. % (see Figure 9-1 (b)). The obtained
volume is lowered as Co and Ni content is added as compared to the pure
TisoPdso system which indicates that their lattice parameters expand more with

an increase in temperature.
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Figure 9-1 Volume against temperature for TisoPdso-xCox alloys.
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Figure 9-2 Volume against temperature for TisoPdso-xNix alloys.

The density of TisoPdso-xCox alloys is shown and compared in Figure 9-3. As the
amount of Co is added, the density decrease with an increase in temperature
which may suggest that the system becomes less dense with temperature for the
composition range (0> x >25). A similar trend was noted with the addition of Ni
additions as shown in Figure 9-4. The finding suggests that the addition of Co
resulted in less dense structures which agrees well with the fact that Co (8.86

g/cm?3) and Ni (8.90 g/cm?) are less dense compared to Pd (12.02 g/cm?).
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Figure 9-4 Density against temperature for TisoPdso-xNix alloys.

9.2 The lattice parameters and x-ray diffraction patterns of the B19
TisoPdso-xMx at high temperature

Lattice expansion is determined to check the transformation and melting

temperature of B19 TisoPdsoxMx alloys varied from 273 to 1873 K. Figure 9-5
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shows the effect of temperature on the lattice parameters of B19 TisoPdso-xMx

alloys.

In this section, we evaluate X-ray diffraction patterns to determine the
transformation temperature of B19 TisoPdso-xMx alloys with respect to the intensity
of the peaks and temperature is varied from 273 to 1670 K. A supercell which
consists of 2048 atoms was used for various composition ranges (0< x < 25) of

B19 TisoPdsoxMx alloys and is shown below.

9.2.1 Lattice expansion and XRD’s for the B19 TisoPdso-xCox alloys

Figure 9-5 shows the graph of lattice parameters with temperature for the B19
TisoPdsoxCox (0= x >25). As discussed in chapter 5, the temperature
transformation of the pure TisoPdso from B19 to B2 was found to be at 1496 K as
indicated by a ratio of 1.414. Mitarai et.al [13] reported on the temperature 1473
K and the same trend was observed on their lattice parameters. They also
suggested that for a structure to transform the cubic B2 phase, the a/c and c/b
ratio should be closer to 1.41. As 6.25 at. % Co is added to TisoPdso, the a, ¢ and
b lattice parameters increase linearly with temperature as shown in Figure 9-5
(a). Interestingly, a collapse is observed at temperatures around 971 K for both a
and c and a sharp increase for b lattice parameters. At these temperatures, a

transformation from B19 to B2 is predicted for the TisoPd43.75C06.25.

In the case of TisoPds1.25C018.75, a collapse is observed at 572 K on the a and ¢

lattice parameters. The a/c and c/b ratio become 1.31 at a temperature around
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672 K suggesting that at this temperature, the structure has transformed to the
B2 phase. Similarly with 25 at. % Co, the a and c lattice parameters increase with
an increase in temperature and there is a drastic drop observed at 472 K. There
is coupling observed between a/b and c/b ratio for 25 at. % Co at 472 K,
suggesting transformation from B19 to B2 phase. Recently, Mitarai et al [4]
investigated the martensitic and austenite transformation of TisoPdso-xCox (x= 2,
4, and 8) experimentally and their results agree very well with our observations.
It is noted that above 25 at. % Co, the transformation temperature occurs at a
very low temperature which is shown in appendix A (Figure A-1). As Co is alloyed
on the TisoPdso, the martensitic transformation of the system is reduced. The
reported TisoCoso [170] transformation temperature is lower as compared to

TisoPdso which suggests that indeed Co reduces the transformation temperature.
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Figure 9-5 The effect of temperature on the (a) aand c (b) b (c) a/b and c/b
lattice parameters of the B19 TisoPdsoxCox (x =0, 6.25, 18.75 and 25).

Figure 9-6 shows the XRD patterns of B19 TisoPd43.75C06.25 alloys from 273-1670
K. As indicated in chapter 5, the structure of TisoPdso remains B19 phase up to
1298 K with the same set of peaks observed. At 1447 K, the new patterns of

peaks were observed for B19 TisoPdso which are assumed to be that of the cubic
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B2 phase (as shown in Figure 5-7). As 6.25 at. % Co is added, we observe the
same set of peaks of the B19 phase from the XRD patterns below 872 K. It is
noted that when the temperature is increased to 972 K, the number of peaks
reduces which may suggest a possible transformation from B19 to B2 phase.
Furthermore, it is noted that the same set of peaks of the B19 phase is obtained
from 972 to 1572 K with the same set of peaks of the B19 phase which indicates
B2 phase patterns. As the temperature is increased above 1672 K, the peaks are
broader and the structure becomes deformed which suggests that the melting

temperature is reached.

Figure 9-6 shows the XRD patterns of B19 TisoPds1.25C01s.75 alloy calculated at a
temperature range from 273 to 1572 K. The same set of peaks of the B19 phase
Is observed from 273 to 472 K which implies that there is no transformation. A
transformation is observed at 572 K as the number of peaks reduces. At 1572 K,
the peak becomes broader and reaches the melting temperature. In the case of
25 at. % Co, it is observed that the number of peaks reduces at 472 K which
implies transformation from B19 to B2 phase (see Figure 9-7). It is clearly seen
that the transformation temperatures observed at 18.75 and 25 at. % Co were
found very small and close to each other which suggests that those compositions
do not enhance the transformation temperature of the pure system. The melting
temperature is reached above 1572 K as the peak becomes broad and the
intensity peaks are lost. It is interesting that the transformation temperature of the
B19 TisoPdso-xCox alloy correlates well with the a/b and c/b ratios change, as

discussed above (see section 9.2.1).
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9.2.2 Lattice expansion and XRD's for the B19 TisoPdso-xNix alloys

The effect of temperature on lattice parameters of B19 TisoPdso-xNix (x =6.25,
18.75 and 25) is shown in Figure 9-8. At temperature below 871 K, the a, c and
b lattice parameters of TisoPd43.75Nis.25 increases linearly. A drastic decrease in a
and c lattice parameters is observed from 871-971 K while the b lattice parameter
increase sharply from 871- 971 K. It is observed that the a/b and c/b ratio for
TisoPd43.75Nis.25 decreases with an increase in temperature with a sudden drop
observed at approximately 971 K. There is coupling observed between a/b and
c/b ratio and the ratio was found to be 1.43 at 971 K which is comparable to the
expected value of 1.41. The results infer that there is a transformation from the

B19 to B2 phase with an a/b and c¢/b ratio of 1.43 at 971 K.

It is clearly seen that the a, ¢ and b lattice parameters of TisoPds1.25Ni1s.75 increase
with an increase in temperature and there is a coupling observed between the a
and c lattice parameters from 272-1572 K. The a/b and c/b ratio become 1.38 at
a lower temperature (272 K), suggesting possible transformation from B19 to B2.
A similar trend was observed for B19 TisoPd2sNizs as the transformation from B19
to B2 phase occurs at a very low temperature (see Figure 9-8 (c)). Note that
above 25 at. % Ni the transformation temperature occurs at very low temperature

which is highlighted in appendix A (Figure A-2).
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Figure 9-9 shows the calculated XRD patterns of B19 TisoPdsoxNix alloys. The
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transformation at that temperature range. Furthermore, it is noted that the number
of peaks reduces with an increase in temperature above 971 K which implies
transformation from B19 to B2 phase. It is noted that the melting temperature is
reached above 1669 K as the patterns become broad and deform. The result
agrees very well with the predictions from lattice expansion as discussed in
Figure 9-8. The simulated XRD patterns of B19 TisoPdz1.7sNi1s.75 alloy at various
temperature ranges (73-1572 K) are shown in Figure 9-9. As the temperature is
increased from 73-472 K, it is observed that 18.75 at. % Ni maintains the same
set of peaks of the B19 phase. It is clearly seen that above 572 K, the number of
peaks for 18.75 at. % Ni is reduced and assumed to be the B2 phase patterns.
The result suggests that there is a transformation from B19 to the B2 phase above

572 K and the structure becomes deformed at 1572 K.

In the case of B19 TisoPd2sNizs alloy, it is noted that the same set of peaks of the
B19 phase are maintained below 172 K as shown in Figure 9-10. At 273 K, the
number of peaks is reduced and are assumed to be B2 phase patterns.
Furthermore, it is noted that when the temperature is increased to 1569 K, the
peaks are broad which suggests that the melting temperature is reached. The
transformation and the melting temperatures of B19 TisoPdso-xNix alloys obtained

are lowered compared to the pure B19 TisoPdso.
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9.3 Elastic properties of B19 TisoPdsoxMx alloys with temperature.

The elastic properties are investigated to determine the strength of the material.
The obtained nine independent elastic stiffness constants (Cij) of the TisoPdso-xMx

(M= Co and Ni) alloys are shown in Figures 9-11 to 9-14.

9.3.1 Elastic constants of B19 TisoPdsoxCox with temperature

The temperature dependence of elastic constants for TisoPdsoxCox (x= 6.25,
18.75 and 25) is calculated and shown in Figures 9-11. The elastic constants (c1z1,
C12, C13, C22, C23, C33, C44, Css and Ces) decrease linearly with increase in temperature
as 6.25 at. % Co is added to the system and all tend to converge to a common
value at 1670 K. It is clearly seen that the values are very closer to each other
between ci2 and cis for the entire temperature range. In the case of 18.75 at. %
Co, the orthorhombic mechanical stability conditions are satisfied below 1572 K.
It is noted that the elastic constants css and ces are negative at 1670 K which
implies instability of the structure at high temperature as the stability condition is

not satisfied for 18.75 at. % Co.

At 18.75 at. %, almost similar values are observed between c22 and cs3 at 273 K
which may suggest possible transformation. The stability conditions of
orthorhombic crystals are satisfied below 1572 K. A similar trend was observed
with 25 at. % Co. We see a coupling between c22 and cs3 at 273 K. Another
coupling is observed between c23 and c33 above 1172 K indicating possible
transformation. The last elastic constants (cs4, cs5 and ces) reduces minimally with
an increase in temperature. The instability is observed at 25 at. % Co as the css

and ces moduli become negative (-0.17 and -0.15 GPa) at temperature 1570 K.

192



200 1 B19 Ti,,Pd

C06.25

43.75

150 A

100 A

50 A

250

B19 Ti50pd31.25C018.75

200 +
—o— Cy

—&— Cp
—A— Cy3
150 A
—v— Cypy
—4— Cyp
—&— Cg3
—0— Cyy
—a— Cg
—0— Ces

100 A

Elastic constants (GPa)

200 - B19 Ti,,Pd,.Co,.

150 A

100 A

200 400 600 800 1000 1200 1400 1600 1800

Temperature (K)

Figure 9-11 simulated elastic constants against temperature for TisoPdso-
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to stability.
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The elastic constant (cs4) becomes negative (-149.44 GPa) at 1370 K which
suggests instability of structure at that temperature as shown in appendix A
(Figure A-3). Again as shown in appendix A, the cs4 and css moduli become
negative (-0.35 and -0.06 GPa) at 1770 K for 50 at. % Co which suggests

instability of the structure at a higher temperature.

The elastic shear moduli (€") are calculated and shown in Figure 9-12 at different
temperature range (273-1800 K) for ternary B19 TisoPdsoxCox alloys. There are
three shear moduli (c11 + c22 -2c12), (C11 + €33 -2C13) and (C22 + C33 -2C23) for the
orthorhombic system. At 6.25 at. % Co, it is noted that the shear moduli are
positive below 1670 K and reduce as the temperature is increased to a negative
value above. We observe a coupling between (c11 + c22 -2¢12) and (€22 + €33 -2C23)
at 18.75 at. % Co for the entire temperature range. We note sudden collapse from
the three shear moduli from 1598 -1696 K which is due to the melting temperature

being reached at 1680 K.

In the case of 25 at. % Co, it is noted that elastic shear modulus (c11+c22-2C12) is
negative at 1670 K which implies the mechanical instability of the structure. It is
clearly seen that there is a coupling between (c11 + c22 -2c12) and (C22 + €33 -2C23)
from 972 to 1273 K which suggest possible transformation from B19 to B2 phase.
The mechanical stability of orthorhombic alloys is satisfied below 1670 K for 6.25

at. % Co and 1572 K for 18.75 and 25 at. % Co, respectively.
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Figure 9-12 Calculated elastic shear modulus (€’) against temperature for
TisoPdso-xCox alloys (6.25 < x < 25). The dotted lines are used as a guide with
respect to stability.

9.3.2 B19 TisoPdsoxNix alloys elastic properties with temperature

Figure 9-13 shows the temperature dependence of the elastic constants for
TisoPdso-xNix (x= 6.25, 18.75 and 25). At 6.25 at. % Ni, it is noted that the elastic
constants decrease with an increase in temperature and converge to a common
value at 1670 K. A coupling is observed between ci2 and ci13 (c12= c13) for the
entire temperature range. A minimal decrease is found for ca4, css and ces for the

entire temperature range. In the case of 18.75 at. % Ni, It is clearly seen that c12
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and ci3z have a common value for the entire temperature range while c23 and css3
are observed at 1472 K. On the other hand, the elastic constants (Ca4, Css and Cee)
of 18.75 at. % Ni decreases minimally and tends to a common value above 1472

K.

In the case of 25 at. % Ni, the elastic constants decreases and tend to a common
value at 1569 K. It is clearly seen that there is a coupling observed between c11
and ciz at 1372 K and between c23 and cs3 at 1272 K. Furthermore, another
coupling is found between ci2 and cz2 for the entire temperature range. This
behaviour suggests possible transformation from the B19 B2 phase. The elastic
constant (cs4) is negative above 1670 K while the elastic constant (css) becomes
negative at 1769 K which indicates instability of the structure at high temperature

as the stability condition is not satisfied.

Figure 9-14 shows the calculated shear moduli (€') of B19 TisoPdso-xNix alloys
(6.25 < x < 25) at different temperature range (273-1800 K). It is noted that the
shear moduli of TisoPda3.75Nis.25s are all positive below 1570 K and reduce to a
common value as the temperature is increased above. The shear moduli (ci1 +
C22 -2C12), (C11 + C33 -2C13) became negative above 1670 K while (C22 + €33 -2C23)
become negative above 1769 K, which indicate instability of 6.25 at. % Ni. The
result indicates that TisoPdas.75Nis.2s is stable below 1570 K. In the case of
TisoPds1.25Ni1s.75 and TisoPd2sNizs alloys, the result show stability below 1470 K
and unstable above 1570 K. The orthorhombic mechanical stability conditions are
satisfied below 1470, 1371 and 1569 K for TisoPd1s.75Nis1.25, TisoPde.2sNia3.75 and

TisoNiso, respectively as shown in appendix A (Figure A-4).
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Figure 9-13 Simulated elastic constants against temperature for TisoPdso-
xNix alloys (6.25 < x < 25). The dotted lines are used as a guide with respect
to stability.
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Figure 9-14 Calculated elastic shear modulus (C') against temperature for
TisoPdso-xNix alloys (6.25 < x < 25). The dotted lines are used as a guide with
respect to stability.

9.4 Elastic moduli and ductility of B19 TisoPdsoxMx alloys with
temperature

Elastic moduli such as Bulk modulus (B), Young‘s modulus (E) and Shear
modulus (G), play an important role in investigating their mechanical and the

magnitude of the modulus which determines the ability to resist material
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deformations such as resistances to bulk deformation, elastic deformation, and

shear deformation.

9.4.1 Elastic moduli of B19 TisoPdso-xMx alloys with temperature

Figure 9-15 and Figure 9-16 show the calculated elastic modulus (Bulk, Young's
and Shear modulus) with respect to temperature. It is found that as the
temperature is increased, the values of Bulk modulus (B) decreases which
suggests that high temperature does not enhance the ability to resist volume
deformation for the entire concentrations of B19 TisoPdsoxCox alloys. It is clearly
seen that the B of 18.75 and 25 at. % Co is higher than 6.25 at. % Co below 600
K and lower above. A sudden drop is observed above 1600 K which suggests
that the melting temperature is reached for 6.25 at. % Co. There is a fluctuation
observed in B above1400 K for 18.75 at. % Co and above 1200 K for 25 at. % Co
indicating that the material becomes soft before the melting temperature is
reached. A similar trend was observed with the addition of Ni as shown in Figure
9-14. Interestingly, the B for the pure system, 6.25, 18.75 and 25 at. % Niis similar
and the same at 1572 K between the pure system and 6.25 at. % Ni. This
behaviour suggests that the addition of Ni does not enhance hardness with

temperature.

From the calculated results of Young‘s modulus (E) and Shear modulus (G), it
can be seen that they all decrease with an increase in temperature which means
that temperature can produce the weakest ability to resist elastic and shear

deformations of B19 TisoPdso-xCox alloys. The results indicate that the weakest
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resistance to uniaxial tension and Shear deformation is observed above room
temperature. It is clearly seen that G and E have the same values for the pure
TisoPdso system and TisoPd43.75C06.25 in the entire temperature range. A sudden
drop is observed for both G and E at 1770 K for the pure system and 1670 K for
the 6.25 at. % Co indicating that the melting temperature is reached. In the case
of 18.75 and 25 at. % Co, a drop in G and E is observed at 1572 K. Similar trend

Is observed with Ni addition as indicated in Figure 9-14.
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Figure 9-15 The predicted Bulk (B), Shear (G) and Young's (E) modulus
against the temperature of TisoPdso-xCox alloys (0 < x < 25).
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9.4.2 Ductility of TisoPdso-xMx (M=Co, Ni) with temperature

Pugh (B/G) ratio was calculated to describe the ductility and brittleness of the
material. As discussed in chapter 7, If the B/G>1.75 predicts the ductility

otherwise the material has brittle behaviour (B/G<1.75). In Figure 9-17 (a), the
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calculated B/G ratio for the entire concentrations is greater than 1.75 from 271-
1771 K indicating that the ductility is improved with temperature. Poisson’s ratio
(o) was evaluated to check the ductility of the material. If the o exceeds 0.26 the
structure is regarded as ductile otherwise, it is brittle. The calculated Poisson‘s
ratio of TisoPdsoxCox alloys is calculated and shown in Figure 9-17 (b). In Figure
9-17 (b), the calculated o of TisoPdsoxCox increases with an increase in
temperature and the ratio is greater than 0.26. The results demonstrate that
ductile behaviour with an increase in temperature. There is a good correlation

between the B/G and Poisson’s ratios as they show a similar trend.

The Poisson‘s ratio can be used to measure the compressibility of the material
[171]. The materials will be considered incompressible if ¢=0.5 and compressible
when o range from 0.2-0.49 [172]. The calculated o of TisoPd43.75C06.25 alloy
ranges from 0.38-0.42 as shown in Figure 9-17 (b). The result indicates that the
material is compressible with an increase in temperature. It is noted that o varies
from 0.39-0.42 as the temperature is increased from 271-1470 and 6=0.5 above
1570 K. The finding implies that TisoPds1.25C018.75 is compressible below 1470 K

and incompressible above 1570 K.

In Figure 9-17 (b), the o of TisoPd2sCo2s range from 0.40-0.49 is compressible
between 272-1470 K and incompressible as ¢=0.5. The result suggests that the

material is compressible below 1470 K and incompressible above 1570 K.
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Figure 9-17 Simulated the (a) B/G and (b) Poisson’s ratio against the

temperature of TisoPdso-xCox alloys.

As shown in Figure 9-18 (a), the calculated B/G ratio of TisoPdsoxNix alloys is
greater than 1.75 which implies that the ductility is improved with temperature.
Figure 9-18 (b) shows the calculated Poisson‘s ratio of TisoPdso-xNix alloys with
temperature. As the amount of Ni is added, the calculated o increase with an
increase in temperature and the ratio is greater than 0.26. The result shows that
TisoPdsoxNix alloys show ductile behaviour for the entire temperature range.
Furthermore, Poisson’s ratio (¢) can be used to check the compressibility of the

material. The materials will be measured incompressible if o= 0.5 and
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compressible when o range from 0.2-0.49 [172]. The measured o of
TisoPd43.75Nis.25 alloy vary from 0.38-0.42 below 1570 K which indicates that the
material is compressible. It is observed that when the temperature is increased
above 1670 K, the o= 0.50 which implies that TisoPda3.75Nis.25 IS incompressible.
At 18.75 at. % Ni, the o range from 0.38-0.42 with an increase in temperature
from 271-1470 K which suggests that the material is compressible and

incompressible above 1570 K as a=0.5.

In Figure 9-18 (b), the o of TisoPd2sNizs vary from 0.39-0.43 from 272-1371 K
revealing that the material is compressible while 6= 0.5 above 1470 K which
indicates incompressible. The result of TisoPdso-xNix alloys suggests that the
material is incompressible at a higher temperature depending on the

compositions.
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Chapter 10

Parameterization and transformation temperature
of TisoPdso and TisoPdso-xRUx systems

In this chapter, we present and discuss the parameterization of the self-
consistent-charge density functional tight-binding (SCC-DFTB) set of parameters
for the binary TisoPdso and ternary TisoPdso-xRux. Ru was chosen due to its higher
temperature capability as well as mechanical and thermal stability which was
observed in chapters 7 and 8 as compared to other alloying elements. The
parameterization technique is used to describe the suitable SCC sets of
parameters necessary to describe the interactions within the systems. To
describe the TisoPdso structure, the Ti-Pd, Pd-Ti, Ti-Ti and Pd-Pd interactions are
considered while for the TisoPdso-xRux system the Ti-Pd, Pd-Pd, Pd-Ti, Ti-Ru, Pd-
Ru, Ru-Ti, Ru-Pd, Ru-Ru and Ti-Ti interactions are described. These parameters
are then used to calculate the structural, electronic and elastic properties of
TisoPdso and TisoPdso-xRux. The calculated bond distances and lattice parameters
are compared with the available experimental and theoretical findings.
Furthermore, the SCC sets of parameters were also used to determine the lattice
expansions for both binary and ternary systems. Detailed illustration of the SCC-

DFTB method has been described previously in chapter 3.
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10.1 Development and validation of a SCC-DFTB set of parameters

Before any parameters can be deduced, parameterization of the systems is
carried out. Firstly, parameterization is done in order to find the pairwise
interaction set. Secondly, derived parameters are used to describe the
interactions in the Ti-Pd and Ti-Pd-Ru systems. In particular the Ti-Pd, Pd-Pd,
Pd-Ti, Ti-Ru, Pd-Ru, Ru-Ti, Ru-Pd, Ru-Ru and Ti-Ti interactions. The
parameterization of the binary TisoPdso and ternary TisoPdsoxRux structures was
performed by adjusting the wave function confinement radius (Radii 1). This is
done until the bond distance and lattice parameter are comparable with the
theoretical (initial optimization of structure) and experimental results, to the
allowed difference of < 10 %. These parameters are stored in a Slater-Koster
library file of the program [173]. In addition, the Slater-Koster library file contains
electronic parameters, short range potentials and the Hubbard terms for the

element pairs of the structure.

Note, different exchange-correlation functionals were used to develop sets of the
parameter that is the GGA-PBE and LDA-PWC. This was done to check which
functional is suitable to describe the structural properties accurately. It is clearly
seen that GGA overestimates the lattice parameters while LDA underestimates
the value as expected [174], see Table 10-1. The GGA functional gave values
close to the experimental as compared to LDA. Thus the GGA will be used in all

calculations.
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10.1.1 Binary TisoPdso alloys

The SCC sets of parameters to describe the binary TisoPdso systems were
achieved when the wave function confinement radii were set to 1.500 Bohr for
both Ti and Pd. The Hubbard terms for Ti was found to be (0.201 0.144 0.350)

and (0.210 0.336 0.336) for Pd.

Table 10-1 shows the predicted structural properties for the TisoPdso systems. In
order to validate the developed sets of parameters, we have compared our results
with the available experimental and theoretical results. The lattice parameters of
B19 obtained using DFTB+ (GGA) are larger than those from VASP, DMol® and
literature [54], but they are within the acceptable range of < 5-10 %. We note that
the B19', B2 and L1o gave lattice parameters that are in good agreement with

those from VASP and DMol°® code.

Table 10-2 shows the Ti-Pd, Ti-Ti and Pd-Pd bond distances. It was observed
that the Ti-Pd bond distance is shorter (2.660 A) for B19" which leads to stronger
interaction as compared to other phases (B19, L1o and B2). It was found that the
bond distances are well reproduced to within 5 % with the values obtained from
the literature. Interestingly, the bond distances obtained using DFTB+ gave
similar values as compared to the DMol® findings. Furthermore, the calculated
bond distance using the VASP code is in reasonable agreement with the literature
to within 2 %. The obtained SCC parameters are reliable since the bond distances
gave better comparison with the DMol®, VASP and literature to within 2 %

agreement.
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Table 10-1 Comparison of the equilibrium lattice parameters (a, b, ¢) using LDA
and GGA functional with available experimental values of the B19, B19’, B2 and
L1o TisoPdso aIon.

Structure  Method a (A) b (A) c (A)
B19 DMol® (GGA) 4.649 2.851 4.966
DFTB+ (LDA) 4.587 2.545 4.687
DFTB+ (GGA) 4.710 2.879 4.899
VASP (GGA) 4.587 2.789 4.897
Exp. [20] 4.550 2.780 4.860
B19' DMol® (GGA) 2.848 4.983 4.638
DFTB+ (LDA) 2.631 4.670 4.452
DFTB+ (GGA) 2.815 4.831 4.684
VASP (GGA) 2.792 4912 4.582
B2 DMol® (GGA) 3.165 3.165 3.165
DFTB+ (LDA) 3.127 3.127 3.127
DFTB+ (GGA) 3.168 3.168 3.168
VASP (GGA) 3.170 3.170 3.170
Exp. [23] 3.180 3.180 3.180
L1o DMol® (GGA) 2.855 2.855 3.907
DFTB+ (LDA) 2.579 2.579 3.671
DFTB+ (GGA) 2.708 2.708 3.986
VASP (GGA) 2.826 2.826 3.891
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Table 10-2 Comparison of the bond distance of B2, L1y, B19 and B19' TisoPdso
alloy using GGA functional.

Structure Bond distance (A)

Ti-Pd Pd-Pd Ti-Ti

B2 DFTB 2.744 3.168 3.168
DMol3 2.744 3.168 3.168
VASP 2.754 3.180 3.180

Exp.[23] 2743  3.168 3.168

L1o DFTB 2.710 2.803 2.803
DMol3 2.710 2.803 2.803
VASP 2.701 2.855 2.855

Theo.[34] 2.701  2.855 2.855

B19 DFTB 2.719 2.796 3.031
DMol3 2.719 2.796 3.031
VASP 2.717 2.810 3.023

Exp.[20] 2747  2.796 3.030

B19’ DFTB 2.600 3.413 3.460
DMol3 2.600 3.413 3.460
VASP 2.661 3.391 3.469

Theo. [34] 2.660 3.391 3.469

10.1.2B2 and B19 Ternary TisoPdsoxRux alloys

In the case of B2 and B19 TisoPdso-xRux alloys, the SCC-DFTB approach has
been used to accurately calculate their ground state properties. Firstly,
parameterization was performed to establish the appropriate interaction

parameters for the TisoPdso-xRux system. The developed SCC-DFTB set of
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parameters for Ti-Pd, Pd-Pd, Pd-Ti, Ti-Ru, Pd-Ru, Ru-Ti, Ru-Pd, Ru-Ru and Ti-
Ti pair of elements for describing TisoPdso-xRux system was validated by
performing a geometry optimization using DFTB+ code. The validation was done
using GGA-PBE exchange-correlation functionals. Smearing was varied from
0.003 to 0.008 to help improve the accuracy of the results. It is noted that
smearing of 0.007 Ha gave better structural properties as compared to the
literature [54] to about 3 % agreement.

The calculated lattice parameters are summarized in Table 10-3. It was found
that DFTB results are in reasonable agreement with the DMol® results when the
Radii 1 of Ti, Pd and Ru were set to be 1.900 Bohr. The resultant Hubbard terms
were (0.201 0.144 0.351) for Ti, (0.210 0.336 0.336) for Pd and (0.212 0.118
0.329) for Ru.

It is noted that the lattice parameters decrease with the addition of Ru content
and this may be attributed to the small atomic radius of Ru, compared to that of
Pd (as shown in Table 10-3). The lattice parameters obtained using DFTB+ code

are larger than those from VASP code, to within 5 % agreement.

In the case of B19 TisoPdsoxRux alloys, it is noted that a and ¢ parameters
decrease with an increase in Ru while the b increases as shown in Table 10-4.
The lattice parameters from the derived potentials are in good agreement to

within 3 % with those from standard DFT calculations.
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Table 10-3 The equilibrium lattice parameters of the B2 TisoPdso-xRux alloys. The
experimental value is shown in parenthesis.

Structure a (A)

DFTB+ DMol3 VASP
TisoPda3.7sRues2s  3.216 3.208 3.200
TisoPds1.25Ru18.75  3.195 3.179 3.158
TisoPd2sRuzs 3.171 3.161 3.132
TisoPdis.75sRus1.25 3.152 3.145 3.120
TisoPds.2sRuaz.7s  3.130 3.117 3.108
TisoRuso 3.113 (3.085) [54] 3.106 3.084

Table 10-4 The equilibrium lattice parameters of the B19 TisoPdso-xRux alloys
Structure a (A) b (A) c (A)
DFTB+ VASP DFTB+ VASP DFTB+ VASP
TisoPda3z.7sRus2s  4.532  4.528 2.859 2.856 4.826 4.822
TisoPds1.25Ru1s 75 4.478  4.478 2.959 2959 4.638 4.638
TisoPd2sRu25 4,422 4416 3.099 3.092 4.826 4,433
TisoPdis.7sRus12s 4.418  4.391 3.146 3.112 4.420 4,392
TisoPde.2sRuasz7s  4.414  4.353 3.126 3.088 4.412 4.350
TisoRuso 4398 4.338 3.110 3.071 4.399 4.348

10.2 Binding energy

The binding energy was calculated to validate our set parameters in order to
determine the stability of TisoPdso and TisoPdsoxRux alloys. It also plays an
important role in understanding the properties of materials, such as diffusion

kinetics and age-hardening response [175].
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The binding energy is determined by the following expression:

E, = B _Z Eziom: (10-1)

where E,, is the calculated total energy of the system under consideration and
z E;ﬁom is the sum of energies of the atoms constituting the system. Note that
i

negative binding energy indicates an energetically favourable system otherwise

unstable [175].

10.2.1 Binary TisoPdso alloy

The binding energy of the binary systems is shown in Figure 10-1. All the
structures displays negative binding energy which suggests that these structures
(B2, L1o, B19, B19') are stable and can be found experimentally. The results show
that among all phases, the B19' display the lowest binding energy and B2 has the
highest binding energy. This suggests that B19' binds strongly and is considered
the most stable phase while B2 is the least stable. The order of stability is B19">

B19> L1o> B2.
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Figure 10-1 Calculated binding energy per atom for TisoPdso systems:
B2, L1, B19 and B19'.

10.2.2 Ternary B2 and B19 TisoPdso-xRux alloys

Figure 10-2 compares the binding energy for B2 and B19 TisoPdso-xRux systems
(0< x <50). It is clearly seen that the binding energy decreases as the
concentration of Ru are increased. At a small composition below 6.25 at. % Ru,
the binding energy of B19 is more negative compared to B2. However, as the
amount of Ru is increased above 18.75 at. %, the B2 phase becomes more stable
at higher Ru compositions as compared to the B19 phase. This behaviour may
suggest a possible transformation from B2 to the B19 phase. The results show
that among all compositions, the B2 TisoPds.2sRu43.75 have the lowest binding
energy and as compared to B19 TisoPdsoxRux alloys. The observations suggest
that B2 TisoPdes.2sRu4375 binds strongly and is considered the most stable

structure, while B2 TisoPd43.75RUs.25 is the least stable.
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Similar behaviour was observed in B19 TisoPdso-xRux alloys since the binding
energy curve decreases and becomes more negative with Ru additions. This
shows that the additions of Ru stabilise the B2 phase, and are thus important for
enhancing the properties of the system. Our results are consistent with the AHs
trend except for 6.25 and 18.75 at. % Ru as shown in Figure 6-4 (d). The energy
difference between B2 and B19 at 25 at. % is -0.05 and -0.02 eV/atom for 43.75

at. % Ru which suggests that the values are very close to each other.
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Figure 10-2 Trend of binding energy for B19 and B2 TisoPdso-xRux
alloys (0< x < 50).

10.3 Density of states of TisoPdso and TisoPdso-xRux alloys

The electronic density of states for the binary TisoPdso and ternary TisoPdso-xRux
has been calculated from derived sets of parameters using DFTB+ code. As

highlighted in chapter 4, the tDOS can be used to predict the electronic stability
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of the compound by observing the behaviour of states near the Fermi level (E-
E=0) with respect to the pseudogap. The structure with the highest and lowest
density of states at Er is considered the least and most stable, respectively [26].
This will show how the tDOS calculated using standard DFT are comparable with

those using the potential parameter in DFTB+.

10.3.1 Total DOS for binary TisoPdso alloy

The electronic density of states calculations of B2, B19, B19" and L1 TisoPdso are
compared in Figure 10-3 (a). It is noted that the total DOS peak of B19', B19 and
L1o structures shifted to the right of the Fermi level and a similar behaviour was
observed for B19 and L1lo. As a result, the Es hits the shoulder of the dropping
total DOS peak which indicating less stability of the structure. Interestingly,
amongst the three phases, the B19' has the lowest states at the Er followed by
B19 then L1o. In the case of the B2 structure, we see that the Er hits the total DOS
peak on the right shoulder near the Et. The results suggest that B2 is less stable
compared to other structures and this is consistent with the prediction of binding
energy. The order of stability is predicted to be B19"> B19> L10> B2. The tDOS
plot is similar to those predicted using standard DFT (as shown in Figure 10-3
(b)). However, DFTB+ does not distinguish clearly between B19 and B19’, this
may be due to similar potential parameters used. Furthermore, we obtained the
improved tDOS behaviour which may be attributed to the effectiveness of the
potential parameters. Particularly with regard to B2 tDOS which are lowered at Ef
as compared to those in VASP. The derived potential parameters are able to

reproduce the similar tDOS behaviour compared to the standard DFT.
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Figure 10-3 A comparison of the total density of states for B19, L1y, B2 and B19'
TisoPdso system calculated from a) derived potentials using the DFTB+ code and
b) first principle method with the VASP code. The Fermi level is taken as the zero
energy (E-E:=0).

10.3.2 Total DOS for B2 and B19 TisoPdso-xRux alloys

The B2 TisoPdso-xRux DOS are also presented in Figure 10-4 (a) to show precisely
the behaviour near Eras Ru is added to the system. It was observed that the DOS
peak shift towards the conduction band (CB) when Ru content is increased. Note

that the TisoRuso tDOS are lowered at Es, similar to the VASP results (Figure 6-5)
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(showing the stability of the system). As the composition of Ru is added, the
pseudogap moves toward the Er showing that the TisoPdso became electronically
stable. It is clearly seen that the 43.75 at. % of Ru displays the lowest DOS at E¢
which confirms that it is the most stable composition. This observation suggests
that TisoPdso-xRux is electronically stable at high content of Ru. The stability trend

according to the density of states agrees very well with binding energy results.

The tDOS of B19 TisoPdso-xRux alloys calculated using our derived potentials is
also given in Figure 10-4 (b). Our derived potentials were able to produce the
tDOS of B19 TisoPdso-xRux alloys. More importantly, the trend of the DOS peak is
similar except that the intensities peak size is reduced as compared to the B2
TisoPdso-xRux alloys tDOS (Figure 10-4 (a)). These differences in the tDOS can

be due to the SCC set parameters of the derived potentials.
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Figure 10-4 A comparison of the total densities of states (DOS) of (a) B2 and (b)
B19 TisoPdso-xRux SMAs (0sx<50) calculated using a) DFTB+ code. The Fermi level
is taken as the energy zero (E-E=0).

10.4 Elastic properties of TisoPdso and ternary TisoPdsoxRux alloys

Now, we show the elastic properties of binary and ternary alloys, using DFTB
code. These properties were obtained by using interatomic potential and are
compared with other theoretical and those from standard DFT determined in the

previous chapters 4 and 7.
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10.4.1 Binary TisoPdso alloy

Table 10-5 shows a comparison of the elastic properties of TisoPdso for B19, L1o,
B2 and B19'. The DFTB elastic constants (determined using the interatomic
potentials) are in good agreement with those calculated using DFT calculations
to within 3 %. We pay attention specifically to the C’. The B2 showed negative
elastic shear modulus (condition of instability) for both DFTB and VASP
calculations. These values are comparable, with a slight improvement for the
DFTB. The elastic constants of L1lo, B19 and B19' satisfy the elastic stability
criteria for tetragonal, orthorhombic and monoclinic crystals (as discussed in

chapter 3).

Furthermore, we see that the DFTB Bulk modulus is in good agreement with the
VASP values to within 3 %. It is clear that the L1o and B19 structures are ductile
since the B/G is greater than 1.75 and less ductile for B19' (since B/G< 1.75)
[149]. It can also be seen that the B2 structure shows a brittle manner as the B/G
ratio is less than 1.75. This shows that the derived SCC sets of parameters are

reasonably good since they are able to give comparable results.
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Table 10-5 Elastic constants and Bulk modulus (B) for B2, L1y, B19, B19'.

Cij B2 L1o B19 B19’

(GPa) DFTB+ VASP DFTB+ VASP DFTB+ VASP DFTB+ VASP
C11 14530 149.10 230.56 228.83 245.82 240.82 311.16 300.88
C12 160.67 159.83 108.23 105.48 128.60 125.19 84.32 80.10
C13 129.68 128.31 125.71 12442 86.55 85.18
Cis -0.01 -0.05
C22 274.05 262.65 268.50 265.43
C23 80.17  90.00 140.46 136.46
C2s -0.01 -0.06
Cs3 261.45 251.16 242.80 250.62 249.56 244.70
C3s -0.01 -0.06
Cas 45.03 43.74 95.02 9181 2845 30.52 43.00 41.57
Css 33.00 32.33
Css 38.65 39.17 54.76 53.82
Ces6 19.32 1742 50.44  48.52 115.12 112.04
C’ -7.69 -5.37 61.17 6191 54.61 57.82 113.42 110.39
Bulk 15796 156.25 158.61 158.52 160.23 159.11 160.89 157.10
(GPa)

B/G -20.54  -29.09 259 2.56 2.93 2.75 1.42 1.42

10.4.2 Ternary B2 and B19 TisoPdsoxRux alloys

Figure 10-5 shows the elastic properties of TisoPdso-xRux alloys. These were also

calculated from our derived interatomic potentials employing the DFTB+ code. In

a similar manner, the VASP results are used to benchmark. The SCC-DFTB

elastic constants prediction is in good agreement with those from VASP

calculations to within 3 %. In addition, the B2 TisoPdsoxRux values satisfy the

generalized elastic stability criteria, particularly for cubic crystals. We observe that

the alloy system is unstable below 20 at. % Ru (since €' < 0), and stable above
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this composition (€’ > 0). Similar behaviour was observed with VASP (as shown
in Figure 7-1). The DFTB results gave a better trend due to the effectiveness of

the derived potentials.
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Figure 10-5 The elastic constants (GPa) and elastic shear modulus, C' (GPa)
obtained from the derived interatomic potentials for B2 TisoPdsoxRux alloys.

The calculated Bulk modulus and the B/G ratio from derived potential are also
compared in Figure 10-6 (a) and (b). It is noted that the Bulk modulus increases
with an increase in Ru composition. This suggests that the hardest system can
be obtained at higher composition i.e. TisoPdes.2sRu43.7s. More importantly, the
DFTB and VASP plots show a similar trend. However, it can be noted that the
DFTB gives larger values (harder system) than the VASP results. This implies

that the derived potential overestimates the bulk modulus of the system.

Figure 10-6 (b) on the other hand reveals that the structures are ductile above 18
at. % Ru since B/G values are greater than 1.75 for both DFTB and VASP codes.

The structure is brittle at 6.25 at. % Ru. Thus, it can be concluded that our derived
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interatomic potential was able to reproduce the B/G ratio of B2 TisoPdso-xRux

alloys, to within 2 % agreement as compared to the standard DFT results.
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Figure 10-6 Comparison of the bulk modulus and the B/G ratio against the
composition of B2 TisoPdsoxRux, obtained from (a) the derived interatomic
potentials, with the other calculated from (b) VASP code.

Figure 10-7 shows a comparison of the elastic properties of B19 TisoPdso-xRux

alloys calculated using DFTB+ and VASP code. We see that the elastic constants

satisfy the generalized elastic stability criteria for orthorhombic crystal as outlined

in chapter 3. We found a good agreement of the results for both approaches.
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Figure 10-7 Comparison of elastic constants (GPa) obtained from (a) the derived
interatomic potentials, with the other calculated (b) VASP code for B19 TisoPdso.
xRuyx alloys.

Figure 10-8 shows a comparison of the elastic shear moduli (C’). Note that for
the orthorhombic system, there are three types of elastic shear modulus as
shown on the plot. The calculated shear moduli (C11 + €22 -2C12), (C11 + C33 -2C13)
and (c22 + cs3 -2c23) compared very well to within 3 % with VASP results. It can

be clearly seen that the structure is stable for the entire composition range (€' >
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0). The predicted elastic shear moduli (C") correspond very well (displaying a

similar trend) with the standard DFT results using the VASP code.
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Figure 10-8 Comparison of the calculated elastic shear moduli (€") using (a) DFTB+
and (b) VASP data against composition.

In Figure 10-9 (a) and (b), we compare the Bulk modulus and the B/G ratio of B19
TisoPdso-xRux. We see that our DFTB+ calculations predict the Bulk modulus to
within 5 % agreement with the VASP code, which is an acceptable approximation.
We also found that the predicted B/G ratio is greater than 1.75 for the entire

concentration range (0=x<50), suggesting ductile behaviour.
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Figure 10-9 Comparison of the bulk modulus and the B/G ratio against the
composition of B19 TisoPdsoxRux, obtained from (a) DFTB+ code, with calculated
from (b) VASP code.

10.5 DFTB: Temperature dependence

The molecular dynamics simulations have been performed using the SCC-DFTB

approach. The Isothermal-isobaric (NPT) was chosen since the number of

particles N, pressure P and temperature T are kept constant which enables us to

see a change in volume or lattice parameters. We aim to gain knowledge on how

the derived SCC set of parameters can influence the Ti-Pd and Ti-Pd-Ru
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properties, particularly at increased temperatures. Before any calculations could

be performed, it is important to establish the time step.

In order to determine the time step, the Newton equations of motion were
integrated with the velocity Verlet algorithm, which varied from 0.5 to 12 fs. We
see that the graph energy decreases as the time step is increased. At 8 fs, the
plot is constant up to 12, suggesting that the energy does not change further (zero
slopes). Thus the time step of 10 fs was found to be sufficient enough for this
calculation (as shown in Figure 10-10 (a)). The Nosé-Hoover thermostat (time
constant of 0.04 ps) and the system were allowed to evolve for 30 ps. The
determined simulation time with respect to energy is shown in Figure 10-10 (b).
In order to determine the appropriate simulation time of the TisoPdso structure,
dynamics calculations were performed for different simulation times at default
temperature (100 K). The simulation time is necessary for determining the
accuracy of the results at the ground state level. We see that at simulation time
of 16 ps and above, the energy change is minimal (zero slopes), which suggests
that the system has reached its equilibrium state (equilibration). Thus, the

simulation time of 16 ps was chosen for all the MD calculations in this work.
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Figure 10-10 Total energy against (a) time step and (b)
simulation time for B19 TisoPdso alloy.

10.5.1 B19 TisoPdso alloy

The effect of temperature on the lattice parameters of the B19 phase was
investigated using the DFTB+ code and is shown in Figure 10-11. In this case,
the lattice expansion is used to check the possible transformation behaviour at

different temperatures. Structures were calibrated from 273-1773 K (above the
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melting point, Mp= 1673 K) using velocity scale thermostats with a temperature

difference of 10.0 K.

From the results, it can be noted that the lattice parameters increase minimally
with an increase in temperature up to 1400 K. However, the a and c lattice
parameters collapse to a common value (a=c= 4.555 A) at about 1473 K which
suggest a possible transformation. The lattice parameter b increases to 3.201 A
at this temperature. It can be noted that the a/b and c/b ratios decrease with an
increase in temperature and the two ratios collapse to a common value of 1.423
at 1473 K. In order for transformation to occur from orthorhombic B19 to cubic
B2, the ratios of a/b and c/b must be close to 1.414 [13]. The decrease in a/b and
c/b is reasonable and significant to describe the structural change from B19 to
cubic B2 above 1473 K. This implies that the B19 phase has transformed to the

cubic B2 phase.

The result suggests that the DFTB derived potentials were able to predict phase
transformation of B19 TisoPdso alloy. This is in good agreement with the
experimental phase diagram [81], where the B2 phase is stable at high
temperatures. Similarly, the transformation behaviour is comparable with those
predicted using a LAMMPS code, where the ratio a/b and c/b were predicted to
be 1.426 at 1496 K (see Figure 5-6). The transformation temperatures are very
close, suggesting that the derived interatomic potential managed to predict the

transformation temperature.
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lattice parameters of the B19 TisoPdso alloy.

Furthermore, we show the density of B19 TisoPdso alloy with temperature in
Figure 10-12. It can be noted that the density decrease with an increase in
temperature as expected. This behaviour may imply that the system becomes
less dense with temperature. Similar behaviour was observed using the LAMMPS

code (as shown in chapter 5, Figure 5-2). More importantly, the use of the SCC
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potential parameter (DFTB) predicted structures to be less dense than the

LAMMPS code.
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Figure 10-12 Density against temperature for B19 TisoPdso alloy

10.5.2 B19 TisoPdsoxRux alloys

The temperature dependence on the lattice parameters of the B19 TisoPdso-xRux
alloys is shown in Figures 10-13 and 10-14. This is used to investigate the effect
of Ru addition on the transformation temperature of TisoPdso alloy. Similar to the
binary system above, the calculations were also calibrated at each temperature
from 273-1773 K using velocity scale thermostats. We observed that as the
temperature is increased, the lattice parameters increase minimally for 6.25, 18.
75 and 25 at. % Ru. Furthermore, a collapse is observed for both a and c lattice

parameters at approximately 1274, 1074 and 873 K for 6.25, 18. 75 and 25 at. %
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Ru, respectively. This behaviour suggests a possible transformation in the
system. Furthermore, there is a coupling observed between a and c lattice
parameters above these temperatures which suggest that transformation from

B19 to the B2 has taken place.

The ratio a/b and c/b of 6.25, 18.75, 25 at. % Ru is approximately 1.448 (at 1274
K), 1.446 (1074 K) and 1.430 (873 K), respectively. These values are comparable
to the expected value of 1.414. The results suggest that the B19 phase has
transformed to the B2 phase. Furthermore, it is clearly seen that the addition of
Ru decreases the transformation temperature (Figure 10-13). As Ru
concentration is increased to 31.25, 43.75 and 50 at. %, their transformation
temperature is reduced to 774, 675 and 573 K, respectively. Our findings agree
very well with previous work [93]. It can be deduced from the results that our
derived potentials were able to predict phase transformation from B19 to B2
phase for B19 TisoPdso-xRux alloys. Unfortunately, the predicted transformation
temperature cannot be compared with LAMMPS code results as there are no

forcefields available for Ti-Pd-Ru currently.

232



4,90 4,80
Blg T|50pd43,75Ru6,25 4,78 4 Blg TiSOPd31,25Ru18 75 B19 TiSOPdQSRUZS
4,85 1 c C
4,76 A
4,80 1
4,74
4,75 4 4,72
a
4,70 4,70 4
4,68 - a
4,65 1
4,66 A
460 456
3,25 4 3,25 4
— 3,25 1 . _
< < <
= = 3,20 3,20 |
§ 220 & 5
[ g ‘a';
g ] E 515
S 315 - g 315 g 315
< © <
o Qo o
8 310 8 3109 g 3101
g g b 5 b
- 3,05 | = 3054 4 3,05
3,00 1 3,00 300 |
1,60 4 C/b 1,60 - 1,54 4 c/b
c/b
a/b 1,52 A alb
1,55 1,55 1 b
1,50
1,50 | 1,50 1 1,48
1,46
1,45 | 1,45
1,44
140 ' ' ' ' " i i 460 660 560 1600 1260 14‘00 1600 142 ' ' ' ' ' '
400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600

Temperature (K)

Temperature (K) Temperature (K)

Figure 10-13 The effect of temperature on the a and c, b and, a/b and c/b lattice parameters of the B19 TisgPdas 7sRus 25 and
TisoPds1.25RU1875 and TisoPd2sRuzs alloys.

233



[ c )
) ] B19 Ti,Pd ,sRU 460 1 B19 TigRug,
B19 Tig,Pd g ,5RU; 55 460 s0Pdg2sRUs375
4554 4
4555 |
4,50 |
4,50 |
4,45 |
4,45 | 240 ]
4,40 | 4,35 |
3,12 |
= < 3151 <
< < < 310
S S
u 5 ]
2 3 4 308
g £ 310 £
© o S 3,06 |
s 3 3
Q. 3,04
] o 3
L8 E= = |
£ © b T 302
] - - b
- 3,00 { 3,00 |
] 2,98 |
= 1541 clb
152 4
152 1
1501 a/b alb
1,50 {
1,48 4
1,48 1
1,46 4
1,46 1
1,44 4
1,44 1
1,42 4
1,40 1 1,42 1
1,38 T T T T T - . T T T T T T 1,40 - T T T - . .
400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600
Temperature (K) Temperature (K) Temperature (K)

Figure 10-14 The effect of temperature on the (a) a and c (b) b (c) a/b and c/b lattice parameters of the B19 TisoPd1s 75sRU31.25,
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Figure 10-15 shows the density against the temperature of TisoPdso-xRux alloys.
Similar to the case of binary alloy, the density decreases minimally with
temperature suggesting that the alloys become less dense at a higher
temperature. This minimal decrease in the density is expected since the density
of Ru (12.37 g/cm?) is closer to that of Pd (12.03 g/cm?). Unfortunately, there are
no experimental and theoretical findings to compare our findings, and we

consider this predictive data.
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Figure 10-15 Density against temperature for B19 TisoPdso-xRux alloy.

235



Chapter 11

Cluster Expansions and Monte-Carlo Simulations
for binary and ternary alloys

In this chapter, the Universal Cluster Expansion (UNCLE) [105] has been used
to generate new ground state structures for both binary Ti-Pd and ternary Ti-Pd-
Ru systems. Furthermore, we present lattice parameters and heats of formation
from optimized ground state structures of ternary TiPdixRux and Tii-xPdRux
alloys. We also discuss constructed phase diagrams and high temperature
properties of the mixed TiPdixRux and Tii-xPdRux alloys for the entire range of
Ru concentrations using Monte carlo simulation [125]. Detailed illustrations for

this method can be found in chapter 3.

11.1 Cluster expansion

The UNCLE code as implemented in MedeA was used to search for the ground
state structures of binary Ti-Pd and ternary Ti-Pd-Ru systems. Note that the code
is able to perform a complete cluster expansion (CE) fit that contains up to two or
more elements. During fitting the CE was allowed to run until the maximum
number of iterations is reached while adding a maximum of four or more
structures on each iteration and start from the initial training set of those four or
more structures. So, this process continues until the energies of all structures are

predicted by the CE at each concentration and the standard deviation of 96 % of
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the structures is less than 5 meV of the cross validation score (CVS). The CVS
is used to evaluate the predictive power of the cluster expansion. The smallest
CVS (CVS<5 meV) value indicates that the predictive power of cluster expansion

is excellent in the calculation [176].

In this study, accurate models were built for both binary Ti-Pd and Ti-Pd-Ru
systems to predict the formation energy of atom site occupancy. More
importantly, ground state curves were obtained in a self-consistent way by adding
structures whose energy is predicted by cluster expansion to be lower than the
energies of the structure already in the training set [177]. This is done iteratively
until no new structures are predicted by cluster expansion to be more favourable
than those already included in the training set. At this point, the cluster expansion
has converged and all structures considered by the cluster expansion are
thermodynamical. The most stable structures are the one which constitutes the
convex hull (ground state line) of the composition dependent phase diagram. The
output of CE generates ground state structures with different concentrations and

symmetries.

11.2 Binary cluster expansion of Ti-Pd

Table 11-1 shows the predicted number of structures and cross validation score
(CVS) on each alteration for Ti-Pd system. During full structural optimization in
the minimisation stages, the DFT total energy values were calculated in the VASP
flowchart with plane-wave basis cut-off of 500 eV in the GGA stage and k-spacing
of 0.2 in the second minimisation stage. The cluster expansion generated 23 new

structures of the Ti-Pd system. The CE truncated at iteration 6 since the proper
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convergence was revealed. This is evident from the corresponding CVS. It is
noted that CVS is 0.98 meV/pos., which is acceptable as prescribed above since

CVS< 5 meV indication of a good cluster expansion.

Table 11-2 shows the predicted structures and their corresponding symmetries
and formation energies (AEy). Note that the predicted twenty one (21) structures
exist and they are thermodynamically stable due to negative formation energies.

The predicted structures are summarized in Figure 11-1.

Table 11-1 shows the number of structures and CVS determined in the cluster
expansion for the binary Ti-Pd.

Iteration No. of structures No. of new CVS (meV/pos.)
structures

77.00
2.40
2.00

13.00
0.44
0.98

OINIWINIA|A~O|N

0

0

6
10
14
16
19
21

OO WINFLO|O
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Table 11-2 Ground state formation energies (AEf) as derived by CE for the binary
Ti-Pd.

Compositions Cell formula Space group AEf (eV/atom)

0.00 Pd [4/mmm 0.000
25.00 TiPds [4/mmm -0.538
25.00 TiPds P4/mmm -0.555
25.00 TiPds Pmmm -0.561
25.00 TiPds Immm -0.656
25.00 TiPds Cmmm -0.689
33.33 TiPd2 Fmmm -0.575
33.33 TiPd2 C2/m -0.584
33.33 TiPd2 Immm -0.685
50.00 Ti2Pd2 C2/m -0.523
50.00 Ti2Pd2 Imma -0.539
50.00 TiPd P4/mmm -0.554
50.00 TiPd Cmmm -0.594
66.67 Ti2Pd C2/m -0.279
66.67 Ti2Pd Fmmm -0.505
66.67 Ti2Pd Immm -0.522
75.00 TisPd [4/mmm -0.268
75.00 TisPd Immm -0.378
75.00 TisPd C2/m -0.380
75.00 TisPd Pmmm -0.400
100.00 Ti [4/mmm 0.000

The ground state structures and formation energy of the Ti-Pd system are shown
in Table 11-3. As indicated in section 11.1, the CE indeed predicted stable
structures with different compositions, space groups, lattice parameters, and
different formation energies. The predicted ground state structures are TiPds,
TiPd2, Ti2Pd and TisPd with different space groups. Thus, the results show that
the TiPds (Cmmm) is the most thermodynamically stable structure since it gave
the lowest formation energy (AE; = —0.690) compared to other compositions.
However, it can be seen that there is a competing phase TiPd2 (Immm). These

results are reliable since a proper CE convergence was attained.
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Table 11-3 list of the ground state stable structures contained in Ti-Pd system.

Composition | Structure | AE, (eV/atom) | Space group
0.00 Pd 0.000 [4/mmm
25.00 TiPds -0.690 Cmmm
33.33 TiPd2 -0.685 Immm
66.66 Ti2Pd -0.524 Immm
75.00 TisPd -0.398 Pmmm
100.00 Ti 0.000 [4/mmm

Figure 11-1 shows the ground state structure of Ti-Pd. Note that the ground state
structures are those in the highlighted red line and are considered
thermodynamically stable. The ground state line predicted four (4) stable
structures relative to the predicted enthalpies of formation. The circles represent
energies for a specific configuration as calculated by DFT and predicted by the
CE. It can be noted that all the formation energies are negative for all ordered

structures which indicates that the predicted structures are thermodynamically

stable.
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Figure 11-1 The convex hull plot of binary Ti-Pd (I4/mmm) obtained
using cluster expansion. The grey and green crosses are predicted

structures by CE and the red line is the ground-state line.

11.3 Ternary cluster expansion

The cluster expansion was used to determine the ground state structure for the
ordered B2 Ti-Pd-Ru alloys. For the purpose of this study, the ternary cluster
expansion is done on B2 TiPdixRux and TiixPdRux alloys. In this case, we

explore the effect of Ru addition on the Pd and Ti sub-lattice.

11.3.1 Ternary B2 TiPdixRux alloy

Table 11-4 shows the predicted number of structures and their CVS. The same

plane-wave basis cut-off in the GGA stage and the k-spacing in the second
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minimisation stage were used as in Figure 11-1. It is clearly seen that the fully
optimized ternary ground state diagram produced 27 new structures.
Unfortunately, there is no new ground state structures were produced by the DFT
ground-state line (red) found by CE. Note that a proper convergence is observed
at iteration 5 from CE as there was no new structure predicted by CE in the last
iteration. The cluster expansion of B2 TiPdixRux was found to have CVS of 0.10

meV per atom suggesting good cluster expansion prediction (see Table 11-4).

Figure 11-4 shows the predicted formation energies (AEf) which were used to fit
the cluster expansion Hamiltonians. It can be noted that the formation energies
of TiPdi1-xRux ordered structures are positive, which indicates the presence of a
miscibility gap system. This behaviour implies that the generated structures are

thermodynamically unstable (AEf).

The predicted twenty seven (27) structures, compositions, space groups and
formation energies of ternary TiPdixRux are shown in Table 11-5. The results
reveal that the predicted structures are thermodynamically unstable due to the

positive formation energies (AE; > 0) at different symmetries.

Table 11-4 Show the number of structures and CVS determined in the cluster
expansion for the ternary TiPdixRux.

Iteration | No. of structures | No. of new CVs
structures (meV/pos.)
0 0 2 -
0 0 7 -
1 7 5 0.13
2 12 5 0.09
3 17 5 0.00
4 22 5 0.03
5 27 0 0.10
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Table 11-5 Ground state formation energies as derived by CE for the ternary

TiPdixRuy.
Compositions Cell formula Space group AE; (eV/atom)

0.00 TiRu Pm-3m 0.000
25.00 TisRusPd R-3m 0.073
25.00 Ti4sRusPd Pmmm 0.061
25.00 TisRusPd Cmmm 0.058
25.00 Ti4sRusPd Im-3m 0.054
25.00 TisRusPd P4/mmm 0.053
25.00 Ti4sRusPd P4/mmm 0.049
25.00 Ti4sRusPd P4/mmm 0.044
33.33 TisRu2Pd P-3m1 0.089
33.33 TisRuzPd Cmmm 0.075
50.00 TisRu2Pd2 Cmcm 0.088
50.00 TisRu2Pd2 [4/mmm 0.087
50.00 Ti2RuPd P4/mmm 0.071
50.00 TisRu2Pd2 Pmma 0.070
50.00 TisRu2Pd2 P4/mmm 0.053
66.67 TisRuPd2 P-3m1 0.076
66.67 TisRuPd2 Cmmm 0.058
75.00 TisRuPd3 R-3m 0.057
75.00 TisRuPd3 Cmmm 0.054
75.00 TisRUuPds P4/mmm 0.051
75.00 TisRuPd3 Im-3m 0.050
75.00 TisRuPd3 P4/mmm 0.048
75.00 TisRuPds [4/mmm 0.047
75.00 TisRuPd3 Pmmm 0.046
75.00 TisRuPds Cmmm 0.045
75.00 TisRuPd3 P4/mmm 0.034
100.00 TiPd Pm-3m 0.000
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Figure 11-2 Ground state line of the ternary B2 TiPdixRux systems enthalpy of
formation against Ru concentration. The grey and green crosses predicted
structures by CE and the red line is the DFT ground-state line.

11.3.2 Ternary B2 Ti1xPdRux alloys

The number of new structures and cross validation score (CSV) are represented
in Table 11-6. It can be observed that the CE converged at alteration 4 as there
are no new ground state structures predicted. Cluster expansion predicted 17
new structures for B2 TiixPdRux alloy at 0 K. A cross validation score is found to
be 0.11 meV/pos., which is an indication of a good cluster expansion (since CVS<

5 meV).

Table 11-7 show the predicted seventeen (17) structure with their space group
and formation energies of ternary Tii-xPdRux. The formation energies predicted

by CE are negative revealing thermodynamically stability for any composition that
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exists in Table 11-7. Itis clearly seen that the lowest formation energy is observed

for 25 at. % Ru suggesting that the structure is the most stable as compared to

other compositions.

Table 11-6 Show the number of structures and CVS determined in the cluster
expansion for the ternary TiixPdRux.

Iteration | No. of structures | No. of new CVSs
structures (meV/pos.)
0 0 2 -
0 0 7 -
1 7 5 1.70
2 12 3 0.32
3 15 2 0.03
4 17 0 0.11

Table 11-7 Ground state formation energies derived by CE for the ternary Tii-

xPdRuy.
Compositions Cell formula Space group AEf (eV/atom)

0.00 RuPd Pm-3m 0.000
25.00 TiRusPds P4/mmm -0.102
25.00 TiRusPd4 Im-3m -0.197
33.33 TiRu2Pds P4/mmm -0.034
33.33 TiRu2Pds P-3ml -0.151
50.00 TiRuPd2 P4/mmm -0.048
50.00 TizRu2Pda Cmcm -0.171
50.00 TiRuPd2 Fm-3m -0.197
50.00 Ti2Ru2Pda [4/mmm -0.231
50.00 TiRuPd2 P4/mmm -0.255
66.67 Ti2RuPd3 P4/mmm -0.011
66.67 Ti2RuPds P-3ml -0.176
75.00 TisRuPds R-3m -0.126
75.00 TisRuPd4 P4/mmm -0.144
75.00 TisRuPds [4/mmm -0.146
75.00 TisRuPds Im-3m -0.185
100.00 TiPd Pm-3m 0.000
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The formation energies for each composition are shown in Table 11-8. Itis clearly
seen that the predicted ground state structures obtained from the ternary phase
diagram have different space groups, different lattice parameters and different
formation energies. The cluster expansion predicted three (3) ground state
structures for the TiixPdRux system i.e. TisPd4Ru, TiPd2Ru, and TiPdsRus with
negative formation energy showing thermodynamic stability. The most stable
structure is found to be 25 at. % Ru (TiPd2Ru) due to the lowest formation energy

(AE; < 0).

Table 11-8 The predicted structure constituting the DFT ground state line with
their compositions and the formation energies of Ti;xPdRux.

Composition Structure AE; Space group
(eV/atom)

0.00 TiPd 0.000 Pm-3m
25.00 TisPd4Ru -0.185 Im-3m
50.00 TiPd2Ru -0.255 P4/mmm
75.00 TiPd4Rus -0.197 Im-3m

100.00 PdRu 0.000 Pm-3m

Furthermore, the cluster expansion was also done on the Ti-site in order to check
the site preference of Ru on TiPd alloy at O K which is highlighted in Figure 11-3.
Once the ground states for a range of concentrations have been identified, the
ones that are stable at T= 0 K are determined by the convexity condition, that is
the given structure at concentration x is stable if it lies below any straight line
connecting other compounds at concentrations [177]. From Figure 11-3, it can be
noted that the TiixPdRux structures display negative AE; showing that the
structures are stable, while those close to the convex hull contribute to miscible

constituents [177].
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Note that some CE enumerated structures (green crosses in Figure 11-3) are
slightly below the convex hull. Stable compounds are those that form the vertices
on the lower boundary of this convex hull. The predicted ground state structures
as shown by the ground state line are RuPd, TiPdsRus, TiPd2Ru, TisPdRu, and
TiPd. These results show that the TiPdzRu is the most thermodynamically stable
structure due to the lowest AEr compared to other compositions. It can be
deduced from the findings that Ru prefers or perform better when substituted on
the Ti-site. This may be due to the fact that the atomic ratios of Ru and Ti are

close to each other.
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Figure 11-3 Ground state line of the ternary of B2 Ti1.xPdRux systems
enthalpy of formation against Ru concentration. The grey and green crosses

predicted structures by CE and the red line is the DFT ground-state line.
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11.4 Optimized ground-state Structures from Cluster Expansion

We evaluate the equilibrium lattice parameters and thermodynamic stability for
TiPd1-xRux and TizxPdRux systems. This is to determine the effect of Ru addition
on both Ti and Pd sub-lattices. The structures were subjected to full geometry
optimization by alloying both the lattice constant and shape to change. Firstly, the
equilibrium lattice parameters and heats of formation of B2 TiPd1-xRux structures
are discussed. We have calculated only the binary TiPd and TiRu systems since
there was no stable structure obtained at the ground state line. The binary
systems TiPd and TiRu gave equilibrium lattice parameters 3.169 A (3.180 A)
[34] and 3.084 A (3.085 A) [54], respectively. It can be noted that the result
obtained compared very well with the experimental values (in parenthesis) to
within 3 %.

The heat of formation was determined to verify the existence of the two-parent or
binary phases. Recall that for a structure to be stable, the heat of formation value
must have the lowest negative value otherwise a positive value implies instability.
The result of the heats of formation for TiPd and TiRu was found to be -0.453
eV/atom and -0.753 eV/atom, respectively. The result showed that TiPd and TiRu
alloys exist as the heats of formation for both systems are negative which

suggests thermodynamic stability of the two systems.

Now, considering Ti1xPdRux, where substitution was done on the Ti sublattice.
Note that the results are for the substitution on the Ti sublattice, their equilibrium
lattice parameter and heats of formation are presented in Table 11-4. The most

stable structure is predicted to be the TiPd2Ru phase with the lowest heat of
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formation of -0.404 eV/atom. Furthermore, the TiPds4Rus structure was found to
be unstable with the heat of formation value of 0.505 eV/atom (AH; > 0). The
results suggest that the TiPdsRus cannot be found experimentally. Similar
behaviour was observed for the binary PdRu, with AH; >0 (condition of

instability) the structure is unstable. Thus, the predicted stability trend according

to the calculated AH; deduced from the cluster expansions is as follows:

TiPd2Ru > TisPd4Ru > TiPd4Rus.

Table 11-9 The predicted lattice parameters and heats of formation of B2 Tii.
«PdRux alloys.

Structure Space a(A) b(A) c(A) AHg
group (eV/atom)
PdRu Pm-3m 3.098 3.098 3.098 0.505
TiPd4Rus Im-3m 2.692 2.692 2.692 0.178
TiPd2Ru P4/mmm 4.005 3.843 3.843 -0.404
TisPd4Ru Im-3m 2.720 2.720 2.720 -0.302
TiPd Pm-3m 3.169 3.169 3.169 -0.453

11.5 Monte carlo simulation

Monte Carlo (MC) simulation was performed on the TiPdixRux and TiixPdRux
structures, using UNCLE code. It was used to check the mixing of the two
structures (TiPdi-xRux and Tii-xPdRux) as implemented. This code performs
simulation with either the canonical or the grand canonical ensemble. In this
simulation, a canonical ensemble was used to calculate the critical temperature
since it is able to separate. It has been reported as the grand-canonical ensemble
cannot separate the structures hence it was not conducted. A plot of these
trajectories is used to reveal miscibility gaps, which are represented. In a Monte
Carlo simulation, the energies of alloys were allowed to change in the calculation

due to changes in the occupation (atom exchanges).
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11.5.1 MC for B2 TiPdi1xRux concentrations

The Monte Carlo profiles of TiPd1-xRux alloys are computed and shown in Figures
11-4. Note that the plots are also shown in Appendix B. In Figure 11-4, we see
that the energy difference between atoms increases with temperature for all
compositions (0=x<1). At x=0.1 concentrations (TiPdo.oRuo.1), the energy
difference increases minimally above 800 K which indicates that the system
mixes very well as shown in Figure 11-4 (a). As the amount of Ru concentration
is increased to 0.3, the energy differences increase minimally with a temperature

above 1300 K suggesting the mixing of the system has occurred.

As shown in Figure 11-4 (e), at low temperature, for example, at 200 K phase
separation between TiPd and TiRu can be observed in TiPdosRuos alloy. This
means that there are two phases within the TiPdo.sRuo.s alloy. As the temperature
IS increased above 1400 K, the TiPdosRuos alloy becomes more and more
homogeneous. It means that the homogeneity of TiPdo.sRuo 5 alloy increases with
the increase in temperature above 1500 K. In Figure 11-4 (i), we also observe
phase separation in TiPdo.1Ruo.¢ alloy below 1600 K and the system become

homogeneous above 1700 K.

Our result also shows that the TiPdixRux alloys can exhibit phase separation at
low temperatures below 200 K. The tendency of phase separation can cause
alloy inhomogeneity to a certain extent [178]. The findings indicate that TiPd:-

xRux mix very well at temperatures above 1200 K, particularly for high Ru content.

As indicated in Figures 11-4, the miscibility gaps (bimodal curves) found in TiPdz-

xRux corresponds to the coexistence of two stable phases. Inside the miscibility
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gaps, phase separation occurs at low temperatures. The TiPdixRux forms a
heterogeneous structure as Pd and Ru does not have similar properties at low
temperature. This observation is similar to the analysis by Zhang F et al [178].

Unfortunately, there is no theoretical or experimental result to compare.
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11.5.2 MC for B2 TiixPdRux concentrations

Figures 11-5 show the energy difference of Tii-xPdRux alloys with a temperature
at various concentrations. It can be clearly seen that the energy difference
between atoms increases with temperature for all compositions (0sx<1). At 0.1
concentrations (Tio.oPdRuo.1), the energy difference increases minimally above
300 K which indicates that the system mixes very well as shown in Figure 11-5

(a) (see Figure B-4 in Appendix B).

A zero slope was observed at 0.3 and 0.5 concentrations and the energy
difference increase minimally above 2000 and 2400 K, respectively. This
indicates that the system mixes very well as shown in Figure 11-5 (c) and (e).
Furthermore, at 0.9 concentrations the energy difference increases and reaches
zero slopes at 1300 K as shown in Figure 11-5 (i). This observation indicates that
the melting temperature is improved with Ru additions. This is due to the fact that
Ti and Ru have similar properties and thus tend to mix very well [178]. The results
suggest that Ru prefers Ti-site as compared to Pd-site in agreement with the
predicted formation energies. The findings indicate that Ti-xPdRux mix well very

at low temperatures below 300 K.
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11.6 Constructed phase diagram

Monte carlo simulation was used to construct the phase diagram from their critical

temperature as implemented in the UNCLE code.

11.6.1 Phase diagram of TiPdi1-xRux

The computed phase diagram of ternary TiPdi-xRux alloys is shown in Figure 11-
6. The critical temperatures determined in Figures 11-4 were used to construct a
phase diagram concerning the compositions of Ru on Pd-site. Note that the
critical temperature is observed when an increase in temperature resulted in the
same energy difference of the system (Zero slope). The phase diagram consists
of two regions, homogeneity (mixing) and heterogeneity (phase separation). The
mixing region is observed below 50 at. % Ru while the phase separation is above
this concentration. It is clearly seen that 50 at. % Ru mixes at a high temperature
above 1600 K indicating that the diffusion might be too fast. Our result shows that
the TiPdixRux alloys exhibit phase separation at a temperature below 1700 K
(see Figure 11-6). The TiPdixRux forms a heterogeneous structure as Pd and Ru

does not have similar properties.
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Figure 11-6 Constructed phase diagram of B2 TiPdixRux using phase
transition temperature at different concentrations.

11.6.2 Phase diagram of TiixPdRux

In Figure 11-7, the computed phase diagram of ternary TiixPdRux alloys is shown
where there are no miscibility gaps. The phase diagram is characterized by the
mixing region only, contrary to the Pd sublattice TiPdi1-xRux. The mixing occurs at
high temperatures compared to Ti sublattice. There is no phase separation
occurrence for TizxPdRux and the system mixes very well at a temperature below
2000 K. This is due to the fact that Ti and Ru have similar properties and thus
tend to mix very well. The results suggest that Ru prefers Ti-site compared to Pd-

site in agreement with the predicted formation energies.
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Chapter 12

Summary and conclusion

In this chapter, we give the summary and conclusion of the study. Furthermore,

recommendations and future work are presented.

Titanium-based shape memory alloys (SMAs) are being developed for high
temperature applications in the automotive and aerospace industries due to their
superior properties, such as shape memory effect and superelasticity [1, 2].
TisoPdso is found as one of the promising alloy with excellent chemical and
physical properties such as lightweight, resistance to oxidation and ductility at

823 K [21, 22].

The main aim of this study was to investigate stability and phase transformation
of binary TisoPdso and the ternary TisoPdso-xMx (M= Ru, Pt, Ir, Co, Ni, Os, Al) shape
memory alloys using multi-scale computational methods. It was reported that the
binary TisoPdso alloy is mechanically unstable (€' < 0) at 0 K [24, 35], and
displayed poor shape memory behaviour during a transformation from cubic to
orthorhombic phase, which resulted in poor corrosion resistance [4, 14, 21, 23,

36].

We have employed the first-principles approach to study the stability of the
TisoPdso alloy using a VASP code [38]. Furthermore, the effect of Ru, Os, Ir, Pt,
Co, Ni and Al additions on the stability of TisoPdso was investigated using
supercell approach at different compositions (6.25, 18.75, 25, 31.25 and 43.75)

at 0 K. The LAMMPS code was used to determine the temperature dependence
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on the lattice expansion, XRDs and elastic properties of binary TisoPdso and
ternary B19 TisoPdsoxMx (M= Co, Ni) alloy. The DFTB+ technique was used to
derive interatomic potentials of both binary Ti-Pd and ternary Ti-Pd-Ru alloys.
The Cluster expansion was used to generate new stable phases on both binary
Ti-Pd and ternary Ti-Pd-Ru alloys. Monte carlo simulation was used to construct

the ternary phase diagrams.

Ab initio DFT approach was used to study the equilibrium lattice parameters,
heats of formation, elastic properties and phonon dispersion curves of B2, L1o,
B19 and B19’ TisoPdso as potential HTSMAs. Our results of lattice parameters
were found to be in good agreement to within 5 % with the available experimental
and theoretical values [20, 34]. Thus the ground state structures were well

reproduced.

The thermodynamic stability was deduced from the heats of formation analysis.
It was found that the results are in good agreement to within 5 % with available
experimental and theoretical findings. At TisoPdso, we found that the monoclinic
B19'is the most stable phase (lowest AHf) while the cubic B2 is the least stable

phase displaying the highestAH;. Thus, the predicted stability trend is:

B19'>B19>L10>B2.

We also evaluated the density of states for the four phases and compare their
stability with respect to the trend of Fermi level and pseudogap [26]. The B2
phase was confirmed to be the least stable displaying the highest states at Et.

We also found B19’ to be more stable with the lowest number of DOS at the Fermi
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level which is consistent with the predicted heats of formation results. Thus a

similar stability trend was obtained as: B19'>B19>1L10>B2.

The mechanical properties were investigated to assess the strength of the four
binary phases. The cubic B2 was found to have the highest value of ci2 which is
greater than c11. This observation resulted in a negative elastic Shear modulus
(€'<0) (condition of instability). The B19’, B19 and L1o phases were found to be
stable since all the independent elastic constants (Cij) and elastic Shear moduli
(C'>0) were positive, satisfying the stability criteria of the system [141]. The B19’
showed to have the highest shear modulus compared to B19, L1o and B2 phases.
Furthermore, B19 was found to be the hardest with the highest Bulk modulus
while B19' was found to have the highest value of Young and Shear suggesting
that the structure is stiffer and ductile, respectively. Moreover, L1o was found to
be ductile with the highest ratio of Bulk to Shear modulus value (B/G>1.75) and
B2 as brittle (B/G<1.75), according to Pugh's ratio of ductility and brittleness

[149].

The phonon dispersion curves were determined using the PHONON code [128].
The B2 structure showed the presence of soft modes along the high symmetry
direction of Bz, which may be associated with the negative elastic Shear modulus
(condition of vibrations instability). Furthermore, the B19’ and L10 phases were
found to be more vibrationally stable since there were no soft modes observed in
the phonon dispersion curves and this can be attributed to the positive c44 and
Shear modulus (condition of stability). The B19 structure displayed imaginary soft

modes along the Z direction. However, the structure is considered stable as there
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were no soft modes at the origin (gamma direction) in agreement with the

predicted elastic Shear modulus (C">0).

The temperature dependence calculations were used to evaluate the
performance of the structure at high temperature, employing the LAMMPS code
[103]. We observed that the volume of the B19, B19', L10 and B2 structures
increase with an increase in temperature while the densities decrease below the
melting temperature (1695 K). The B19 phase has shown to transform to cubic
B2 phase at approximately 1496 K and the c/b ratio was found to be 1.414 in
agreement with previous work [13]. Interestingly, the L1o was found to transform
to cubic B2 (with a c/b ratio of 1.00) at approximately 897 K. This prediction has

never been reported before to our knowledge.

Furthermore, structural analyses were carried out using XRD patterns. It was
observed that the XRD patterns of the B19 phase reveal a transformation from
B19 to monoclinic B19' at 1368 K, and transformation to cubic B2 phase at a
higher temperature of 1496 K. The XRDs for the Llo TisoPdso were also
investigated and it was found that the cubic XRDs patterns appear at 897 K which
is lower compared to B19 phase (1496 K). Finally, we found a good correlation

between predicted lattice parameters and XRD results.

In addition, the effect of temperature on the elastic properties was investigated
for the binary B2, B19', L10 and B19 TisoPdso structures. We observed that as the
temperature is increased, the elastic Shear moduli of the orthorhombic B19 phase
decrease (becoming negative). This suggests the instability of the phase at higher

temperatures. Similar behaviour was observed for the B19’ structure. In the case
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of L1o and B2, we note that as the temperature is increased, the elastic Shear
moduli decrease. However, the elastic Shear modulus was positive throughout
the entire temperature range which confirms the stability of L1o and B2 at higher
temperatures. The predicted transformation temperatures from L1o to B2, B19 to
B19' and B19' to B2 occurs at 897, 1368 and 1496 K, respectively. These
predictions are in line with the experimental phase diagrams [19, 81], the B2 and
B19 are stable at 1673 K and 783 K, respectively. The existence of L1o and B19’
has not been reflected in the current phase diagram, and this is considered as a

new prediction that awaits experimental verification.

Ternary alloying with Pt, Ni, Co, Ru, Al, Ir and Os were investigated. The results
suggested that the addition of Ru, Os, Pt and Ir stabilizes the TisoPdso structure,
since the heats of formation decrease with composition (AH; < 0). This was
confirmed from DOS analysis. It was found that the states are shifted at Er as the
concentration is increased. For example, as the composition of Ru is added, the
pseudogap moved toward the Es, indicating electronic stability especially above

20 at. % Ru. A similar trend was observed with Os addition.

The effect of ternary addition revealed that TisoPdso-xOsx alloys are mechanically
stable above 18.75 at. % Os according to the criteria of mechanical stability [141].
Furthermore, the C' was found negative below 25 at. % Ru (C'< 0, condition of
instability) and becomes positive above this composition (C'> 0, condition of
stability). The ci1, caa and C’ for TisoPdsoxRux increases with an increase in Ru
concentrations, while ci2 decreases above 25 at. % Ru. It was found that the C’
is negative below 31 at. % Co (instability characteristics) and becomes positive

above this composition (condition of stability). This suggests that a possible
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HTSMAs material could be achieved above 31 at. % Co. It was noted that the '
is negative for Ir, Al and Pt additions on TisoPdsoxMx indicating mechanical
instability (C'< 0). This analysis has a direct impact on the transformation
temperature. For example, a decrease in C' suggests that the Ms is likely to

increase [158].

An elastic anisotropy ratio (A) was used to describe the isotropic and anisotropic
behaviour of the TisoPdso-xMx systems. The analysis of A proves that the B2
TisoPdso-xMx (M= Co, Ni) alloys displayed elastic anisotropy behaviour (as A is
less and greater than 1). It was found that A approaches unity (A=~1) for both Ru

and Os between 25 and 50 at. % composition, suggesting isotropic behaviour.

The ductile nature of TisoPdsoxMx alloys was confirmed from the value of the B/G
ratio [149], Poisson 's ratio [140], Cauchy pressure (ci12—Ca4) [148] and anisotropy
[159]. It was revealed that increasing Os and Ru above 6.25 at. % could
effectively improve the ductility of the compound. At high Co content, the
TisoPde.2sC043.75 is the hardest material (1.39 GPa) amongst other compositions.
The Pugh (B/G) and Poisson 's ratio revealed that B2 TisoPdsoxCox alloy is ductile
above 18.75 at. % Co. It was found that the calculated anisotropy ratio is greater
than 0.8 for 25 and 31.75 at. % Ru (condition of ductility). Furthermore, the
anisotropy ratios were found greater than 0.8 above 18.75 at. % Os and Co which

reveal ductility behaviour.

The Bulk modulus (B), Shear modulus (G), Young 's modulus (E), and Vickers
hardness (Hv), for the TisoPdsoxMx (M= Os, Ru) alloys, showed an increasing

tendency with an increase in Os and Ru content. This behaviour suggests that
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Os and Ru are most preferred to enhance the strength of the TisoPdso. Our
phonon dispersion calculations predicted vibrational instability below 18.75 and
25 at. % Os and Ru, respectively at room temperature. Os is favourable above

18.75 at. %, while Ru is preferred above 25 at %.

Furthermore, we have also evaluated how alloying can impact the transformation
temperature. The results suggest that the addition of Ni, Co, Ru and Os on
TisoPdso alloy reduces the transformation temperature as indicated by positive C'.
Similar observations were reported previously [92]. In addition, the findings
revealed that Ru addition can promote transformation from B2 to B19 phase
below 25 at. % Ru (as indicated by negative shear modulus C’). Interestingly, the
addition of Ir and Pt was found to increase the martensitic transformation
temperature of the TiPd since it gives the negative C'. This analysis is similar to
the previous studies of TisoPtso, where it was indicated that the addition of Ir and

Pd enhance the martensitic transformation temperature [92].

The Debye temperature was used to analyse the thermal conductivity of the
systems. This quantity is responsible for strong ionic bonds and higher thermal
conductivity [164]. A higher Debye temperature was observed for TisoPds.2sRu43.75
as compared to other compositions. An increase in Ru, Os and Co content
increases the thermal conductivity only at a lower temperature (<300 K). It can
be deduced that thermal conductivity could be effectively improved by the

increase in Ru, Os and Co concentrations above 25 at. %.

The LAMMPS code which employs the embedded atom method was used to

determine the temperature dependence on the lattice expansion, XRDs and
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elastic constants for B19 TisoPdso-xMx ternary. Most notably, the volume increases
with an increase in temperature while the densities decrease. At 6.25 at. % Co, it
was found that the transformation from B19 to B2 occurs at 971 K as the a/c and
c/b ratios are closer to 1.414. Similar behaviour was observed for 18.25 and 25
at. % Co as the transformation temperature decreases. It was observed that when
6.25 at. % Ni is added, the lattice parameters collapse at 970 K. This suggests
the transformation temperature from B19 to B2 is lowered. The XRD patterns for
B19 TisoPdsoxMx (Co, Ni) showed that the alloy transition occurs at a lower
temperature. For example, at 6.25 at. % Co, it was found that the number of
peaks reduces at 972 K which suggested a possible transformation from B19 to
B2 phase. Furthermore, it was observed that at 6.25 at. % Ni the number of peaks
reduces above 971 K which implies transformation from B19 to B2 phase. In
addition, the temperature dependence of the elastic properties was investigated
for the B19 TisoPdso-xMx ternary. It was observed that as the temperature is
increased, the (c11 + C22 -2C12), (C11 + C33 -2C13) and (C22 + €33 -2C23) moduli for the
orthorhombic B19 phase decrease for the entire concentration range and become

negative. This suggests instability of the phase at higher temperatures.

The self-consistent-charge density functional tight-binding set of parameters for
describing TisoPdso and TisoPdso-xRux systems were developed using the DFTB+
code. It was noted that the calculated lattice parameters for binary TisoPdso and
ternary TisoPdsoxRux structures are in good agreement with available
experimental and theoretical findings to within 5 %. The developed SCC-DFTB
set of parameters were able to reproduce the structural and elastic properties in

reasonable agreement with theoretical data [35]. The DFTB-based Molecular
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dynamics calculations showed that the addition of 6.25, 18.75, 25 at. % Ru
reduce the transformation temperature from B19 to B2 phase as the a/b and c/b
ratio is approximately 1.448 (1274 K), 1.446 (1074 K) and 1.430 (873 K),
respectively. This is consistent with the previous work where the transformation
temperature of TisoPdso decreased with the addition of 5 at. % Ru [93]. The
DFTB+ code was able to predict the transformation temperature of TisoPdso-xRux
alloy while a LAMMPS code was able to predict for TisoPdsoxMx (M= Co, Ni)
alloys. Both codes were found robust in determining the transformation

temperature.

We have also studied the phase stability of B2 TiPdi1-xRux and Tii-xPdRux alloys
using a multi-scale approach. A combination of DFT, Cluster expansion and
Monte carlo simulation approaches were used. The cluster expansion method
has generated about 27 new structures on B2 TiPdi1-xRux and 17 new structures
for B2 Tii.xPdRux. Their heats of formation were found to be positive, indicating
a phase separation tendency for TiPdi-xRux alloys. The most thermodynamically
stable structure of TiixPdRux was found to be TiPd2Ru (P4/mmm) which

displayed the lowest heats of formation (-0.404 eV/atom).

The phase diagrams of B2 TiPdi-xRux and Tii-xPdRux were constructed using
Monte Carlo simulations. The findings revealed that Ru prefers Ti-site as
compared to Pd-site, consistent with the predicted heats of formation. More
importantly, the phase diagrams of ternary B2 TiPdi-xRux and Tiz-xPdRux systems
were constructed for the first time and then considered a prediction that awaits

experimental investigation.
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The stability and phase transformation of the binary TisoPdso and ternary TisoPdso-
xMx (M= Ru, Pt, Ir, Co, Ni, Os, Al) shape memory alloys were successfully studied
using multi-scale methods. The findings indicate that a HTSMAs material could
be achieved between 25 and 31.25 at. % Ru concentration. The current study will
provide valuable insights which align guide experiments on stability, ductility and
transformation temperature of binary TisoPdso and ternary TisoPdso-xMx. More
importantly, to highlight where phase separation and mixing may occur in the B2

TiPdi-xRux and Ti1-xPdRux systems which is important for alloy development.
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Recommendations and future work

Several recommendations for future research are listed below:

Use Monte carlo simulation to determine the strain and stress for binary
Ti-Pd and ternary Ti-Pd-Ru systems.

Use UNCLE Code to generate new ground state structures of Ti-Pd-Os.
Monte Carlo simulations can be used to determine phase separation and
the mixing of Ti-Pd-Os system.

To derive sets of parameters of the B19 and B2 TiPd-Os alloys using
DFTB+ code. The sets of parameters are important to determine
structural, electronic and elastic properties and compare them with
available experimental findings. Furthermore, the transformation
temperature and stability will be investigated.

To determine the relative stability by investigating energies of different
site-occupancy configurations using SOD code on binary Ti-Pd and
ternary B2 TiPd-Ru alloys.

To determine the temperature dependence on lattice parameters, XRDs
and elastic properties of the ternary B19’, B2 and L10 TisoPdso-xMx (Co, Ni)

using LAMMPS code.
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APPENDIX A

Temperature dependence of the TisoPdsoxMx (M= Co, Ni)

46 4,60

4,48 C
() (b) I C)
45 4,46
4,50 A
4,44
441 4,45 1
4,42
4,40
431C 4,40 C
a 4,35
a 4,38
427 314 4,30
< 407 b < 3124 325
< = <
& g =
g 3351 @ 3,10 A & 32
5 5 2
1 © o 3,15
3,08 4
8 330 - a2 b g
3 £ 8 510
= © 3,06 =1
® 3251 - a
3,05
3,04 4
3,20
1424 1,434 300
1,40 1,42
1,432
1,38 1,40
1,36
s 1,430 | c/b 158
132 1 1,428 | a/b 1,36
1,30 b
1,426 - 1,34
1,28 [
126 V3/b 1,424 1 1,32 a/b
1,24 : : . . . . Lo
400 600 800 1000 1200 1400 1600 g " " " " " " " i
400 600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600 1800
Temperature (K) Temperature (K)

Temperature (K)

Figure A-1 Lattice expansions (a) 31.25 (b) 43.75 and (c) 50 at. % Co (TisoPdso-xCox alloys) against temperature.
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Elastic properties of B19 TisoPdso-xMx (Co and Ni) alloys with temperature.
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Figure A-3 simulated (a) elastic constants and (b) elastic shear modulus (C’) against temperature for TisoPdso.xCox alloys
(31.25sx<50). The dotted lines are used as a guide with respect to stability.
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APPENDIX B

Temperatures Monte Carlo profiles of the B2 Ti-Pd-Ru
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Figure B-1 Energy difference against temperature of B2 Ti-Pd-Ru at different concentrations (a) Ti-PdosRuo.1, (b) Ti-PdosRuo2and
(c) Ti-Pdo7Ruos.
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