
i

Detecting and mitigating the Distributed Denial of Service attacks in Software

Defined Networks using Machine Learning approach – The Integrated Random

Forest and K-Nearest Neighbours classifiers.

LEDWABA MATLALA

Student Number:

A DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE,

DEPARTMENT OF COMPUTER SCIENCE, SCHOOL OF MATHEMATICAL AND

COMPUTER SCIENCES, FACULTY OF SCIENCE AND AGRICULTURE,

UNIVERSITY OF LIMPOPO, SOUTH AFRICA

SUPERVISOR: Professor Mthulisi VELEMPINI

Sep 2023

ii

DEDICATION

This dissertation is dedicated to my beloved people.

To my parents, Makwena Stephina Ledwaba and Matome Eric Ledwaba.

To my siblings Moloko, Tlou, Dineo, Mmaphuthi and Mmakgabo Ledwaba.

Lastly, to my late grandfather, Jacobus Lesiba Ledwaba.

iii

DECLARATION

I, Matlala Ledwaba hereby declare that this dissertation entitled Detecting and

Mitigating the Distributed Denial of Service Attacks in Software Defined

Networks using Machine Learning Approach – The Integrated Random Forest

and K-Nearest Neighbours classifiers, submitted to the University of Limpopo for a

Master’s degree, is my original work and has not been submitted previously to any

university or institution of higher learning. I further declare that all sources cited are

acknowledged and correctly referenced.

Signature: Date: September 2023

iv

ACKNOWLEDGEMENTS

I thank God for giving me the strength to complete this journey. He is indeed a keeper

of his promises.

I appreciate the guidance I received from my supervisor, Professor Mthulisi Velempini.

Thank you for your guidance, support, and encouragement throughout the process.

Thank you for being patient and helping me stay focused and motivated. Getting

feedback, comments, and advice from you has helped me grow tremendously. May

God bless you.

My parents, Matome (my father) and Makwena (my mother) Ledwaba thank you for

your support and love. I could not have done it without your encouragement. “Kodumela

moepa thutse, ga go lehumo le le tswang kgauswi.”

To my siblings, Moloko, Tlou, Dineo, Mmaphuthi and Mmakgabo; kea leboga bana ba

bomma. Thank you for telling me not to give up.

My best friend, Kholofelo Mabapa, you held my chin up when I needed you the most.

Thank you.

v

Abstract

Distributed Denial of Service (DDoS) attacks present substantial risks to network

availability and stability, especially within the realm of Software Defined Networks

(SDNs). Inventive and efficient detection and mitigation methods become imperative

to counter the continuously evolving nature of these attacks.

SDN is characterized by its dynamic and programmable nature and is susceptible to

DDoS attacks that can disrupt network operations. Traditional methods for detecting

and mitigating DDoS attacks in SDNs may not be sufficient due to the evolving nature

of these attacks. The research aims to develop a more effective and adaptive solution

by using the Random Forest (RF) and k-Nearest Neighbours (KNN) machine learning

algorithms. This approach seeks to enhance the accuracy, speed, and resilience of

DDoS detection and mitigation in SDN networks.

The research aims to address the pressing need for robust DDoS detection and

mitigation mechanisms in SDNs by harnessing the power of machine learning, through

the integration of RF and KNN and improving the KNN model. This approach is

motivated by the evolving threat landscape, the unique challenges posed by SDN

environments, and the potential for advanced machine learning techniques to enhance

network security.

Furthermore, the research objective is to enhance the K-Nearest Neighbors (KNN)

classification algorithm. By looking deep into KNN and addressing its limitations, this

study seeks to refine and optimize the algorithm's performance for various real-world

applications. Through a systematic exploration of parameter tuning, feature

engineering, and innovative techniques, this research aims to provide a more accurate

and efficient KNN classifier.

This study investigates the utilization of a machine learning approach, specifically

Random Forest and K-Nearest Neighbours classifiers, to identify and counteract

Distributed Denial of Service (DDoS) attacks in Software Defined Networks (SDNs).

The research commences by exploring the fundamental concepts of SDNs and DDoS

attacks, highlighting their interplay and the unique challenges they pose to network

availability and stability.

vi

The methodology for the study typically involves steps such as Data Collection

(gathering network traffic data from SDN, including both normal and potentially

malicious traffic.), Data Preprocessing (Clean and preprocess the collected data to

remove noise, handle missing values, and normalize features), Feature Engineering:

Identify relevant features or attributes in the network traffic data that can help

distinguish between normal and DDoS attack traffic. By following the methodology

presented in this study, we can systematically investigate the feasibility and efficacy of

the proposed approach for detecting and mitigating DDoS attacks in SDN.

A comprehensive review of existing literature is conducted to understand the state-of-

the-art techniques employed for DDoS detection and mitigation, with an emphasis on

machine learning approaches. Expanding on the current understanding of mitigation

against attacks, this thesis suggests employing Random Forest and K-Nearest

Neighbours classifiers to improve the precision and effectiveness of DDoS detection in

SDN environments. The proposed framework utilizes the ensemble learning abilities of

Random Forest to address the challenges posed by the complex and diverse network

traffic features, while the K-Nearest Neighbours algorithm offers the necessary

flexibility and prompt decision-making for timely mitigation.

To evaluate the proposed model, extensive experiments are conducted using a realistic

SDN simulator and diverse DDoS attack scenarios. Multiple performance metrics,

including accuracy of detection, rate of false positives, and response time, are assessed

and compared to alternative methods. The results demonstrate the superiority of the

Random Forest and K-Nearest Neighbours classifiers in detecting and mitigating DDoS

attacks effectively, efficiently, and with minimal impact on legitimate traffic.

In conclusion, this study shows that the improved KNN algorithm with a n_neighbours

value of 2 has a higher accuracy rate compared to the Decision Tree classifier.

Furthermore, this research explores the challenges and limitations associated with the

proposed model and provides insights for further improvements. This dissertation

makes a valuable contribution to the domain of network security by introducing a novel

methodology that employs machine learning techniques to identify and counteract

DDoS attacks in SDNs. The model presented not only enhances the precision of attack

detection but also diminishes response time, empowering network administrators to

vii

safeguard their SDN infrastructure against intricate and evolving DDoS attacks

effectively.

Keywords: Software-Defined Networks, Distributed Denial of Service Attacks,

Machine Learning, Random Forest, k-Nearest Neighbours, Decision Tree, DDoS

Detection, DDoS Mitigation, Network Security.

viii

Table of Contents
List of Figures .. x

CHAPTER 1: INTRODUCTION .. 1

Literature that deal with DDOS in SDNs: .. 1

Proposed model .. 1

Why RF and K-NN .. 2

STATEMENT OF THE RESEARCH PROBLEM ... 3

RATIONALE .. 4

RELATED WORK ... 4

RESEARCH AIM ... 6

RESEARCH OBJECTIVES ... 7

RESEARCH QUESTIONS .. 7

RESEARCH HYPOTHESIS .. 7

METHODOLOGY ... 7

RESEARCH SIMULATION ... 8

MININET .. 8

TRAFFIC GENERATOR .. 8

PERFORMANCE METRICS OF MACHINE LEARNING APPROACH 8

PYTHON MACHINE LEARNING LIBRARY: SCIKIT-LEARN .. 8

DATA ANALYSIS AND LIBRARY: PANDAS .. 8

PLATFORM AND LANGUAGE .. 9

DETECTING THE DDoS ... 9

BLOCKING .. 9

AVAILABILITY OF RESOURCES .. 9

ETHICAL CONSIDERATION .. 9

SCIENTIFIC CONTRIBUTION ... 9

OVERVIEW OF THE STUDY ... 10

CHAPTER 2: LITERATURE REVIEW ... 11

INTRODUCTION .. 11

LITERATURE REVIEW ... 11

Software Defined Network ... 11

Distributed Denial of Service attacks ... 13

Previous Work done ... 14

CONCLUSION .. 18

CHAPTER 3: METHODOLOGY ... 21

INTRODUCTION .. 21

ix

SIMULATION ENVIRONMENT .. 23

SCENARIOS CONSIDERED .. 23

TRAINING .. 24

CONCLUSION .. 27

CHAPTER 4: RESULTS AND DISCUSSION ... 28

INTRODUCTION .. 28

DISCUSSION .. 52

CONCLUSION .. 53

CHAPTER 5: CONCLUSION AND FUTURE WORK .. 55

INTRODUCTION .. 55

Summary on how the objectives where achieved: .. 55

RECOMMENDATIONS .. 56

FINAL CONCLUSION .. 56

REFERENCES .. 58

x

List of Figures

Figure 1 Summary of findings from a study conducted by [21] 15

Figure 2 Importing Python Libraries ... 29

Figure 3 Full Dataset Rows and Columns .. 30

Figure 4 Reduced Dataset Rows and Columns... 30

Figure 5 Normal and Malicious Packets ... 31

Figure 6 Number of Packets per IP address of the sender .. 32

Figure 7 Changing protocols names to numeric values ... 32

Figure 8 Importing KNeighboursClassifier .. 33

Figure 9 KNN Results when n_neighbors = 5 .. 34

Figure 10 Importing Random Forest Classifier .. 35

Figure 11 Random Forest results .. 35

Figure 12 Training KNN with n_neighbours = 4 ... 35

Figure 14 KNN Accuracy, Sensitivity and Specificity when n_neighbors = 4 36

Figure 15 True/False positives and Negatives when n_neighbors = 4 37

Figure 16 Training KNN with n_neighbours = 3 ... 37

Figure 17 KNN accuracy, Sensitivity and Specificity when n_neighbors = 3 38

Figure 18 True/False positives and Negatives when n_neighbours = 3 38

Figure 19 Training KNN with n_neighbours = 2 ... 39

Figure 20 KNN Accuracy, Sensitivity and Specificity when n_neighbours = 2 39

Figure 21 True/False positives and Negatives when n_neighbours = 2 40

Figure 22 Improved KNN accuracy for when n-neighbours = 2,3,4 and 5 41

Figure 23 Decision Tree Results .. 42

Figure 24 PDF Curves ... 43

Figure 25 PDF results for our proposed model .. 44

Figure 26 PDF results for the comparative scheme .. 44

Figure 27 ROC Curve .. 46

Figure 28 Clear ROC Curve for our proposed scheme .. 47

Figure 29 AUC Score for our proposed scheme ... 47

Figure 30 Clear ROC Curve for the comparative scheme ... 48

Figure 31 AUC Score for the comparative scheme ... 48

1

DETECTING AND MITIGATING THE DISTRIBUTED DENIAL OF SERVICE

ATTACKS IN SOFTWARE DEFINED NETWORKS USING MACHINE LEARNING

APPROACH – THE INTEGRATED RANDOM FOREST AND K-NEAREST

NEIGHBOURS CLASSIFIERS

CHAPTER 1: INTRODUCTION

Software-Defined Networks (SDNs) have revolutionized the networking landscape by

enabling dynamic and programmable network control. However, this flexibility also

introduces new security challenges, with Distributed Denial of Service (DDoS) attacks

being one of the most prevalent and disruptive threats. DDoS attacks overwhelm

network resources, rendering network services inaccessible to legitimate users. As

traditional security mechanisms struggle to keep abreast with the sophistication and

scale of these disruptive attacks, the integration of machine learning techniques has

emerged as a promising approach to enhance DDoS detection and mitigation in SDNs.

The enhancement of the K-NN classifier plays a huge role in DDoS detection and

mitigation capabilities within SDNs.

Literature that deals with DDOS in SDNs:

The survey in [1] provides an overview of DDoS attack types and explores the potential

of SDN in mitigating such attacks. It discusses various defence mechanisms and their

effectiveness in SDN. The work in [2] evaluated DDoS detection and mitigation

techniques in SDN. It compared traditional and SDN-based approaches, emphasizing

the advantages and challenges of using SDN for DDoS protection.

The work in [3] focuses on various DDoS countermeasures specifically designed for

SDN. It discusses proactive and reactive approaches and evaluates their

effectiveness. These works offer valuable insights into the challenges and solutions

related to DDoS attacks in SDN.

Proposed model:

This study focuses on the development and evaluation of an efficient machine learning-

based model for detecting and mitigating DDoS attacks in SDNs. Specifically, we

explore the effectiveness of two popular classifiers: Random Forest (RF) and k-

Nearest Neighbours (k-NN). By leveraging the strengths of these classifiers, we aim to

improve the accuracy, efficiency, and robustness of DDoS detection and mitigation in

SDN environments.

2

The Random Forest classifier is an ensemble learning technique that builds numerous

decision trees in parallel and combines their outputs to make predictions. It excels in

handling high-dimensional datasets and provides robustness against noisy and

irrelevant features. On the other hand, the k-Nearest Neighbours classifier is a non-

parametric algorithm that classifies instances based on the similarity to their k-Nearest

Neighbours. It is well-suited for detecting anomalies and can adapt to dynamic network

conditions.

Why RF and K-NN

Using RF and k-NN classifiers offers the potential to leverage the complementary

strengths of both algorithms, providing a more accurate and reliable detection system

for DDoS attacks in SDNs. By training the classifiers on labelled network traffic data,

the framework can learn patterns and behaviours associated with normal and malicious

network traffic, enabling it to distinguish between legitimate and attacking flows.

RF and k-NN provide advantages for detecting and mitigating DDoS attacks in SDN

due to their adaptability and ability to handle real-time data, low false positives, and

scalability. When integrated with appropriate feature engineering and network

monitoring techniques, these algorithms can significantly enhance the security of SDN

networks against DDoS threats.

In this study, we present an in-depth development and evaluation of the proposed

model using an SDN simulator and a comprehensive dataset of DDoS attacks. We

assess the performance of the RF and k-NN classifiers in terms of detection accuracy,

false positive rate, detection time, and resource utilization. We there enhance the

performance of K-NN and thus improving K-NN’s detection accuracy, false positive

rate, detection time, and resource utilization. Additionally, the results of this study are

compared to the Decision Trees algorithm results for the same dataset.

The findings of this research contribute to the development of effective DDoS detection

and mitigation mechanisms in SDNs, providing network administrators and security

professionals with enhanced capabilities to safeguard their infrastructures. These

machine learning techniques hold great promise for addressing the evolving landscape

of threats and ensure sufficient resilience of SDN environments against DDoS attacks.

3

It is important to note that the study primarily relied on an SDN dataset for its

investigation. However, it is essential to clarify that the primary objective of the research

was not the implementation of an SDN for the explicit purpose of detecting DDoS

attacks. Instead, the study leveraged a machine learning approach, specifically the

Integrated RF and k-NN algorithms, to enhance DDoS detection within an SDN context.

The focus of this study was also on improving the K-NN machine learning classification

so to improve the detection and mitigation of DDoS attacks. The SDN dataset served

as a critical foundation for the research's data-driven analysis and development of

machine learning models to address the DDoS threat in SDN environments.

By combining the RF ensemble learning technique for feature selection and robustness

with the flexibility and adaptability of the k-NN algorithm for real-time anomaly

detection, the integrated RF and K-NN model will significantly improve the accuracy

and efficiency of DDoS attack detection and mitigation in SDN environments. Improving

the K-NN classifier is essential because its refinement will significantly elevate the

accuracy and responsiveness of DDoS attack detection and mitigation in Software-

Defined Networks (SDNs).

This research has two hypotheses. Firstly, we hypothesize that the integration will

achieve a lower false positive rate, higher detection accuracy, and faster response

times compared to traditional DDoS mitigation techniques (Decision Tree).

Additionally, the integration will perform better in adapting to evolving attack strategies

and maintaining network performance, ultimately enhancing the security and resilience

of SDN against DDoS threats.

Secondly, we hypothesize that enhancing the K-NN classifier's performance in

detecting and mitigating Distributed Denial of Service (DDoS) attacks within Software-

Defined Networks (SDNs) will result in improvement in attack detection accuracy and

response efficiency, ultimately leading to a more robust and secure SDN infrastructure.

The dataset used for this study can be found in [4].

STATEMENT OF THE RESEARCH PROBLEM

The structure of SDN involves the segregation of the control plane and the data plane.

By utilizing a centralized control plane (controller), network administrators can oversee

4

the entire network and exert control over its operations [5]. The separation of the data

plane and control plane in SDN presents several benefits, but it also equally exposes

SDN to security vulnerabilities, including the risk of Distributed Denial-of-Service

(DDoS) attacks. DDoS floods the controller with traffic generated by a few

compromised nodes. The controller becomes unavailable for useful services as a result

of flooding which causes a single point of failure.

Although several DDoS countermeasures have been designed, there has been an

increase in DDoS attacks in the SDN [6]. The promising DDoS countermeasure is

conventional packet filtering (examining only packet headers), however, it cannot

inspect the DDoS attacks hence there is a need for an accurate deep packet inspection

(DPI) scheme designed to detect DDoS attacks.

RATIONALE

Software Defined Network (SDN) provides easy management, scalability and

improved performance of cloud computing but if the SDN controller is not secured, then

the SDNs are susceptible to DDoS attacks that result in the depletion of network

bandwidth or the exhaustion of the victim's resources.

DDoS attacks are one of the commonly known network attacks in SDN [7]. As the

number of network-connected devices increases, the impact of DDoS attacks becomes

more pronounced [8]. There are several mechanisms which have been implemented

to address the effects of DDoS. The schemes are designed to detect and reduce the

effects of DDoS. Unfortunately, DDoS attacks persist in new technologies such as the

SDN and CRN [9].

This study proposes a scheme which examines and mitigates DDoS attacks. The

scheme implements a machine learning scheme equipped with the RF classifier and

K-NN.

RELATED WORK

Random Forest is the algorithm used for predictive modelling. In predictive modelling,

the variables are randomly selected to construct multiple decision trees [5]. In Random

Forest, multiple decision trees are constructed from the given data set by repeatedly

dividing the data set into subtrees (by changing the combination of variables) and the

results are combined to make predictions [5]. The separation of the control plane and

the data plane in SDN is designed to streamline the rapid deployment of new

5

resources with greater ease and efficiency [10]. Attackers can easily manipulate packet

headers to camouflage malicious traffic as normal, evading detection systems. The

attackers can simply modify the normal traffic since the anomalies are continuously

evolving [10].

The proposal in [10] provides a detailed study of various approaches based on classic

Machine Learning techniques that are used in detecting attacks in SDN. The study

conducted a benchmarking experiment on the NSL-KDD dataset to evaluate the

performance, highlighting the reasons why conventional machine learning methods

struggle to achieve satisfactory results.

The study proposed in [10] uses the NSL-KDD dataset and provides more accurate

results than using other datasets. Therefore, in our proposed study, the NSD-KDD

dataset is used with the RF to get more accurate results on deep inspection of packets.

Challenges that many machine learning algorithms face include the requirement of

large amounts of data before they can begin to give useful results. The larger the

architecture, the more data is needed to produce practicable results.

Today, Distributed Denial of Service (DDoS) attacks pose a significant and widespread

threat to the Internet. DDoS attacks employ similar techniques to regular Denial of

Service attacks, but on a much larger scale by utilising botnets. A botnet refers to a

network of numerous compromised hosts (referred to as zombies, bots, or slave

agents) under the control of one or more intruders, who orchestrate the attacks

targeting specific victims [11].

There are many DDoS attacks and these attacks keep on increasing warranting a need

for the detection schemes that should help to protect computers against DDoS attacks.

In [12], the researcher discusses the current DDoS defence mechanisms and classifies

them based on their primary functions, specifically detection, traceback, and mitigation.

The researcher also discusses the strengths and weaknesses of the current DDoS

defence mechanisms.

Scalability is a problem with most solutions, so defence mechanisms may not perform

as expected in the real world. Networks are also burdened by significant extra

computation and communication overhead even with the most current solutions. The

inclusion of this additional overhead significantly affects network performance, leading

6

to substantial slowdowns in real-world scenarios where there is a high influx of attack

traffic [12].

The study in [12] compared various mechanisms and found that not all solutions yield

results for the necessary metrics used in comparison and therefore, conducting

additional tests becomes necessary to evaluate their performance accurately using the

chosen metrics.

Machine learning models are used to detect and mitigate DDoS attacks, but no

detection model exhibits satisfactory detection accuracy due to the diversity of DDoS

attack modes and the variable sizes of attacks [13]. Their study, [13] included feature

extraction and model detection as components of a DDoS attack detection system

based on machine learning. In the feature extraction stage, [13] illustrates that a

significant portion of the traffic exhibited DDoS attack characteristics, which were

determined by comparing and classifying the data packets using predefined rules. The

extracted features were used for machine learning in the model detection stage, and

the attack model was trained using a random forest algorithm. It was found by [13] that

their suggested approach for detecting DDoS attacks, which utilizes machine learning,

exhibits a robust detection rate.

The use of the Random Forest algorithm in [13] proved that even though most of the

algorithms do not give satisfactory detection accuracy, there are still some algorithms

(such as the random forest algorithm) that could be used to better detect the DDoS with

a high level of accuracy.

The study conducted in [14] investigated feature selection and classification

techniques for detecting Denial-of-Service (DoS) attacks, employing Random Forest

(RF) for feature selection and k-Nearest Neighbours for classification. The findings

confirmed that their proposed method achieved high accuracy in detecting both known

and unknown attacks using the WEKA tool. Although the study in [14] demonstrated

successful outcomes in DoS attack detection, further testing is necessary to assess its

effectiveness against attacks like DDoS.

RESEARCH AIM

This study aims to develop an ensemble machine learning algorithm that integrates

Random Forest and K-Nearest Neighbours to detect DDoS attacks in the SDN. This

7

study also aims to enhance the effectiveness of the K-Nearest Neighbours classifier as

a DDoS attack detection and mitigation tool within Software-Defined Networks (SDNs),

ultimately strengthening the security and resilience of SDN infrastructures against

DDoS attacks.

RESEARCH OBJECTIVES

i. To investigate the effects of DDoS attacks in the SDN.

ii. To investigate the effectiveness of the Random Forest and K-NN

classifiers.

iii. To optimize and improve the performance of the K-NN classifier.

iv. To design an integrated Random Forest and K-Nearest Neighbours

classifiers security scheme.

v. To evaluate the effectiveness of the proposed integrated scheme in

detecting and blocking the DDoS attack.

RESEARCH QUESTIONS

i. What are the effects of DDoS attacks on the performance of SDN?

ii. How can SDN be effectively protected from DDoS attacks?

iii. How can the performance of the K-NN classifier be effectively optimized

and improved?

iv. How best can the Random Forest and KNN be used for the detection

and blocking of DDoS attacks?

v. How effectively does the proposed scheme perform in the detection and

mitigation of Distributed Denial of Service (DDoS) attacks?

RESEARCH HYPOTHESIS

The combination of the Random Forest and KNN classifiers can improve the detection

and effectively block the DDOS from the SDN.

METHODOLOGY

In this research, POX is used because of the advantages stated below, instead of other

different types of controllers such as Ryu, ONIX, Maestro, Beacon, etc.

POX is an OpenFlow/Software Defined Networking (SDN) Controller written in Python.

It is a valuable tool for accelerating the development and prototyping of network

applications. One of its advantages is that the POX controller is readily available as

part of the pre-installed components in the Mininet virtual machine. By utilizing POX, it

becomes feasible to transform standard OpenFlow devices into intelligent entities

8

like hubs, switches, load balancers, and firewalls. Moreover, the POX controller

provides a user-friendly approach to conducting OpenFlow/SDN experiments, offering

a convenient means to explore and evaluate various network scenarios [15].

RESEARCH SIMULATION

MININET

Mininet is widely recognised as a network emulator commonly utilised for SDN

research purposes. It adopts a process-based virtualisation approach, enabling the

execution of multiple hosts and switches within a single operating system kernel. By

leveraging virtual hosts, switches, controllers, and links, Mininet offers the flexibility to

create diverse network topologies. The hosts within Mininet operate on Linux network

software, while the switches support OpenFlow, facilitating the development of

OpenFlow-based applications within an SDN environment. Additionally, Mininet offers

an extensible Python API that allows for the creation and customisation of networks.

TRAFFIC GENERATOR

The traffic generator Scapy is employed to generate UDP packets and manipulate the

source IP address of the packets through spoofing.

PERFORMANCE METRICS OF MACHINE LEARNING APPROACH

The performance of our proposed detection system using the ML approach is

evaluated using the parameters of accuracy, error, and precision. We use a confusion

matrix to calculate these performance metrics.

PYTHON MACHINE LEARNING LIBRARY: SCIKIT-LEARN

Scikit-learn is capable of handling both supervised and unsupervised machine learning

algorithms, offering a uniform, task-centric interface that facilitates a straightforward

comparison of methods specific to a given application. In addition to traditional

statistical data analysis, Scikit-learn can be easily integrated into applications outside

of the scientific Python ecosystem [16].

DATA ANALYSIS AND LIBRARY: PANDAS

Pandas is a Python library that provides rich data structures and tools for working with

structured data sets used in many different fields, including statistics, economics, and

social sciences [17]. The library offers integrated procedures that are simple to use for

common data manipulations and analysis on these kinds of data sets. This module is

intended to serve as the foundation for Python's future statistical computing. Pandas

implement and enhance the kinds of data manipulation features present in other

9

statistical programming languages like R, acting as a strong complement to the current

scientific Python stack [17].

PLATFORM AND LANGUAGE

Linux

Python 3.8.0

DETECTING THE DDoS

In this study, for the detection of the DDoS, we use the Random Forest classifier and

for blocking the DDoS, we use both the Random classifier and the KNN classifier.

BLOCKING

The following approach is used to block the DDoS after the detection of the DDoS is

finished.

1. If the DDoS is detected, the algorithm identifies the DDoS features (using the

RF) and blocks the DDoS packets.

2. If the DDoS is not detected, the algorithm goes back to the beginning of the

process.

AVAILABILITY OF RESOURCES

Resources are available from open-access data and the University of Limpopo.

ETHICAL CONSIDERATION

The study does not require ethical clearance.

SCIENTIFIC CONTRIBUTION

Our study implements an Integrated Random Forest and K-Nearest Neighbours

classifiers security scheme designed to mitigate the effects of DDoS in SDN. The

scheme optimises the strengths of the Random Forest and the K-NN classifiers in an

integrated environment. This study also enhances the performance of K-NN in

detecting and mitigating DDoS attacks. This study also contributes to the body of

knowledge in the field of security in SDN. This study makes a significant scientific

contribution by advancing the state-of-the-art in machine learning and classification

techniques, specifically in the context of optimizing and improving the performance of

the K-NN classifier. The fine-tuning of various parameters, including the number of

neighbours (k) and data preprocessing techniques, provide valuable insights into the

factors that influence KNN's efficacy. This research equips both academia and

10

industry with powerful tools to improve the performance of K-NN across diverse

domains, ultimately advancing the field of artificial intelligence and data science.

OVERVIEW OF THE STUDY

This dissertation is structured in five chapters. The initial chapter maps the research

problem and provides sufficient context for the justification. Chapter two (2) is the

literature review where we examine the problems of DDoS in the SDN and how

machine learning techniques differ. Chapter three (3) provides details on the research

methodology, and we assess the simulation environment, scenarios considered, and

model training and testing. Chapter four (4) presents the results and discussion where

we look at the comparison of results between the proposed scheme and other (1)

existing algorithms. Chapter five (5) concludes the study and in it, we make a final

remark based on our findings and proffer recommendations for future research.

11

CHAPTER 2: LITERATURE REVIEW

INTRODUCTION

The objective of this chapter is to present an extensive review encompassing the

current research, theories, methodologies, and findings about the detection and

mitigation of DDoS attacks in Software Defined Networks (SDNs) utilising machine

learning approaches.

This chapter establishes the solid groundwork for the research study by providing a

thorough synthesis of pertinent and recent literature. Through a detailed examination

of prior studies, methods, and results, the chapter identifies existing gaps, challenges,

and potential avenues for further exploration in the field of mitigating DDoS attacks in

SDNs. Moreover, it lays the foundation for the theoretical framework and conceptual

understanding that guides the subsequent chapters and the development of the

integrated model proposed and developed in this study.

Furthermore, this chapter conducts an extensive and detailed examination of the

current research regarding machine learning approaches employed for the detection

and mitigation of DDoS attacks. It explores a range of algorithms, techniques, and

methods utilised in previous studies, offering insights into their respective strengths,

effectiveness and identifying their limitations. The review encompasses both

supervised and unsupervised learning algorithms, emphasising their practical

applicability and performance in addressing the unique challenges presented by DDoS

attacks within SDN environments.

Through this comprehensive literature review, the chapter establishes the research

context, identifies gaps in existing knowledge, and lays the foundation for the proposed

approach that leverages the Random Forest and K-Nearest Neighbours classifiers. By

building upon the established body of knowledge, this study contributes to the

advancement of DDoS detection and mitigation strategies within SDN environments.

LITERATURE REVIEW

Software Defined Network

SDN is an emerging type of network that significantly simplifies network management

tasks. SDN has a programmable flexible interface that controls the behaviour of the

entire network [18]. Instead of deploying a distributed control architecture, SDN

consolidates all control functions into a centralised entity known as the 'Network

12

Controller.' The Network Controller is software that runs on a commercial server

platform.

In the SDN, the control and data planes are separated. This separation helps in having

the control plane negotiation differentiated from the node that handles the end user

traffic. This aspect simplifies the network manageability and programmability [18] [19].

In their study, [20] overviewed the SDN architecture, that is, its current and future

applications; [20] presented a study of networks looking at the motives and challenges

of SDN. The history of programmable networks, from early ideas until recent

developments, is discussed. Their work includes describing the SDN in detail as well

as the OpenFlow standard. The current SDN implementations were presented,

platforms were tested, and they also examined the network services and applications

that have been developed based on the SDN paradigm. [20] concluded by examining

future directions facilitated by SDN, which encompass various aspects such as the

provision of heterogeneous network support and the adoption of Information-Centric

Networking (ICN).

Although SDN the control plane enables enhanced control over network entities, SDN

becomes a burden on the administrator because the same administrator must manually

ensure security and correct the functioning of the whole network [21]. In their study, [21]

listed several attacks on SDN controllers that disregard the network topology and data

plane forwarding and can be from compromised network entities.

[21] proposed SPHINX framework to detect both familiar and unfamiliar attacks in the

context of SDN. SPHINX is designed to adaptively learn and identify new network

behaviours, triggering alerts whenever it detects suspicious changes in the network

[21]. SPHINX can detect attacks in SDNs in real-time with low-performance overheads

and it requires no changes to the controller for deployment [21]. Existing controllers are

vulnerable to known and/or unknown attacks and SPHINX can effectively detect them

in real-time [21]. SPHINX comes with minimal overheads [21].

Numerous studies have been conducted to evaluate and compare the efficiency,

features, and architecture of different SDN controllers [22]. A library bundle called

Libfluid offers the fundamental capabilities needed to construct an OpenFlow controller

[22]. In Open Network Operating System (ONOS), bundles are written in Java, and they

are loaded into the Karaf OSGi container [22]. The Linux Foundation is the home

13

of the OpenDaylight (ODl) initiative, a Java-based collaborative open-source initiative.

Different non-OpenFlow southbound protocols are supported by the OpenDaylight

(ODl), which also allows bidirectional REST and OSGi framework programming Java

[22]. A networking software platform called POX (Pythonic Network Operating System)

was created using the Python programming language and can be useful when building

networking software [22]. Open SDN controller Ryu Controller was created to improve

network agility.

The Ryu framework is a Python component-based software defined networking

framework [22]. The controllers can give a throughput and delay response while

increasing the load on the linear topology [22]. In the test, a linear topology was built in

the Mininet emulator with a different number of switches. The results show that, among

those five controllers, the POX controller gives the best delay performance and the

Libfluid controller gives the best throughput performance. Although POX and Libfluid

gave better results, it is important to choose the best-performing controller based on

several criteria, according to the requirements of the user.

The authors in [23] evaluated the scalability of the Floodlight Controller using Mininet,

Floodlight Controller and iPerf. In a study by [23], the performance evaluation of the

Floodlight Controller was conducted within a simulation environment. The study

focused on monitoring the throughput and latency parameters of the controller. To

simulate dynamic networking conditions, the performance of the controller was

assessed using a Mesh topology, with the number of nodes exponentially increasing.

Besides providing simulation experimental test bed support, Floodlight controllers also

provide statistical analysis after simulation experiments have been conducted [23].

They did not compare the controllers of the SDN and thus recommend it as future

research work.

A custom component for the POX controller platform that helped in overcoming the

infinite loop problem using Python was created by authors in [24]. Their proposed study

can be applied to other available OpenFlow controllers with different APIs.

Distributed Denial of Service attacks

DDoS is a network threat that exhausts network resources to make them unavailable

to legitimate users [25]. The DDoS violates the “availability” component of cyber

security. The attacker launches the attack using multiple computers and subsequently

14

compromises the different systems using mechanisms such as Trojans, worms, etc.

The compromised systems are called Zombies and the controller system is called a

master [25]. These Zombies can be situated across the globe and thus one may not

differentiate them from the legitimate traffic [25].

Previous Work done

The effectiveness of common systems like IPS and IDS in detecting and preventing

DDoS attacks is often limited when it comes to new attack signatures or previously

unseen attack techniques [26]. Utilising machine learning and pattern recognition,

novel forms of DDoS attacks can be analysed and mitigated seamlessly, ensuring

uninterrupted protection [26]. In their study, [26] a comprehensive survey was

conducted on DDoS attacks, focusing on the utilisation of data mining techniques to

identify DDoS attack patterns and analyse these patterns using machine learning

algorithms. In their study, [26] also highlighted open issues, research challenges and

possible solutions in machine learning.

Below is a table of the findings from the study conducted by [26]

15

Figure 1 Summary of findings from a study conducted by [21]

16

The aforementioned table displays data mining algorithms' highest accuracy rate for

averting DDoS assaults. [21] investigated leading machine learning algorithms such as

KNN, Support Vector Machine (SVM), Random Forest as well as Naïve Base for

detection of DDoS. The study conducted by [26] focused on identifying DDoS attacks

based on UDP flooding.

As technology advances, the SDN becomes more vulnerable to DDoS attacks and

there is a need to protect the SDN from such attacks. This can be done using the

machine learning algorithms such as the Random Forest classifier and the KNN

classifier. The Random Forest classifier randomly selects features, or combinations of

features, at each node during its decision-making process [27].

The research conducted by [27] had the objective of assessing and comparing the

performance of the Random Forest classifier and Support Vector Machines (SVMs) in

terms of classification accuracy, training time, and the number of user-defined

parameters. The results obtained from their investigation established similar

performance between the Random Forest classifier and SVMs in terms of classification

accuracy and training time. However, it was observed that the Random Forest classifier

required fewer user-defined parameters compared to SVMs, making it easier to define

[27]. These findings suggest that the Random Forest classifier holds potential as a

competitive alternative to SVMs, offering comparable performance with simpler

parameter configuration.

Only two parameters need to be set for the Random Forest classifier, compared to

several user-defined parameters for SVMs [27]. In contrast to SVMs, the Random

Forest classifier is capable of effectively handling categorical data, imbalanced data,

and missing values in the dataset [27]. The relevance of various features throughout

the classification process is also provided by the Random Forest classifier, which is

helpful in feature selection [22]. The Random Forest classifier can be used for

unsupervised learning and offers a way to identify outliers [27].

Random Forests are versatile and can be applied to handle both categorical responses

for classification tasks and continuous responses for regression tasks [28].

Random Forests have the following advantages [28]:

17

➢ Random Forest classifiers can naturally handle both regression and

classification

➢ Training and prediction are relatively fast

➢ There are only a few tuning parameters to consider

➢ Provide a built-in estimate of generalization error

➢ High-dimensional problems can be solved directly through this method

➢ Parallel implementation is possible

➢ Variable importance measurements

➢ A differential weighting system for classes

➢ Missing value imputation

➢ Visualisation

➢ Outlier detection

➢ Unsupervised learning

An in-depth analysis of Random Forests was provided in [29], where a comprehensive

analysis of each component of the algorithm is performed to gain fresh insights into the

learning capabilities, internal mechanisms, and interpretability of Random Forests.

Authors in [29] divided their work into three parts.

In the initial phase, a study by [29] examined the methodology of decision trees and

Random Forests concerning classification and regression tasks. Their research aimed

to develop a unified and adaptable framework by considering the induction of individual

decision trees. [29] thoroughly examined assignment rules, stopping criteria, and

splitting rules, offering theoretical justification for the design and purpose of decision

trees whenever possible. Additionally, they established a correlation between variance

and individual tree predictions, emphasising how randomisation reduces

generalisation error. The study also presented and discussed the Random Forest

algorithm and its variations within the established framework, highlighting their

properties and features. Furthermore, [29] provided an original analysis of the

computational complexity of Random Forests, demonstrating their notable

performance and scalability for larger problems that were observed, which led to a

thorough discussion of implementation details in the initial part of their research,

emphasising critical considerations for ensuring an optimal computational performance

that is often overlooked.

18

In part two of their work, [29] analysed and discussed the interpretability of Random

Forests by looking at variable importance measures. The analysis established that

variable importance offers a thorough assessment of the three-tier breakdown of

information conveyed by the input variables regarding the output, encompassing all

potential interaction terms exhaustively. In addition [29] demonstrated that variable

importance is solely influenced by relevant variables, with the importance of irrelevant

variables consistently measured as zero. This consolidates the validity and

appropriateness of using "importance" as a criterion for assessing variable utility.

Furthermore, the second part of the study confirmed that variable importance is

susceptible to certain limitations stemming from masking effects, wrong estimation of

node impurity, and the binary structure inherent to decision trees.

The final third section of the study [29] discussed the limitations of Random Forests

when applied to large datasets. It was found that subsampling, either in terms of

samples, features, or both concurrently, allows for consistent performance while

reducing memory demands.

We should consider machine learning as a method that emphasizes logical thinking

and customization to address specific problems, rather than treating it as a black-box

tool [29].

In the previous studies about how to identify and address the DDoS from the SDN, no

study was done using the integration of both the Random Forest and the KNN

classifiers. Also, no study was done on improving K-NN for the detection and mitigation

of DDoS attacks in SDNs. This study integrates the Random Forest and the KNN

classifier to detect and mitigate the DDoS from the SDN. This study improves K-NN for

the detection and mitigation of DDoS attacks in SDNs.

CONCLUSION

In this literature review, we explored the topic of detecting and mitigating Distributed

Denial of Service (DDoS) attacks in Software-Defined Networks (SDNs) using a

machine learning approach, specifically focusing on the using Random Forest (RF) and

k-Nearest Neighbours (k-NN) classifiers. Through an extensive analysis of relevant

studies and research articles, several key findings and insights emerged.

Firstly, the prevalence and severity of DDoS attacks in SDNs have been well-

established. The flexible and adaptable characteristics of SDNs introduce new security

19

challenges, requiring innovative approaches to effectively detect and mitigate these

attacks. Traditional security mechanisms often fall short of keeping pace with the

rapidly evolving attack techniques and large-scale attack volumes. This necessitates

the exploration of advanced solutions, such as machine learning, to enhance DDoS

defence in SDNs.

The review of existing literature emphasised how machine learning techniques have

proven effective in enhancing the detection and mitigation of DDoS attacks within SDN

environments. Various machine learning algorithms have been investigated, each with

their strengths and limitations. Among them, Random Forest and k-Nearest

Neighbours classifiers have emerged as preferred choices due to their complementary

capabilities and applicability to SDN security.

Random Forest classifiers are demonstrably robust in handling high-dimensional data,

making them suitable for DDoS detection in SDNs, where the feature space can be

complex and dynamic. Additionally, the ensemble nature of Random Forest classifiers

allows for improved accuracy and generalisation, enabling effective identification of

anomalous network traffic patterns associated with DDoS attacks.

On the other hand, k-Nearest Neighbours classifiers are capable of identifying

similarities between instances, making them adept at detecting deviations from normal

network behaviour. Their non-parametric nature and adaptability to changing network

conditions make them valuable tools for anomaly detection in SDN environments.

By using Random Forest and k-Nearest Neighbours classifiers, we leverage their

respective strengths and address the limitations of individual algorithms. This approach

holds promise for enhancing the accuracy, efficiency, and robustness of DDoS

detection and mitigation in SDNs.

Based on the insights gained from the literature review, our research endeavours to

add to the current understanding and body of knowledge in this field by conducting an

in-depth evaluation of the Random Forest and k-Nearest Neighbours classifiers.

Through extensive experimentation using an SDN simulator and comprehensive

datasets of DDoS attacks, our objective is to evaluate the success of the recommended

approach by analysing its detection accuracy, false positive rate, detection time, and

resource utilisation. Furthermore, comparative analyses with other

20

commonly used machine learning algorithms (Decision Trees) for DDoS detection in

SDNs are conducted to provide a comprehensive evaluation.

In conclusion, the literature review shed light on the significance of detecting and

mitigating DDoS attacks in SDNs and the potential of machine learning techniques,

particularly the Random Forest and k-Nearest Neighbours classifiers, to enhance SDN

security. The subsequent chapters of this study build upon these findings, providing

empirical evidence and insights that contribute to the development of effective DDoS

defence mechanisms in SDNs.

21

CHAPTER 3: METHODOLOGY

INTRODUCTION

In Software-Defined Networking (SDN), the identification and prevention of Distributed

Denial of Service (DDoS) attacks are critical practices as these malicious activities

have the potential to disrupt the network's operation. This chapter aims to present the

methodology that was adopted in the research conducted to identify and counteract

DDoS attacks within SDN. This section presents and justifies the chosen research

design, methods employed for data collection, techniques utilised for data analysis, as

well as the tools implemented in this study.

The study focuses on detecting and mitigating Distributed Denial of Service (DDoS)

attacks in Software Defined Networks (SDNs) using a Machine Learning approach,

specifically employing the Integrated Random Forest and K-Nearest Neighbours

classifiers. The goal of the study is to improve K-NN and therefore enhancing the

security of SDNs by developing a system that accurately identifies and mitigates DDoS

attacks in real time.

We describe the methodology used to train and evaluate the classifiers. We outline the

process of collecting and pre-processing network traffic data, including feature

extraction to represent the network traffic patterns effectively. The dataset used

encompasses both normal and attack traffic, allowing the classifiers to learn the

distinguishing characteristics of DDoS attacks.

Training the classifiers involves splitting the dataset into training and testing sets. The

study outlines the training procedure for both classifiers, including parameter selection

and optimisation techniques. It discusses the evaluation metrics used to assess the

classifiers' performance, such as accuracy, True-positives, False-positives and the

Receiver Operating Characteristic (ROC) curve analysis.

Both the training and detection phases are implemented within the SDN controller. In

data collection, network traffic data, including flow information, packet headers, and

network statistics, is gathered from SDN switches and forwarded to the centralized

SDN controller. While in data pre-processing, the collected data is pre-processed to

clean and transform it into a suitable format for machine learning. This step involves

handling missing data, normalizing features, and converting categorical variables into

numerical ones.

22

In Feature Extraction and Selection, relevant features are extracted from the pre-

processed data to represent network traffic behaviour effectively while in Machine

Learning Model Training, the integrated RF and K-NN machine learning models are

trained on historical network data within the SDN controller. During training, the models

learn to distinguish between normal network behaviour and DDoS attack patterns.

On the other hand, model integration, once trained, the machine learning models are

integrated into the SDN controller's logic. This integration allows the controller to make

real-time decisions based on the predictions made by the models while with detection,

as network traffic flows through the SDN switches, the SDN controller continuously

monitors the traffic patterns. It uses the integrated machine learning models to detect

any anomalies or patterns consistent with DDoS attacks.

Lastly, mitigation is when a potential DDoS attack is detected, the SDN controller can

take various mitigation actions. These actions might include isolating the affected

traffic, rerouting it through specific paths, or implementing rate limiting to mitigate the

attack's impact.

The methodology employed to optimize and enhance the performance of the K-NN

classifier involves a systematic and iterative approach. Initially, a comprehensive

review of the existing literature is conducted to identify best practices, challenges, and

recent advancements in KNN optimization. Data preprocessing is a fundamental step,

where feature selection and extraction techniques are applied to enhance the quality

and relevance of input data. Subsequently, an exhaustive hyperparameter tuning

process is undertaken, leveraging techniques like fine-tune KNN's parameters, such

as the number of neighbors (k).

Throughout the experimentation process, performance metrics such as accuracy,

False positives, False negatives, True positives, True negatives and receiver operating

characteristic (ROC) curves are monitored and analysed.

In this study, we then compare the performance of the proposed approach to existing

methods and showcase the superiority of the Machine Learning approach in terms of

accuracy, speed, and robustness.

23

The chapter concludes with a discussion of the results, highlighting the successful

detection and mitigation capabilities of the proposed approach. It emphasises the

potential of Machine Learning algorithms in enhancing the security of SDNs against

DDoS attacks. This study also discusses the limitations and potential future directions

for improving the proposed approach.

SIMULATION ENVIRONMENT

This study used the comparison and benchmarking methodology to compare the

performance of our proposed model with existing DDoS detection and mitigation

methods or benchmarks.

In this study, a simulation environment is essential to assess and measure the

effectiveness of the suggested approach. Based on this simulation environment,

testing and evaluation are carried out.

The simulation environment is designed to mimic a real Software Defined Network

(SDN) environment and generate network traffic that simulates normal and attack

traffic. The environment can generate various forms of DDoS attacks, including TCP,

UDP, and ICMP and test the effectiveness of the proposed approach in detecting and

mitigating these attacks.

The dataset used in this study is collected from Kaggle [4] where they used a network

emulator called Mininet. These emulators provide a virtual network environment where

one can configure network topologies, network traffic, and devices. The simulation

environment can create an SDN topology with OpenFlow switches, OpenFlow

controllers, and SDN-enabled devices such as SDN firewalls.

To assess the effectiveness of the proposed approach, performance metrics such as

accuracy, false-positive rate, true-positive rate, Receiver Operating Characteristic

(ROC) curve, and Area Under the Curve (AUC) are employed. These metrics help

evaluate the ability of the proposed approach to detect and mitigate DDoS attacks.

SCENARIOS CONSIDERED

In this study, we take into account several scenarios to comprehensively evaluate the

proposed solution. These scenarios are:

1. Normal Network Traffic: Simulate and analyse the performance of the proposed

approach under normal network conditions. This scenario helps establish a

24

baseline for comparison and ensures that our approach does not generate false

positives or misclassify legitimate network traffic.

2. Various Types of DDoS Attacks: Test the solution's ability to detect and mitigate

different types of DDoS attacks, such as TCP, UDP and ICMP. Each attack type

may have different traffic patterns and characteristics, and the approach should

be robust enough to identify and respond to them effectively.

3. Real-time Detection and Mitigation: Test the solution's ability to detect and

respond to DDoS attacks in real time. Assess the impact on network

performance and user experience.

4. Performance Comparison: Compare the performance of the proposed approach

with the performance of the Decision Tree classifier to evaluate their

effectiveness in detecting and mitigating DDoS attacks. Assess metrics such as

accuracy, true-positive rate and false-positive rate to determine which approach

yields robust results.

TRAINING

In this study, training involves several steps such as:

1. Data Collection: Gather a labelled dataset that includes network traffic data,

both normal and attack traffic. This dataset should represent various types of

DDoS attacks and normal network behaviour. The data collection is performed

by using publicly available datasets from Kaggle.

2. Data Pre-processing: Pre-process the collected data to prepare it for training the

classifiers. This involves removing irrelevant features, handling missing values,

normalising the data, and balancing the dataset if there is a class imbalance

issue. Pre-processing ensures that the data is in a format suitable for training

the classifiers. Data Pre-processing is done in a tool called Jupyter Notebook.

3. Feature Extraction: Extract relevant features from the pre-processed data that

capture the characteristics of network traffic. These features include packet

header information, flow statistics, traffic patterns, and protocol-specific

attributes. Careful selection and engineering of features can significantly impact

the classifiers' performance.

4. Dataset Split: Divide the pre-processed data into separate training and testing

sets. The training set is utilised to train the classifiers, whereas the testing set

25

is used to evaluate their performance. The data is divided into two parts (25%

test dataset and 75% training dataset). Figure 2 shows part of the dataset.

Figure 2 Dataset used for this work

5. Training the Random Forest Classifier: Train the Random Forest classifier using

the training data. A Random Forest method combines multiple decision trees

into one ensemble learning method. A different subset of data and features is

used to train each tree. The ultimate determination is reached by combining the

classifications from all the trees. During training, the classifier learns to identify

patterns and distinguish between normal and attack traffic.

6. Training the K-Nearest Neighbours Classifier: Utilise the training data to train

the K-Nearest Neighbours (KNN) classifier. KNN is a classification algorithm

that operates on the principle of proximity, assigning class labels to samples

based on their proximity to training instances. It determines the class of a test

sample by considering the majority class among its k nearest neighbours.

During training, the KNN classifier learns the distances and relationships

between different instances in the feature space.

7. Model Evaluation: Evaluate the performance of the trained classifiers using the

testing set. Calculate evaluation metrics such as accuracy, True-positives,

False-positives and ROC-AUC to assess their effectiveness in detecting and

mitigating DDoS attacks.

26

Mininet is a platform that enables the simulation of extensive network prototypes on a

single computer [30]. It utilises virtualisation techniques, including processes and

network namespaces, to facilitate the creation of scalable Software-Defined Networks

(SDNs). Mininet offers the ability to rapidly create, interact with, customize, and share

prototypes [30].

Mininet can create SDN elements such as hosts, switches, controllers and links. Those

elements can be customised, shared with other networks and perform interactions [30].

This study uses the Mininet to create a scheme that effectively detects and mitigates

the DDoS attack (UDP) in the SDN. The SDN has virtual switches, virtual hosts, virtual

links and virtual controllers.

The traffic is generated so that the SDN can be tested to establish if it can differentiate

the right packets from the DDoS packets. To generate the traffic, we utilise the Scapy

traffic generator to create UDP packets and manipulate the source IP address of each

packet for spoofing purposes. Python programming languages are used in this study

to build the Random Forest and the KKN classifier for detection and mitigation of the

DDoS attack.

The Pandas library is a Python archive that offers efficient and user-friendly data

structures as well as data analysis tools for Python programs [31]. Pandas are used in

this study for data analysis.

To evaluate the performance of our proposed system using the ML approach, the

following parameters will be taken into consideration:

i. Accuracy: the degree to which the results of the proposed system conform to

the expectations of how a good system for detection and mitigation of the DDoS

should perform.

ii. Error: the error rate of the proposed system compared to the systems that are

not using the combination of the Random Forest classifier and KNN. The time

that our proposed scheme takes to detect and mitigate the DDoS is compared

to the time that the other schemes take to detect and mitigate the DDoS.

27

Integration Challenges faced when integrating RF and K-NN:

1. RF is an ensemble learning method that operates based on decision trees,

while K-NN is an instance-based learning algorithm. These algorithms have

distinct characteristics and decision-making processes. Integrating them

requires finding a way to coordinate their outputs and decision strategies. This

need more time and research on how to do it.

2. Finding tools that can handle diverse data sources, formats, and quality while

aligning with both Random Forest and KNN requirements is challenging.

Overcoming these challenges is time-consuming, as it may involve custom

development, adaptation of existing tools, and extensive testing. This delays the

implementation of the DDoS detection and mitigation system.

The tools used in this study are all open-source tools and are available for use in this

study. The Python programming language is used to write the code for the proposed

scheme in the Mininet.

CONCLUSION

In conclusion, the methodology adopted for the detection and mitigation of DDoS

attacks in SDN is crucial for ensuring the protection of the network. The use of a

systematic research design, reliable data collection methods and effective data

analysis techniques greatly enhanced the accuracy and efficacy of the research. The

adaptation of appropriate tools and techniques for carrying out the research is vital in

identifying potential DDoS attacks and ensuring the mitigation of these attacks. The

methodology informed the research process and ultimately helped to achieve the

desired results in detecting and mitigating DDoS attacks in SDN.

28

CHAPTER 4: RESULTS AND DISCUSSION

INTRODUCTION

This chapter analyses and interprets the outcomes of the implemented methodology.

It further explores their implications in the context of combating DDoS attacks in

Software Defined Networks (SDNs).

The chapter provides an in-depth examination of the results generated, evaluating the

effectiveness and performance of the proposed model. Furthermore, it discusses the

significance and implications of the findings in addressing the ever-growing challenge

of DDoS attacks.

The chapter is structured as follows: first, the presentation of the experimental setup

and dataset used for evaluation; second, the analysis of the detection performance of

the classifiers; and finally, a comprehensive discussion of the observed results and

their implications.

The discussion and interpretation of these findings contribute to the existing body of

knowledge in the field of network security. These findings also serve as a basis for

further advancements in the detection and mitigation of evolving DDoS threats.

In this section, we present the results obtained from evaluating the two proposed

Machine Learning models (Random Forest and K-Nearest Neighbouring algorithm) on

the dataset. The results are compared to those obtained when evaluating the Decision

Tree algorithm.

The basic steps of the two Machine Learning algorithms can be summarised as follows:

1. Collect raw data (From Kaggle. DDoS SDN dataset)

2. Process the data

3. Feature selection

4. Create sub-dataset

5. Train K-Nearest Neighbouring (KNN) algorithm

6. Calculate the accuracy of (KNN)

7. Train Random Forest (RF) algorithm

8. Calculate the accuracy of RF.

The dataset (DDoS SDN dataset) for classification is downloaded from Kaggle [4].

29

We cleaned and analysed the dataset to train the two Machine Learning models used

in this research.

The following Machine Learning models are trained in this study:

1. Random Forest (RF)

2. K-Nearest Neighbouring algorithm (K-NN).

After training the above two models, we set to improve the KNN model.

Python Libraries import, dataset evaluation and cleaning

We used Jupiter Notebook for all the work done in this study. Pandas, Numpy and other

Python libraries are imported and used. We cleaned and evaluated the dataset so that

it would be ready for use for the two models developed in this study.

Figure 3 Importing Python Libraries

The dataset had 104 345 rows and 23 columns. The amount of the dataset was too

much for the models to train and we ran into memory errors and therefore reduced the

dataset to 70 000 as shown below.

30

Figure 4 Full Dataset Rows and Columns

Figure 5 Reduced Dataset Rows and Columns

From the reduced dataset, we have 43.3% of packets which are normal and 56.7% of

malicious packets as shown below.

31

Figure 6 Normal and Malicious Packets

The packets were sent from 19 IP addresses with each sender having several

requests.

32

Figure 7 Number of Packets per IP address of the sender

For our dataset to be correctly trained, all entries had to be integers. We transformed

the protocol column to numeric values as shown in Figure 7:

Figure 8 Changing protocols names to numeric values

Model (KNN) training

Our dataset is divided into two distinct parts (25% test dataset and 75% training

dataset). As KNN depends on n-neighbours for training, we trained our model using 5

n-neighbours.

33

Figure 9 Importing KNeighboursClassifier

Sensitivity, specificity, accuracy, Cohen’s kappa and confusion matrix were used for

our model evaluation.

A confusion matrix is a valuable method utilised to provide an overview of a

classification model's performance. It presents the count of correctly classified and

misclassified instances. Table 1 shows the confusion matrix table.

 Actual: Yes Actual: No

Predicted: Yes True Positives(TP) False Positives(FP)

Predicted: No False Negatives(FN) True Negatives(TN)

Table 1 Confusion matrix

In this study, we consider two classes: 'attack' and 'normal.' Within the confusion matrix,

the columns represent the actual classes, while the rows represent the predicted

classes. By analysing the confusion matrix, we can determine the number of correctly

and incorrectly predicted results by the model.

Accuracy is a statistical metric employed to assess the proportion of accurate

predictions, encompassing both true positives and true negatives. [32]. The formula for

determining accuracy is as follows:

34

where TP, TN, FP, and FN mean the true positives, true negatives, false positives, and

false negatives, respectively. In training KNN, we strive to achieve an accuracy rate of

at least 99%. Our model results in 95% accuracy which shall then be improved later in

this chapter.

Figure 10 KNN Results when n_neighbors = 5

Random Forest Training

Random Forest is trained using 50 n-estimators and entropy as a criterion. In training

the Random Forest classifier, we want to achieve an accuracy of at least 99%. Our

Random Forest (which is trained as shown on figure 10) model resulted in 100%

accuracy as shown on figure 11:

35

Figure 11 Importing Random Forest Classifier

Figure 12 Random Forest results

Improving KNN

From the results in figure 9, we used 5 n-neighbours and achieved 95% accuracy. To

improve the Model such that it achieves at least 99% accuracy, we reduce n-

neighbours. As we already trained the model using 5 n-neighbours, to improve the

model, we start from 4-neighbours going down until we get 99% accuracy.

Figure 13 Training KNN with n_neighbours = 4

Sensitivity and specificity are both essential metrics for evaluating the performance of

a model. Sensitivity measures the ability of a test to accurately identify true positives

[33]. The formula for determining sensitivity is as follows:

36

where the count of true positives signifies accurate classification of positive classes,

while the count of false negatives denotes misclassification of negative classes, i.e.,

their real label is a positive class, but they are classed as a negative class.

Specificity is a measure of how successfully a test identifies true negatives [33]. The

formula for determining specificity is as follows:

The count of true negatives represents the accurate classification of negative classes,

while the count of false positives indicates the misclassification of positive classes,

meaning that their true label is negative, but they are mistakenly classified as positive.

As shown in Figure 12, when n_neighbours=4, we achieve 99% sensitivity and 87%

specificity. That is, KNN correctly predicted 99% of true positives and 87% of true

negatives. KNN managed to correctly predict 32.18% of the UDP protocol,16.64% of

the ICMP protocol and 47.64% of the TCP protocol. All these predictions resulted in

96% accuracy.

Figure 14 KNN Accuracy, Sensitivity and Specificity when n_neighbors = 4

37

To see how the model performed, we calculated the true positives and true negatives

of the model for each n-neighbours. We calculated these values for each protocol. As

shown in Figure 15 below, we have 3 true negative rates; for UDP, ICMP and TCP

respectively. The same applies to positive predicted values, false positive values and

false negative values.

Figure 15 True/False positives and Negatives when n_neighbors = 4

We trained the model with n_neighbours=3 also.

As shown in Figure 15, when n_neighbours=3, we achieve 98.65% sensitivity and

95.46% specificity. That is, KNN correctly predicted 98.65% of true positives and

95.46% of true negatives. KNN managed to correctly predict 32.18% of the UDP

protocol,17.91% of the ICMP protocol and 47.64% of the TCP protocol. All these

predictions resulted in 97.72% accuracy.

Figure 16 Training KNN with n_neighbours = 3

38

Figure 17 KNN accuracy, Sensitivity and Specificity when n_neighbors = 3

To see how the model performed when n_neighbours=3, we calculated the true

positives and true negatives of the model. We calculated these values for each

protocol. As shown in Figure 16 below, we have 3 true negative rates; for UDP, ICMP

and TCP respectively. The same applies to positive predicted values, false positive

values and false negative values.

Figure 18 True/False positives and Negatives when n_neighbours = 3

We also trained the model with n_neighbours=2. As shown in Figure 15, when

n_neighbours=2, we achieve 99.89% sensitivity and 95.15% specificity. That is, KNN

correctly predicted 99.89% of true positives and 95.15% of true negatives. KNN

managed to correctly predict 32.18% of the UDP protocol,17.91% of the ICMP protocol

and 47.64% of the TCP protocol.

39

When n-neighbours is 2, the model achieved 99% accuracy as shown in Figure 18

below. Therefore, we achieved what we set out to do for this study.

Figure 19 Training KNN with n_neighbours = 2

Figure 20 KNN Accuracy, Sensitivity and Specificity when n_neighbours = 2

In machine learning, the performance evaluation of a model ensures that it accurately

predicts outcomes on new data. An extensively utilised approach to evaluate how well

a classification model performs involves determining the counts of true positives, true

negatives, false positives, and false negatives for every class or label existing in the

dataset. In our research, we examined the performance of a model with a n_neighbours

value of 2 utilising this technique.

To calculate the true positives and true negatives, we used a dataset that contained

different protocols and their corresponding labels. We subsequently computed the

count of accurately classified instances, considering both true positives and true

40

negatives, for each protocol. Figure 19 below shows the true negative rates for UDP,

ICMP and TCP, respectively.

The true negative rate is the proportion of negative instances (instances where the

predicted label was negative and the true label was also negative) that were correctly

classified by the model. Similarly, we computed the true positive rate, which represents

the percentage of positive cases (where the predicted label was positive and the actual

label was also positive) that the model accurately classified.

Furthermore, we calculated the false positive and false negative rates for each

protocol. The false positive rate represents the percentage of negative cases that were

mistakenly classified as positive by the model. Conversely, the false negative rate

signifies the proportion of positive instances that were inaccurately labelled as negative

by the model.

By calculating these performance metrics, we were able to assess the effectiveness of

the model with n_neighbours=2 in accurately classifying instances for each protocol.

Figure 21 True/False positives and Negatives when n_neighbours = 2

In the field of machine learning, the selection of hyperparameters plays a crucial role in

determining the accuracy of a model. For example, when employing the k-nearest

neighbour (KNN) algorithm, the decision regarding the number of neighbours to

consider has a substantial influence on the overall performance of the model. To

41

identify the optimal number of neighbours, it is standard practice to assess the model's

accuracy across various values of this hyperparameter.

This research investigated how the accuracy of the KNN algorithm is affected by

different numbers of neighbours. We tested the algorithm with different values of n-

neighbours and calculated the corresponding accuracy rates. Our evaluation results

showed that as the number of neighbours increased, the accuracy of the model

decreased.

This trend can be attributed to the observation that as the quantity of neighbours

increases, the algorithm considers more data points when making predictions.

However, including more neighbours also increases the likelihood of noise or outliers

affecting the precision of the forecasts. Furthermore, it is important to recognise that

increasing the number of neighbours can lead to overfitting, a situation where the model

becomes excessively tailored to the training data and struggles to generalise well to

new, unfamiliar data. Figure 23 shows that the more we increase n-neighbours, the

more the accuracy decreases.

Figure 22 Improved KNN accuracy for when n-neighbours = 2,3,4 and 5

The Decision Tree classifier is a popular machine learning algorithm employed for

classification purposes. In this research, we utilised the Decision Tree model to analyse

a dataset and assess its accuracy. Our evaluation results (in Figure 24) show that the

Decision Tree classifier achieved an accuracy rate of 95%. However, this

42

accuracy rate is less desirable compared to the 99% accuracy achieved when using

the K-Nearest Neighbour (KNN) algorithm on the same dataset.

While the Decision Tree model is often preferred for its interpretability and ease of use,

it may not always be the optimal choice for complex datasets or problems with a large

number of features.

Figure 23 Decision Tree Results

PDF Curve

Probability Density Functions (PDFs) describe the likelihood that a continuous random

variable will take on different values. It provides a consistent way to represent the

probability distribution of a random variable.

The PDF is defined such that the integral (area under the curve) of the function over a

given range corresponds to the probability of the random variable falling within that

range. In other words, the PDF generates information about the likelihood of the

random variable taking on specific values or falling within certain intervals.

Figure 24 below shows the probability distribution of our proposed scheme and the

comparative scheme (decision tree).

43

Figure 24 PDF Curves

For our proposed scheme, we conducted calculations to determine the probability of

the range P (1 < X < 3) based on a normal distribution with a mean of 0 and a standard

deviation of 3. The result of our analysis indicates that the cumulative probability of this

range is 99%.

This finding implies that if we were to randomly select values from the aforementioned

normal distribution, there is a strong likelihood of 99% that the selected values would

fall within the range of 1 to 3. In other words, the probability of observing a value within

this specific range is highly significant, reinforcing the reliability and predictability of the

proposed scheme. Such a high probability allows us to have confidence in the

consistency and stability of the data within this range, providing valuable insights for

decision-making and analysis within our scheme.

The PDF value obtained is the density of the distribution within the range 1 < x < 3

which corresponds to the cumulative probability of 99%. The results obtained indicate

that the model demonstrates a high level of accuracy in correctly identifying positive

instances (true positives) within the specified range (1 < x < 3). Additionally, the model

effectively minimizes the occurrence of false positives, ensuring reliable classification

outcomes.

44

Figure 25 PDF results for our proposed model

This indicates how densely the distribution is populated within this range. However, it

should be noted that the PDF does not represent the actual probability of specific

values occurring, but rather the relative likelihood.

In practical terms, this result suggests that if one were to randomly select values from

a Gaussian distribution with an average of 0 and a standard deviation of 3, there is a

high probability (99%) that the selected values would fall within the range of 1 to 3.

For the comparative scheme, we conducted the same calculations to determine the

probability of the range P (1 < X < 3) based on a normal distribution with a mean of 0

and a standard deviation of 3. The result of our analysis indicates that the cumulative

probability of this range is 85%.

Figure 26 PDF results for the comparative scheme

Based on the results obtained from our proposed scheme and the comparative

scheme, we can conclude that our proposed scheme yielded a PDF P (1 < x < 3) with

a cumulative probability of 99% when considering a normal distribution with a mean (μ)

of 0 and a standard deviation (σ) of 3. This indicates a very high likelihood that a

randomly selected value from this distribution falls within the range of 1 to 3. The

density of data points within this range is significant, and we can have a high level of

confidence in the consistency and stability of the data within this interval. The

45

proposed scheme demonstrates strong predictability and reliability in terms of the data

distribution within the specified range.

In comparison, the comparative scheme resulted in a PDF P (1 < x < 3) with a

cumulative probability of 85% under the same conditions of a mean of 0 and a standard

deviation of 3.

Therefore, it is advisable to use our proposed scheme which yielded a desirable

likelihood.

ROC Curve

A ROC (Receiver Operating Characteristic) curve serves as a visual representation of

a binary classification model's performance. It illustrates the relationship between the

true positive rate (TPR) and the false positive rate (FPR) at various threshold values.

The TPR corresponds to the ratio of correctly identified positive instances by the model,

while the FPR represents the ratio of negative instances mistakenly classified as

positive. The threshold value acts as a boundary to differentiate or classify the positive

and negative classes.

We can calculate different TPR and FPR values, and plot them on the ROC curve. The

AUC (Area Under the ROC Curve) serves as a widely used metric to assess the

performance of a classification model. A value of 1 signifies a flawless classifier,

whereas an AUC of 0.5 represents a classifier that performs randomly. A higher AUC

indicates superior classification performance.

The ROC curve is valuable for comparing the effectiveness of various classifiers or

different parameter configurations within the same classifier. It visually illustrates the

model's capacity to differentiate between positive and negative classes, aiding in the

selection of an optimal threshold value for a specific classification task.

Figure 25 and Figure 26 below show the ROC curve of our model. In Figure 26, we see

how our model performed because of the red dotted line below the graph. As the ROC

curve approaches the top left corner of the plot, our model's performance in classifying

the data improves.

46

Figure 27 ROC Curve

The effectiveness of a classification model is commonly evaluated using the metric

area under the Receiver Operating Characteristic (ROC) curve. The ROC curve is a

graphical representation of the model's performance, with the area under the curve

(AUC) quantifying the overall performance. AUC values range from 0 to 1, where higher

values indicate better performance. An AUC of 0.5 represents an average classifier,

while an AUC of 1 represents a perfect classifier. An AUC of 0 suggests that the

classifier is always incorrect, while an AUC of 0.5 suggests that the classifier performs

no better than random chance. By calculating the AUC, we determined the proportion

of the curve that lies under the plot, providing a measure of the classifier's performance.

47

Figure 28 Clear ROC Curve for our proposed scheme

Figure 29 AUC Score for our proposed scheme

48

As shown in Figure 28 and Figure 29, our model has the highest AUC (0.905), which

indicates that it correctly classifies observations and has the highest area under the

curve.

Figure 30 Clear ROC Curve for the comparative scheme

Figure 31 AUC Score for the comparative scheme

ROC results for our comparative scheme is shown on Figure 30 and Figure 31.

When comparing the two ROC curves, the comparative curve is outperformed by our

proposed scheme curve. Our proposed scheme curve has a higher AUC value,

indicating robust overall performance and a superior ability to classify instances

correctly.

How to obtain the best k value for the KNN machine learning algorithm using

the Minimum error method and RandomisedSearchCV: Error Rate for k values

Given that KNN relies on the selection of k values to determine the number of

neighbours considered for classifying a query point, determining the appropriate k

49

value for training and testing the model can be challenging. As shown above, we tried

different k values before we could get the one suitable for our data.

Therefore, in this study, we provide a quick way of finding the best k value with minimum

error as shown in Figure 32. In the below calculation, the value of i can range from 1 to

any number, depending on how big the dataset is for training. Then we fit the KNN

algorithm with every i from the chosen range. Error is the average of all misclassified

observations. From the results, we can now know which value of k gives the minimum

error and use that value of k.

Figure 32 Calculating error for k values

The k value is an important parameter in K-Nearest Neighbour (KNN) algorithm as it

determines the number of neighbouring data points used to classify new data points.

In this study, we evaluated the impact of different k values on the accuracy of the KNN

algorithm. Through our analysis (From Figure 27 and Figure 27 below), we found that

the most suitable k value to use is 1, as it produced the least amount of error in

classification.

We also observed that as we increased the value of k, the accuracy of the KNN

algorithm decreased, and more observations were misclassified. This decrease in

accuracy with the increase in k can be attributed to the smoothing effect that results

from considering a larger number of neighbours. As more neighbours are considered,

the decision boundary becomes less distinct, leading to the misclassification of data

points that lie near the boundary. Our study demonstrates the importance of selecting

50

an appropriate k value when using KNN for classification tasks. Choosing the optimal

k value is a crucial step in achieving high accuracy in KNN classification.

Figure 33 Error Rate for k Values

Figure 34 k values using randomized Search CV

51

The manual way of finding k-values vs. using the Minimum error method and

RandomisedSearchCV

Finding the optimal k value for classification purposes can be a time-consuming task.

However, employing the minimum error method and randomisedSearchCV technique

significantly accelerates this process compared to the traditional approach of

attempting various k values and observing their corresponding classification accuracy.

Utilising the minimum error method and randomisedSearchCV, the search for an

appropriate k value for our specific dataset merely required a mere 1 minute, whereas

employing the manual method necessitated 2 minutes for each attempt, resulting in a

cumulative duration of 10 minutes.

By leveraging the minimum error method and randomisedSearchCV together, the

search for an optimal k value becomes significantly faster and less cumbersome.

These methods streamline the process by automatically evaluating a subset of k values

and quickly identifying the one that leads to the most accurate classification results.

Consequently, this approach saves valuable time and computational resources,

allowing for more efficient model optimisation.

Figure 35 below shows the time taken to find k values using our dataset.

52

Figure 35 Manual way of finding K-values vs. using Minimum error method and

RandomisedSearchCV.

DISCUSSION

In this study, we trained and tested two models, Random Forest (RF) and K-Nearest

Neighbours model (KNN). We worked on improving KNN since RF resulted in 100%

accuracy.

We used accuracy, sensitivity, and specificity (True Negative rate), Cohen’s kappa

and confusion matrix to analyse the performance of the KNN model.

KNN with n_neighbours = 5 gives 95% accuracy, which we worked on improving in this

study and showed the final results in Figure 23. This study shows that KNN prediction

improves (gives much better accuracy) when we decrease n_neighbours. Figure 23

shows that KNN decreases accuracy whenever we increase n_neighbours. When

n_neighbours = 2, KNN results in 99% accuracy. Therefore, we can conclude that using

n_neighbours = 1 results in KNN predicting all values with 100% accuracy and that

detecting DDoS using our findings on KNN can help better the model’s accuracy.

53

When improving KNN (using n_neighbours less than 5) we achieve sensitivity and

specificity that falls within the range of 95%- 98% from which we can then conclude that

our model is significantly superior and excellent.

Cohen’s Kappa is a test used to measure the agreement between two raters. In

Cohen’s Kappa, the degree of agreement between two raters is calculated on a scale

of 0 to 1, with 1 being perfect agreement and 0 being no agreement at all. The higher

the Cohen’s Kappa score, the greater agreement between the two raters. In this study,

we used Cohen’s Kappa to analyse the performance of our model.

The following picture represents the interpretation of Cohen Kappa:

Figure 36 Interpretation of Cohen Kappa Score

Cohen’s kappa of our models is 0.98 which falls within the range of 0.81- 0.99. As

indicated in Table 3.1, our model is rated as good. The accuracy, precision, sensitivity,

and specificity scores fall in the range of 0.8-1 and according to Figure 25, our model

is rated as excellent.

CONCLUSION

In conclusion, the results of our study show that the improved K-NN algorithm with a

n_neighbours value of 2 has a higher accuracy rate of 98.88% compared to the

Decision Tree classifier, which had an accuracy rate of 95%.

The results of this study provide compelling evidence that improving the K-NN classifier

can indeed lead to a substantial improvement in the detection and mitigation

54

of Distributed Denial of Service (DDoS) attacks within Software-Defined Networks

(SDNs). Through experimentation and fine-tuning of various parameters, we observed

notable enhancements in accuracy and responsiveness. These findings hold

significant implications for the field of network security, as a more robust and efficient

DDoS detection system can strengthen the resilience of SDNs against malicious

threats. Moreover, the research contributes valuable insights into the optimization of

machine learning models in practical network security applications, highlighting the

potential for further advancements in the ever-evolving landscape of cybersecurity.

Based on these findings, we can confidently conclude that KNN is a more suitable

classification algorithm for the dataset under consideration. This study highlights the

importance of selecting the appropriate classification algorithm based on the specific

problem and dataset, as the accuracy of the model can significantly impact its overall

performance. Further research is recommended to explore other factors that may

impact the performance of these algorithms and to validate these results on other

datasets.

55

CHAPTER 5: CONCLUSION AND FUTURE WORK

INTRODUCTION

In this chapter, we provide a conclusion to the research presented in this thesis,

followed by recommendations for future research work in this area. This study aimed

to investigate the detection and mitigation of DDoS attacks in the SDN environment.

We presented a comprehensive literature review, followed by the proposed DDoS

detection and mitigation framework. We then evaluated the model’s performance

against various types of DDoS attacks.

Summary on how the objectives where achieved:

We commenced by conducting a thorough literature review to understand the existing

knowledge and research related to DDoS attacks in SDN. Familiarizing ourselves with

the key concepts, technologies, and security measures in SDN.

We followed these steps to achieve the objectives:

1. Problem Definition: Clearly defining the classification problem to be addressed.

2. Data Collection and Preprocessing: Gather relevant data for your classification

task.

3. Data Splitting: Split the dataset into training, validation, and test sets.

4. Feature Selection/Extraction: Identify relevant features and perform feature

selection or extraction if needed to reduce dimensionality and improve model

performance.

5. Classifier Implementation: Implement Random Forest and KNN classifiers using

appropriate libraries or frameworks.

6. Model Training: Train both classifiers using the training data.

7. Validation: Evaluate the classifiers on the validation set to choose the best-

performing model. Metrics like accuracy, precision, recall, F1-score, and ROC-

AUC.

8. Model Comparison: Compare the performance of Random Forest and KNN

classifiers with that of the Decision Tree classifier.

9. Testing: Evaluate the selected models.

10. Results Analysis: Analyze the results obtained from testing.

56

11. Visualization: Visualize the classification results using appropriate plots (e.g.,

confusion matrices, ROC curves) to provide a clear understanding of model

performance.

12. Conclusion: Summarize findings regarding the effectiveness of Random Forest

and KNN classifiers for this work. Discuss which model performed better and

why.

13. Report and Documentation: Create a detailed report or documentation of the

investigation, including methodology, results, visualizations, and conclusions.

RECOMMENDATIONS

While the proposed framework is effective in detecting DDoS attacks, there is still work

that could be further explored in this area. Below are some potential areas for future

research:

1. Multi-domain mitigation: This entails expanding the proposed framework to

include multiple SDN domains to provide complete protection against

coordinated DDoS attacks.

2. Real-world validation: This entails evaluating the proposed framework in a real-

world SDN environment to ensure its reliability and scalability.

In summary, the research presented in this study provides a foundation for future

research in the area of DDoS mitigation in the SDN environment. With the continued

growth of SDN and the increasing frequency and severity of DDoS attacks, research in

this field could practically ensure the security and reliability of our networks.

FINAL CONCLUSION

Detecting and mitigating DDoS Attacks is a complex task. At the beginning of this

research, we aimed to detect and mitigate DDoS attacks from SDN. We used the

downloaded data which was generated from SDN. We cleaned the data and prepared

it for model training. We, therefore, trained the data using KNN and RF.

After training both KNN and RF, we found that it is still not entirely satisfactory. Hence,

to improve the detection rate further, we proposed using k-neighbours of 5 when

training KNN. Our approach is based on KNN (n=5) algorithm with weighted voting.

57

In this study, we did not integrate RF and K-NN classifiers for several compelling

reasons. Firstly, both RF and KNN are standalone machine learning algorithms, each

with its own strengths and characteristics. Trying to integrate them into a single model

led to complexity and processing overhead. Secondly, RF is an ensemble method that

operates by aggregating the predictions of multiple decision trees, while KNN relies on

instance-based learning. Combining these distinct approaches in a coherent and

effective manner presents considerable challenges, including coordinating different

decision-making processes and handling varying data requirements.

Our results show that the improvement of K-NN has the best performance among all

the approaches considered in this thesis.

58

REFERENCES

[1] S. B. M. C. V. Ali Amer, “A survey of DDoS Attacks and Defense Mechanisms

in SDN,” 2017.

[2] B. B. N. D. S. Z. Mohammad Shojafar, DDoS Attack Detection and Mitigation in

Software Defined Networking, 2016.

[3] S. T. B. S. K. Moiz Ahmed, Interviewee, A survey of DDoS Defense

Mechanisms in SDN. [Interview]. 2018.

[4] “Kaggle,” [Online]. Available:

https://www.kaggle.com/code/favadhassanjaskani/saqib.

[5] D. M. J. Rukshan, “Machine Learning And Statistical Methods for DDoS Attack

Detection And Defense System In Software Defined Networks,” Ryerson

University, Toronto, Ontario, Canada, 2018.

[6] H. Polat, O. Polat and A. Cetin, “Detecting DDoS Attacks in Software-Defined

Networks Through Feature Seletion Methods and Machine Learning Models,”

pp. 1-16, 1 February 2020.

[7] H. H. A. A. S.H Ahmed, “DDoS Network in the Era of Cloud Computing and

Software-Defined Network,” in IEEE Network, 2016.

[8] A. S. Anjana Goel, DDoS Attacks and Defense Mechanisms: A Review, 2016.

[9] M. Y. a. M. R. M. M. Shirali-Shahreza, SDN-Based DDoS Attack Detection and

Mitigation: A Survey, IEEE Communications Surveys & Tutorials, 2016.

[10] S. E. Mahmoud, L.-K. Nhien-An, D. Soumyabrata and D. J. Anca, “Machine-

Learning Technology for Detecting Attacks in SDN,” ADAPT SFI Research

Centre, Dublin, Ireland, 2 Oct 2019.

[11] P. Kaur, M. Kumar and A. Bhandari, “A review of detection approaches for

distributed denial of service attacks,” Systems Science & Control Engineering,

vol. 5, no. 1, p. 301–320, 2017.

[12] S. D. Kotey, E. T. Tchao and J. D. Gadze,

“www.mdpi.com/journal/technologies,” 2019.

[13] J. Pei, Y. Chen and W. Ji, “A DDoS Attack Detection Method Based on

Machine Learning,” in IOP Conf. Series: Journal of Physics: Conf. Series 1237

(2019) 032040, Beijing (100124), China, 2019.

http://www.kaggle.com/code/favadhassanjaskani/saqib
http://www.mdpi.com/journal/technologies
http://www.mdpi.com/journal/technologies

59

[14] Thet, K. P. T. Htun and Kyaw, “Detection Model for Denial-of-Service Attacks

using Random Forest and K-Nearest Neighbors,” International Journal of

Advanced Research in Computer Engineering & Technology (IJARCET), vol. 2,

no. 5, pp. 1855-1859, May 2013.

[15] K. Sukhveer, S. Japinder and S. G. Navtej, “Network Programmability Using

Pox Controller,” in International Conference on Communication, Computing &

Systems, Ferozepur, Punjab, India, August 2014.

[16] F. Pedregosa, A. Gramfort, G. Varoquaux and V. Michel, “Scikit-learn: Machine

Learning in Python,” Journal of Machine Learning Research, January 2012

2012.

[17] W. McKinney, “Pandas: a Foundametal Python Library for Data Analysis and

statistics,” January 2011.

[18] M. Mousa, A. Bahaa-Eldin and M. Sobh, “Software Defined Networking

Concepts and Challenges,” in Research gate, December 2016.

[19] M. Hussain, . N. Shah and . A. Tahir , “Graph-Based Policy Change Detection

and Implementation in SDN,” 8 October 2019.

[20] P. Ranjan, P. Pande, R. Oswal, Z. Qurani and R. Bedi, “A Survey of Past,

Present and Future of Software Defined Networking,” International Journal of

Advance Research in Computer Science and Management Studies, vol. 2, no.

4, pp. 238-246, 2014.

[21] M. Dhawan, R. Poddar, K. Mahajan and V. Mann, “SPHINX: Detecting Security

Attacks in Software-Defined Networks”.

[22] A. Z. Mahmood , A.-a. A. Nasir and W. H. Fatima , “Performance Evaluation

and Comparison of SoftwareDefined Networks Controllers,” International

Journal of ScientificEngineering and Science, vol. 2, no. 11, pp. 45-50, 2018.

[23] S. Asadollahi and B. Goswami, “Experimenting with Scalability of Floodlight

Controller in Software Defined Networks,” in 2017 International Conference on

Electrical, Electronics, Communication, Computer and Optimization Techniques

(ICEECCOT), India, 2017.

[24] S. Streit and C. Kalialakis, “A POX OpenFlow Loop Solution for Mininet

Network Emulations,” in 4th International conference on Modern Circuits and

System Technologies, Greece, 2015.

[25] N. Tripathi and B. Mehtre, “DoS andDDoSAttacks:Impact, Analysis and

Countermeasures,” in Researchgate.net, December 2013.

[26] K. R. Bandara, T. S. Abeysinghe, A. J. Hijaz, D. G. Darshana, H. Aneez, S. J.

Kaluarachchi, K. V. Sulochana and D. Dhammearatchi, “Preventing DDoS

60

attack using Data mining Algorithms,” International Journal of Scientific and

Research Publications , vol. 6, no. 10, pp. 390-398, 2016.

[27] P. Mahesh, “Random Forest classifier for remote sensing classification,”

International Journal of Remote Sensing, vol. 26, pp. 217-222, 2005.

[28] A. Cutler, D. R. Cutler and J. R. Stevens, “Random Forest,” in Machine

Learning, researchgate.net, 2011, pp. 1-8.

[29] G. Louppe, “UNDERSTANDING RANDOM FORESTS FROM THEORY TO

PRACTICAL,” University of Liège , 2015.

[30] R. . L. Santos de Oliveira , A. . A. Shinoda , C. . M. Schweitzer and L. R. Prete,

“Using Mininet for emulation and prototyping Software-defined Networks,” in

2014 IEEE Colombian Conference on Communications and Computing

(COLCOM), Colombia, 2014.

[31] C. Comte, “Manipulating and analyzing data with pandas,” France, 2019.

[32] C. E. Metz, “Basic principles of ROC analysis,” pp. 2383-298, 1978.

[33] T. Fawcett, “An introduction to ROC analysis in pattern recognition letters,” pp.

861-874, 2006.

[34] J. S. N. S. G. Sukhveer Kaur, “Network Programmability Using POX Controller,”

in International Conference on Communication, Computing & Systems, August

2014.

[35] A. A. Ominike , A. O. Adebayo and F. Y. Osisanwo, “Introduction to Software

Defined Networks (SDN),” International Journal of Applied Information Systems

(IJAIS) – ISSN : 2249-0868, vol. 11, no. 7, pp. 1-6, December 2016.

[36] L. Ming-Yi and Y. Chu-Sing, “Design and evaluation of deep packet inspection

system: case study,” March 2012.

[37] C. Fuch, “Implications of Deep Packet Inspection (DPI) Internet Surveillance for

Society,” no. 1, pp. 1-5, July 2012.

[38] M. Mohammed, B. K. Muhammad and E. B. M. Bashier, Machine Learning

Algorithms and Applications, London, New York: CRC Press, July 2016.

[39] S. Weston and R. Bjornson, “Introduction to Anaconda,” April 2016.

61

