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Abstract 

 
Distributed Denial of Service (DDoS) attacks present substantial risks to network 

availability and stability, especially within the realm of Software Defined Networks 

(SDNs). Inventive and efficient detection and mitigation methods become imperative 

to counter the continuously evolving nature of these attacks. 

SDN is characterized by its dynamic and programmable nature and is susceptible to 

DDoS attacks that can disrupt network operations. Traditional methods for detecting 

and mitigating DDoS attacks in SDNs may not be sufficient due to the evolving nature 

of these attacks. The research aims to develop a more effective and adaptive solution 

by using the Random Forest (RF) and k-Nearest Neighbours (KNN) machine learning 

algorithms. This approach seeks to enhance the accuracy, speed, and resilience of 

DDoS detection and mitigation in SDN networks. 

The research aims to address the pressing need for robust DDoS detection and 

mitigation mechanisms in SDNs by harnessing the power of machine learning, through 

the integration of RF and KNN and improving the KNN model. This approach is 

motivated by the evolving threat landscape, the unique challenges posed by SDN 

environments, and the potential for advanced machine learning techniques to enhance 

network security. 

Furthermore, the research objective is to enhance the K-Nearest Neighbors (KNN) 

classification algorithm. By looking deep into KNN and addressing its limitations, this 

study seeks to refine and optimize the algorithm's performance for various real-world 

applications. Through a systematic exploration of parameter tuning, feature 

engineering, and innovative techniques, this research aims to provide a more accurate 

and efficient KNN classifier. 

This study investigates the utilization of a machine learning approach, specifically 

Random Forest and K-Nearest Neighbours classifiers, to identify and counteract 

Distributed Denial of Service (DDoS) attacks in Software Defined Networks (SDNs). 

The research commences by exploring the fundamental concepts of SDNs and DDoS 

attacks, highlighting their interplay and the unique challenges they pose to network 

availability and stability. 
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The methodology for the study typically involves steps such as Data Collection 

(gathering network traffic data from SDN, including both normal and potentially 

malicious traffic.), Data Preprocessing (Clean and preprocess the collected data to 

remove noise, handle missing values, and normalize features), Feature Engineering: 

Identify relevant features or attributes in the network traffic data that can help 

distinguish between normal and DDoS attack traffic. By following the methodology 

presented in this study, we can systematically investigate the feasibility and efficacy of 

the proposed approach for detecting and mitigating DDoS attacks in SDN. 

A comprehensive review of existing literature is conducted to understand the state-of- 

the-art techniques employed for DDoS detection and mitigation, with an emphasis on 

machine learning approaches. Expanding on the current understanding of mitigation 

against attacks, this thesis suggests employing Random Forest and K-Nearest 

Neighbours classifiers to improve the precision and effectiveness of DDoS detection in 

SDN environments. The proposed framework utilizes the ensemble learning abilities of 

Random Forest to address the challenges posed by the complex and diverse network 

traffic features, while the K-Nearest Neighbours algorithm offers the necessary 

flexibility and prompt decision-making for timely mitigation. 

To evaluate the proposed model, extensive experiments are conducted using a realistic 

SDN simulator and diverse DDoS attack scenarios. Multiple performance metrics, 

including accuracy of detection, rate of false positives, and response time, are assessed 

and compared to alternative methods. The results demonstrate the superiority of the 

Random Forest and K-Nearest Neighbours classifiers in detecting and mitigating DDoS 

attacks effectively, efficiently, and with minimal impact on legitimate traffic. 

In conclusion, this study shows that the improved KNN algorithm with a n_neighbours 

value of 2 has a higher accuracy rate compared to the Decision Tree classifier. 

Furthermore, this research explores the challenges and limitations associated with the 

proposed model and provides insights for further improvements. This dissertation 

makes a valuable contribution to the domain of network security by introducing a novel 

methodology that employs machine learning techniques to identify and counteract 

DDoS attacks in SDNs. The model presented not only enhances the precision of attack 

detection but also diminishes response time, empowering network administrators to 
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safeguard their SDN infrastructure against intricate and evolving DDoS attacks 

effectively. 
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DETECTING AND MITIGATING THE DISTRIBUTED DENIAL OF SERVICE 

ATTACKS IN SOFTWARE DEFINED NETWORKS USING MACHINE LEARNING 

APPROACH – THE INTEGRATED RANDOM FOREST AND K-NEAREST 

NEIGHBOURS CLASSIFIERS 

 

CHAPTER 1: INTRODUCTION 

Software-Defined Networks (SDNs) have revolutionized the networking landscape by 

enabling dynamic and programmable network control. However, this flexibility also 

introduces new security challenges, with Distributed Denial of Service (DDoS) attacks 

being one of the most prevalent and disruptive threats. DDoS attacks overwhelm 

network resources, rendering network services inaccessible to legitimate users. As 

traditional security mechanisms struggle to keep abreast with the sophistication and 

scale of these disruptive attacks, the integration of machine learning techniques has 

emerged as a promising approach to enhance DDoS detection and mitigation in SDNs. 

The enhancement of the K-NN classifier plays a huge role in DDoS detection and 

mitigation capabilities within SDNs. 

Literature that deals with DDOS in SDNs: 

The survey in [1] provides an overview of DDoS attack types and explores the potential 

of SDN in mitigating such attacks. It discusses various defence mechanisms and their 

effectiveness in SDN. The work in [2] evaluated DDoS detection and mitigation 

techniques in SDN. It compared traditional and SDN-based approaches, emphasizing 

the advantages and challenges of using SDN for DDoS protection. 

The work in [3] focuses on various DDoS countermeasures specifically designed for 

SDN. It discusses proactive and reactive approaches and evaluates their 

effectiveness. These works offer valuable insights into the challenges and solutions 

related to DDoS attacks in SDN. 

Proposed model: 

This study focuses on the development and evaluation of an efficient machine learning-

based model for detecting and mitigating DDoS attacks in SDNs. Specifically, we 

explore the effectiveness of two popular classifiers: Random Forest (RF) and k- 

Nearest Neighbours (k-NN). By leveraging the strengths of these classifiers, we aim to 

improve the accuracy, efficiency, and robustness of DDoS detection and mitigation in 

SDN environments. 



2  

The Random Forest classifier is an ensemble learning technique that builds numerous 

decision trees in parallel and combines their outputs to make predictions. It excels in 

handling high-dimensional datasets and provides robustness against noisy and 

irrelevant features. On the other hand, the k-Nearest Neighbours classifier is a non- 

parametric algorithm that classifies instances based on the similarity to their k-Nearest 

Neighbours. It is well-suited for detecting anomalies and can adapt to dynamic network 

conditions. 

Why RF and K-NN 

Using RF and k-NN classifiers offers the potential to leverage the complementary 

strengths of both algorithms, providing a more accurate and reliable detection system 

for DDoS attacks in SDNs. By training the classifiers on labelled network traffic data, 

the framework can learn patterns and behaviours associated with normal and malicious 

network traffic, enabling it to distinguish between legitimate and attacking flows. 

RF and k-NN provide advantages for detecting and mitigating DDoS attacks in SDN 

due to their adaptability and ability to handle real-time data, low false positives, and 

scalability. When integrated with appropriate feature engineering and network 

monitoring techniques, these algorithms can significantly enhance the security of SDN 

networks against DDoS threats. 

In this study, we present an in-depth development and evaluation of the proposed 

model using an SDN simulator and a comprehensive dataset of DDoS attacks. We 

assess the performance of the RF and k-NN classifiers in terms of detection accuracy, 

false positive rate, detection time, and resource utilization. We there enhance the 

performance of K-NN and thus improving K-NN’s detection accuracy, false positive 

rate, detection time, and resource utilization. Additionally, the results of this study are 

compared to the Decision Trees algorithm results for the same dataset. 

The findings of this research contribute to the development of effective DDoS detection 

and mitigation mechanisms in SDNs, providing network administrators and security 

professionals with enhanced capabilities to safeguard their infrastructures. These 

machine learning techniques hold great promise for addressing the evolving landscape 

of threats and ensure sufficient resilience of SDN environments against DDoS attacks. 
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It is important to note that the study primarily relied on an SDN dataset for its 

investigation. However, it is essential to clarify that the primary objective of the research 

was not the implementation of an SDN for the explicit purpose of detecting DDoS 

attacks. Instead, the study leveraged a machine learning approach, specifically the 

Integrated RF and k-NN algorithms, to enhance DDoS detection within an SDN context. 

The focus of this study was also on improving the K-NN machine learning classification 

so to improve the detection and mitigation of DDoS attacks. The SDN dataset served 

as a critical foundation for the research's data-driven analysis and development of 

machine learning models to address the DDoS threat in SDN environments. 

By combining the RF ensemble learning technique for feature selection and robustness 

with the flexibility and adaptability of the k-NN algorithm for real-time anomaly 

detection, the integrated RF and K-NN model will significantly improve the accuracy 

and efficiency of DDoS attack detection and mitigation in SDN environments. Improving 

the K-NN classifier is essential because its refinement will significantly elevate the 

accuracy and responsiveness of DDoS attack detection and mitigation in Software-

Defined Networks (SDNs). 

This research has two hypotheses. Firstly, we hypothesize that the integration will 

achieve a lower false positive rate, higher detection accuracy, and faster response 

times compared to traditional DDoS mitigation techniques (Decision Tree). 

Additionally, the integration will perform better in adapting to evolving attack strategies 

and maintaining network performance, ultimately enhancing the security and resilience 

of SDN against DDoS threats. 

Secondly, we hypothesize that enhancing the K-NN classifier's performance in 

detecting and mitigating Distributed Denial of Service (DDoS) attacks within Software- 

Defined Networks (SDNs) will result in improvement in attack detection accuracy and 

response efficiency, ultimately leading to a more robust and secure SDN infrastructure. 

The dataset used for this study can be found in [4]. 

 
STATEMENT OF THE RESEARCH PROBLEM 

The structure of SDN involves the segregation of the control plane and the data plane. 

By utilizing a centralized control plane (controller), network administrators can oversee 
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the entire network and exert control over its operations [5]. The separation of the data 

plane and control plane in SDN presents several benefits, but it also equally exposes 

SDN to security vulnerabilities, including the risk of Distributed Denial-of-Service 

(DDoS) attacks. DDoS floods the controller with traffic generated by a few 

compromised nodes. The controller becomes unavailable for useful services as a result 

of flooding which causes a single point of failure. 

Although several DDoS countermeasures have been designed, there has been an 

increase in DDoS attacks in the SDN [6]. The promising DDoS countermeasure is 

conventional packet filtering (examining only packet headers), however, it cannot 

inspect the DDoS attacks hence there is a need for an accurate deep packet inspection 

(DPI) scheme designed to detect DDoS attacks. 

RATIONALE 

Software Defined Network (SDN) provides easy management, scalability and 

improved performance of cloud computing but if the SDN controller is not secured, then 

the SDNs are susceptible to DDoS attacks that result in the depletion of network 

bandwidth or the exhaustion of the victim's resources. 

DDoS attacks are one of the commonly known network attacks in SDN [7]. As the 

number of network-connected devices increases, the impact of DDoS attacks becomes 

more pronounced [8]. There are several mechanisms which have been implemented 

to address the effects of DDoS. The schemes are designed to detect and reduce the 

effects of DDoS. Unfortunately, DDoS attacks persist in new technologies such as the 

SDN and CRN [9]. 

This study proposes a scheme which examines and mitigates DDoS attacks. The 

scheme implements a machine learning scheme equipped with the RF classifier and 

K-NN. 

RELATED WORK 

Random Forest is the algorithm used for predictive modelling. In predictive modelling, 

the variables are randomly selected to construct multiple decision trees [5]. In Random 

Forest, multiple decision trees are constructed from the given data set by repeatedly 

dividing the data set into subtrees (by changing the combination of variables) and the 

results are combined to make predictions [5]. The separation of the control plane and 

the data plane in SDN is designed to streamline the rapid deployment of new 
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resources with greater ease and efficiency [10]. Attackers can easily manipulate packet 

headers to camouflage malicious traffic as normal, evading detection systems. The 

attackers can simply modify the normal traffic since the anomalies are continuously 

evolving [10]. 

The proposal in [10] provides a detailed study of various approaches based on classic 

Machine Learning techniques that are used in detecting attacks in SDN. The study 

conducted a benchmarking experiment on the NSL-KDD dataset to evaluate the 

performance, highlighting the reasons why conventional machine learning methods 

struggle to achieve satisfactory results. 

The study proposed in [10] uses the NSL-KDD dataset and provides more accurate 

results than using other datasets. Therefore, in our proposed study, the NSD-KDD 

dataset is used with the RF to get more accurate results on deep inspection of packets. 

Challenges that many machine learning algorithms face include the requirement of 

large amounts of data before they can begin to give useful results. The larger the 

architecture, the more data is needed to produce practicable results. 

Today, Distributed Denial of Service (DDoS) attacks pose a significant and widespread 

threat to the Internet. DDoS attacks employ similar techniques to regular Denial of 

Service attacks, but on a much larger scale by utilising botnets. A botnet refers to a 

network of numerous compromised hosts (referred to as zombies, bots, or slave 

agents) under the control of one or more intruders, who orchestrate the attacks 

targeting specific victims [11]. 

There are many DDoS attacks and these attacks keep on increasing warranting a need 

for the detection schemes that should help to protect computers against DDoS attacks. 

In [12], the researcher discusses the current DDoS defence mechanisms and classifies 

them based on their primary functions, specifically detection, traceback, and mitigation. 

The researcher also discusses the strengths and weaknesses of the current DDoS 

defence mechanisms. 

Scalability is a problem with most solutions, so defence mechanisms may not perform 

as expected in the real world. Networks are also burdened by significant extra 

computation and communication overhead even with the most current solutions. The 

inclusion of this additional overhead significantly affects network performance, leading 
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to substantial slowdowns in real-world scenarios where there is a high influx of attack 

traffic [12]. 

The study in [12] compared various mechanisms and found that not all solutions yield 

results for the necessary metrics used in comparison and therefore, conducting 

additional tests becomes necessary to evaluate their performance accurately using the 

chosen metrics. 

Machine learning models are used to detect and mitigate DDoS attacks, but no 

detection model exhibits satisfactory detection accuracy due to the diversity of DDoS 

attack modes and the variable sizes of attacks [13]. Their study, [13] included feature 

extraction and model detection as components of a DDoS attack detection system 

based on machine learning. In the feature extraction stage, [13] illustrates that a 

significant portion of the traffic exhibited DDoS attack characteristics, which were 

determined by comparing and classifying the data packets using predefined rules. The 

extracted features were used for machine learning in the model detection stage, and 

the attack model was trained using a random forest algorithm. It was found by [13] that 

their suggested approach for detecting DDoS attacks, which utilizes machine learning, 

exhibits a robust detection rate. 

The use of the Random Forest algorithm in [13] proved that even though most of the 

algorithms do not give satisfactory detection accuracy, there are still some algorithms 

(such as the random forest algorithm) that could be used to better detect the DDoS with 

a high level of accuracy. 

The study conducted in [14] investigated feature selection and classification 

techniques for detecting Denial-of-Service (DoS) attacks, employing Random Forest 

(RF) for feature selection and k-Nearest Neighbours for classification. The findings 

confirmed that their proposed method achieved high accuracy in detecting both known 

and unknown attacks using the WEKA tool. Although the study in [14] demonstrated 

successful outcomes in DoS attack detection, further testing is necessary to assess its 

effectiveness against attacks like DDoS. 

 

 
RESEARCH AIM 

This study aims to develop an ensemble machine learning algorithm that integrates 

Random Forest and K-Nearest Neighbours to detect DDoS attacks in the SDN. This 
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study also aims to enhance the effectiveness of the K-Nearest Neighbours classifier as 

a DDoS attack detection and mitigation tool within Software-Defined Networks (SDNs), 

ultimately strengthening the security and resilience of SDN infrastructures against 

DDoS attacks. 

RESEARCH OBJECTIVES 

i. To investigate the effects of DDoS attacks in the SDN. 

ii. To investigate the effectiveness of the Random Forest and K-NN 

classifiers. 

iii. To optimize and improve the performance of the K-NN classifier. 

iv. To design an integrated Random Forest and K-Nearest Neighbours 

classifiers security scheme. 

v. To evaluate the effectiveness of the proposed integrated scheme in 

detecting and blocking the DDoS attack. 

RESEARCH QUESTIONS 

i. What are the effects of DDoS attacks on the performance of SDN? 

ii. How can SDN be effectively protected from DDoS attacks? 

iii. How can the performance of the K-NN classifier be effectively optimized 

and improved? 

iv. How best can the Random Forest and KNN be used for the detection 

and blocking of DDoS attacks? 

v. How effectively does the proposed scheme perform in the detection and 

mitigation of Distributed Denial of Service (DDoS) attacks? 

RESEARCH HYPOTHESIS 

The combination of the Random Forest and KNN classifiers can improve the detection 

and effectively block the DDOS from the SDN. 

METHODOLOGY 

In this research, POX is used because of the advantages stated below, instead of other 

different types of controllers such as Ryu, ONIX, Maestro, Beacon, etc. 

POX is an OpenFlow/Software Defined Networking (SDN) Controller written in Python. 

It is a valuable tool for accelerating the development and prototyping of network 

applications. One of its advantages is that the POX controller is readily available as 

part of the pre-installed components in the Mininet virtual machine. By utilizing POX, it 

becomes feasible to transform standard OpenFlow devices into intelligent entities 
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like hubs, switches, load balancers, and firewalls. Moreover, the POX controller 

provides a user-friendly approach to conducting OpenFlow/SDN experiments, offering 

a convenient means to explore and evaluate various network scenarios [15]. 

RESEARCH SIMULATION 

MININET 

Mininet is widely recognised as a network emulator commonly utilised for SDN 

research purposes. It adopts a process-based virtualisation approach, enabling the 

execution of multiple hosts and switches within a single operating system kernel. By 

leveraging virtual hosts, switches, controllers, and links, Mininet offers the flexibility to 

create diverse network topologies. The hosts within Mininet operate on Linux network 

software, while the switches support OpenFlow, facilitating the development of 

OpenFlow-based applications within an SDN environment. Additionally, Mininet offers 

an extensible Python API that allows for the creation and customisation of networks. 

TRAFFIC GENERATOR 

The traffic generator Scapy is employed to generate UDP packets and manipulate the 

source IP address of the packets through spoofing. 

PERFORMANCE METRICS OF MACHINE LEARNING APPROACH 

The performance of our proposed detection system using the ML approach is 

evaluated using the parameters of accuracy, error, and precision. We use a confusion 

matrix to calculate these performance metrics. 

PYTHON MACHINE LEARNING LIBRARY: SCIKIT-LEARN 

Scikit-learn is capable of handling both supervised and unsupervised machine learning 

algorithms, offering a uniform, task-centric interface that facilitates a straightforward 

comparison of methods specific to a given application. In addition to traditional 

statistical data analysis, Scikit-learn can be easily integrated into applications outside 

of the scientific Python ecosystem [16]. 

DATA ANALYSIS AND LIBRARY: PANDAS 

Pandas is a Python library that provides rich data structures and tools for working with 

structured data sets used in many different fields, including statistics, economics, and 

social sciences [17]. The library offers integrated procedures that are simple to use for 

common data manipulations and analysis on these kinds of data sets. This module is 

intended to serve as the foundation for Python's future statistical computing. Pandas 

implement and enhance the kinds of data manipulation features present in other 
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statistical programming languages like R, acting as a strong complement to the current 

scientific Python stack [17]. 

PLATFORM AND LANGUAGE 

Linux 

Python 3.8.0 

DETECTING THE DDoS 

In this study, for the detection of the DDoS, we use the Random Forest classifier and 

for blocking the DDoS, we use both the Random classifier and the KNN classifier. 

BLOCKING 

The following approach is used to block the DDoS after the detection of the DDoS is 

finished. 

1. If the DDoS is detected, the algorithm identifies the DDoS features (using the 

RF) and blocks the DDoS packets. 

2. If the DDoS is not detected, the algorithm goes back to the beginning of the 

process. 

AVAILABILITY OF RESOURCES 

Resources are available from open-access data and the University of Limpopo. 

 
ETHICAL CONSIDERATION 

The study does not require ethical clearance. 

 
SCIENTIFIC CONTRIBUTION 

Our study implements an Integrated Random Forest and K-Nearest Neighbours 

classifiers security scheme designed to mitigate the effects of DDoS in SDN. The 

scheme optimises the strengths of the Random Forest and the K-NN classifiers in an 

integrated environment. This study also enhances the performance of K-NN in 

detecting and mitigating DDoS attacks. This study also contributes to the body of 

knowledge in the field of security in SDN. This study makes a significant scientific 

contribution by advancing the state-of-the-art in machine learning and classification 

techniques, specifically in the context of optimizing and improving the performance of 

the K-NN classifier. The fine-tuning of various parameters, including the number of 

neighbours (k) and data preprocessing techniques, provide valuable insights into the 

factors that influence KNN's efficacy. This research equips both academia and 
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industry with powerful tools to improve the performance of K-NN across diverse 

domains, ultimately advancing the field of artificial intelligence and data science. 

 
 

OVERVIEW OF THE STUDY 

This dissertation is structured in five chapters. The initial chapter maps the research 

problem and provides sufficient context for the justification. Chapter two (2) is the 

literature review where we examine the problems of DDoS in the SDN and how 

machine learning techniques differ. Chapter three (3) provides details on the research 

methodology, and we assess the simulation environment, scenarios considered, and 

model training and testing. Chapter four (4) presents the results and discussion where 

we look at the comparison of results between the proposed scheme and other (1) 

existing algorithms. Chapter five (5) concludes the study and in it, we make a final 

remark based on our findings and proffer recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW 

INTRODUCTION 

The objective of this chapter is to present an extensive review encompassing the 

current research, theories, methodologies, and findings about the detection and 

mitigation of DDoS attacks in Software Defined Networks (SDNs) utilising machine 

learning approaches. 

This chapter establishes the solid groundwork for the research study by providing a 

thorough synthesis of pertinent and recent literature. Through a detailed examination 

of prior studies, methods, and results, the chapter identifies existing gaps, challenges, 

and potential avenues for further exploration in the field of mitigating DDoS attacks in 

SDNs. Moreover, it lays the foundation for the theoretical framework and conceptual 

understanding that guides the subsequent chapters and the development of the 

integrated model proposed and developed in this study. 

Furthermore, this chapter conducts an extensive and detailed examination of the 

current research regarding machine learning approaches employed for the detection 

and mitigation of DDoS attacks. It explores a range of algorithms, techniques, and 

methods utilised in previous studies, offering insights into their respective strengths, 

effectiveness and identifying their limitations. The review encompasses both 

supervised and unsupervised learning algorithms, emphasising their practical 

applicability and performance in addressing the unique challenges presented by DDoS 

attacks within SDN environments. 

Through this comprehensive literature review, the chapter establishes the research 

context, identifies gaps in existing knowledge, and lays the foundation for the proposed 

approach that leverages the Random Forest and K-Nearest Neighbours classifiers. By 

building upon the established body of knowledge, this study contributes to the 

advancement of DDoS detection and mitigation strategies within SDN environments. 

LITERATURE REVIEW 

Software Defined Network 

SDN is an emerging type of network that significantly simplifies network management 

tasks. SDN has a programmable flexible interface that controls the behaviour of the 

entire network [18]. Instead of deploying a distributed control architecture, SDN 

consolidates all control functions into a centralised entity known as the 'Network 
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Controller.' The Network Controller is software that runs on a commercial server 

platform. 

In the SDN, the control and data planes are separated. This separation helps in having 

the control plane negotiation differentiated from the node that handles the end user 

traffic. This aspect simplifies the network manageability and programmability [18] [19]. 

In their study, [20] overviewed the SDN architecture, that is, its current and future 

applications; [20] presented a study of networks looking at the motives and challenges 

of SDN. The history of programmable networks, from early ideas until recent 

developments, is discussed. Their work includes describing the SDN in detail as well 

as the OpenFlow standard. The current SDN implementations were presented, 

platforms were tested, and they also examined the network services and applications 

that have been developed based on the SDN paradigm. [20] concluded by examining 

future directions facilitated by SDN, which encompass various aspects such as the 

provision of heterogeneous network support and the adoption of Information-Centric 

Networking (ICN). 

Although SDN the control plane enables enhanced control over network entities, SDN 

becomes a burden on the administrator because the same administrator must manually 

ensure security and correct the functioning of the whole network [21]. In their study, [21] 

listed several attacks on SDN controllers that disregard the network topology and data 

plane forwarding and can be from compromised network entities. 

[21] proposed SPHINX framework to detect both familiar and unfamiliar attacks in the 

context of SDN. SPHINX is designed to adaptively learn and identify new network 

behaviours, triggering alerts whenever it detects suspicious changes in the network 

[21]. SPHINX can detect attacks in SDNs in real-time with low-performance overheads 

and it requires no changes to the controller for deployment [21]. Existing controllers are 

vulnerable to known and/or unknown attacks and SPHINX can effectively detect them 

in real-time [21]. SPHINX comes with minimal overheads [21]. 

Numerous studies have been conducted to evaluate and compare the efficiency, 

features, and architecture of different SDN controllers [22]. A library bundle called 

Libfluid offers the fundamental capabilities needed to construct an OpenFlow controller 

[22]. In Open Network Operating System (ONOS), bundles are written in Java, and they 

are loaded into the Karaf OSGi container [22]. The Linux Foundation is the home 
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of the OpenDaylight (ODl) initiative, a Java-based collaborative open-source initiative. 

Different non-OpenFlow southbound protocols are supported by the OpenDaylight 

(ODl), which also allows bidirectional REST and OSGi framework programming Java 

[22]. A networking software platform called POX (Pythonic Network Operating System) 

was created using the Python programming language and can be useful when building 

networking software [22]. Open SDN controller Ryu Controller was created to improve 

network agility. 

The Ryu framework is a Python component-based software defined networking 

framework [22]. The controllers can give a throughput and delay response while 

increasing the load on the linear topology [22]. In the test, a linear topology was built in 

the Mininet emulator with a different number of switches. The results show that, among 

those five controllers, the POX controller gives the best delay performance and the 

Libfluid controller gives the best throughput performance. Although POX and Libfluid 

gave better results, it is important to choose the best-performing controller based on 

several criteria, according to the requirements of the user. 

The authors in [23] evaluated the scalability of the Floodlight Controller using Mininet, 

Floodlight Controller and iPerf. In a study by [23], the performance evaluation of the 

Floodlight Controller was conducted within a simulation environment. The study 

focused on monitoring the throughput and latency parameters of the controller. To 

simulate dynamic networking conditions, the performance of the controller was 

assessed using a Mesh topology, with the number of nodes exponentially increasing. 

Besides providing simulation experimental test bed support, Floodlight controllers also 

provide statistical analysis after simulation experiments have been conducted [23]. 

They did not compare the controllers of the SDN and thus recommend it as future 

research work. 

A custom component for the POX controller platform that helped in overcoming the 

infinite loop problem using Python was created by authors in [24]. Their proposed study 

can be applied to other available OpenFlow controllers with different APIs. 

Distributed Denial of Service attacks 

DDoS is a network threat that exhausts network resources to make them unavailable 

to legitimate users [25]. The DDoS violates the “availability” component of cyber 

security. The attacker launches the attack using multiple computers and subsequently 
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compromises the different systems using mechanisms such as Trojans, worms, etc. 

The compromised systems are called Zombies and the controller system is called a 

master [25]. These Zombies can be situated across the globe and thus one may not 

differentiate them from the legitimate traffic [25]. 

Previous Work done 

The effectiveness of common systems like IPS and IDS in detecting and preventing 

DDoS attacks is often limited when it comes to new attack signatures or previously 

unseen attack techniques [26]. Utilising machine learning and pattern recognition, 

novel forms of DDoS attacks can be analysed and mitigated seamlessly, ensuring 

uninterrupted protection [26]. In their study, [26] a comprehensive survey was 

conducted on DDoS attacks, focusing on the utilisation of data mining techniques to 

identify DDoS attack patterns and analyse these patterns using machine learning 

algorithms. In their study, [26] also highlighted open issues, research challenges and 

possible solutions in machine learning. 

Below is a table of the findings from the study conducted by [26] 
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Figure 1 Summary of findings from a study conducted by [21] 
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The aforementioned table displays data mining algorithms' highest accuracy rate for 

averting DDoS assaults. [21] investigated leading machine learning algorithms such as 

KNN, Support Vector Machine (SVM), Random Forest as well as Naïve Base for 

detection of DDoS. The study conducted by [26] focused on identifying DDoS attacks 

based on UDP flooding. 

As technology advances, the SDN becomes more vulnerable to DDoS attacks and 

there is a need to protect the SDN from such attacks. This can be done using the 

machine learning algorithms such as the Random Forest classifier and the KNN 

classifier. The Random Forest classifier randomly selects features, or combinations of 

features, at each node during its decision-making process [27]. 

The research conducted by [27] had the objective of assessing and comparing the 

performance of the Random Forest classifier and Support Vector Machines (SVMs) in 

terms of classification accuracy, training time, and the number of user-defined 

parameters. The results obtained from their investigation established similar 

performance between the Random Forest classifier and SVMs in terms of classification 

accuracy and training time. However, it was observed that the Random Forest classifier 

required fewer user-defined parameters compared to SVMs, making it easier to define 

[27]. These findings suggest that the Random Forest classifier holds potential as a 

competitive alternative to SVMs, offering comparable performance with simpler 

parameter configuration. 

Only two parameters need to be set for the Random Forest classifier, compared to 

several user-defined parameters for SVMs [27]. In contrast to SVMs, the Random 

Forest classifier is capable of effectively handling categorical data, imbalanced data, 

and missing values in the dataset [27]. The relevance of various features throughout 

the classification process is also provided by the Random Forest classifier, which is 

helpful in feature selection [22]. The Random Forest classifier can be used for 

unsupervised learning and offers a way to identify outliers [27]. 

Random Forests are versatile and can be applied to handle both categorical responses 

for classification tasks and continuous responses for regression tasks [28]. 

Random Forests have the following advantages [28]: 
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➢ Random Forest  classifiers can  naturally  handle  both regression and 

classification 

➢ Training and prediction are relatively fast 

➢ There are only a few tuning parameters to consider 

➢ Provide a built-in estimate of generalization error 

➢ High-dimensional problems can be solved directly through this method 

➢ Parallel implementation is possible 

➢ Variable importance measurements 

➢ A differential weighting system for classes 

➢ Missing value imputation 

➢ Visualisation 

➢ Outlier detection 

➢ Unsupervised learning 

 
An in-depth analysis of Random Forests was provided in [29], where a comprehensive 

analysis of each component of the algorithm is performed to gain fresh insights into the 

learning capabilities, internal mechanisms, and interpretability of Random Forests. 

Authors in [29] divided their work into three parts. 

In the initial phase, a study by [29] examined the methodology of decision trees and 

Random Forests concerning classification and regression tasks. Their research aimed 

to develop a unified and adaptable framework by considering the induction of individual 

decision trees. [29] thoroughly examined assignment rules, stopping criteria, and 

splitting rules, offering theoretical justification for the design and purpose of decision 

trees whenever possible. Additionally, they established a correlation between variance 

and individual tree predictions, emphasising how randomisation reduces 

generalisation error. The study also presented and discussed the Random Forest 

algorithm and its variations within the established framework, highlighting their 

properties and features. Furthermore, [29] provided an original analysis of the 

computational complexity of Random Forests, demonstrating their notable 

performance and scalability for larger problems that were observed, which led to a 

thorough discussion of implementation details in the initial part of their research, 

emphasising critical considerations for ensuring an optimal computational performance 

that is often overlooked. 
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In part two of their work, [29] analysed and discussed the interpretability of Random 

Forests by looking at variable importance measures. The analysis established that 

variable importance offers a thorough assessment of the three-tier breakdown of 

information conveyed by the input variables regarding the output, encompassing all 

potential interaction terms exhaustively. In addition [29] demonstrated that variable 

importance is solely influenced by relevant variables, with the importance of irrelevant 

variables consistently measured as zero. This consolidates the validity and 

appropriateness of using "importance" as a criterion for assessing variable utility. 

Furthermore, the second part of the study confirmed that variable importance is 

susceptible to certain limitations stemming from masking effects, wrong estimation of 

node impurity, and the binary structure inherent to decision trees. 

The final third section of the study [29] discussed the limitations of Random Forests 

when applied to large datasets. It was found that subsampling, either in terms of 

samples, features, or both concurrently, allows for consistent performance while 

reducing memory demands. 

We should consider machine learning as a method that emphasizes logical thinking 

and customization to address specific problems, rather than treating it as a black-box 

tool [29]. 

In the previous studies about how to identify and address the DDoS from the SDN, no 

study was done using the integration of both the Random Forest and the KNN 

classifiers. Also, no study was done on improving K-NN for the detection and mitigation 

of DDoS attacks in SDNs. This study integrates the Random Forest and the KNN 

classifier to detect and mitigate the DDoS from the SDN. This study improves K-NN for 

the detection and mitigation of DDoS attacks in SDNs. 

CONCLUSION 

In this literature review, we explored the topic of detecting and mitigating Distributed 

Denial of Service (DDoS) attacks in Software-Defined Networks (SDNs) using a 

machine learning approach, specifically focusing on the using Random Forest (RF) and 

k-Nearest Neighbours (k-NN) classifiers. Through an extensive analysis of relevant 

studies and research articles, several key findings and insights emerged. 

Firstly, the prevalence and severity of DDoS attacks in SDNs have been well- 

established. The flexible and adaptable characteristics of SDNs introduce new security 



19  

challenges, requiring innovative approaches to effectively detect and mitigate these 

attacks. Traditional security mechanisms often fall short of keeping pace with the 

rapidly evolving attack techniques and large-scale attack volumes. This necessitates 

the exploration of advanced solutions, such as machine learning, to enhance DDoS 

defence in SDNs. 

The review of existing literature emphasised how machine learning techniques have 

proven effective in enhancing the detection and mitigation of DDoS attacks within SDN 

environments. Various machine learning algorithms have been investigated, each with 

their strengths and limitations. Among them, Random Forest and k-Nearest 

Neighbours classifiers have emerged as preferred choices due to their complementary 

capabilities and applicability to SDN security. 

Random Forest classifiers are demonstrably robust in handling high-dimensional data, 

making them suitable for DDoS detection in SDNs, where the feature space can be 

complex and dynamic. Additionally, the ensemble nature of Random Forest classifiers 

allows for improved accuracy and generalisation, enabling effective identification of 

anomalous network traffic patterns associated with DDoS attacks. 

On the other hand, k-Nearest Neighbours classifiers are capable of identifying 

similarities between instances, making them adept at detecting deviations from normal 

network behaviour. Their non-parametric nature and adaptability to changing network 

conditions make them valuable tools for anomaly detection in SDN environments. 

By using Random Forest and k-Nearest Neighbours classifiers, we leverage their 

respective strengths and address the limitations of individual algorithms. This approach 

holds promise for enhancing the accuracy, efficiency, and robustness of DDoS 

detection and mitigation in SDNs. 

Based on the insights gained from the literature review, our research endeavours to 

add to the current understanding and body of knowledge in this field by conducting an 

in-depth evaluation of the Random Forest and k-Nearest Neighbours classifiers. 

Through extensive experimentation using an SDN simulator and comprehensive 

datasets of DDoS attacks, our objective is to evaluate the success of the recommended 

approach by analysing its detection accuracy, false positive rate, detection time, and 

resource utilisation. Furthermore, comparative analyses with other 
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commonly used machine learning algorithms (Decision Trees) for DDoS detection in 

SDNs are conducted to provide a comprehensive evaluation. 

In conclusion, the literature review shed light on the significance of detecting and 

mitigating DDoS attacks in SDNs and the potential of machine learning techniques, 

particularly the Random Forest and k-Nearest Neighbours classifiers, to enhance SDN 

security. The subsequent chapters of this study build upon these findings, providing 

empirical evidence and insights that contribute to the development of effective DDoS 

defence mechanisms in SDNs. 
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CHAPTER 3: METHODOLOGY 

INTRODUCTION 

In Software-Defined Networking (SDN), the identification and prevention of Distributed 

Denial of Service (DDoS) attacks are critical practices as these malicious activities 

have the potential to disrupt the network's operation. This chapter aims to present the 

methodology that was adopted in the research conducted to identify and counteract 

DDoS attacks within SDN. This section presents and justifies the chosen research 

design, methods employed for data collection, techniques utilised for data analysis, as 

well as the tools implemented in this study. 

The study focuses on detecting and mitigating Distributed Denial of Service (DDoS) 

attacks in Software Defined Networks (SDNs) using a Machine Learning approach, 

specifically employing the Integrated Random Forest and K-Nearest Neighbours 

classifiers. The goal of the study is to improve K-NN and therefore enhancing the 

security of SDNs by developing a system that accurately identifies and mitigates DDoS 

attacks in real time. 

We describe the methodology used to train and evaluate the classifiers. We outline the 

process of collecting and pre-processing network traffic data, including feature 

extraction to represent the network traffic patterns effectively. The dataset used 

encompasses both normal and attack traffic, allowing the classifiers to learn the 

distinguishing characteristics of DDoS attacks. 

Training the classifiers involves splitting the dataset into training and testing sets. The 

study outlines the training procedure for both classifiers, including parameter selection 

and optimisation techniques. It discusses the evaluation metrics used to assess the 

classifiers' performance, such as accuracy, True-positives, False-positives and the 

Receiver Operating Characteristic (ROC) curve analysis. 

Both the training and detection phases are implemented within the SDN controller. In 

data collection, network traffic data, including flow information, packet headers, and 

network statistics, is gathered from SDN switches and forwarded to the centralized 

SDN controller. While in data pre-processing, the collected data is pre-processed to 

clean and transform it into a suitable format for machine learning. This step involves 

handling missing data, normalizing features, and converting categorical variables into 

numerical ones. 
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In Feature Extraction and Selection, relevant features are extracted from the pre- 

processed data to represent network traffic behaviour effectively while in Machine 

Learning Model Training, the integrated RF and K-NN machine learning models are 

trained on historical network data within the SDN controller. During training, the models 

learn to distinguish between normal network behaviour and DDoS attack patterns. 

On the other hand, model integration, once trained, the machine learning models are 

integrated into the SDN controller's logic. This integration allows the controller to make 

real-time decisions based on the predictions made by the models while with detection, 

as network traffic flows through the SDN switches, the SDN controller continuously 

monitors the traffic patterns. It uses the integrated machine learning models to detect 

any anomalies or patterns consistent with DDoS attacks. 

Lastly, mitigation is when a potential DDoS attack is detected, the SDN controller can 

take various mitigation actions. These actions might include isolating the affected 

traffic, rerouting it through specific paths, or implementing rate limiting to mitigate the 

attack's impact. 

The methodology employed to optimize and enhance the performance of the K-NN 

classifier involves a systematic and iterative approach. Initially, a comprehensive 

review of the existing literature is conducted to identify best practices, challenges, and 

recent advancements in KNN optimization. Data preprocessing is a fundamental step, 

where feature selection and extraction techniques are applied to enhance the quality 

and relevance of input data. Subsequently, an exhaustive hyperparameter tuning 

process is undertaken, leveraging techniques like fine-tune KNN's parameters, such 

as the number of neighbors (k). 

Throughout the experimentation process, performance metrics such as accuracy, 

False positives, False negatives, True positives, True negatives and receiver operating 

characteristic (ROC) curves are monitored and analysed. 

In this study, we then compare the performance of the proposed approach to existing 

methods and showcase the superiority of the Machine Learning approach in terms of 

accuracy, speed, and robustness. 
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The chapter concludes with a discussion of the results, highlighting the successful 

detection and mitigation capabilities of the proposed approach. It emphasises the 

potential of Machine Learning algorithms in enhancing the security of SDNs against 

DDoS attacks. This study also discusses the limitations and potential future directions 

for improving the proposed approach. 

SIMULATION ENVIRONMENT 

This study used the comparison and benchmarking methodology to compare the 

performance of our proposed model with existing DDoS detection and mitigation 

methods or benchmarks. 

In this study, a simulation environment is essential to assess and measure the 

effectiveness of the suggested approach. Based on this simulation environment, 

testing and evaluation are carried out. 

The simulation environment is designed to mimic a real Software Defined Network 

(SDN) environment and generate network traffic that simulates normal and attack 

traffic. The environment can generate various forms of DDoS attacks, including TCP, 

UDP, and ICMP and test the effectiveness of the proposed approach in detecting and 

mitigating these attacks. 

The dataset used in this study is collected from Kaggle [4] where they used a network 

emulator called Mininet. These emulators provide a virtual network environment where 

one can configure network topologies, network traffic, and devices. The simulation 

environment can create an SDN topology with OpenFlow switches, OpenFlow 

controllers, and SDN-enabled devices such as SDN firewalls. 

To assess the effectiveness of the proposed approach, performance metrics such as 

accuracy, false-positive rate, true-positive rate, Receiver Operating Characteristic 

(ROC) curve, and Area Under the Curve (AUC) are employed. These metrics help 

evaluate the ability of the proposed approach to detect and mitigate DDoS attacks. 

SCENARIOS CONSIDERED 

In this study, we take into account several scenarios to comprehensively evaluate the 

proposed solution. These scenarios are: 

1. Normal Network Traffic: Simulate and analyse the performance of the proposed 

approach under normal network conditions. This scenario helps establish a 
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baseline for comparison and ensures that our approach does not generate false 

positives or misclassify legitimate network traffic. 

2. Various Types of DDoS Attacks: Test the solution's ability to detect and mitigate 

different types of DDoS attacks, such as TCP, UDP and ICMP. Each attack type 

may have different traffic patterns and characteristics, and the approach should 

be robust enough to identify and respond to them effectively. 

3. Real-time Detection and Mitigation: Test the solution's ability to detect and 

respond to DDoS attacks in real time. Assess the impact on network 

performance and user experience. 

4. Performance Comparison: Compare the performance of the proposed approach 

with the performance of the Decision Tree classifier to evaluate their 

effectiveness in detecting and mitigating DDoS attacks. Assess metrics such as 

accuracy, true-positive rate and false-positive rate to determine which approach 

yields robust results. 

TRAINING 

In this study, training involves several steps such as: 

 
1. Data Collection: Gather a labelled dataset that includes network traffic data, 

both normal and attack traffic. This dataset should represent various types of 

DDoS attacks and normal network behaviour. The data collection is performed 

by using publicly available datasets from Kaggle. 

2. Data Pre-processing: Pre-process the collected data to prepare it for training the 

classifiers. This involves removing irrelevant features, handling missing values, 

normalising the data, and balancing the dataset if there is a class imbalance 

issue. Pre-processing ensures that the data is in a format suitable for training 

the classifiers. Data Pre-processing is done in a tool called Jupyter Notebook. 

3. Feature Extraction: Extract relevant features from the pre-processed data that 

capture the characteristics of network traffic. These features include packet 

header information, flow statistics, traffic patterns, and protocol-specific 

attributes. Careful selection and engineering of features can significantly impact 

the classifiers' performance. 

4. Dataset Split: Divide the pre-processed data into separate training and testing 

sets. The training set is utilised to train the classifiers, whereas the testing set 
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is used to evaluate their performance. The data is divided into two parts (25% 

test dataset and 75% training dataset). Figure 2 shows part of the dataset. 

 
 

 
Figure 2 Dataset used for this work 

 

 
5. Training the Random Forest Classifier: Train the Random Forest classifier using 

the training data. A Random Forest method combines multiple decision trees 

into one ensemble learning method. A different subset of data and features is 

used to train each tree. The ultimate determination is reached by combining the 

classifications from all the trees. During training, the classifier learns to identify 

patterns and distinguish between normal and attack traffic. 

6. Training the K-Nearest Neighbours Classifier: Utilise the training data to train 

the K-Nearest Neighbours (KNN) classifier. KNN is a classification algorithm 

that operates on the principle of proximity, assigning class labels to samples 

based on their proximity to training instances. It determines the class of a test 

sample by considering the majority class among its k nearest neighbours. 

During training, the KNN classifier learns the distances and relationships 

between different instances in the feature space. 

7. Model Evaluation: Evaluate the performance of the trained classifiers using the 

testing set. Calculate evaluation metrics such as accuracy, True-positives, 

False-positives and ROC-AUC to assess their effectiveness in detecting and 

mitigating DDoS attacks. 
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Mininet is a platform that enables the simulation of extensive network prototypes on a 

single computer [30]. It utilises virtualisation techniques, including processes and 

network namespaces, to facilitate the creation of scalable Software-Defined Networks 

(SDNs). Mininet offers the ability to rapidly create, interact with, customize, and share 

prototypes [30]. 

Mininet can create SDN elements such as hosts, switches, controllers and links. Those 

elements can be customised, shared with other networks and perform interactions [30]. 

This study uses the Mininet to create a scheme that effectively detects and mitigates 

the DDoS attack (UDP) in the SDN. The SDN has virtual switches, virtual hosts, virtual 

links and virtual controllers. 

The traffic is generated so that the SDN can be tested to establish if it can differentiate 

the right packets from the DDoS packets. To generate the traffic, we utilise the Scapy 

traffic generator to create UDP packets and manipulate the source IP address of each 

packet for spoofing purposes. Python programming languages are used in this study 

to build the Random Forest and the KKN classifier for detection and mitigation of the 

DDoS attack. 

The Pandas library is a Python archive that offers efficient and user-friendly data 

structures as well as data analysis tools for Python programs [31]. Pandas are used in 

this study for data analysis. 

To evaluate the performance of our proposed system using the ML approach, the 

following parameters will be taken into consideration: 

i. Accuracy: the degree to which the results of the proposed system conform to 

the expectations of how a good system for detection and mitigation of the DDoS 

should perform. 

ii. Error: the error rate of the proposed system compared to the systems that are 

not using the combination of the Random Forest classifier and KNN. The time 

that our proposed scheme takes to detect and mitigate the DDoS is compared 

to the time that the other schemes take to detect and mitigate the DDoS. 
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Integration Challenges faced when integrating RF and K-NN: 

1. RF is an ensemble learning method that operates based on decision trees, 

while K-NN is an instance-based learning algorithm. These algorithms have 

distinct characteristics and decision-making processes. Integrating them 

requires finding a way to coordinate their outputs and decision strategies. This 

need more time and research on how to do it. 

2. Finding tools that can handle diverse data sources, formats, and quality while 

aligning with both Random Forest and KNN requirements is challenging. 

Overcoming these challenges is time-consuming, as it may involve custom 

development, adaptation of existing tools, and extensive testing. This delays the 

implementation of the DDoS detection and mitigation system. 

The tools used in this study are all open-source tools and are available for use in this 

study. The Python programming language is used to write the code for the proposed 

scheme in the Mininet. 

CONCLUSION 

In conclusion, the methodology adopted for the detection and mitigation of DDoS 

attacks in SDN is crucial for ensuring the protection of the network. The use of a 

systematic research design, reliable data collection methods and effective data 

analysis techniques greatly enhanced the accuracy and efficacy of the research. The 

adaptation of appropriate tools and techniques for carrying out the research is vital in 

identifying potential DDoS attacks and ensuring the mitigation of these attacks. The 

methodology informed the research process and ultimately helped to achieve the 

desired results in detecting and mitigating DDoS attacks in SDN. 
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CHAPTER 4: RESULTS AND DISCUSSION 

INTRODUCTION 

This chapter analyses and interprets the outcomes of the implemented methodology. 

It further explores their implications in the context of combating DDoS attacks in 

Software Defined Networks (SDNs). 

The chapter provides an in-depth examination of the results generated, evaluating the 

effectiveness and performance of the proposed model. Furthermore, it discusses the 

significance and implications of the findings in addressing the ever-growing challenge 

of DDoS attacks. 

The chapter is structured as follows: first, the presentation of the experimental setup 

and dataset used for evaluation; second, the analysis of the detection performance of 

the classifiers; and finally, a comprehensive discussion of the observed results and 

their implications. 

The discussion and interpretation of these findings contribute to the existing body of 

knowledge in the field of network security. These findings also serve as a basis for 

further advancements in the detection and mitigation of evolving DDoS threats. 

In this section, we present the results obtained from evaluating the two proposed 

Machine Learning models (Random Forest and K-Nearest Neighbouring algorithm) on 

the dataset. The results are compared to those obtained when evaluating the Decision 

Tree algorithm. 

The basic steps of the two Machine Learning algorithms can be summarised as follows: 

1. Collect raw data (From Kaggle. DDoS SDN dataset) 

2. Process the data 

3. Feature selection 

4. Create sub-dataset 

5. Train K-Nearest Neighbouring (KNN) algorithm 

6. Calculate the accuracy of (KNN) 

7. Train Random Forest (RF) algorithm 

8. Calculate the accuracy of RF. 

 
The dataset (DDoS SDN dataset) for classification is downloaded from Kaggle [4]. 
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We cleaned and analysed the dataset to train the two Machine Learning models used 

in this research. 

The following Machine Learning models are trained in this study: 

 
1. Random Forest (RF) 

 
2. K-Nearest Neighbouring algorithm (K-NN). 

 
After training the above two models, we set to improve the KNN model. 

 
Python Libraries import, dataset evaluation and cleaning 

 
We used Jupiter Notebook for all the work done in this study. Pandas, Numpy and other 

Python libraries are imported and used. We cleaned and evaluated the dataset so that 

it would be ready for use for the two models developed in this study. 

 
 

 

 
Figure 3 Importing Python Libraries 

 
The dataset had 104 345 rows and 23 columns. The amount of the dataset was too 

much for the models to train and we ran into memory errors and therefore reduced the 

dataset to 70 000 as shown below. 
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Figure 4 Full Dataset Rows and Columns 
 
 
 
 

 
Figure 5 Reduced Dataset Rows and Columns 

 
From the reduced dataset, we have 43.3% of packets which are normal and 56.7% of 

malicious packets as shown below. 
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Figure 6 Normal and Malicious Packets 

 
 

 
The packets were sent from 19 IP addresses with each sender having several 

requests. 
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Figure 7 Number of Packets per IP address of the sender 

 
For our dataset to be correctly trained, all entries had to be integers. We transformed 

the protocol column to numeric values as shown in Figure 7: 

 

 
Figure 8 Changing protocols names to numeric values 

 
Model (KNN) training 

 
Our dataset is divided into two distinct parts (25% test dataset and 75% training 

dataset). As KNN depends on n-neighbours for training, we trained our model using 5 

n-neighbours. 
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Figure 9 Importing KNeighboursClassifier 

 
Sensitivity, specificity, accuracy, Cohen’s kappa and confusion matrix were used for 

our model evaluation. 

A confusion matrix is a valuable method utilised to provide an overview of a 

classification model's performance. It presents the count of correctly classified and 

misclassified instances. Table 1 shows the confusion matrix table. 

 

 Actual: Yes Actual: No 

Predicted: Yes True Positives(TP) False Positives(FP) 

Predicted: No False Negatives(FN) True Negatives(TN) 

Table 1 Confusion matrix 

 
In this study, we consider two classes: 'attack' and 'normal.' Within the confusion matrix, 

the columns represent the actual classes, while the rows represent the predicted 

classes. By analysing the confusion matrix, we can determine the number of correctly 

and incorrectly predicted results by the model. 

Accuracy is a statistical metric employed to assess the proportion of accurate 

predictions, encompassing both true positives and true negatives. [32]. The formula for 

determining accuracy is as follows: 
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where TP, TN, FP, and FN mean the true positives, true negatives, false positives, and 

false negatives, respectively. In training KNN, we strive to achieve an accuracy rate of 

at least 99%. Our model results in 95% accuracy which shall then be improved later in 

this chapter. 

 
 

 

 
Figure 10 KNN Results when n_neighbors = 5 

 
Random Forest Training 

 
Random Forest is trained using 50 n-estimators and entropy as a criterion. In training 

the Random Forest classifier, we want to achieve an accuracy of at least 99%. Our 

Random Forest (which is trained as shown on figure 10) model resulted in 100% 

accuracy as shown on figure 11: 
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Figure 11 Importing Random Forest Classifier 

 

 
 
 

Figure 12 Random Forest results 

 
Improving KNN 

 
From the results in figure 9, we used 5 n-neighbours and achieved 95% accuracy. To 

improve the Model such that it achieves at least 99% accuracy, we reduce n- 

neighbours. As we already trained the model using 5 n-neighbours, to improve the 

model, we start from 4-neighbours going down until we get 99% accuracy. 

 

 
Figure 13 Training KNN with n_neighbours = 4 

 
Sensitivity and specificity are both essential metrics for evaluating the performance of 

a model. Sensitivity measures the ability of a test to accurately identify true positives 

[33]. The formula for determining sensitivity is as follows: 
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where the count of true positives signifies accurate classification of positive classes, 

while the count of false negatives denotes misclassification of negative classes, i.e., 

their real label is a positive class, but they are classed as a negative class. 

Specificity is a measure of how successfully a test identifies true negatives [33]. The 

formula for determining specificity is as follows: 

 
 

 
 

The count of true negatives represents the accurate classification of negative classes, 

while the count of false positives indicates the misclassification of positive classes, 

meaning that their true label is negative, but they are mistakenly classified as positive. 

As shown in Figure 12, when n_neighbours=4, we achieve 99% sensitivity and 87% 

specificity. That is, KNN correctly predicted 99% of true positives and 87% of true 

negatives. KNN managed to correctly predict 32.18% of the UDP protocol,16.64% of 

the ICMP protocol and 47.64% of the TCP protocol. All these predictions resulted in 

96% accuracy. 

 
 

 

 

Figure 14 KNN Accuracy, Sensitivity and Specificity when n_neighbors = 4 
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To see how the model performed, we calculated the true positives and true negatives 

of the model for each n-neighbours. We calculated these values for each protocol. As 

shown in Figure 15 below, we have 3 true negative rates; for UDP, ICMP and TCP 

respectively. The same applies to positive predicted values, false positive values and 

false negative values. 

 

 

Figure 15 True/False positives and Negatives when n_neighbors = 4 

 
We trained the model with n_neighbours=3 also. 

 
As shown in Figure 15, when n_neighbours=3, we achieve 98.65% sensitivity and 

95.46% specificity. That is, KNN correctly predicted 98.65% of true positives and 

95.46% of true negatives. KNN managed to correctly predict 32.18% of the UDP 

protocol,17.91% of the ICMP protocol and 47.64% of the TCP protocol. All these 

predictions resulted in 97.72% accuracy. 

 

 

Figure 16 Training KNN with n_neighbours = 3 
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Figure 17 KNN accuracy, Sensitivity and Specificity when n_neighbors = 3 

 
To see how the model performed when n_neighbours=3, we calculated the true 

positives and true negatives of the model. We calculated these values for each 

protocol. As shown in Figure 16 below, we have 3 true negative rates; for UDP, ICMP 

and TCP respectively. The same applies to positive predicted values, false positive 

values and false negative values. 

 

 
 
Figure 18 True/False positives and Negatives when n_neighbours = 3 

 
We also trained the model with n_neighbours=2. As shown in Figure 15, when 

n_neighbours=2, we achieve 99.89% sensitivity and 95.15% specificity. That is, KNN 

correctly predicted 99.89% of true positives and 95.15% of true negatives. KNN 

managed to correctly predict 32.18% of the UDP protocol,17.91% of the ICMP protocol 

and 47.64% of the TCP protocol. 
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When n-neighbours is 2, the model achieved 99% accuracy as shown in Figure 18 

below. Therefore, we achieved what we set out to do for this study. 

 

 
Figure 19 Training KNN with n_neighbours = 2 

 

 
Figure 20 KNN Accuracy, Sensitivity and Specificity when n_neighbours = 2 

 
In machine learning, the performance evaluation of a model ensures that it accurately 

predicts outcomes on new data. An extensively utilised approach to evaluate how well 

a classification model performs involves determining the counts of true positives, true 

negatives, false positives, and false negatives for every class or label existing in the 

dataset. In our research, we examined the performance of a model with a n_neighbours 

value of 2 utilising this technique. 

To calculate the true positives and true negatives, we used a dataset that contained 

different protocols and their corresponding labels. We subsequently computed the 

count of accurately classified instances, considering both true positives and true 
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negatives, for each protocol. Figure 19 below shows the true negative rates for UDP, 

ICMP and TCP, respectively. 

The true negative rate is the proportion of negative instances (instances where the 

predicted label was negative and the true label was also negative) that were correctly 

classified by the model. Similarly, we computed the true positive rate, which represents 

the percentage of positive cases (where the predicted label was positive and the actual 

label was also positive) that the model accurately classified. 

Furthermore, we calculated the false positive and false negative rates for each 

protocol. The false positive rate represents the percentage of negative cases that were 

mistakenly classified as positive by the model. Conversely, the false negative rate 

signifies the proportion of positive instances that were inaccurately labelled as negative 

by the model. 

By calculating these performance metrics, we were able to assess the effectiveness of 

the model with n_neighbours=2 in accurately classifying instances for each protocol. 

 

 
Figure 21 True/False positives and Negatives when n_neighbours = 2 

 
In the field of machine learning, the selection of hyperparameters plays a crucial role in 

determining the accuracy of a model. For example, when employing the k-nearest 

neighbour (KNN) algorithm, the decision regarding the number of neighbours to 

consider has a substantial influence on the overall performance of the model. To 
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identify the optimal number of neighbours, it is standard practice to assess the model's 

accuracy across various values of this hyperparameter. 

This research investigated how the accuracy of the KNN algorithm is affected by 

different numbers of neighbours. We tested the algorithm with different values of n- 

neighbours and calculated the corresponding accuracy rates. Our evaluation results 

showed that as the number of neighbours increased, the accuracy of the model 

decreased. 

This trend can be attributed to the observation that as the quantity of neighbours 

increases, the algorithm considers more data points when making predictions. 

However, including more neighbours also increases the likelihood of noise or outliers 

affecting the precision of the forecasts. Furthermore, it is important to recognise that 

increasing the number of neighbours can lead to overfitting, a situation where the model 

becomes excessively tailored to the training data and struggles to generalise well to 

new, unfamiliar data. Figure 23 shows that the more we increase n-neighbours, the 

more the accuracy decreases. 

 

 
Figure 22 Improved KNN accuracy for when n-neighbours = 2,3,4 and 5 

 
The Decision Tree classifier is a popular machine learning algorithm employed for 

classification purposes. In this research, we utilised the Decision Tree model to analyse 

a dataset and assess its accuracy. Our evaluation results (in Figure 24) show that the 

Decision Tree classifier achieved an accuracy rate of 95%. However, this 



42  

accuracy rate is less desirable compared to the 99% accuracy achieved when using 

the K-Nearest Neighbour (KNN) algorithm on the same dataset. 

While the Decision Tree model is often preferred for its interpretability and ease of use, 

it may not always be the optimal choice for complex datasets or problems with a large 

number of features. 

 

 
Figure 23 Decision Tree Results 

 
PDF Curve 

 
Probability Density Functions (PDFs) describe the likelihood that a continuous random 

variable will take on different values. It provides a consistent way to represent the 

probability distribution of a random variable. 

The PDF is defined such that the integral (area under the curve) of the function over a 

given range corresponds to the probability of the random variable falling within that 

range. In other words, the PDF generates information about the likelihood of the 

random variable taking on specific values or falling within certain intervals. 

Figure 24 below shows the probability distribution of our proposed scheme and the 

comparative scheme (decision tree). 
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Figure 24 PDF Curves 

 
For our proposed scheme, we conducted calculations to determine the probability of 

the range P (1 < X < 3) based on a normal distribution with a mean of 0 and a standard 

deviation of 3. The result of our analysis indicates that the cumulative probability of this 

range is 99%. 

This finding implies that if we were to randomly select values from the aforementioned 

normal distribution, there is a strong likelihood of 99% that the selected values would 

fall within the range of 1 to 3. In other words, the probability of observing a value within 

this specific range is highly significant, reinforcing the reliability and predictability of the 

proposed scheme. Such a high probability allows us to have confidence in the 

consistency and stability of the data within this range, providing valuable insights for 

decision-making and analysis within our scheme. 

The PDF value obtained is the density of the distribution within the range 1 < x < 3 

which corresponds to the cumulative probability of 99%. The results obtained indicate 

that the model demonstrates a high level of accuracy in correctly identifying positive 

instances (true positives) within the specified range (1 < x < 3). Additionally, the model 

effectively minimizes the occurrence of false positives, ensuring reliable classification 

outcomes. 
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Figure 25 PDF results for our proposed model 

 
This indicates how densely the distribution is populated within this range. However, it 

should be noted that the PDF does not represent the actual probability of specific 

values occurring, but rather the relative likelihood. 

In practical terms, this result suggests that if one were to randomly select values from 

a Gaussian distribution with an average of 0 and a standard deviation of 3, there is a 

high probability (99%) that the selected values would fall within the range of 1 to 3. 

For the comparative scheme, we conducted the same calculations to determine the 

probability of the range P (1 < X < 3) based on a normal distribution with a mean of 0 

and a standard deviation of 3. The result of our analysis indicates that the cumulative 

probability of this range is 85%. 

 

 
Figure 26 PDF results for the comparative scheme 

 
Based on the results obtained from our proposed scheme and the comparative 

scheme, we can conclude that our proposed scheme yielded a PDF P (1 < x < 3) with 

a cumulative probability of 99% when considering a normal distribution with a mean (μ) 

of 0 and a standard deviation (σ) of 3. This indicates a very high likelihood that a 

randomly selected value from this distribution falls within the range of 1 to 3. The 

density of data points within this range is significant, and we can have a high level of 

confidence in the consistency and stability of the data within this interval. The 
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proposed scheme demonstrates strong predictability and reliability in terms of the data 

distribution within the specified range. 

In comparison, the comparative scheme resulted in a PDF P (1 < x < 3) with a 

cumulative probability of 85% under the same conditions of a mean of 0 and a standard 

deviation of 3. 

Therefore, it is advisable to use our proposed scheme which yielded a desirable 

likelihood. 

ROC Curve 

 
A ROC (Receiver Operating Characteristic) curve serves as a visual representation of 

a binary classification model's performance. It illustrates the relationship between the 

true positive rate (TPR) and the false positive rate (FPR) at various threshold values. 

The TPR corresponds to the ratio of correctly identified positive instances by the model, 

while the FPR represents the ratio of negative instances mistakenly classified as 

positive. The threshold value acts as a boundary to differentiate or classify the positive 

and negative classes. 

We can calculate different TPR and FPR values, and plot them on the ROC curve. The 

AUC (Area Under the ROC Curve) serves as a widely used metric to assess the 

performance of a classification model. A value of 1 signifies a flawless classifier, 

whereas an AUC of 0.5 represents a classifier that performs randomly. A higher AUC 

indicates superior classification performance. 

The ROC curve is valuable for comparing the effectiveness of various classifiers or 

different parameter configurations within the same classifier. It visually illustrates the 

model's capacity to differentiate between positive and negative classes, aiding in the 

selection of an optimal threshold value for a specific classification task. 

Figure 25 and Figure 26 below show the ROC curve of our model. In Figure 26, we see 

how our model performed because of the red dotted line below the graph. As the ROC 

curve approaches the top left corner of the plot, our model's performance in classifying 

the data improves. 
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Figure 27 ROC Curve 

 
The effectiveness of a classification model is commonly evaluated using the metric 

area under the Receiver Operating Characteristic (ROC) curve. The ROC curve is a 

graphical representation of the model's performance, with the area under the curve 

(AUC) quantifying the overall performance. AUC values range from 0 to 1, where higher 

values indicate better performance. An AUC of 0.5 represents an average classifier, 

while an AUC of 1 represents a perfect classifier. An AUC of 0 suggests that the 

classifier is always incorrect, while an AUC of 0.5 suggests that the classifier performs 

no better than random chance. By calculating the AUC, we determined the proportion 

of the curve that lies under the plot, providing a measure of the classifier's performance. 
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Figure 28 Clear ROC Curve for our proposed scheme 
 
 

 
Figure 29 AUC Score for our proposed scheme 
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As shown in Figure 28 and Figure 29, our model has the highest AUC (0.905), which 

indicates that it correctly classifies observations and has the highest area under the 

curve. 

 

 
Figure 30 Clear ROC Curve for the comparative scheme 

 
 
 
 
 
 

Figure 31 AUC Score for the comparative scheme 

 
 

ROC results for our comparative scheme is shown on Figure 30 and Figure 31. 

When comparing the two ROC curves, the comparative curve is outperformed by our 

proposed scheme curve. Our proposed scheme curve has a higher AUC value, 

indicating robust overall performance and a superior ability to classify instances 

correctly. 

How to obtain the best k value for the KNN machine learning algorithm using 

the Minimum error method and RandomisedSearchCV: Error Rate for k values 

Given that KNN relies on the selection of k values to determine the number of 

neighbours considered for classifying a query point, determining the appropriate k 



49  

value for training and testing the model can be challenging. As shown above, we tried 

different k values before we could get the one suitable for our data. 

Therefore, in this study, we provide a quick way of finding the best k value with minimum 

error as shown in Figure 32. In the below calculation, the value of i can range from 1 to 

any number, depending on how big the dataset is for training. Then we fit the KNN 

algorithm with every i from the chosen range. Error is the average of all misclassified 

observations. From the results, we can now know which value of k gives the minimum 

error and use that value of k. 

 
 

 

 
Figure 32 Calculating error for k values 

 
 

The k value is an important parameter in K-Nearest Neighbour (KNN) algorithm as it 

determines the number of neighbouring data points used to classify new data points. 

In this study, we evaluated the impact of different k values on the accuracy of the KNN 

algorithm. Through our analysis (From Figure 27 and Figure 27 below), we found that 

the most suitable k value to use is 1, as it produced the least amount of error in 

classification. 

We also observed that as we increased the value of k, the accuracy of the KNN 

algorithm decreased, and more observations were misclassified. This decrease in 

accuracy with the increase in k can be attributed to the smoothing effect that results 

from considering a larger number of neighbours. As more neighbours are considered, 

the decision boundary becomes less distinct, leading to the misclassification of data 

points that lie near the boundary. Our study demonstrates the importance of selecting 
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an appropriate k value when using KNN for classification tasks. Choosing the optimal 

k value is a crucial step in achieving high accuracy in KNN classification. 

 

 
Figure 33 Error Rate for k Values 

 

 

 
Figure 34 k values using randomized Search CV 
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The manual way of finding k-values vs. using the Minimum error method and 

RandomisedSearchCV 

Finding the optimal k value for classification purposes can be a time-consuming task. 

However, employing the minimum error method and randomisedSearchCV technique 

significantly accelerates this process compared to the traditional approach of 

attempting various k values and observing their corresponding classification accuracy. 

Utilising the minimum error method and randomisedSearchCV, the search for an 

appropriate k value for our specific dataset merely required a mere 1 minute, whereas 

employing the manual method necessitated 2 minutes for each attempt, resulting in a 

cumulative duration of 10 minutes. 

By leveraging the minimum error method and randomisedSearchCV together, the 

search for an optimal k value becomes significantly faster and less cumbersome. 

These methods streamline the process by automatically evaluating a subset of k values 

and quickly identifying the one that leads to the most accurate classification results. 

Consequently, this approach saves valuable time and computational resources, 

allowing for more efficient model optimisation. 

Figure 35 below shows the time taken to find k values using our dataset. 
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Figure 35 Manual way of finding K-values vs. using Minimum error method and 

RandomisedSearchCV. 

DISCUSSION 

In this study, we trained and tested two models, Random Forest (RF) and K-Nearest 

Neighbours model (KNN). We worked on improving KNN since RF resulted in 100% 

accuracy. 

We used accuracy, sensitivity, and specificity (True Negative rate), Cohen’s kappa 

and confusion matrix to analyse the performance of the KNN model. 

 
KNN with n_neighbours = 5 gives 95% accuracy, which we worked on improving in this 

study and showed the final results in Figure 23. This study shows that KNN prediction 

improves (gives much better accuracy) when we decrease n_neighbours. Figure 23 

shows that KNN decreases accuracy whenever we increase n_neighbours. When 

n_neighbours = 2, KNN results in 99% accuracy. Therefore, we can conclude that using 

n_neighbours = 1 results in KNN predicting all values with 100% accuracy and that 

detecting DDoS using our findings on KNN can help better the model’s accuracy. 
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When improving KNN (using n_neighbours less than 5) we achieve sensitivity and 

specificity that falls within the range of 95%- 98% from which we can then conclude that 

our model is significantly superior and excellent. 

Cohen’s Kappa is a test used to measure the agreement between two raters. In 

Cohen’s Kappa, the degree of agreement between two raters is calculated on a scale 

of 0 to 1, with 1 being perfect agreement and 0 being no agreement at all. The higher 

the Cohen’s Kappa score, the greater agreement between the two raters. In this study, 

we used Cohen’s Kappa to analyse the performance of our model. 

The following picture represents the interpretation of Cohen Kappa: 
 
 

 

Figure 36 Interpretation of Cohen Kappa Score 

 
Cohen’s kappa of our models is 0.98 which falls within the range of 0.81- 0.99. As 

indicated in Table 3.1, our model is rated as good. The accuracy, precision, sensitivity, 

and specificity scores fall in the range of 0.8-1 and according to Figure 25, our model 

is rated as excellent. 

CONCLUSION 

In conclusion, the results of our study show that the improved K-NN algorithm with a 

n_neighbours value of 2 has a higher accuracy rate of 98.88% compared to the 

Decision Tree classifier, which had an accuracy rate of 95%. 

The results of this study provide compelling evidence that improving the K-NN classifier 

can indeed lead to a substantial improvement in the detection and mitigation 
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of Distributed Denial of Service (DDoS) attacks within Software-Defined Networks 

(SDNs). Through experimentation and fine-tuning of various parameters, we observed 

notable enhancements in accuracy and responsiveness. These findings hold 

significant implications for the field of network security, as a more robust and efficient 

DDoS detection system can strengthen the resilience of SDNs against malicious 

threats. Moreover, the research contributes valuable insights into the optimization of 

machine learning models in practical network security applications, highlighting the 

potential for further advancements in the ever-evolving landscape of cybersecurity. 

Based on these findings, we can confidently conclude that KNN is a more suitable 

classification algorithm for the dataset under consideration. This study highlights the 

importance of selecting the appropriate classification algorithm based on the specific 

problem and dataset, as the accuracy of the model can significantly impact its overall 

performance. Further research is recommended to explore other factors that may 

impact the performance of these algorithms and to validate these results on other 

datasets. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

INTRODUCTION 

In this chapter, we provide a conclusion to the research presented in this thesis, 

followed by recommendations for future research work in this area. This study aimed 

to investigate the detection and mitigation of DDoS attacks in the SDN environment. 

We presented a comprehensive literature review, followed by the proposed DDoS 

detection and mitigation framework. We then evaluated the model’s performance 

against various types of DDoS attacks. 

Summary on how the objectives where achieved: 
 

We commenced by conducting a thorough literature review to understand the existing 

knowledge and research related to DDoS attacks in SDN. Familiarizing ourselves with 

the key concepts, technologies, and security measures in SDN. 

We followed these steps to achieve the objectives: 

 
1. Problem Definition: Clearly defining the classification problem to be addressed. 

2. Data Collection and Preprocessing: Gather relevant data for your classification 

task. 

3. Data Splitting: Split the dataset into training, validation, and test sets. 

4. Feature Selection/Extraction: Identify relevant features and perform feature 

selection or extraction if needed to reduce dimensionality and improve model 

performance. 

5. Classifier Implementation: Implement Random Forest and KNN classifiers using 

appropriate libraries or frameworks. 

6. Model Training: Train both classifiers using the training data. 

7. Validation: Evaluate the classifiers on the validation set to choose the best- 

performing model. Metrics like accuracy, precision, recall, F1-score, and ROC- 

AUC. 

8. Model Comparison: Compare the performance of Random Forest and KNN 

classifiers with that of the Decision Tree classifier. 

9. Testing: Evaluate the selected models. 

10. Results Analysis: Analyze the results obtained from testing. 
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11. Visualization: Visualize the classification results using appropriate plots (e.g., 

confusion matrices, ROC curves) to provide a clear understanding of model 

performance. 

12. Conclusion: Summarize findings regarding the effectiveness of Random Forest 

and KNN classifiers for this work. Discuss which model performed better and 

why. 

13. Report and Documentation: Create a detailed report or documentation of the 

investigation, including methodology, results, visualizations, and conclusions. 

 

 
RECOMMENDATIONS 

While the proposed framework is effective in detecting DDoS attacks, there is still work 

that could be further explored in this area. Below are some potential areas for future 

research: 

1. Multi-domain mitigation: This entails expanding the proposed framework to 

include multiple SDN domains to provide complete protection against 

coordinated DDoS attacks. 

2. Real-world validation: This entails evaluating the proposed framework in a real- 

world SDN environment to ensure its reliability and scalability. 

In summary, the research presented in this study provides a foundation for future 

research in the area of DDoS mitigation in the SDN environment. With the continued 

growth of SDN and the increasing frequency and severity of DDoS attacks, research in 

this field could practically ensure the security and reliability of our networks. 

FINAL CONCLUSION 

Detecting and mitigating DDoS Attacks is a complex task. At the beginning of this 

research, we aimed to detect and mitigate DDoS attacks from SDN. We used the 

downloaded data which was generated from SDN. We cleaned the data and prepared 

it for model training. We, therefore, trained the data using KNN and RF. 

After training both KNN and RF, we found that it is still not entirely satisfactory. Hence, 

to improve the detection rate further, we proposed using k-neighbours of 5 when 

training KNN. Our approach is based on KNN (n=5) algorithm with weighted voting. 
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In this study, we did not integrate RF and K-NN classifiers for several compelling 

reasons. Firstly, both RF and KNN are standalone machine learning algorithms, each 

with its own strengths and characteristics. Trying to integrate them into a single model 

led to complexity and processing overhead. Secondly, RF is an ensemble method that 

operates by aggregating the predictions of multiple decision trees, while KNN relies on 

instance-based learning. Combining these distinct approaches in a coherent and 

effective manner presents considerable challenges, including coordinating different 

decision-making processes and handling varying data requirements. 

Our results show that the improvement of K-NN has the best performance among all 

the approaches considered in this thesis. 
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