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Abstract 
 

Sarcasm detection is a challenging task in natural language processing (NLP) that has 

received significant attention in recent years. Sarcasm is a form of indirect speech in 

which the speaker says the opposite of what they mean. It can be used to express a 

variety of emotions, such as humour, irony, or contempt. Sarcasm is often difficult to 

detect, especially in written text, because it often relies on context and the speaker's 

intent. Recurrent neural networks (RNNs) have been shown to be effective in sarcasm 

detection, but there is still room for improvement. In this work, we propose a stacking 

and weighted average ensemble model using simpleRNN, LSTM, and GRU as base 

models for sarcasm detection. The news headline dataset was used in the study. The 

dataset contains sarcastic and non-sarcastic labels for the headlines, and contains a 

total of 55325 headlines, the dataset is split into 80% (44260) testing and 20% (11065) 

validation. The aim of this study was to develop a model to detect sarcasm in political 

speech using Recurrent Neural Networks, incorporating sarcasm detection into 

sentiment analysis for political text can significantly enhance the accuracy and depth 

of sentiment understanding. The results suggest that the ensemble models outperform 

individual neural network models, with the two-level stacking model achieving the best 

overall performance. 

 

Key-words: Sarcasm detection, sentiment analysis, Deep learning, SimpleRNN, 

LSTM, GRU, ensemble, stacking, weighted average. 
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1 Chapter 1: Introduction 
 

1.1 Introduction  
 

 

Sarcasm, is a form of irony, entails the use of words to convey a meaning opposite to 

their intended sense. Detecting sarcasm, especially in written form, proves challenging 

as it hinges on the reader's comprehension of context and the speaker's intent. 

Recurrent Neural Networks (RNNs), a category of artificial neural networks, prove 

highly adept at sarcasm detection owing to their capacity to grasp long-range 

dependencies in data. This attribute is crucial for understanding sentence context and 

effectively identifying instances of sarcasm. 

Detecting sarcasm in text, improves the understanding of sentiment and sentiment 

analysis models. [1] Sarcasm is a significant challenge for sentiment analysis, as it 

can lead to misinterpretations of the intended sentiment of a piece of text [2]. This is 

because sarcasm often involves using language that expresses the opposite of the 

intended meaning, and this can be difficult for machines to detect without a deep 

understanding of the context and nuances of human language.  

Sentiment analysis, alternatively referred to as opinion mining, involves the 

identification, extraction, quantification, and examination of emotional states and 

subjective content within text. This field, a subset of natural language processing 

(NLP), seeks to comprehend the prevailing sentiment expressed in text, discerning 

whether it is positive, negative, or neutral. The applications of sentiment analysis span 

diverse areas such as monitoring social media, analysing customer feedback, and 

managing online reputation[3]. 

 

Politicians frequently employ sarcasm as a means of conveying their messages, 

posing a difficulty for sentiment analysis tools in accurately comprehending them. 

Sarcasm hinges on the deployment of irony and mockery to express the opposite of 

the literal meaning of words, creating a challenge for sentiment analysis tools to 

discern. [4] In response to this issue, researchers are actively devising novel 
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techniques for detecting sarcasm, aiming to integrate them with sentiment analysis. 

These methods are designed to pinpoint and classify sarcastic statements, thereby 

enhancing the precision of sentiment analysis in the realm of political discourse. 

Although sarcasm serves as a potent tool in political communication, its complexity 

poses challenges for comprehension. The incorporation of sarcasm-detection 

capabilities into sentiment analysis tools holds the potential to deepen our 

understanding of political discourse and refine the public's perception of political 

figures. 

Sarcasm detection is a challenging task, as it requires understanding the context and 

nuances of human language. However, recent advances in natural language 

processing (NLP) have made it possible to develop models that can accurately detect 

sarcasm with a high degree of accuracy. 

 

Recurrent neural network structures that demonstrate efficacy in detecting sarcasm 

include SimpleRNN, LSTM, and GRU. These designs excel in capturing extensive 

textual dependencies, a crucial aspect for comprehending the nuances of sarcasm 

[5][6][7], However, relying solely on SimpleRNN, LSTM, and GRU may not maximise 

accuracy in sarcasm detection. Employing ensemble learning, a technique that 

amalgamates predictions from various models, proves instrumental in substantially 

enhancing the overall performance of these models. 

Ensemble methods enhance the overall accuracy of predictions by combining the 

outputs of multiple machine learning models. Two widely used ensemble techniques 

are stacking and weighted average. Stacking achieves this by training a new model to 

discern relationships between the predictions of various base models. On the other 

hand, weighted average combines predictions by calculating a weighted mean, with 

weights determined from the performance of base models on a separate validation 

set. This research uses a sarcasm detection model that integrates RNNs with 

ensemble methods. 

The subsequent sections are structured as follows: Section 2 delves into relevant 

studies on sarcasm detection. In Section 3, our proposed model is intricately detailed. 

The experimental results are outlined in Section 4. Finally, Section 5 provides the 

conclusion to this work. 
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1.2 PROBLEM STATEMENT. 
  

Political discourse thrives on wit, but deciphering genuine humor from veiled criticism, 

often delivered through sarcasm, can be challenging. Accurately detecting sarcasm is 

crucial for understanding the true intent behind political statements[8], shaping public 

opinion, and mitigating the spread of misinformation. However, current methods 

utilizing sentiment analysis often misinterpret sarcastic language, leading to skewed 

interpretations and hampered communication. 

The ability to automatically detect sarcasm in political speech holds immense 

significance[9]. It can enhance understanding, combat misinformation, and shape 

public opinion. While sentiment analysis tools exist, they often struggle with nuanced 

language like sarcasm, leading to misinterpretations[10][3]. The challenge lies in 

capturing context, domain specificity and data limitations 

To address these challenges, this study aims to develop a robust model for detecting 

sarcasm in political speech using Recurrent Neural Networks (RNNs). The research 

will focus on: 

• Comparing RNN architectures: Implementing and evaluating the performance 

of SimpleRNN, LSTM, and GRU models to identify the most effective 

architecture for sarcasm detection. 

• Ensemble learning: Leveraging ensemble learning techniques like stacking to 

combine predictions from multiple deep learning frameworks, potentially 

improving overall accuracy. 

• Weighted average ensemble: Investigating the effectiveness of combining 

predictions from individual RNN models through a weighted average ensemble, 

potentially capturing the strengths of each approach. 

By overcoming the challenges of sarcasm detection in political speech, this research 

has the potential to significantly improve our understanding of political discourse, 

combat misinformation, and shape public opinion in a more informed and nuanced 

manner. 
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1.3 MOTIVATION. 
 

Sarcasm is a type of humour or insult that uses insincere remarks [1]. Politicians often 

use sarcasm to mock the opposition party. Sarcasm is difficult to detect in written 

communication because there are no-nonverbal signals such as body language or 

tone of voice [11]. 

The issue of sarcasm has gained tremendous attention from Linguistics [12], Building 

computer models for the automatic detection of sarcasm, on the other hand, is still in 

its early stages. In earlier attempts to identify sarcasm in texts, pragmatic and lexical 

signs like interjections, punctuation, and emotional changes were considered because 

they are important indicators of sarcasm [13].  

Previous attempts to detect sarcasm in text have used pragmatic and lexical features 

like interjections, punctuation, and emotional shifts. More recent works has used 

machine learning approaches as Naive Bayes, Support Vector Machines, and 

Decision Trees (DT), achieving accuracies of 51%, 64%, and 59%, respectively. 

This study proposes a deep learning approach to sarcasm detection using Recurrent 

Neural Networks (RNNs). RNNs are a type of neural network that can process 

sequences of inputs, making them well-suited for sarcasm detection, which is often 

context-dependent. 

RNNs have two main advantages: they can remember information over time and they 

can be used in conjunction with convolution layers to generate an effective pixel 

neighbourhood. However, RNNs can also suffer from gradient vanishing and explosion 

problems. The Long Short-Term Memory (LSTM) model solves these problems. 

Existing attempts include, rule-based systems, lexicon base approaches, supervised 

machine leaning (SVM). 

Rule based systems: [14] These rely on predefined rules like presence of exclamation 

marks or negation, often lacking flexibility and context awareness. 

Lexicon-based approaches: [15],[16] Uses dictionaries of sarcastic phrases, but 

struggle with novel expressions and domain specificity. 
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Supervised machine learning: [17] Train models on labelled data, but require large, 

annotated datasets and struggle with generalization. 

 

 

1.3.1 AIM. 
 

The aim of this study is to develop a model to detect sarcasm in political speech using 

Recurrent Neural Networks. 

 

1.3.2 OBJECTIVES. 
 

The objectives of the study are the following 

I. Implement and compare the performance of Simple Recurrent Neural Network 

(SRNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) 

for sarcasm detection in news headlines. 

II. Implement ensemble learning techniques, including one-level, two-level, and 

three-level stacking models, to combine predictions from multiple deep learning 

frameworks. 

III. Investigate the effectiveness of combining predictions from SimpleRNN, LSTM, 

and GRU through a weighted average ensemble model. 

IV. Evaluate model performance using standard metrics such as accuracy, 

precision, recall, and F1 score. 

 

1.3.3 RESEARCH QUESTIONS. 
 

I. How does the performance of SimpleRNN, LSTM, and GRU compare for 

sarcasm detection in news headlines? 

II. How effective are one-level, two-level, and three-level stacking models in 

combining predictions from multiple deep learning frameworks for sarcasm 

detection? 
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III. Is a weighted average ensemble model effective in combining predictions from 

SimpleRNN, LSTM, and GRU for improved sarcasm detection? 

IV. How do the different models compare in terms of accuracy, precision, recall, 

and F1 score? 

 

 

1.4 METHODOLOGY. 
 

The sarcasm detection methodology begins with data collection. The news headline 

dataset for this study was collected from Kaggle [18]. Once the data was collected, it 

was pre-processed to make it suitable for machine learning[8]. The pre-processing 

involved removing stop words, numbers, non-English words, symbols, punctuation, 

and emojis, then tokenising the text, and stemming the words[11],[19],[20]. Next, 

feature extraction is performed to convert the text data into a numerical representation 

that will be used by the deep learning model. This is achieved by using Glove word 

embedding[1][18]. In the concluding phase, a model for sarcasm classification is 

developed to ascertain whether a given text exhibits sarcasm. Diverse machine 

learning algorithms, including simpleRNN, LSTMs, and GRUs [20],[21]. are employed 

for this purpose. To enhance the performance of the sarcasm classification model, an 

ensemble approach is implemented, amalgamating the predictions from various 

models. 

 

1.5 SCIENTIFIC CONTRIBUTION. 
 

The development of sarcasm detection models for political speech provides new 

insights into politicians' communication strategies, the construction of political 

narratives, and the tactics used to persuade and mobilise voters. These models also 

enable the quantitative analysis of public sentiment in response to political statements, 

contributing to a data-driven understanding of how political discourse influences public 

opinion. Sarcasm detection research in politics validates rhetorical theories regarding 

the persuasive power of language and has implications for political journalism and 

media analysis by aiding in the accurate portrayal of politicians' remarks. Furthermore, 
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this research drives the development of advanced natural language processing (NLP) 

techniques, which have broader implications for sentiment analysis, opinion mining, 

and discourse analysis. 

 

1.6 AVAILABILITY OF RESOURCES. 
 

The University of Limpopo’s Department of Computer Sciences provides the 

necessary resources and infrastructure, including software to undertake this 

research. 

 

1.7 ETHICAL CONSIDERATION. 
 

Since the analysis would be based on publicly accessible data, no ethical approval is 

needed.  However, all the work that will be used will be properly referenced.  

 

 

 

 

 

 

 

 

2 CHAPTER 2: Literature review 
 

2.1 INTRODUCTION 
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Identifying sarcasm is a significant issue in natural language processing (NLP) 

because it constitutes a type of figurative language where words convey a meaning 

contrary to their literal interpretation. Despite human proficiency in discerning sarcasm, 

machines face difficulties in accurately detecting it within natural language text. The 

applications of sarcasm detection span sentiment analysis, social media analysis, and 

various domains, driving ongoing research in NLP to address this challenge. 

Recent progress in deep learning has resulted in notable enhancements in sarcasm 

detection. A prevalent deep learning strategy for identifying sarcasm involves 

leveraging word embedding. In a notable contribution, [22] introduced a sarcasm 

detection model for tweets that utilises word embedding trained on an extensive 

corpus of unlabelled data. The model demonstrated cutting-edge performance in this 

domain. 

Another deep learning approach that has been widely used for sarcasm detection is 

the use of recurrent neural networks (RNNs). [23] proposed a bidirectional LSTM with 

an attention mechanism for sarcasm detection in tweets. The model outperformed 

several baselines on the SemEval-2017 Task 4A dataset. 

Convolutional neural networks (CNNs) have also been used for sarcasm detection. 

[24] proposed a CNN-based model that uses word embedding and character-level 

embedding for sarcasm detection in tweets. 

In this review of the literature, we provide an overview of recent advances in sarcasm 

detection. 

2.2 BACKGROUND 
 

Sarcasm constitutes a form of figurative language where words or expressions are 

employed to communicate a meaning distinct from, and at times opposite to, their 

literal interpretation. While humans can readily grasp sarcasm within a given context, 

it poses a challenge for natural language processing (NLP) systems. The intricate and 

frequently ambiguous nature of sarcasm makes its detection challenging for these 

systems. 

Sarcasm detection has become an active area of research in NLP, with various 

approaches proposed over the years. Traditional approaches to sarcasm detection 
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relied on hand-crafted features and rule-based classifiers, but these methods were 

limited in their ability to capture the nuances of sarcasm. In recent years, deep learning 

approaches have shown promise in detecting sarcasm, leveraging the power of neural 

networks to learn representations of language that can capture the complex patterns 

and contextual cues that signal sarcasm. 

Several studies have explored different deep learning architectures for sarcasm 

detection, including RNNs and CNNs [22], and, more recently, transformer-based 

models [25]. Other studies have focused on developing novel features and 

representations for sarcasm, such as sentiment embedding (e.g.,[16]) and irony-

specific lexicons [15]. 

In general, sarcasm detection remains an important challenge in NLP, with potential 

applications in sentiment analysis, and social media analysis. In the following sections, 

we will review some of the key studies on sarcasm detection using deep learning and 

discuss their findings and contributions to the field. 

 

 

2.3 RELATED WORK 
 

 

2.3.1 UNEXPECTEDNESS AND CONTRADICTORY FACTOR APPROACH 
 

This approach is based on the idea that sarcasm often involves saying something that 

is unexpected or contradictory. For example, if someone says "That's a great idea" in 

a sarcastic tone, they are actually saying that they think the idea is bad. This approach 

uses rules and features to identify these unexpected or contradictory elements in text. 

Researchers [15],[26] have explored the detection of irony and sarcasm in social 

media by analysing the presence of unexpectedness and contradiction in expressions 

in figurative language. According to [27], unexpectedness is an essential aspect of 

irony and humour that refers to imbalances or contradictions in a given context. 
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To measure contextual imbalance, the researcher [26] evaluated the similarity and 

semantic relatedness of concepts. For example,[28] used the American National 

Corpus Frequency Data source to measure unexpectedness and applied random 

forests (RF) and decision trees (DT) classifiers to distinguish sarcastic tweets from 

tweets related to politics, education, and humour. Similarly [29] viewed 

unexpectedness as an emotional imbalance between words in the text, and [17] used 

support vector machines (SVM) to identify sarcasm by identifying contradictions in 

tweets as features. 

While unexpectedness and contradictory factors are valuable elements of sarcasm, 

relying solely on them has limitations. Some key shortcomings are: 

• Context dependency: Sarcasm often hinges on shared context and 

understanding between speaker and listener. This approach might struggle with 

references, inside jokes, or cultural nuances that aren't explicitly stated. 

• Overlooking non-contradictory sarcasm: Sarcasm can exist without blatant 

contradictions. For example, deadpan delivery or subtle exaggerations might 

not be flagged by this approach. 

• Literal contradictions not always sarcastic: Sentences with literal contradictions 

might not be intended as sarcasm, leading to false positives. 

Despite the limitations mentioned previously, the unexpectedness and contradictory 

factor approach to sarcasm detection also holds some key strengths: 

• Simplicity and interpretability: This approach is relatively straightforward to 

understand and implement, making it accessible to researchers and developers 

without extensive expertise in natural language processing. 

• Focus on core elements of sarcasm: Unexpectedness and contradiction are 

indeed fundamental aspects of many forms of sarcasm, making this approach 

relevant to a significant portion of sarcastic expressions. 

• Potential for efficiency: By focusing on specific linguistic features, this approach 
can potentially be computationally efficient, making it suitable for real-time 
applications or resource-constrained environments. 
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2.3.2 CONTENT-BASED APPROACH 
 

This approach uses sentiment analysis and word embeddings to identify sarcasm. 

Sentiment analysis is a technique that can be used to determine the emotional tone of 

a text. Word embeddings are a way of representing words as vectors in a high-

dimensional space. This approach can be effective for identifying sarcasm that is 

expressed through sentiment or word choice. 

In the field of computer science, researchers have explored diverse approaches to 

detect sarcasm in both speech and text, a study by [30] delved into prosodic, spectral, 

and contextual clues, while another [14] investigated oral and gestural cues, including 

emoticons, onomatopoeic expressions, and punctuation marks, for identifying 

sarcasm in user-generated content. Additional efforts included [31] utilizing linguistic 

patterns such as sarcastic hashtags, and [32] employing support vector machines and 

logistic regression with sarcastic hashtags and emoticons. Another study by [33] 

discovered that sarcasm is often associated with positive sentiment words and 

negative situations. Furthermore [34] explored a transfer learning framework 

leveraging sentiment classification and emotion detection as intermediate tasks to 

detect sarcasm. 

Recent research has underscored the significance of contextual signals alongside 

lexical and syntactic information for sarcasm detection[35]. Studies such as 

[13],[36],[37] utilized various features, including lexical, pragmatic, implicit, and explicit 

context incongruity, to identify sarcasm. In explicit scenarios, these studies integrated 

elements into the text to identify failed sentimental expectations. 

Another approach suggested by [38] introduced content-based feature selection (FS) 

technique for categorizing sarcastic text. This method involves a two-stage FS strategy 

to identify highly distinctive characteristics. Classic FS approaches such as mutual 

information (MI), chi-square, and information gain (IG) are used in the initial selection 

of acceptable feature subsets. These subsets are then refined in the subsequent 

phase, employing k-means clustering methods to choose highly distinctive 

characteristics from a set of matching features. Support vector machine (SVM) and 

random forest (RF) classifiers are subsequently employed to categorize the identified 

characteristics. 
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In summary, a variety of methods have been employed for sarcasm and irony 

detection in text and speech, encompassing prosodic, spectral, and contextual clues, 

investigation of oral or gestural signals, use of linguistic patterns, and consideration of 

lexical, pragmatic, implicit, and explicit context incongruity. Recent emphasis has been 

on models that incorporate contextual signals alongside inherent lexical and syntactic 

information in the text. Machine learning techniques, particularly support vector 

machines (SVM) and random forest (RF) classifiers, have been widely utilized in 

sarcasm and irony detection. Feature selection (FS) techniques like mutual 

information (MI), chi-square, and information gain (IG) have also been proposed to 

identify highly distinctive characteristics[39]. 

Content-based approaches for sarcasm detection offer valuable insights, but they 

possess several weaknesses: 

• Overreliance on explicit cues: They often heavily rely on explicit markers of 

sarcasm like exclamation marks, emojis, or specific keywords like "obviously" 

or "just kidding." This makes them miss implicit sarcasm that relies on context, 

shared knowledge, or subtle linguistic cues. 

• Ignoring context and intent: They primarily focus on the text itself, neglecting 

the broader context of the conversation or the speaker's intent. This can lead 

to misinterpretations, especially in situations where sarcasm depends heavily 

on shared experiences or cultural references. 

• Sensitivity to linguistic variations: They can be susceptible to variations in 

language like dialect, humor styles, and cultural nuances. This can lead to 

misunderstandings, especially when dealing with international audiences or 

diverse communication styles. 

 

 

While content-based approaches for sarcasm detection have limitations, they also 

possess several strengths that make them valuable tools in various contexts: 

• Objectivity and consistency: By relying on predefined features and rules, they 

can offer objective and consistent detection of sarcasm, reducing subjectivity 

and human bias in interpretation. 
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• Adaptability with domain-specific knowledge: When combined with domain-

specific knowledge or dictionaries, they can be adapted to handle slang, jargon, 

and specific types of sarcasm relevant to a particular field or community. 

• Automation Potential: Their rule-based nature allows for automation and 

integration into larger systems for tasks like sentiment analysis or chatbots, 

potentially improving their overall accuracy. 

 

  

2.3.3 CONTEXT-BASED APPROACH 
 

This approach takes into account the context of a text in order to identify sarcasm. For 

example, a statement that is sarcastic in one context may not be sarcastic in another 

context. This approach can be more effective than the other approaches at identifying 

sarcasm that is subtle or implied. 

Studies have indicated the challenging nature of sarcasm detection when relying 

solely on the content of a statement, emphasizing the need for additional context. In 

one study, [40] explored various Long Short-Term Memory (LSTM) network 

configurations to model both the conversational context and the sarcastic response. 

Their findings revealed that the conditional LSTM network and LSTM networks 

incorporating sentence-level attention to both context and response surpassed the 

performance of the LSTM model considering only the response. Another approach, 

proposed by [41], involved a dual-channel convolutional neural network that 

considered both the semantics and emotive context of the target text, supplemented 

by SenticNet to provide common-sense information to the LSTM model. Additionally, 

[42] demonstrated that annotators often rely on context to accurately identify sarcastic 

comments, while machine learning models tend to misclassify such comments that 

necessitate additional context. 

In linguistics, an investigation of the relationship between context incongruity and 

sarcasm [13] developed a computational method that employs context incongruity as 

the basis for identifying sarcasm.[43] suggested a context-based feature approach to 

detect sarcasm using the deep learning model, BERT, and traditional machine 



14 | P a g e  
 

learning. [44] focused on sarcasm detection in tweets using both Convolutional Neural 

Network (CNN) feature sets obtained from the architecture and specially designed 

handcrafted feature sets together with deep learning-based feature extraction. 

The study conducted by [45] used Support Vector Machine (SVM) for sarcasm 

detection, but they did not consider contextual information about the author or the 

tweet to improve the performance of sarcasm detection. However, since tweets are 

often part of a stream of posts, a wider context, such as a conversation or topic, is 

always available. Another study by [46] investigated different pretrained language 

representation models (PLRMs) such as BERT, RoBERTa, and others using Twitter 

data. They tested various PLRMs with and without contextual information, and found 

that by considering the prior three most recent utterances, the algorithm could better 

classify a dialogue as sarcastic or not. 

In a study by [47] they compared the performance of the BERT, BiLSTM, and SVM 

classifiers in detecting sarcasm in conversations. The study aimed to explore the role 

of conversational context in identifying sarcasm by manipulating the amount of context 

provided with the response. The context was varied from no context to the latest one, 

two, or three utterances, or all utterances. The results showed that incorporating the 

last utterance of the conversation along with the response improved the performance 

of the classifiers on the Twitter dataset. 

While context-based approaches have significantly improved sarcasm detection over 

purely content-based methods, they still face limitations. Here are some of the key 

weaknesses: 

• Data dependence: Limited training data most models require large amounts of 

labelled data with clear context annotations, which can be expensive and time-

consuming to collect. Limited data can lead to overfitting and poor performance 

on unseen contexts 

• Contextual ambiguity: Incomplete context: Not all relevant context is always 

available. In real-world scenarios, information like shared history, cultural 

references, or nonverbal cues might be missing, making accurate interpretation 

difficult.  
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• Multiple interpretations: The same context can be interpreted in different ways 

depending on individuals' background knowledge and understanding. This 

ambiguity can lead to misinterpretations of sarcasm. 

 

Strengths of using context-based approaches for sarcasm detection: 

• Improved accuracy: By considering the surrounding context, these approaches 

can overcome the limitations of solely relying on the content of a statement, 

which can often be ambiguous or misleading. This leads to a more accurate 

understanding of the speaker's intent and helps identify sarcasm even when it's 

not explicitly stated. 

• Handling ambiguity: Sarcasm often relies on implicit meaning and subtle cues 

that are difficult to capture with content-based methods. Context-based 

approaches can better handle these ambiguities by considering factors like the 

speaker's tone, previous conversation history, and shared knowledge, 

providing a richer understanding of the situation. 

• Modelling complex relationships: By taking into account the interplay between 

words, context, and the speaker's intent, these approaches can model the 

complex relationships underlying sarcasm more effectively. This allows them to 

capture the nuances of humor, irony, and cultural references that are crucial for 

accurate detection 

 

2.3.4 DEEP LEARNING APPROACH 
 

This approach uses neural networks to learn complex patterns in text data. Neural 

networks are a type of machine learning algorithm that can be trained on large 

amounts of data to learn how to perform tasks. This approach can be very effective at 

identifying sarcasm, but it can also be computationally expensive. 

Deep learning approaches for sarcasm detection have been shown to be state-of-the-

art, achieving better performance than traditional machine learning approaches. Deep 

learning models are able to learn complex patterns and representations from raw text 
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data, which is essential for detecting sarcasm, which is often subtle and context-

dependent. Some deep learning models include SimpleRNN, LSTM, and GRU. 

A SimpleRNN represents a category of recurrent neural network architecture utilised 

in deep learning and natural language processing, specifically tailored for handling 

sequential data. While SimpleRNNs boast a straightforward structure, they are 

constrained in capturing long-range dependencies within sequences. This limitation 

may render them less proficient in certain tasks compared to more sophisticated RNN 

variants, such as LSTMs and GRUs, which excel at addressing these challenges. 

LSTM, or Long Short-Term Memory, represents a category of recurrent neural network 

architecture crafted to address the shortcomings of traditional RNNs when confronted 

with lengthy sequences and the challenge of capturing long-term dependencies in 

data. Originally introduced by Sepp Hochreiter and Jürgen Schmidhuber in 1997 [48], 

LSTMs have evolved into a foundational component in diverse applications of deep 

learning, particularly in the realm of natural language processing. 

A Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) architecture 

used in the field of deep learning and natural language processing. It is a variation of 

the traditional RNN that was designed to address some of the issues with standard 

RNNs, particularly the vanishing gradient problem. 

Deep learning approaches have shown promising results for sarcasm detection. One 

common approach is to use RNNs or variations such as LSTM and GRU networks, 

which are specifically designed to handle sequential data. 

In an RNN-based approach, the input is first encoded as a sequence of embeddings 

that represent the meaning of each word or token in the input text. The embeddings 

are then fed into the RNN, which processes them sequentially and updates its hidden 

state at each time step. The final hidden state is then passed to a classifier, such as a 

fully connected neural network, to predict whether the input text is sarcastic or not. 

For example, a study by [23] used an LSTM-based approach to detect sarcasm on 

Twitter. They first pre-process the input text by removing stop words, replacing 

emoticons and slang words with their corresponding meanings, and converting the 

text to lowercase. They then trained an LSTM network on a dataset of sarcastic and 

non-sarcastic tweets, using the embedding of the pre-processed text as input. 
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Another study by [49] proposed a hybrid approach that combines an RNN with a 

Convolutional Neural Network (CNN) to detect sarcasm in Arabic text. They first used 

a CNN to extract features from the input text and then fed the features into an LSTM 

network to capture the sequential context. The final hidden state of the LSTM was then 

passed to a fully connected layer for classification. 

This study presents an ensemble approach for detecting sarcasm in Reddit and Twitter 

responses, part of The Second Workshop on Figurative Language Processing during 

ACL 2020. The ensemble combines four-component models, utilising features like 

sentiment and source (Reddit or Twitter) to determine model reliability. It incorporates 

an LSTM, a CNN-LSTM, an MLP, and an SVM, each with unique features, and 

achieves F1 scores of 67% and 74% on Reddit and Twitter test data using an 

Adaboost classifier. 

In an investigation conducted by [5] , a combination of LSTM, GRU, and CNN was 

employed within an ensemble model, coupled with the refinement of word-embedding 

models such as fastText, Word2Vec, and GloVe. The primary objective was the 

classification of sentiment into positive/negative or sarcastic/non-sarcastic categories. 

Remarkably, the ensemble model exhibited superior performance, achieving an 

accuracy rate of 96% for News Headlines and 73% for Reddit. Notably, the Weighted 

Average ensemble emerged as the most effective, attaining an impressive accuracy 

of approximately 99% and 82% for both datasets. This success contributed to 

heightened precision and stability in the proposed model. 

In general, deep learning approaches for sarcasm detection have shown promising 

results and continue to be an active area of research. However, there are still 

challenges in developing robust and accurate models that can handle the complexity 

and nuance of sarcasm in natural language. 

 

Deep learning offers powerful tools for sarcasm detection, but it's important to 

acknowledge its limitations as well. Here are some key weaknesses: 

• Computational Cost: High training and inference requirements: Training deep 

learning models requires significant computational resources and time. This 

can be a barrier for smaller organizations or applications with limited resources. 
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• Data Dependence: Need for large, labelled datasets: Deep learning models 

thrive on massive datasets for training. Smaller datasets or datasets with 

inaccurate labels can lead to overfitting and poor generalization. Sarcasm is 

often nuanced and subjective, making it challenging to create truly 

representative datasets. 

• Generalizability: Performance drop on unseen data: Models trained on specific 

datasets may not perform well on data from different domains or contexts. This 

can limit their real-world applicability. 

 

 

Deep learning approaches offer several strengths for sarcasm detection, despite the 

weaknesses mentioned previously. Here are some key points: 

• High Accuracy and Performance: Ability to capture complex patterns: Deep 

learning models can analyse large amounts of text data and identify subtle 

patterns and relationships between words, which are crucial for understanding 

sarcasm. This can lead to higher accuracy and performance compared to 

simpler models. 

•  Adaptability to different data formats: Deep learning models can be trained on 

various data formats like text, audio, and video, potentially providing a more 

comprehensive understanding of sarcasm across different modalities. 

• Flexibility and Scalability: Ability to handle large datasets: Deep learning models 

can effectively handle massive datasets, enabling them to learn from diverse 

examples and improve their accuracy. 

• Potential for continuous improvement: Deep learning models can be 

continuously trained and updated with new data, allowing them to adapt to 

evolving language styles and improve their performance over time. 

• Handling Nuance and Context: Advanced architectures like LSTMs: Newer 

deep learning architectures like LSTMs and attention mechanisms can capture 

long-range dependencies and contextual information, allowing them to better 

understand the nuances of sarcasm. 

• Integration with other features: Deep learning models can be combined with 

other features like sentiment analysis or speaker information, potentially 
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leading to a richer understanding of context and improved sarcasm detection 

accuracy. 

 

Approaches Similarities Differences 
1.1.1 UNEXPECTEDNESS AND 

CONTRADICTORY FACTOR 
APPROACH 

Relies on linguistic features 

like negation, exaggeration, 

and incongruity 

Requires manually defined 

rules and features 

1.1.2 CONTENT-BASED 

APPROACH 

Relies on sentiment analysis 

and word embeddings 

May not capture sarcasm that 

is not expressed through 

sentiment or word choice 

1.1.3 CONTEXT-BASED 

APPROACH 

Relies on understanding the 

context of the text 

May require a large amount of 

training data 

1.1.4 DEEP LEARNING 

APPROACH 

Uses neural networks to learn 

complex patterns in text data 

Can be computationally 

expensive 

Table 2.1 similarities and differences of the approaches. 

 

 

2.3.5 WHY DO POLITICIANS USE SARCASM? 
 

Understanding why politicians use sarcasm is essential for analysing their 

communication strategies, persuasive techniques, and the underlying motivations 

behind their statements. 

 

2.3.6 SOUTH AFRICA’S POLITICAL HOSTORY 
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South African political history is a complex and multifaceted subject that spans 

centuries of colonisation, apartheid, and the struggle for democracy.  

The early history of South Africa involves the arrival of the Dutch East India Company 

in the Cape of Good Hope in the 17th century. Scholars have examined the 

motivations, interactions, and consequences of Dutch settlement, as well as the 

impact of colonialism on indigenous communities [50];[51]. 

The nineteenth century witnessed British control over the Cape Colony and the 

subsequent conflicts with the Boers (Dutch settlers). Research has focused on the 

causes and outcomes of the Boer Wars, which ultimately led to the British victory and 

the establishment of British dominance in South Africa [52];[51]. 

The policy of apartheid, a system of legalised racial segregation and oppression, is a 

central theme in South African political history. Scholars have explored the origins, 

development, and impact of apartheid, examining its ideological underpinnings, social 

engineering, and resistance movements [53]. 

The struggle against apartheid involved various forms of resistance, both within South 

Africa and internationally. Extensive research has been conducted on the African 

National Congress (ANC), the Pan Africanist Congress (PAC) and other anti-apartheid 

organisations, as well as the role of leaders like Nelson Mandela, Walter Sisulu, and 

Steve Biko [54]. 

The late twentieth century saw a process of negotiations and political reforms that led 

to the dismantling of apartheid and the establishment of a democratic South Africa. 

Scholars have examined the role of political parties, international actors, and 

transitional justice mechanisms in this transformative period. 

Since the transition to democracy, South Africa has faced numerous challenges, 

including addressing social inequalities, economic development, and political stability. 

Research has explored topics such as the Truth and Reconciliation Commission, land 

reform, socioeconomic disparities, and the role of political parties in shaping the post-

apartheid era [55]. 

 

2.4 SUMMARY 
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The literature review investigates the challenging problem of sarcasm detection in 

natural language processing (NLP) and highlights recent advancements in deep 

learning methodologies. Traditional approaches, relying on hand-crafted features, 

were limited in capturing the nuances of sarcasm. In contrast, deep learning models, 

such as those using word embeddings, recurrent neural networks (RNNs), and 

convolutional neural networks (CNNs), have shown significant improvements in 

detecting sarcasm in various applications like sentiment analysis and social media 

analysis. The review explores approaches that focus on unexpectedness and 

contradictory factors, content-based features, and context-based strategies, 

showcasing the importance of contextual signals in addition to lexical and syntactic 

information for accurate sarcasm detection. The discussion also encompasses a 

variety of deep learning models, including ensemble approaches, highlighting their 

promising results while acknowledging the ongoing challenges in developing robust 

models capable of handling the intricate nature of sarcasm in natural language. 

Beyond sarcasm detection, the literature review briefly touches on the use of sarcasm 

by politicians, emphasizing the importance of understanding their communication 

strategies and underlying motivations. Furthermore, it provides a historical overview 

of South African political history, spanning centuries of colonization, apartheid, and the 

struggle for democracy. The narrative touches upon key historical events such as the 

Boer Wars and the anti-apartheid movement, illustrating the complex and multifaceted 

nature of South Africa's political landscape. 

 

 

 

 

 

 

3 CHAPTER 3: Methodology 
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3.1 Introduction 
 

Sarcasm is complex. It's based on context, tone, and cultural understanding; it's 

difficult for even humans to reliably detect. Recurrent neural networks (RNNs) are 

suitable for this problem because RNNs excel at processing sequential information 

(like the order of words in a sentence). They can be trained to develop an internal 

'memory' that helps them recognize patterns and nuances in language. 

The basic structure of this chapter presents stages for our proposed method, data pre-

processing, word embedding, deep learning frame work, and performance evaluation. 

The news headline dataset was pre-processed, glove applied, models built, 80% of 

the news headline dataset was used for training and 20% for validation. 

 

3.2 Datasets 
 

3.2.1 News headline dataset 
 

In this research, we utilised the news headline dataset for detecting sarcasm [1] , which 

offers distinct advantages compared to other datasets used for sarcasm detection, 

such as those sourced from Twitter [2]. Notably, this dataset exhibits reduced sparsity, 

reducing the likelihood of spelling errors and informal language usage in headlines. 

This characteristic enhances the ease with which machine learning models can glean 

insights from the data. Furthermore, the dataset is more likely to incorporate words 

commonly found in pre-trained language models, enabling researchers to enhance 

their model's performance by leveraging pre-trained embeddings, eliminating the need 

to train their embedding layers from scratch.  The dataset also boasts high-quality 

labels with minimal noise, as headlines are clearly labelled as either non-sarcastic (0) 

or sarcastic (1). Figure 3.1 provides a snippet of the news headline dataset, while 

Figure 3.2 illustrates the distribution of sarcastic and non-sarcastic headlines. The 

dataset is structured with three columns which are Article_link, headline, Is_sarcastic, 

and for experimentation purposes, it was partitioned into training and testing subsets, 

with 80% allocated for training and 20% for testing. 
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• Article_link- This attribute supplies the links to the original news articles, 

facilitating the retrieval of extra information. 

• headline- This field furnishes the headlines of the news articles. 

• Is_sarcastic- If the headline is sarcastic, the value assigned is 1; otherwise, it 

is 0. 

 

  

Figure 3.1 Snippet of the news headline dataset 

 

Figure 3.2 Distribution if sarcastic and non-sarcastic headlines 
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3.2.2 Glove dataset  
 

The word embedding dataset used in this study is a global vector (Glove), glove 

combines the two major model families, global matrix factorisation and local context 

window [56]. The model leverages statistical information by training only on nonzero 

elements in a word-word co-occurrence matrix rather than the entire sparse matrix or 

on individual context window in a large corpus. The Glove used in this study has 

1193514-word vectors. 

 

3.3 Implementation Tools 
 

Sarcasm detection using political speeches was implemented in Google collab using 

python 3, using HP computer with windows 11 Enterprise 64-bit operating system, 

Intel(R) Core (TM) i5-8500 CPU @ 3.00GHz   3.00 GHz processor, and 16,0 GB RAM. 

The programming language used was Python, Python is a high-level, interpreted 

programming language known for its simplicity, readability, and versatility. It was 

created by Guido van Rossum and first released in 1991. Python is designed to be 

easy to learn and offers clear and concise syntax, making it an excellent choice for 

both beginners and experienced developers. Python is considered an excellent choice 

for Natural Language Processing (NLP) for several reasons: 

• Abundant NLP Libraries: Python has a rich ecosystem of NLP libraries and 

frameworks, such as NLTK (Natural Language Toolkit), spaCy, Gensim, 

TextBlob, and more. These libraries provide pre-built tools and functionalities 

for various NLP tasks, saving time and effort when developing NLP 

applications. 

• Machine Learning and Deep Learning: Python is the go-to language for 

machine learning and deep learning. Many popular deep learning frameworks 

like TensorFlow and PyTorch have Python APIs, enabling NLP practitioners to 

leverage neural networks for NLP tasks like text classification, named entity 

recognition, machine translation, and sentiment analysis. 
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• Text Processing Tools: Python offers built-in libraries and third-party libraries 

for text processing, regular expressions, and string manipulation. These tools 

are crucial for cleaning and pre-processing textual data in NLP. 

• Natural Language Toolkits (NLTks): Python's NLP libraries often include 

corpora, lexicons, and pre-trained models that can help with various NLP tasks. 

For example, NLTK provides access to a vast collection of text datasets and 

linguistic resources. 

 

Figure 3.3 shows the Python libraries that were used in this study. 
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Figure 3.3 Python libraries used in the study 

 

i. re (Regular Expressions): 

The ‘re’ library is used to work with regular expressions in Python. It allows you to 

search, match, and manipulate text based on patterns. Regular expressions are used 

for tasks such as pattern matching, text parsing, data extraction, and text manipulation. 

 

 

ii. os 

The ‘os’ library provides functions to interact with the operating system. It allows the 

user to perform tasks such as file and directory manipulation, working with paths, and 

executing system commands. 

iii. time 

The ‘time’ library is used to work with time-related operations. It provides functions to 

measure time intervals and manage time in Python code. The time library is used to 

profile code execution, adding delays, measure performance, and working with 

timestamps. 

iv. nltk (Natural Language Toolkit): 

‘NLTK’ is a comprehensive library for natural language processing (NLP). It provides 

tools and resources for working with human language data. NLTK is used for tasks 

like text tokenization, stemming, lemmatisation, part-of-speech tagging, and more in 

NLP projects. 

v. string: 

The ‘string’ library provides a collection of string constants and functions for string 

manipulation. It is used for tasks like string formatting, character manipulation, and 

text processing. 

vi. NumPy (np): 
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‘NumPy’ is a fundamental library for numerical computing. It provides support for 

arrays, matrices, and various mathematical functions for numerical operations. NumPy 

is used for numerical and scientific computing, including tasks like linear algebra, 

statistical analysis, and data manipulation. 

vii. pandas (pd): 

‘Pandas’ is a data manipulation and analysis library. It offers data structures (e.g., Data 

Frames) and functions for cleaning, transforming, and analysing structured data, and 

it is commonly used for data wrangling, data exploration, and data preparation in data 

science and data analysis projects. 

viii. matplotlib. pyplot (plt): 

‘Matplotlib’ is a data visualisation library, and the pyplot module is used to create a 

wide range of charts and graphs. It is used to create various types of plots, including 

line plots, scatter plots, bar charts, histograms, and more. 

ix. Seaborn (sns): 

‘Seaborn’ is a data visualisation library built on top of Matplotlib. It simplifies the 

process of creating aesthetically pleasing statistical graphics, and it is often used for 

creating visually appealing statistical visualisations, including heatmaps, pair plots, 

and distribution plots. 

x. tensorflow.keras and keras.layers: 

These libraries provide tools for building and training deep learning models using the 

Keras API. They include various types of layers for neural networks, they can use 

these libraries to build neural networks for tasks like image classification, text 

generation, and sentiment analysis. 

xi. ModelCheckpoint: 

The ‘ModelCheckpoint’ callback in Keras allows you to save the best model during 

training based on a specified metric. It is used in deep learning to save model 

checkpoints to resume training from the best model or for model deployment. 

xii. load_model: 
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The ‘load_model’ function is used to load pretrained Keras models from disk. It is used 

when you want to use a pre-trained model for inference or further training. 

xiii. Input, Embedding, SimpleRNN, LSTM, GRU, Dense, Concatenate, Average, 

Lambda: 

These are Keras layers and functions that are used to build complex neural network 

architectures for various deep learning tasks. These layers and functions are used to 

define the structure of neural networks for specific tasks such as text classification, 

sequence-to-sequence tasks, and more. 

xiv. tensorflow.keras.layers.Average: 

This layer of TensorFlow is used to calculate the average of the input data. It is used 

when you need to compute the mean of data as part of a neural network architecture. 

xv. K (from keras): 

The ‘K’ object is the Keras backend, allowing low-level operations and customisations 

within Keras models It is used when you need to define custom operations or loss 

functions within a Keras model. 

 

3.4 Methodology Framework 
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Figure 3.4 Methodology flow chat 

 

 

3.4.1 Data Pre-processing. 
 

Data preprocessing [57],[7],[5] involves converting the raw dataset into a structured 

format, enhancing data efficiency and thereby influencing the performance of 

algorithms. The news headlines underwent multiple filtering processes. Prior to the 

training phase, the dataset underwent preprocessing using the Natural Language 

Toolkit (NLTK). Various procedures were implemented to refine the datasets, 

encompassing the expansion of contractions into full words, removal of numbers, non-

English words, stop words, special characters, and punctuations. Additionally, 

measures such as eliminating duplicate texts, employing tokenization, and ultimately, 

utilising Lemmatisation to derive the lemma of each word post morphological analysis, 

were undertaken to prepare the dataset for further analysis. 

 

3.4.2 Word embedding 
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Word embeddings [58],[59] is a method that translates words into numerical vectors, 

creating distinct representations based on a given body of text. This technique, an 

improvement over traditional approaches like the bag-of-words model, offers the 

advantage of revealing previously unrecognised relationships between words. Unlike 

the bag-of-words model, which produces large, sparse vectors making it 

computationally challenging to cover the entire vocabulary, word embeddings group 

similar words together. Notable techniques for generating word embeddings include 

Word2vec, GloVe, and fastTex [60],[5]. These methods enhance the contextual 

relevance of words by representing them as numerical vectors through embedding 

techniques. Pretrained models encode specific meanings into words, representing 

them in binary form. In this representation, '1' indicates the presence of sarcasm, while 

'0' signifies its absence. The collected data is subsequently analyzed to yield additional 

insights [5]. 

The underlying principle of word embeddings [61] lies in recognising that if a user in 

the training data exhibits a particular personality and frequently posts sarcastic tweets, 

encountering new data featuring a different user with a similar style and, consequently, 

a comparable word embedding allows predictions about the likelihood of sarcasm in 

the new user's tweets. This prediction relies on the similarity between embeddings, 

bypassing the need to scrutinize the content of the new user's tweet. 

Word embeddings present a more efficient and faster approach, facilitating improved 

training and learning from extensive text corpora. This method enables the sharing of 

word representations, leading to the creation of more robust and less common word 

representations. In our study, we utilized publicly available GloVe embeddings [56], 

trained on datasets from Common Crawl and Wikipedia. 

 

3.4.3 Deep Learning Frameworks 
 

Deep learning [7],[5],[62] demonstrates its proficiency in discovering valuable data 

representations tailored to specific tasks. It possesses the ability to extrapolate new 

features from a limited set of training features autonomously, without requiring human 

intervention. Essentially, it actively searches for and identifies additional features that 

have a correlation with the existing ones, eliminating the need to label everything in 
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the dataset. Deep learning models can achieve precision levels that are at the forefront 

of performance, sometimes even surpassing human-level capabilities. These models 

are trained using neural network architectures that comprise numerous layers and 

extensive sets of labelled data. 

To detect sarcasm, we incorporated advanced deep learning techniques like SRNN, 

LSTM, and GRU. The process begins by inputting the preprocessed sequence into a 

pre-trained word embedding layer, which assigns a distinct index to each word in the 

sentence, generating fixed-length vectors. Subsequently, the SRNN, LSTM, and GRU 

layers are employed to capture extended dependencies within the context. The 

pooling layer consolidates the acquired information into a feature dimension, which is 

then converted into a column vector through a flat layer. Ultimately, the inner layer 

handles the classification, concluding the entire neural network procedure. 

 

 

 

3.4.3.1 Simple recurrent neural network (SRNN) 
 

SRNN also known as the Elman network, was proposed by Jeffrey L. Elman in 

1990[63],[62]. Jeffrey L. Elman is a cognitive psychologist and computer scientist who 

introduced this type of recurrent neural network to model sequential data and capture 

dependencies in such data. His work on SRNNs was a significant contribution to the 

field of artificial neural networks and played a foundational role in the development of 

more advanced recurrent neural network architectures like Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) networks. In this, the SimpleRNN layer in 

this code is used to process input sequences, capture sequential dependencies, and 

produce a sequence of outputs that can be used for various NLP tasks, such as 

sarcasm detection. Figure 3.5 shows the basic stricture of an SRNN 
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Figure 3.5 A simple RNN architecture (credit https://www.researchgate.net/figure/A-simple-RNN-
architecture_fig3_337830532) 

 

 

 

3.4.3.2 Long short-term memory neural network (LSTM) 
 

The Long-Short-Term Memory Neural Network (LSTM), initially introduced by 

Hochreiter and Schmidhuber in [64], has undergone further refinement and 

widespread application to a wide range of problems. In this, the LSTM layer processes 

the input sequence step by step, maintaining an internal state that allows it to capture 

information from earlier time steps and use it to influence predictions at later time 

steps. Figure 3.6 depicts the structure on an LSTM unit 
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Figure 3.6 Architecture of a LSTM Unit (Credits: https://d2l.ai/chapter_recurrent-modern/lstm.html) 

 

 

3.4.3.3 Gated recurrent unit (GRU) 
 

The Gated Recurrent Unit (GRU), introduced by Cho [21], shares a similar architecture 

with LSTM. In this context, we employ the GRU [65][5] to facilitate connections across 

a sequence of nodes to perform machine learning tasks related to memory and 

clustering, such as text identification. GRU plays a crucial role in adjusting the input 

weights of the neural network, effectively addressing the common challenge of the 

vanishing gradient problem often encountered in recurrent neural networks. Figure 3.7 

shows the architecture of basic Gated Recurrent Unit 

 

Figure 3.7 The Architecture of basic Gated Recurrent Unit (GRU).(credit https://www.researchgate.net/figure/The-
Architecture-of-basic-Gated-Recurrent-Unit-GRU_fig1_343002752) 

 

 

 

https://d2l.ai/chapter_recurrent-modern/lstm.html
https://www.researchgate.net/figure/The-Architecture-of-basic-Gated-Recurrent-Unit-GRU_fig1_343002752
https://www.researchgate.net/figure/The-Architecture-of-basic-Gated-Recurrent-Unit-GRU_fig1_343002752
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3.4.4 Proposed model - ensemble learning 
 

Ensemble methods encompass a set of strategies involving the creation of multiple 

models and the integration of their outputs to achieve improved results. Generally, 

ensemble methods surpass individual models in terms of accuracy. Ensemble 

Learning, as elucidated in [66],[67], focuses on mastering the effective amalgamation 

of predictions from various pre-existing models known as base-learners. Each 

member of the ensemble contributes to the final outcome, addressing individual 

weaknesses with the support of other members. The combined learned model is 

represented by the meta-learner. 

In our research, we have employed Ensemble Learning [68],[5] to enhance the 

performance of our models across tasks such as prediction, classification, and function 

approximation. The stacking technique was specifically employed in this study. 

Stacking is an ensemble approach that consolidates predictions from multiple machine 

learning models to enhance overall performance. In a stacking model, a meta-learner 

or aggregator model is trained using predictions generated by various base models. 

 

3.4.4.1 Importing Libraries: 
 

The code initiates by importing essential libraries necessary for building and training 

neural networks using Keras, a widely-used deep learning framework. It imports 

modules like Input, embedding, SimpleRNN, LSTM, GRU, Dense, Concatenate, 

Lambda, and backend functions from Keras. Additionally, the code imports the NumPy 

library for numerical operations. 

 

3.4.4.2 One-Level Stacking 
 

Define Input Layer: 

The code starts by defining an input layer with a shape of (max_length), where 

max_length represents the maximum sequence length that the model will accept. 
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Three Separate RNN Branches: 

In this one-level stacking model, the input sequence is processed through three 

separate branches, each utilising a different type of RNN: SimpleRNN, LSTM, and 

GRU. Each branch is configured with 64 units and applies dropout and recurrent 

dropout for regularisation. The return_sequences parameter is set to False, which 

means that the output of each RNN branch is a fixed-size vector, not a sequence. 

 

Concatenation of RNN Branch Outputs: 

The outputs of the three RNN branches (SimpleRNN, LSTM, and GRU) are 

concatenated into a single tensor using the Concatenate layer (). This step combines 

the information learnt by each RNN branch into a unified representation, capturing 

different aspects of the input data. 

Dense Layer for Binary Classification: 

A dense layer with a single unit and a sigmoid activation function is added to make the 

final binary classification decision. This layer takes the concatenated output from the 

RNN branches as input and computes the probability of the binary classification 

outcome. The sigmoid activation function outputs values between 0 and 1, indicating 

the likelihood that the input data belong to one of the two classes. 

Stacking Model Creation: 

The code assembles the complete one-level stacking model, named stacking_model1, 

by connecting the input layer to the output layer. 

Compilation: 

The stacking model is then compiled with a binary cross-entropy loss function and the 

Adam optimiser. The model is also configured to track accuracy as a training metric, 

allowing performance evaluation during training. 

 

Summary Printing: 

Finally, we print a summary of the stacking_model1. Figure 3.8 provides detailed 

information about the model architecture, including the layers, output shapes, and the 
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number of trainable parameters. It serves as a useful reference for understanding the 

model's structure and complexity. 

 

Figure 3.8 summery of the one level stacking model 

 

In summary, this code defines a one-level stacking model that combines different RNN 

types at the same level to capture diverse aspects of the input data. The model is 

designed for binary classification tasks and aims to learn complex representations 

from sequential data by leveraging multiple RNN architectures. 

 

3.4.4.3 Two-level stacking 
 

Define Input Layer: 

The code starts by defining an input layer with a shape of (max_length), where 

max_length represents the maximum sequence length that the model will accept. 

 

Level 1 - Different RNN Branches: 
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In the first level (Level 1), the input sequence is passed through three separate 

branches, each utilising a different type of RNN. Specifically, it uses SimpleRNN, 

LSTM, and GRU with 64 units in each branch. The dropout and the recurrent dropout 

are applied to each RNN branch for regularisation. The return_sequences parameter 

is set to False, which means that the output of each RNN branch is a fixed-size vector 

rather than a sequence. 

 

Concatenation in Level 1: 

The outputs of the three Level 1 branches (SimpleRNN, LSTM, and GRU) are 

concatenated into a single tensor using the Concatenate layer (). This step combines 

the information learnt by each RNN branch into a unified representation, capturing 

different aspects of the input data. 

 

Level 2 - Final Dense Layer: 

At level 2, a dense layer with a single unit and a sigmoid activation function is added. 

This layer serves as the final decision-making step for binary classification. It takes the 

concatenated output of Level 1 as input and computes the probability of the binary 

classification result, where the sigmoid activation function outputs values between 0 

and 1. 

 

Stacking Model Creation: 

The code assembles the complete two-level stacking model, named stacking_model2, 

connecting the input layer to the output layer. 

 

Compilation: 

The stacking model is then compiled with a binary cross-entropy loss function and the 

Adam optimiser. The model is also configured to track accuracy as a training metric, 

allowing performance evaluation during training. 
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Summary Printing: 

Finally, a summary of the stacking_model2. Figure 3.9 provides detailed information 

about the model architecture, including the layers, output shapes, and the number of 

trainable parameters. It serves as a useful reference for understanding the model 

structure and complexity. 

 

 

Figure 3.9 summery of the two- level stacking model 

 

In summary, this code defines a two-level stacking model that combines different RNN 

types at the first level to capture diverse aspects of the input data. The second level, 

which consists of a dense layer with sigmoid activation, makes the final binary 

classification decision. This architecture is designed for binary classification tasks and 

aims to learn hierarchical representations from sequential data. 
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3.4.4.4 Three level stacking 
 

 

Defining Input Layer: 

An input layer is established using Input(shape=(max_length,)). This layer is tailored 

to receive sequences of fixed length, where max_length signifies the maximum 

sequence length the model can handle. 

 

Level 1 - Different RNN Branches: 

In the first level (Level 1), the code creates three independent branches, each 

employing a distinct type of recurrent neural network (RNN): SimpleRNN, LSTM, and 

GRU. These branches process the input sequence separately, applying the respective 

RNN type with 64 units. Dropout and recurrent dropout are incorporated for 

regularisation. The return_sequences parameter is set to False, implying that the 

output of each branch is a fixed-size vector, not a sequence. 

 

Concatenation (Level 1): 

After Level 1, the outputs of the three RNN branches (SimpleRNN, LSTM, and GRU) 

are merged into a single tensor using the Concatenate layer. This concatenation 

combines the knowledge acquired by each RNN branch into a unified representation. 

 

Level 2 - Additional RNN Branches: 

In the second level (Level 2), three additional branches are constructed. These 

branches receive the concatenated output from Level 1 as input. Each of these Level 

2 branches applies a different RNN type (SimpleRNN, LSTM, GRU) and integrates 

dropout and recurrent dropout for regularisation. 
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Concatenation (Level 2): 

The outputs of the Level 2 branches (SimpleRNN, LSTM, and GRU) are combined 

again through concatenation, generating a fresh combined representation. 

 

Level 3 - Final Dense Layer: 

Level 3 introduces a dense layer that houses a single unit with a sigmoid activation 

function. This layer is responsible for delivering the ultimate binary classification 

output. It takes the concatenated output of Level 2 as input and computes the 

probability of the binary classification task, distinguishing between two classes. 

 

Stacking Model Creation: 

The code proceeds to form the complete stacking model, named stacking_model3. 

The input layer is linked to the output layer, shaping the model's architecture. 

 

Compilation: 

The stacking model is then compiled, with the binary cross-entropy loss function and 

the Adam optimiser being specified. The model is also configured to track accuracy as 

a training metric to evaluate its performance during training. 

 

Summary Printing: 

Finally, a summary of the stacking_model3. Figure 3.10 offers in-depth information 

about the model layers, their respective output shapes, and the number of trainable 

parameters within the model.  
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Figure 3.10 summery of the three-level stacking model 

 

In summary, the code constructs a complex neural network architecture that combines 

various types of RNN at multiple levels. This architecture is designed to capture 

hierarchical patterns within sequential data, primarily intended for a binary 

classification task. The model aims to learn and generalise from sequential data, with 

each level contributing to a progressively more abstract representation of the input 

data. 
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3.4.4.5 Weighted Average 
 

Three separate branches of recurrent neural networks (RNNs) are defined: 

SimpleRNN, LSTM, and GRU. Each branch processes the input data using a different 

RNN architecture. These branches are trained to capture different patterns and 

features in the data. 

The outputs from these three branches are then combined using an averaging layer, 

which calculates the average prediction of each branch. This ensemble approach 

allows the model to benefit from the unique insights of each RNN type. 

After averaging, a dense layer is added for binary classification. It makes the final 

decision about whether the input data belongs to one of two classes (Sarcastic and 

Non-sarcastic). The ensemble model is compiled, specifying how it should be trained, 

and prints a summary of the model's architecture. Figure 3.11 shows the model 

summary 

 

Figure 3.11 summery of the weighted average ensemble model 

 

Ensemble models combine information from three different RNN architectures 

(SimpleRNN, LSTM, and GRU) through element-wise averaging, and then uses a 
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dense layer to produce the final prediction. The total number of parameters in this 

model is approximately 2.95 million. 

In summary, an ensemble model combines the predictions of different RNN branches 

by averaging, leading to a collective prediction for binary classification. Ensemble 

models often improve performance by leveraging the diverse perspectives of multiple 

models. 

 

3.5 Performance evaluation 
 

 

Assessing the performance of sarcasm detection models is pivotal for the 

development of effective systems. [6] Various metrics come into play to gauge 

accuracy, precision, and recall in sarcasm detection models. 

Accuracy, precision, recall, and the F1 score serve as metrics for evaluating the 

performance of a classification model. These metrics are derived from the following 

four terms: 

• True Positives (TP): The number of cases that were correctly predicted as 

positive. 

• False Positives (FP): The number of cases that were incorrectly predicted as 

positive. 

• True Negatives (TN): The number of cases that were correctly predicted as 

negative. 

• False Negatives (FN): The number of cases that were incorrectly predicted as 

negative. 

Confusion matrix 

Predicted sarcasm Sarcastic Not-sarcastic 

Sarcastic True positives (TP): False positives (FP): 

Not-sarcastic True negatives (TN): False negatives (FN): 
Table 3.1  confusion matrix 
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• Calculate accuracy. Accuracy is the proportion of all cases that were correctly 

predicted. It is calculated as follows: 

  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹

                                                           

   

 

• Calculate the precision.  Precision is the proportion of positive predictions that 

were correct. It is calculated as follows: 

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹

                                                                             

   

• Calculate recall. Recall is the proportion of actual positives that were correctly 

predicted. It is calculated as follows: 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

                                                                                       

• Calculate F1 score.  The F1 score is a harmonic mean of precision and recall. 

It is calculated as follows: 

 

  𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�                                                              

   

 

3.6 Conclusion 
 

This chapter discussed the stages for our suggested method, data collection, data pre-

processing, deep learning framework, and the performance evaluation. The models 

were implemented using python programming language due to its libraries like NLTK, 

a strong community support, and seamless integration with machine learning 

frameworks, offering simplicity and versatility for developing and implementing NLP 

tasks. 

1 

2 

3 

4 
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4 Chapter 4: Results 
 

4.1 INTRODUCTION 
 

In this section, we investigated different approaches utilised to analyse the dataset for 

our research. The central objective is to identify sarcasm within textual data through 

the application of deep learning techniques. While many studies typically employ basic 

deep learning algorithms like simpleRNN, LSTM, and GRU, our study introduces an 

ensemble model that combines the characteristics of the aforementioned models. 

Specifically, we incorporated ensemble models to augment our analysis, including the 

Weighted Average Ensemble, One-Level Stacking, Two-Level Stacking, and Three-

Level Stacking techniques. We have conducted a comparative assessment and 

implementation of these ensemble models to evaluate their influence on accuracy. 

The models underwent training using the Sigmoid activation function and the Adam 

optimizer, with the inclusion of dropouts set at 0.2 and recurrent dropouts at 0.25. To 

enhance the model's performance, we conducted additional fine-tuning by adjusting 

its parameters and hyperparameters, as outlined in the table below. 

 

Parameters Values 

Kernel 3 

Embedding Dimensions 100 

Epochs 25 

Activation Function Sigmoid 

Loss Binary cross entropy 

Batch size 32 

Word Embedding Glove 

Verbose 2 

Dropout 0.2 
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Optimizer Adam 
Table 4.1  Parameters list for Training and Validating our models. 

 

4.2 Results for the Neural networks  
 

The SRNN, LSTM, and GRU models were trained by utilising 80% of the news 

headlines dataset, and subsequently, validation was conducted on the remaining 20% 

of the data. The training involved 25 epochs with a batch size of 32. Figures 4.1, 4.2, 

and 4.3 depict the training and validation curves for the models employing GloVe word 

embeddings. 

 

Figure 4.1 Training and validation curve of SimpleRNN 

 

 

(Left): Graph illustrating the Training Accuracy (depicted in green) and Validation 

Accuracy (depicted in red) against the Number of Epochs for the SRNN Model. 

(Right): Graph illustrating the Training Loss (shown in green) and Validation Loss 

(shown in red) against the Number of Epochs for the SRNN Model. 
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Figure 4.2  Training and validation curve of LSTM 

 

(Left): Graph illustrating the Training Accuracy (depicted in green) and Validation 

Accuracy (depicted in red) relative to the Number of Epochs for the LSTM Model. 

(Right): Chart showing the Training Loss (in green) and Validation Loss (in red) in 

relation to the Number of Epochs for the LSTM Model. 

 

 

Figure 4.3  Training and validation curve of GRU. 

 

(Left): Chart displaying the Training Accuracy (depicted in green) and Validation 

Accuracy (depicted in red) in relation to the Number of Epochs for the GRU Model. 

(Right): Graph illustrating the Training Loss (shown in green) and Validation Loss 

(shown in red) against the Number of Epochs for the GRU Model. 
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Figure 4.4 Confusion matrix of simpleRNN 

 

The confusion matrix in Figure 4.4 was based on 11065 news headlines for the 

validation dataset. The results are as follows: 4798 were true positively detected, 1273 

were false positively detected, 3357 were false negatively detected, and 1637 were 

true negatively detected by the SRNN. Figure 4.5 shows the more detailed confusion 

matrix of the SRNN model.  

 

Figure 4.5  Detailed confusion matrix of the SRNN model. 
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Figure 4.6 Confusion matrix of LSTM. 

 

The confusion matrix in Figure 4.6 was based on 11065 news headlines for the 

validation dataset. The results are as follows: 5510 were true positively detected, 561 

were false positively detected, 349 were false negatively detected, and 4645 were true 

negatively detected by the LSTM model. Figure 4.7 shows the more detailed confusion 

matrix of the LSTM model.  

 

Figure 4.7 Detailed confusion matrix of the LSTM model. 
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Figure 4.8 Confusion matrix of GRU. 

 

The confusion matrix in Figure 4.8 was based on 11065 news headlines for the 

validation dataset. The results are as follows: 5641 were true positively detected, 430 

were false positively detected, 579 were false negatively detected, and 4415 were true 

negatively detected by the GRU model. Figure 4.9 shows the more detailed confusion 

matrix of the GRU model.  

 

Figure 4.9 Detailed confusion matrix of the GRU model. 
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4.3 Results for stacking and weighted average ensemble models 
 

Stacking and weighted averaging are methodologies employed in ensemble learning, 

a technique where multiple models are integrated to enhance overall performance. 

Stacking entails training various models and subsequently amalgamating their 

predictions using another model, often referred to as a metamodel or blender. 

Conversely, weighted averaging involves assigning distinct weights to the predictions 

of individual models and then merging them to produce the ultimate prediction. Both 

stacking and weighted averaging aim to capitalize on the strengths of individual 

models while mitigating their weaknesses, culminating in a more resilient and precise 

ensemble model. Figures 4.10, 4.11, 4.12, and 4.13 depict the curves illustrating the 

training of one, two, three-level stacking, and weighted average models, each trained 

for 25 epochs with a batch size of 32. 

 

 

 

Figure 4.10 Training and validation curves of one-level stacking 

(Left): Graph illustrating the Training Accuracy (depicted in green) and Validation 

Accuracy (depicted in red) in correlation with the Number of Epochs for the one-level 

stacking ensemble Model. 

(Right): Chart showing the Training Loss (in green) and Validation Loss (in red) against 

the Number of Epochs for the one-level stacking ensemble Model. 
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Figure 4.11 Training and validation curves of two-level stacking 

 

(Left): Graph depicting the Training Accuracy (shown in green) and Validation 

Accuracy (shown in red) in relation to the Number of Epochs for the two-level stacking 

ensemble Model. 

Figure 4.12 Training and validation curves of three-level stacking 

(Left): Graph displaying the Training Accuracy (depicted in green) and Validation 

Accuracy (depicted in red) relative to the Number of Epochs for the three-level stacking 

ensemble Model. 
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(Right): Chart illustrating the Training Loss (shown in green) and Validation Loss 

(shown in red) against the Number of Epochs for the three-level stacking ensemble 

Model. 

 

 

Figure 4.13 Training and validation curves of the weighted average ensemble model 

 

 

(Left): Graph showing the Training Accuracy (depicted in green) and Validation 

Accuracy (depicted in red) in relation to the Number of Epochs for the weighted 

average ensemble Model. 

(Right): Chart illustrating the Training Loss (shown in green) and Validation Loss 

(shown in red) against the Number of Epochs for the weighted average ensemble 

Model. 

A confusion matrix is a table that is used to visualise the performance of a classification 

model. It shows the number of correct and incorrect predictions made by the model 

for each class. The rows of the matrix represent the actual classes, and the columns 

represent the predicted classes. The following figures show the confusion matrices of 

the ensemble models. 
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Figure 4.14 confusion matrix of one-level stacking 

 

The confusion matrix in Figure 4.14 was based on 11065 news headlines for the 

validation dataset. The results are as follows: 5728 were true positively detected, 244 

were false positively detected, 323 were false negatively detected, and 4770 were true 

negatively detected by the one-level stacking model. Figure 4.15 shows the more 

detailed confusion matrix of the one-level stacking model.  

 

Figure 4.15 Detailed confusion matrix of the one-level stacking model. 
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Figure 4.16 Confusion matrix if two-level stacking 

The confusion matrix in Figure 4.16 was based on 11065 news headlines for the 

validation dataset. The results are as follows: 5748 were true positively detected, 224 

were false positively detected, 321 were false negatively detected, and 4772 were true 

negatively detected by the two-level stacking model. Figure 4.17 shows the more 

detailed confusion matrix of the two-level stacking model.  

 

Figure 4.17 Detailed confusion matrix of the two-level stacking model. 
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Figure 4.18 confusion matrix of three level stacking 

 

The confusion matrix in Figure 4.18 was based on 11065 news headlines for the 

validation dataset. The results are as follows: 5748 were true positively detected, 224 

were false positively detected, 321 were false negatively detected, and 4772 were true 

negatively detected by the three-level stacking model. Figure 4.19 shows the more 

detailed confusion matrix of the three-level stacking model.  

 

Figure 4.19 Detailed confusion matrix of the three-level stacking model. 
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Figure 4.20 confusion matrix if weighted average. 

 

The confusion matrix in Figure 4.20 was based on 11065 news headlines for the 

validation dataset. The results are as follows: 5748 were true positively detected, 224 

were false positively detected, 321 were false negatively detected, and 4772 were true 

negatively detected by the weighted average model. Figure 4.21 shows the more 

detailed confusion matrix of the weighted average model. 

  

Figure 4.21 Detailed confusion matrix of the weighted average model. 
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4.4 Discussion 
 

The graphs in figure 4.1,4.2 and 4.3 depict the training and validation performance of 

the machine learning model SRNN, LSTM, and GRU respectfully. The graphs have 

similar trend when it comes to training and validation. 

Training and Validation Accuracy 

Training Accuracy: begins at a moderate level and increases over time (epochs) as 

the model learns from the training data. It often increases rapidly at the beginning and 

eventually plateaus or increases very slowly. 

Validation Accuracy: Initially lower than training accuracy, but increases as the model 

starts to generalize better. However, it may eventually plateau or even slightly 

decrease, particularly if overfitting is occurring. 

Training and Validation Loss 

Training Loss: Generally, decreases over time, indicating that the model is becoming 

better at making predictions on the training data. 

Validation Loss: Also tends to decrease, but it may fluctuate more than training loss. 

This is because the validation set contains data the model hasn't been explicitly trained 

on. 

There appears to be a slight case of overfitting mostly in figure 4.2 Overfitting: A 

common issue in machine learning, it occurs when the model becomes too specialized 

to the training data. This leads to excellent performance on the training set but poor 

performance on new data (indicated by the validation set). A significant gap between 

the training and validation accuracy curves, especially towards the later epochs, is a 

sign of overfitting. 

 

The graphs in figure 4.10,4.11, 4.12 and 4.13 depict the training and validation 

performance of the machine learning model one-level, two-level, tree-level stacking 

and weighted average respectfully. The graphs have similar trend when it comes to 

training and validation. 
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raining and Validation Accuracy 

 

Training Accuracy: Starts relatively high (around 0.75) and rapidly increases to nearly 

1.00 within the first 10 epochs. This indicates fast learning on the training set. 

Validation Accuracy: Begins lower (around 0.65) and also increases, but at a slower 

rate than training accuracy. It plateaus around 0.90 after about 15 epochs. 

Training and Validation Loss 

 

Training Loss: Decreases rapidly in the first few epochs, then continues to steadily 

decrease but at a much slower rate. This is expected – initial improvements are often 

substantial, followed by smaller refinements. 

Validation Loss: Generally, decreases, but shows occasional fluctuations. The 

fluctuations suggest the model sometimes encounters unfamiliar patterns in the 

validation data, causing temporary increases in error. 

Observations 

Gap between Accuracy Curves: There's a noticeable gap between training and 

validation accuracy, widening slightly in later epochs. This suggests a degree of 

overfitting. The model is becoming highly specialized to the training data, hindering its 

performance on unseen data in the validation set. 

 

The findings from the study indicate that employing ensemble models holds promise 

for sarcasm detection. These models merge predictions from multiple individual 

models, leading to a more precise overall prediction. The effectiveness of ensemble 

models lies in their ability to capitalize on the strengths of diverse models while 

offsetting their respective weaknesses. 

In this study, the two-level stacking model achieved the best overall performance, with 

an accuracy and F1-score of both non-sarcastic and sarcastic of 95%. This model 

combines the predictions of three individual neural network models (SRNN, LSTM, 

and GRU) using a meta-model. The meta-model is trained to predict the correct class 
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label given the predictions of the individual models. The stacking and weighted 

average models outperformed individual neural network models by a significant 

margin. This suggests that ensemble models can be more effective for sarcasm 

detection than individual models. Figure 4.22 shows the accuracy and F1 scores of 

both non-sarcastic and sarcastic of all models 

 

 
Figure 4.22 accuracy and F1 scores of both non-sarcastic and sarcastic of all models 

 

4.5 Conclusion 
 

The results of this study suggest that ensemble models are a promising approach for 

sarcasm detection. Ensemble models outperformed individual neural network models 

by a significant margin, suggesting that they are able to capture more complex 

patterns in the data and are more resistant to noise. 

However, it is important to note that ensemble models can be more complex to train 

and deploy than simpler models, such as weighted average. Additionally, the 

performance of different models may vary on different datasets. 
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4.6 Summary 
 

This session outlines the results of a study on sarcasm detection in textual data 

through deep learning methods, using traditional models and an ensemble approach. 

Utilising simpleRNN, LSTM, GRU, and ensemble models like weighted average and 

stacking, results suggest that ensemble models, notably two-level stacking, surpass 

individual neural network models. 
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5 Chapter 5: Conclusions. 
 

5.1 Introduction. 
 

In this section, we discuss the results of our study on using recurrent neural networks 

to detect sarcasm in political text and speeches. We also provide some suggestions 

for future research in this area. 

 

5.2 Research summary. 
 

Aim: 

The aim of this study is to develop a robust model for detecting sarcasm in political 

speech using recurrent neural networks (RNNs). RNNs have demonstrated 

remarkable effectiveness in natural language processing (NLP) tasks, particularly in 

capturing sequential dependencies within text data. This study aims to harness the 

power of RNNs to identify the subtle nuances of sarcasm in political discourse. 

 

Objectives: 

To achieve the overarching aim, this study pursued the following specific objectives: 

 

I. Implement and compare the performance of SRNN, LSTM, and GRU for 

sarcasm detection in news headlines. 

This objective involved implementing three distinct RNN architectures – SRNN, LSTM, 

and GRU – and evaluating their performance in detecting sarcasm in political news 

headlines. The comparison assessed the ability of each model to capture long-range 

dependencies and contextual cues essential for sarcasm detection. 
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II. Implement ensemble learning techniques to combine predictions from multiple 

deep learning frameworks. 

This objective explored the potential of ensemble learning to enhance the overall 

accuracy of sarcasm detection. Ensemble learning techniques, such as one-level, two-

level, and three-level stacking models, were implemented to combine predictions from 

the three RNN architectures. The investigation assessed whether ensemble methods 

could effectively aggregate the strengths of individual models to improve overall 

performance. 

 

III. Investigate the effectiveness of combining predictions through a weighted 

average ensemble model. 

 

This objective focused on a specific ensemble approach – the weighted average 

ensemble model. This model assigned weights to the predictions from individual 

models based on their relative performance. By analysing the effectiveness of this 

approach, the study determined whether weighted averaging could improve sarcasm 

detection accuracy. 

 

IV. Evaluate model performance using standard metrics such as accuracy, 

precision, recall, and F1 score. 

 

To assess the effectiveness of the proposed models, standard evaluation metrics – 

accuracy, precision, recall, and F1 score – were employed. These metrics provided a 

comprehensive evaluation of the models' ability to correctly identify sarcastic and non-

sarcastic utterances in political speech. 

 

In conclusion, this study addressed the critical task of sarcasm detection in political 

speech through the utilization of recurrent neural networks (RNNs). By implementing 

and comparing three distinct RNN architectures—SRNN, LSTM, and GRU—the 
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research investigated their efficacy in capturing the nuanced features of sarcasm 

within political news headlines. The findings of this comparative analysis provided 

insights into the strengths and weaknesses of each architecture in handling long-range 

dependencies and contextual cues crucial for sarcasm detection. 

 

Furthermore, the exploration of ensemble learning techniques, including stacking 

models and the weighted average ensemble model, demonstrated the potential for 

combining predictions from multiple RNN architectures to enhance overall accuracy. 

Ensemble methods proved effective in aggregating the complementary strengths of 

individual models, showcasing their utility in improving sarcasm detection 

performance. 

 

The study's commitment to evaluating model performance through standard metrics 

such as accuracy, precision, recall, and F1 score ensured a comprehensive 

understanding of the proposed models' capabilities. These metrics not only validated 

the effectiveness of the developed models but also provided a basis for future 

comparisons and advancements in sarcasm detection methodologies. 

 

Ultimately, this research contributes to the broader field of natural language 

processing, offering valuable insights into the application of RNNs and ensemble 

learning techniques for detecting sarcasm in the challenging domain of political 

discourse. As technology continues to evolve, the outcomes of this study pave the way 

for further innovations in sentiment analysis and computational understanding of 

complex linguistic phenomena in political communication. 

 

 

 

5.3 Future work. 
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One possible direction for future research is to investigate the use of different 

ensemble architectures. For example, it would be interesting to see how the 

performance of the two-level stacking model compares to other ensemble 

architectures, such as random forests and gradient-boosting machines. 

Another possible direction for future research is to investigate the use of different 

neural network architectures for sarcasm detection. For example, it would be 

interesting to see how the performance of the SRNN, LSTM, and GRU models 

compares with more recent neural network architectures such as transformers. 

Finally, it would be interesting to evaluate the performance of different models on a 

variety of different datasets. This would help to assess the generalisability of the 

results and identify the best models for different applications. 

 

5.4 Recommendations  
 

I. Consider using a pre-trained language model (PLM) such as BERT or 

RoBERTa for sarcasm detection. PLMs have been shown to be effective for a 

variety of natural language processing tasks, including sarcasm detection. 

II. Use a variety of datasets to train the models. This will help the models to learn 

to generalise to different types of text and different contexts. 

III. Consider not cooperating with native languages in the study.  

 

 

5.5 Conclusion 
 

The aim of the study was to detect sarcasm on texts using RNNs, the models were 

trained using labelled news headlines; the headlines are labelled as sarcastic and non-

sarcastic, the Glove was used for word embedding, and the results shows that two-

level stacking sing SRNN, LSTM, and GRU as base models achieved the highest 

accuracy of 94%.  
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