

DEVELOPMENT OF MACHINE LEARNING MODELS FOR
PREDICTING PROPERTIES OF SODIUM-ION BATTERY

MATERIALS

By

MONARENG KELETSO MABEL

RESEARCH DISSERTATION

Submitted in fulfilment of the requirements for the degree of

MASTER OF SCIENCE

In

PHYSICS

 In the

FACULTY OF SCIENCE AND AGRICULTURE

(School of Physical and Mineral Sciences)

at the

 UNIVERSITY OF LIMPOPO

SUPERVISOR: Dr P. S. NTOAHAE

CO-SUPERVISOR: Prof R. R. MAPHANGA (CSIR)

2023

i

ABSTRACT

In this work, machine learning regression techniques are applied to a large amount of

data from Materials Project Database, to develop machine learning models capable of

accurately predicting the properties of sodium-ion battery cathode materials. Different

machine learning models, namely, Bayesian ridge, gradient boosting regressor, light

gradient boosting machine, extra trees regressor, random forest, and orthogonal

matching pursuit are successfully developed and validated, using SIB materials’

properties calculated from DFT as input dataset, with the models’ efficiency based on

elemental properties of materials constituents feature vectors.

The target properties in this work include formation energy, final energy, Fermi energy,

energy above hull, density, and band gap. The importance of feature vectors derived

from the properties of materials’ chemical compounds and elemental properties of their

constituent is evaluated. The average covalent radius and the average single bond

covalent radius were found to be the most important descriptors in predicting formation

and final energies, whilst the estimated face centred cubic lattice parameter, the

average electronegativity, and the average density to be the most important

descriptors for predicting the Fermi energy. The optimal features in predicting energy

above hull were found to be the sum of sound velocity, sum of total unfilled electron,

and the average ground state energy. Furthermore, the results show that maximum

mass specific heat capacity and variance of density functional theory energy per atom

descriptors are the most essential in accurately predicting the materials density and

valence electron in d shell, the average radius and the average electronegativity been

the most important features for predicting band gap.

Amongst various algorithms that are evaluated, the Bayesian ridge model is found to

be the best model in predicting the formation energy with an accuracy of 0.99 and 0.01

eV coefficient of determination and mean square error, respectively, and final energy

of 0.98 and 0.03 eV accuracy for the coefficient of determination and mean square

error, respectively. Light gradient boosting machine model is found to be the best

model in predicting the Fermi energy with an accuracy of 0.82 and 0.52 eV coefficient

of determination and mean square error, respectively, and energy above hull of 0.67

and 0.01 eV, for the coefficient of determination and mean square error, respectively.

ii

Extra trees regressor is found to be the best model in predicting the density with an

accuracy of 0.95 and 0.09 g/cm3 coefficient of determination and mean square error,

respectively, and band gap of 0.78 and 0.66 eV, for the coefficient of determination

and mean square error, respectively. The models demonstrate an improvement

accuracy in predicting the sodium-ion battery materials properties as demonstrated by

the regression scores.

iii

DECLARATION

I, Keletso Mabel Monareng, hereby declare that this research project titled

‘Development of machine learning models for predicting the properties of

sodium-ion battery materials’ submitted for the degree Master of Science in Physics

at the University of Limpopo, is my original research work. Wherever I used someone’s

work I acknowledged in full references. This work has not been submitted for a degree

or examination at any other university. The work was done under the guidance of Dr.

PS Ntoahae [supervisor] at the University of Limpopo Physics Department and Prof.

RR Maphanga [co-supervisor], at the Council for Scientific and Industrial Research.

 19/06/2023

 Monareng K. M Date

iv

DEDICATION

I dedicate this work to my parents “Mr. K.D who inspired the bookworm in me and Mrs.

K.N Monareng who have always encouraged me to pursue my dreams”.

v

ACKNOWLEDGEMENTS

The study is funded by the Department of Science and Innovation-Interbursary

Support (IBS) Programme of the Council for Scientific and Industrial Research, and

the funding support is duly acknowledged. Thanksgiving to the University of Limpopo,

department of physics for allowing me to undertake this study. My sincere gratitude

goes to my supervisor Dr P.S Ntoahae and co-supervisor Prof. R.R Maphanga for

helping me throughout the project, for their positive criticism and all the guidance, the

completion of this study could have been impossible without their expertise. Data used

for this project was provided by Materials Project database, this project would not have

been possible without materials project data. I would also like to thank my parents “Mr.

K.D. and Mrs. K.N. Monareng” for encouraging, invaluable assistance to me, without

you none of this would indeed be impossible. Last “but not least” I am thankful to all

my siblings “Batobeleng, Babotsanne, Lesenyang, Kamogelo, Motopeng, and

Monareng” for your support financially and physically, my source of happiness Thabiso

for your support and guidance throughout the journey, and Ms. Ramakoloi for her

support and encouragement throughout my study. Above all, to the shepherd and

bishop of our soul who has given me knowledge, and opportunities that have permitted

me to finally finish this dissertation. The almighty!!!!

vi

LIST OF ABBREVIATIONS

AFLOW Automatic Flow for Materials Discovery

AI Artificial Intelligence

ANN Artificial Neural Network

Ave Weighted Average

AutoML Automated machine learning

BCC Body Centred Cubic

BCV Bootstrap Cross Validation

BR Bayesian Ridge

CA Cluster Analysis

CBFVs Composition-Based Feature Vectors

CSIR Council for Scientific and Industrial Research

CV Cross Validation

DFT Density Functional Theory

DNN Deep Neural Network

DT Decision Tree

ET Extra Trees

ETR Extra Trees Regressor

FCC Face Centred Cubic

FNN Feedforward Neural Network

GA Genetic Algorithm

GBR Gradient Boosting Regressor

Gmean Geometric mean

vii

HHI Herfindahl-Hirschman index

Hmean Harmonic Mean

ICSD Inorganic Crystal Structure Database

KNN K Nearest Neighbor

KRR Kernel Ridge Regression

LOO Leave one Out

LOOCV Leave one Out Cross Validation

LPOCV Leave p Out Cross Validation

LGBM Light Gradient Boosting Machine

LIB Lithium-Ion Battery

LIBs Lithium-Ion Batteries

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

Max Maximum-pooling

Min Minimum-pooling

ML Machine Learning

MSE Mean Square Error

MPD Materials Project Database

NaN Not a Number

NN Neural Network

NOMAD NOvel MAterials Discovery

OMP Orthogonal Matching Pursuit

OQMD Open Quantum Materials Database

Pymatgen Python Materials Genomes

RF Random Forest

viii

RFR Random Forest Regressor

RMSE Root Mean Square Error

SAA Simulated Annealing Algorithms

SIB Sodium-Ion Battery

SIBs Sodium-Ion Batteries

SOC State of Charge

Std Standard (Deviation)

SVM Support Vector Machine

SVR Support Vector Regression

Sum Weighted Summation

Var Weighted Variance

VASP Vienna Ab initio Simulation Package

ix

LIST OF SYMBOLS

AI Aluminium

Atm Atmospheric pressure

AwABwB Binary compound

am Parameter of the mth subtree

Ca Calcium

Co Cobalt

dmin Tree depth

E Experience

eV Electron volt

Ef Formation energy

fA,i Element feature level of a binary compound

fave Weighted average

fB,i Element feature level of a binary compound

Fe Iron

fgmean Geometric mean

fhmean Harmonic mean

fmax Maximum pooling

fmin Minimum pooling

fsum Weighted summation

fvar Weighted Variance

F(x) Prediction function

f(θ) Random vector

g/cm3 Gram per cubic centimetre

x

GPa GigaPascal

h(x; am) Mth subtree

Ij Sample set of leaf j

II Samples of the left branch

IΓ Samples of the right branch

K Potassium

K Kelvin

L(y,F(x)) Loss function

Li Lithium

Mg Magnesium

Mn Manganese

μ Mean

N Sample space

Na Sodium

Ni Nickel

nmin Number of samples split from a node

O Oxygen

P Performance

α Random variable

R2 Regression score

σ Standard deviation

σ2 Variance

T Tasks

Var(x) Variance

xi

ѵ Step size

𝑤𝐴
∗ and 𝑤𝐵

∗ Normalized composition

Xi,j Input variables

yim Negative gradient of the loss function

yi Mean y test value

ŷi Actual y test value

�̅�i Testing set sample size

ỹim Training target

xii

ELEMENTS LEVEL FEATURES

Feature Description

atomic_number Number of protons found in the nucleus of an atom

atomic_radius Atomic radius

atomic_radius_rahm Atomic radius by Rahm et al

atomic_volume Atomic volume

atomic_weight Mass of an atom

boiling_point Boiling temperature

bulk_modulus Bulk modulus

covalent_radius_cordero Covalent radius by Cerdero et al

covalent_radius_pyykko Single bond covalent radius by Pyykko et al

covalent_radius_pyykko_double Double covalent radius by Pyykko et al

covalent_radius_slater Covalent radius by Slater

c6_gb C_6 dispersion coefficient in a.u

density Density at 295 K

dipole_polarizability Dipole polarizability

electron_affinity Electron affinity

electron_negativity Tendency of an atom to attract a shared pair of

electrons

en_allen Allen’s scale of electronegativity

en_ghosh Ghosh’s scale of electronegativity

en_pauling Pauling scale of electronegativity

evaporation_heat Evaporation heat

first_ion_en First ionisation energy

fusion_enthalpy Fusion heat

gs_energy DFT energy per atom (raw VASP value) of T=0 K

ground state

gs_est_bcc_latcnt Estimated BCC lattice parameter based on the

DFT volume

gs_est_fcc_latcnt Estimated FCC lattice parameter based on the

xiii

DFT volume

gs_volume_per DFT volume per atom of T=0 K ground state

heat_of_formation Heat of formation

heat_capacity_mass Mass specific heat capacity

heat_capacity_molar Molar specific heat capacity

hhi_p Herfindahl-Hirschman index (HHI) production

values

hhi_r Herfindahl-Hirschman index (HHI) reserves values

icsd_volume Atom volume in ICSD database

lattice_constant Physical dimension of unit cells in a crystal lattice

melting_point Melting point

mendeleev_number Atom number in mendeleev’s periodic table

molar_volume Molar volume

num_valence Total valence electron

num_d_valence Valence electron in d shell

num_f_valence Valance electron in f shell

num_p_valence Valence electron in p shell

num_unfilled Total unfilled electron

num_f_unfilled Unfilled electron in f shell

num_p_unfilled Unfilled electron in p shell

period Period in the periodic table

Polarizability Ability to form instantaneous dipoles

sound_velocity Speed of sound

specific_heat Specific heat at 20 oC

thermal_conductivity Thermal conductivity at 25 C

vdw_radius Van der Waals radius

xiv

TABLE OF CONTENTS

CHAPTER 1 ... 1

1 INTRODUCTION ... 1

1.1 General Introduction ... 1

1.2 Basic Components of Sodium-ion Batteries .. 2

1.3 Literature Review .. 4

1.4 The Basics of Machine Learning ... 6

1.4.1 The Definition .. 6

1.4.2 Machine Learning Methods .. 7

1.5 Research Problem .. 8

1.5.1 Problem Statement .. 8

1.5.2 Rationale ... 9

1.6 Purpose of the Study .. 9

1.6.1 Aim ... 9

1.6.2 Objectives .. 9

1.6.3 Research Questions ... 10

1.7 Structure of the Dissertation .. 10

CHAPTER 2 ... 12

METHODOLOGY ... 12

2 MACHINE LEARNING STEPS ... 12

2.1 Sample Construction .. 12

2.1.1 Data Collection and Curation ... 12

2.1.2 Feature Engineering ... 13

2.1.2.1 Features/ Vector ... 13

2.1.2.2 Features Extraction .. 15

2.1.2.3 Feature Selection .. 15

2.1.2.4 Feature Selection Methods .. 16

2.1.2.5 Feature Importance Plot .. 17

2.1.2.6 Features Construction/Input Features Development 18

2.1.2.7 Procedure for Feature Development ... 18

2.1.2.8 Feature Learning .. 19

2.2 Hyperparameter Tuning .. 19

2.3 Machine Learning Formulation .. 22

xv

2.4 Machine Learning Algorithms .. 23

2.4.1 Gradient Boosting Regressor .. 24

2.4.2 Light Gradient Boosting Machine ... 26

2.4.3 Random Forest Regressor ... 27

2.4.4 Extra Trees Regressor ... 28

2.4.5 Bayesian Ridge ... 29

2.4.6 Orthogonal Matching Pursuit .. 30

2.5 Evaluation Methods .. 30

2.5.1 Mean .. 30

2.5.2 Variance ... 31

2.5.3 Standard Deviation ... 31

2.5.4 Mean Square Error .. 32

2.5.5 Root Mean Square Error ... 32

2.5.6 Mean Absolute Error .. 33

2.5.7 Mean Absolute Percentage Error .. 33

2.5.8 Coefficient of Determination .. 33

CHAPTER 3 ... 35

MODEL DEVELOPMENT .. 35

3.1 Building the model .. 35

3.1 Machine Learning Workflow .. 36

3.2 Dataset ... 37

3.2.1 Dataset for Selected Sodium Containing Materials 38

3.2.2 Dataset Split .. 41

3.2.3 Cross Validation ... 42

3.3 Model Selection ... 45

3.4 Model Tuning ... 47

3.5 Model Validation and Evaluation ... 48

CHAPTER 4 ... 49

4 RESULTS AND DISCUSSION ... 49

4.1 Feature Engineering ... 49

4.1.1 Formation and Final Energy .. 49

4.1.2 Energy above Hull .. 51

4.1.3 Fermi Energy ... 53

4.1.4 Density ... 55

4.1.5 Band Gap ... 57

xvi

4.2 Model Selection ... 59

4.3 Model Tuning/Hyperparameter Optimization .. 64

4.3.1 Bayesian Ridge ... 65

4.3.2 Light Gradient Boosting Machine ... 66

4.3.3 Extra Trees Regressor ... 67

4.4 Model Performance ... 67

CHAPTER 5 ... 73

CONCLUSION .. 73

5.1 Recommendations and Future Work... 75

REFERENCES ... 76

APPENDIX ... 84

A.1 Papers Presented at Conferences .. 84

A.2 Code Details .. 85

xvii

LIST OF FIGURES

Figure 1.1: Schematic diagram of the Na-ion battery [6]. 3

Figure 1.2: Two main categories of machine learning. ... 8

Figure 2.1: Steps considered for hyperparameter tuning [75]. 21

Figure 3.1: Machine learning approach for property prediction [89]. 35

Figure 3.2: Machine learning workflow [96]. .. 37

Figure 3.3: Dataset split [96]. .. 42

Figure 3.4: Illustration of 5-fold cross-validation process [103]. 45

Figure 4.1: Correlation heatmap for the critical feature vectors selected by the

Bayesian ridge model. ... 51

Figure 4.2: Important features selected by the light gradient boosting machine

for energy above hull. .. 52

Figure 4.3: Optimal features selected by the extra trees regressor for energy

above hull. .. 53

Figure 4.4: Important features for Fermi energy selected by light gradient

boosting machine model. .. 54

Figure 4.5: Optimal features selected by the extra trees regressor for Fermi

energy. .. 55

Figure 4.6: Important feature vectors selected by the extra tree regressor for

density. .. 56

Figure 4.7: Optimal features selected by the light gradient boosting machine for

density. .. 57

Figure 4.8: Important features selected by the light gradient boosting machine

for band gap. .. 58

Figure 4.9: Key features selected by the extra trees regressor for predicting the

band gap. .. 58

Figure 4.10: Measures of predicted formation energy (a) coefficient of

determination and (b) mean square error as determined by various models. .. 59

Figure 4.11: Measures of predicted final energy (a) coefficient of determination

and (b) mean square error as determined by various models. 60

xviii

Figure 4.12: Measures of predicted energy above hull (a) coefficient of

determination and (b) mean square error as determined by various models. .. 61

Figure 4.13: Measures of predicted Fermi energy (a) coefficient of determination

and (b) mean square error as determined by various models. 62

Figure 4.14: Measures of predicted band gap (a) coefficient of determination and

(b) mean square error as determined by various models. 63

Figure 4.15: Measures of predicted density (a) coefficient of determination and

(b) mean square error as determined by various models. 64

Figure 4.16: Parity plot of Bayesian ridge model predicted formation energy

versus DFT formation energy showing model performance for training set (left)

and test set (right). ... 68

Figure 4.17: The parity plot compares the predicted final energy with DFT final

energy for the training set (left) and test set (right) model performance by the

Bayesian ridge. ... 69

Figure 4.18: Parity plot showing the performance of the extra trees regressor

model predicted density versus the DFT density in the training set (left) and test

set (right). .. 69

Figure 4.19: The parity plot of LGBM predicted Fermi energy versus DFT Fermi

energy model performance for training set (left) and test set (right). 70

Figure 4.20: The parity plot of LGBM predicted band gap versus DFT band gap

model performance for training set (left) and test set (right). 71

Figure 4.21: The parity plot of LGBM predicted energy above hull versus DFT

energy above hull model performance for training set (left) and test set (right).

 ... 72

APPENDIX

Figure A.1: Dataset extraction. ... 85

Figure A.2: Descriptor calculations. ... 86

Figure A.3: Pre-processed data. ... 87

Figure A.4: Performance of the models. .. 87

Figure A.5: Model building. ... 88

Figure A.6: Correlation heatmap for important features. 88

xix

Figure A.7: Bayesian ridge performance for the testing data. 89

Figure A.8: DFT and Machine learning formation energy comparison. 89

Figure A.9: Scatter plot for testing data. .. 89

Figure A.10: Model predictions on the training data. .. 90

Figure A.11: Scatter plot for the training data. .. 90

Figure A.12: Model tuning. .. 90

Figure A.13: The dataframe for model results. .. 91

Figure A.14: Performance of the model based on regression score. 91

Figure A.15: Performance of the model based on mean square error. 92

Figure A.16: Feature importance for light gradient boosting machine and extra

trees regressor. .. 93

xx

LIST OF TABLES

Table 3.1: Dataset for some of the selected sodium containing materials. 40

Table 4.1: Tuned Bayesian ridge model parameters from training set for

formation energy and final energy. ... 65

Table 4.2: Tuned light gradient boosting machine model parameters from

training set for Fermi and energy above hull. .. 66

Table 4.3: Tuned extra trees regressor model parameters from training set for

density and band gap. ... 67

1

CHAPTER 1

1 INTRODUCTION

In this section, we discuss the transition from lithium-ion battery to sodium-ion

batteries, machine learning basics, which include the definition of machine learning

and the two main classes of machine learning which is supervised and unsupervised

learning. The literature review, explaining how machine learning is applied in materials

science. Research problem is also included with subsections problem statement and

rationale. The purpose of the study, stating the aim, objectives, research questions

and the research question approach. Lastly the dissertation structure is given.

1.1 General Introduction

The development of energy storage and conversion technologies is essential to

mitigate renewable energy generation discontinuities and instability [1]. Presently,

fossil fuels such as coal and oil are the main sources of energy world-wide, but burning

of these fossil fuels emits carbon dioxide and other greenhouse gases, which are

harmful to the atmosphere and subsequently causing global warming and climate

changes. The current era necessitates the use of new, environmentally friendly

sources of energy to reduce greenhouse gas emissions and ultimately benefit human

health.

Batteries are among the important energy storage technologies required to overcome

the world’s dependent on fossil fuels while moving towards more efficient and

environmentally friendly renewable energy sources. However, to successfully achieve

this goal, a reliable energy storage technology, particularly battery sources system is

required. In the past two decades, there has been tremendous advancements in

lithium-ion batteries (LIBs) and solid-state electrochemistry research for application in

portable electronics industry [2].

Lithium-ion batteries are utilized in a broad range of applications because of their life

cycle, safety, high efficiency compared to other energy storage technologies. Despite

their success, LIBs are expensive to produce due to limited lithium resources in the

2

Earth’s crust and their relatively low power and energy densities. Moreover, large-

scale application of LIB energy storage is not possible with their technology.

In recent decades, research interest on alkaline-ion batteries has developed rapidly

because of their high energy density and environmental friendliness [1]. These

batteries have gained a good reputation as alternatives to LIBs due to the high

abundance of Na- and K-ions in the Earth’s crust and seawater [3]–[5].

Sodium-ion battery (SIB) technology has gained the privilege of enabling advanced

and more demanding applications for large-scale energy storage systems. However,

compared to lithium-ion, sodium-ion has a larger radius and heavier mass, which

causes the SIB to have a lower specific energy and shorter cycle life. These factors

impact the storage reaction mechanism. Therefore, the structural difference between

lithium- and sodium-ions storage reaction is insufficient to devise SIB electrode

materials by simply duplicating LIB electrode materials. Hence, recent research efforts

have been directed towards discovering new material and plausible reaction

mechanism for SIB-electrodes with enhance overall battery performance on specific

energy, cycling life, good cycling stability and high energy density.

The study aims to employ data-driven modelling to develop machine learning models

that are capable of predicting the properties of sodium-ion battery cathode materials.

1.2 Basic Components of Sodium-ion Batteries

Sodium-ion battery consists of anode, cathode, electrolyte (non-aqueous/aqueous)

and a separator. The sodium-ion is shuttle between positive cathode and negative

anode during charging/discharging, operating the same way as lithium-ion battery.

Typical components and working principle of sodium-ion battery are shown in Figure

1.1.

3

Figure 1.1: Schematic diagram of the Na-ion battery [6].

There are four main segments in a standard sodium-ion battery.

i. Anode - negatively charged or reducing electrode, responsible for releasing

electrons into an external circuit and oxidizing during an electrochemical

reaction [7].

ii. Cathode - a positive electrode, drawing electrons from an external circuit and

reducing them through an electrochemical reaction [7].

iii. Separator - a kind of polymeric membrane situated between the anode with a

positive charge and the cathode with a negative charge [8].

iv. Electrolyte - a transport for ions to move between the anode and cathode in a

cell. Generally, they are assumed to be liquids, consisting of acid, salt, and a

solvent such as water, enabling the transfer of ions. However, some batteries

include solid electrolytes, which can conduct ions even when operating at room

temperature [7].

4

1.3 Literature Review

The sodium-ion battery has shown promise in increasing energy storage capacity and

safety; however, due to the high-voltage cathodes, its long-term cycling performance

is limited, impacting the overall performance of SIBs. The biggest challenge is to

develop new electrode materials that can easily promote intercalation/de-intercalation

of sodium-ions in the electroactive substrate, as well as other components of the cell.

In recent years, great efforts have been carried out to search for functional SIB

electrode materials [9], [10], amongst those that are investigated are metal alloys,

oxides, chalcogenides, phosphorus, and carbonaceous materials [11]–[16].

Quantum mechanical methods such as density functional theory (DFT) have been

proven to be effective in predicting and discovering functional novel materials.

Although DFT has proved to be useful in materials design and discovery, it is

computationally expensive and difficult for the techniques to handle complicated

material and their associated scientific challenges. With data-driven machine learning

(ML) approaches, material discovery is now possible at an accelerated rate and with

fewer computational resources.

Recent studies proved that combining density functional theory and machine learning

approaches can speed up structure-property prediction and the discovery of new

materials [17], [18]. Notably, the use of ML methods requires accessibility to a

structured data, hence concerted efforts on developing materials databases. Among

those that were recently developed, are DFT based electronic databases such as

Automatic Flow for Materials Discovery (AFLOW) [19], Materials Project Database

(MPD) [20], NOvel MAterials Discovery (NOMAD) [21] and Open Quantum Materials

Database (OQMD) [22]. The databases were developed to mainly accelerate the

application of ML in materials science. The goal is to develop new materials with

enhanced or novel properties by employing advanced statistical methods on collected

data sets. Stefano et al. [23] designed the high-throughput framework AFLOW which

has been developing over the past decade. Ye et al. [24] developed the Materials

Project Database, which contains DFT calculated results for most of the known

inorganic materials. A DFT database called OQMD was developed by Saal et al. [25],

to accelerate materials discovery and design rule extraction using informatics

techniques. Oses et al. [26] illustrated that a combination of databases with ML tools

5

can be used predict thermodynamic formability modelling. Seko et al. [27] reported

that nanomaterials can be characterized and designed by using a data-centric

approach that integrates machine learning and DFT calculated data.

Relevant to this study, machine learning models and algorithms are increasingly

applied in battery materials research, with superior time efficiency and high accuracy

in property prediction [28]–[32]. Recent studies demonstrated how ML provide insights

into the battery's operation and guide the rational design of electrodes and electrolytes

[33]–[35]. For example, Kang et al. [36] used Neural Network (NN) algorithm to

develop a black box battery model. In another study, Haq et al. [37] used Support

Vector Regression (SVR) algorithm to improve the black box battery model accuracy

and performance. Darbar et al. [38] used the Feedback Neural Network (FNN) to

accurately determine the state of charge (SOC) value of the highly nonlinear nature of

Na-ion batteries, using a higher cut-off voltage of -4.5 V Na+ with different current

rates and cycle data, and achieved R2 values of 0.97 to 0.99, respectively.

Furthermore, Joshi et al. [32] used feature vectors derived from chemical properties

and their basic components to develop machine learning algorithms. Using Deep

Neural Networks (DNN), support vector machines (SVM), and Kernel Ridge

Regression (KRR) algorithms, new 5000 electrode materials for Li, Na- and K-ion

batteries were identified [32].

NaNi1/3Mn1/3Co1/3O2 cathode materials were used to model and optimize the

manufacturing process of sodium-ion battery materials, resulting in a value better than

that of conventional batteries [39]. Machine learning was recently used to predict the

mechanical properties of sodium-ion solid state electrolyte, and the developed model

performed well with a prediction accuracy (R2 score) of 0.72 and 0.87, with mean

absolute errors of 11.8 and 15.3 GPa for the shear and bulk modulus, respectively

[40]. To date, there is no literature on using machine learning techniques to predict

sodium-ion properties such as formation energy, final energy, Fermi energy, energy

above hull, density and band gap.

6

1.4 The Basics of Machine Learning

1.4.1 The Definition

Arthur Samuel first proposed machine learning in 1959, defining it as a field of study

that enables computers to learn and even refine their abilities without being explicitly

programmed [1]. Machine learning algorithms are usually expressed as computer

programs that can learn from experience (E) in terms of classes of tasks (T) and

measures of performance (P) [1]. Therefore, ML is simply denoted as a function ˂P,

T, E˃. Thus, performance on tasks in T, as measured by P, is expected to improve

with experience E. In general terms, machine learning is a branch of artificial

intelligence (AI) that demonstrates its ability to be applied accurately to classification,

regression, and other activities involving large-scale, high-dimensional data [41].

The fundamental idea behind machine learning is to develop an algorithm that can

take in input data and predict its output using statistical analysis. Machine learning is

mainly useful where large amount (thousands) of data is available. Depending on the

algorithm used for a particular task, machine learning can change from being simple

to extremely complex. The ML algorithms can easily recognize trends and patterns,

examine extensive amounts of data, and recognize particular patterns and trends

which are not detectable by humans [42].

In relation to materials research, when ML models are used the structure-property

relationships and materials discovery can be made quickly using a simple model,

which allows the analysis or prediction [43]. By predicting novel materials or properties

using existing data, ML offers a solution to the materials search challenges. Some of

the data generated from machine learning, e.g. new materials and their associated

properties be used to further enhance the ML models. The aim of the models that are

built using machine learning techniques is to provide fairly precise predictions that are

more economical and more productive than computational, experimental, or human-

driven approaches.

7

1.4.2 Machine Learning Methods

The main classes of machine learning include supervised and unsupervised learning.

In the case of supervised learning, an artificial intelligence system is presented with

labelled and categorized data. The aim is to estimate the mapping function so well

such that when the new input data X is accessible, one may predict the output data.

Training data consist of a set of input values and a corresponding set of output values.

Examples of supervised learning include regression and classification. During the

monitored learning process, the training input xi is fed to the learning system, which

produces the output, yi. Training is called the learning process and estimates the

learner's parameters based on the observed ground-truth data. The test is used to

evaluate the learning predictions about the data [44]. Supervised regression,

clustering, and classification algorithms are used for the prediction of materials

properties on the macro- and micro-levels.

In the case of unsupervised learning, an artificial intelligence system is presented with

unlabelled, and uncategorized data. The output values are absent in the training data,

and the aim is to recognize patterns in the input values it analyzes (without desired

outputs). Examples of unsupervised learning include clustering and anomaly

detection. In materials science, unsupervised probability estimation algorithms are

mainly used for the discovery of new materials. Also, unsupervised learning can be

applied to analyze compositional variations from combinatorial experiments, analyze

micrographs, identify descriptors and dataset noise reduction. Shown in Figure 1.2 is

a summarized description of supervised learning and unsupervised learning.

8

Figure 1.2: Two main categories of machine learning.

1.5 Research Problem

1.5.1 Problem Statement

Despite concerted efforts to develop novel materials for energy storage technologies,

there is a continuous need for technologies that can push the limits on material

properties. Lithium-ion batteries revolutionised the development of energy storage

technologies and opened unprecedented solutions for portable electronic devices [45],

[46]. Despite their success, LIBs have relatively low power and energy density, raising

the challenge of transferability to large-scale applications [46], [47]. Furthermore, the

scarcity of Li reserves in the Earth’s crust, cost, and safety concerns raise

uncertainties about their large-scale application [48]–[51]. All of these issues call for

alternative technologies with better performance. Various metal-ion batteries, such as

Na, Mg, Ca, K, and Al- ions, have been proposed. However, their technological

developments are limited due to the lack of suitable electrode and electrolyte materials

[47]–[49], [52]–[54] as well as difficulties in accurately screening their chemical and

structural spaces [55]. Therefore, the study aims to employ data-driven modelling to

Labeled,

categorized

data

Unlabeled,

uncategorized

data

Unsupervised

Learning

(exploratory)

Supervised

Learning

(predictive)

Machine Learning

9

develop machine learning (ML) models that are capable of predicting the properties of

sodium-ion battery (SIB) cathode materials.

1.5.2 Rationale

The discovery of new materials brings about immense progress in technological

developments needed for human well-being. However, commonly used empirical trial-

and-error and DFT-based methods cannot meet the current need and demand for new

materials [56], they cannot be applied to systems with a large number of electrons.

Hence, big-data and machine learning methods have recently emerged as a driving

force for the materials research revolution because of their low computational cost and

shorter development cycle. The era of big data and information is upon us. Daily, there

is an unprecedented amount of data generated, shared, processed, and stored on the

planet and machine learning methods can be used to assist in decision-making. ML is

efficient in such a way that it can take only a few minutes to build a model and only a

fraction of a second to make predictions [57]. It identifies patterns from large datasets,

quickly discovers hidden laws, and extracts useful information faster compared to

conventional computational simulations. As such, it is well suited for the discovery of

new materials, and the prediction processes for the properties of materials are

accelerated.

1.6 Purpose of the Study

1.6.1 Aim

The aim of this study is to apply machine learning regression techniques to a large

amount of data to develop ML models capable of accurately predicting the properties

of sodium-ion battery (SIB) cathode materials.

1.6.2 Objectives

The objectives of the study were the following.

i. extract, process, and clean data provided from the Materials Project Database

(data curation).

10

ii. identify optimal features for property prediction (feature selection and

engineering).

iii. develop machine learning models (model development).

iv. validate the developed models (model evaluation).

v. predict properties of SIB materials (property prediction).

1.6.3 Research Questions

This study seeks to answer the following questions.

i. Can machine learning models be used to accurately predict the properties

of SIB materials?

ii. What feature vectors (also known as descriptors) are suited for a particular

property?

iii. Which machine learning algorithms are optimal for predicting the properties

of SIB materials?

1.7 Structure of the Dissertation

In this dissertation, machine learning models are used to predict sodium-ion battery

cathode properties such as formation energy, Fermi energy, energy above hull, final

energy, band gap, and density. The dissertation is partitioned into five chapters as

follows:

Chapter 1: Presents the general introduction, followed by the fundamentals of

machine learning, and literature review. Lastly, research problem which includes

problem statement, rationale, aim, objectives, and research questions of this work is

presented.

Chapter 2: Presents methodology covering the following topics, main classes of

machine learning, machine learning flowchart, hyperparameter tuning, machine

learning formulation, machine learning algorithms and evaluation methods.

11

Chapter 3: Discusses the model development, i.e., the procedure followed to build,

develop, select, and validate the models.

Chapter 4: Discusses results for the target properties (i.e., formation energy, final

energy, energy above hull, Fermi energy, density, and band gap), model performance

and optimization.

Chapter 5: Presents summary of the findings, concluding remarks, suggestions on

future research, and appendix. Papers presented in conferences and the code that

was developed for this work are given in the Appendices.

12

CHAPTER 2

 METHODOLOGY

In this chapter methodology on machine learning model development is discussed.

The discussion covers; sample construction, hyperparameter tuning, machine learning

algorithms and evaluation methods.

The most relevant question new researchers need to ask is whether their problems

are likely to lend themselves to data-driven methods or not. There is no doubt that

having available, reliable historical data, or at least efforts to generate it uniformly and

systematically for a subset of critical cases, is essential to the adoption of machine

learning. To be effective, data-driven methods should tackle (1) properties that are

extremely difficult to compute or measure using traditional methods, (2) complex

phenomena that cannot be solved directly by solving fundamental equations, or (3)

questions that have no known solutions, so that surrogate models can be built [58]. As

discussed in chapter 1, machine learning algorithms can be divided into two main

categories based on their purpose.

2 MACHINE LEARNING STEPS

There are four key steps involved in machine learning process and are discussed in

the next subsections.

2.1 Sample Construction

2.1.1 Data Collection and Curation

Sample construction is the first step in the machine learning model development

process, it explains how the data is collected and curated. The original data is obtained

and in this case from computational modelling simulations, and in other cases from

experimental measurements. The data is normally incomplete and noisy; therefore, it

is important to perform data cleaning during data processing of samples from the raw

data. Errors must be identified and removed to prevent machine learning algorithms

from being misled. Each sample obtained can be affected by several conditioning

13

factors, some of which are unrelated to the choice attributes. In this study the data was

collected from the Materials Project Database, the data was cleaned by removing NaN

(Not a Number) values and removing columns not adding value to the task at hand.

2.1.2 Feature Engineering

A featurization or feature engineering process read and transform raw data into the

format that algorithms can understand [59]. It is more accurate for an algorithm to map

input data to output data when the input data is more suitable. In feature engineering,

raw data is used as input to algorithms for application. The performance of machine

learning models is often constrained by it, as it is crucial for its functioning. Despite the

fact that raw scientific data is often numerical, how the data is presented is often a key

factor in machine learning.

2.1.2.1 Features/Vectors

An individual feature is a distinctive characteristic that is being considered by machine

learning algorithms. Finding useful, discriminating, and independent features is a vital

step in recognizing patterns, classifying data, and predicting outcomes. Features in

material science must be capable of capturing all relevant information needed to

distinguish between different atomic states [60]. Machine learning algorithms have

trade-offs between the size of their feature vectors and their classification accuracy.

Predicting and classifying with a large feature vector is significantly more complicated.

On the other hand, in terms of classified objects/events, small feature vectors do not

provide sufficient information about the objects/events. It is important to ensure that

features are medium sized to capture the significance of the object/event and not

overwhelm the user with too much information.

A feature vector is just as important as an algorithm when it comes to using machine

learning and must at least be unique to predict a certain property. It is important to

understand which of the relevant and highly correlated properties in the features are

relevant for predicting the target property. It is vital to note that small feature vectors,

in which the objects/events are not sufficiently described, can result in poor

classification accuracy. It is just as important to choose the optimal algorithm as to

choose the feature vector that represents the problem [61].

14

Here, we discuss how feature vectors are generated based on details of the chemical

formula. The chemical formula is converted so that machine learning algorithms can

be able to read it. A vector describing the formula in a meaningful way is required to

provide information to the computer. This can be expressed as a vector in which each

component represents a different chemical formula, for example (Na, Fe, O). This

allows formulas to be expressed more easily, and in this case the compound Na2FeO3

is encoded as (2, 1, 3). Using the atomic weight of all elements within a compound,

we generate a vector known as average atomic weight. Variance, geometric mean,

and so on are calculated in the same manner. Alternatively, instead of relying on the

elements, Composition-Based Feature Vectors (CBFVs) can be built by mixing atomic

and elemental properties [62].

Chemical descriptors are used to construct machine learning features based on

fundamental atomic properties, such as the chemical formula and atomic number.

Chemical descriptors are available from the Xenonpy package [62] in 74 element-level

properties that consist of 118 elements. Considering a binary compound AwABwB,

whose element-level features are denoted by fA,i and fB,i(i = 1, . . . , 58), the 290

compositional descriptors for i = 1, . . . ,58 are calculated as follows:

i. Weighted average: 𝑓𝑎𝑣𝑒,𝑖 = 𝑤𝐴
∗𝑓𝐴,𝑖 + 𝑤𝐵

∗ 𝑓𝑏,𝑖 (2.1)

ii. Weighted variance: 𝑓𝑣𝑎𝑟,𝑖 = 𝑤𝐴
∗(𝑓𝐴,𝑖 − 𝑓𝑎𝑣𝑒,𝑖)

2
+ 𝑤𝐵

∗ (𝑓𝐵,𝑖 − 𝑓𝑎𝑣𝑒,𝑖)
2
 (2.2)

iii. Geometric mean: 𝑓𝑔𝑚𝑒𝑎𝑛,𝑖 = √[𝑤𝐴 + 𝑤𝐵]𝑓𝐴,𝑖
𝑤𝐴 ∗ 𝑓𝑉,𝑖

𝑤𝐵
𝑤𝐴+𝑤𝐵

 (2.3)

iv. Harmonic mean: 𝑓ℎ𝑚𝑒𝑎𝑛,𝑖 =
𝑤𝐴+𝑤𝐵

1

𝑓𝐴,𝑖
∗𝑤𝐴+

1

𝑓𝐵,𝑖
∗𝑤𝐵

 (2.4)

v. Max- pooling: 𝑓𝑚𝑎𝑥,𝑖 = 𝑚𝑎𝑥𝑓𝐴,𝑖, 𝑓𝐵,𝑖 (2.5)

vi. Min- pooling: 𝑓𝑚𝑖𝑛,𝑖 = 𝑚𝑖𝑛𝑓𝐴,𝑖, 𝑓𝐵,𝑖 (2.6)

15

vii. Weighted sum: 𝑓𝑠𝑢𝑚,𝑖 = 𝑤𝐴𝑓𝐴,𝑖 + 𝑤𝐵𝑓𝐵,𝑖
 (2.7)

where 𝑤𝐴
∗ and 𝑤𝐵

∗ represent normalized composition and sum up to one.

The calculated features can be obtained by obtaining a pandas.DataFrame object [63],

[64].

2.1.2.2 Features Extraction

The initial set of raw data is reduced by feature extraction to more manageable groups

for further processing by reducing the dimensionality. Among the characteristics of

these large data sets is the large number of variables, which can require large amounts

of computing power. Feature extraction techniques select and combine variables into

features to represent the original dataset while reducing the amount of data that needs

to be processed accurately and completely. When it comes to reducing processing

resources, feature extraction can be very useful, since it doesn't dilute or omit any

important information.

The purpose of feature extraction is to transform material space into descriptor space,

i.e., input variables Xi,j. According to a particular application scenario, the number of

Xi,j is different. However, as the number of independent variables increases, the

selection of features and computational load will be more complicated. Most existing

technologies for extracting features for energy materials rely on human judgment.

Their primary aim is to assess the importance and correlation of the extracted features.

2.1.2.3 Feature Selection

A feature selection technique involves selecting the most relevant input features for

predicting a specific target variable. It is important to avoid irrelevant and redundant

input variables since they can distract and mislead learning algorithms, possibly

resulting in poor predictions [65]. A feature attribute is used in order to find the least

influential features. Scikit learn [66] machine learning module was used for analysis of

the regressor classes. The calculation of out of bag errors calculated the importance

of features. The least important features were removed, the regressor was retrained

16

and it turned out that most of the features could be eliminated without significantly

affecting the predictive power of the model.

Machine learning algorithms train faster when features are adequately selected, it

simplifies the model and makes it easier to interpret. If the right subset is selected, the

accuracy of the model is improved, in addition overfitting is minimized. It is important

to use the correct feature selection method to see the subset of attributes used in the

final simulation [67]. In this study, correlations and importance of selected features

were determined by visible mapping [68]. A broader field of assessing the relative

importance of input features is called feature importance. Many model-based methods

exist, and their results can be used to aid model interpretation, dataset interpretation,

or feature selection for modeling. The features should be uncorrelated because many

correlated features can hinder the efficiency and accuracy of the model. In such cases,

it is necessary to further select features to avoid the curse of dimensionality.

2.1.2.4 Feature Selection Methods

There are several methods used in feature selection and are briefly explained below:

i. Filter methods - each feature is scored based on a statistical measure. A

feature is ranked by its score and is either kept or removed from the dataset

based on the score. It is common for methods to be univariate, describing

features independently or with respect to the dependent variable. The filter

method is used as a preprocessing step and the features are individually

selected by machine learning algorithms; instead, feature selection is based on

the results of various statistical tests that relate them to outcome variables. Chi-

square test, information gain, and correlation coefficient score are some of the

filter methods that are commonly used [69].

ii. Wrapper Methods - trains the model with a subset of features. A model is

trained using subsets of data. As a result of the model's output, features are

added to retrain the model. Subsets are formed using a greedy approach, and

accuracy is evaluated for all combinations of features. The computational cost

of these methods is generally high. A wrapper method can be used to select

17

features forward, eliminate features backward, or recursively eliminate

features.

iii. Forward Selection - involves starting with no features and iterating through

them one by one. In each iteration, the feature that best improves the model is

added.

iv. Backward Elimination - all features are analyzed at the outset, with the least

significant features being removed at each iteration so that the model performs

better. This procedure is repeated until the model no longer improves.

v. Recursive Elimination - involves finding the optimal subset of features [70].

As a first step, the model is built based on all features and the importance of

each feature is calculated. On the basis of model evaluation metrics (for

example, RMSE, accuracy, and Kappa), the features are then ranked-ordered

and the ones with the least importance are removed.

vi. Embedded/ intrinsic methods - combine the benefits of both wrapper and

filter methods, while at the same time maintaining a reasonable computational

cost. As part of the embedded method, each iteration of the training process is

taken care of, and the features that contribute most to the training process are

selected [71].

In this study the filter method was used as a pre-processing step to select optimal

features for each target property.

2.1.2.5 Feature Importance Plot

Feature importance plot is a graphical representation showing the ranking of features

on how each feature contributes to the model. Features are plotted against their

relative importance, that is the percentage importance of the most important feature.

The term ‘Feature Importance’ describes a technique for computing scores for all input

features for a given model. These values denote the "importance" of each feature. A

high score indicates that the particular feature has a greater impact on the model used

18

to predict the particular variable/property. Descriptor imports can be obtained from

model importance so that it can be determined which descriptors are most important

for effective predictions. There are several reasons why feature importance is so vital:

i. Data understanding

ii. Model improvement

iii. Model interpretability

2.1.2.6 Features Construction/Input Features Development

From the composition of the electrode materials, descriptive variables were created.

These descriptors should be easily accessible, or easily measured, without requiring

computer simulation. We create a mathematical description of the composition based

on the atomic properties of the constituent elements. Sum, average, and variance of

atomic weight, miracle radius, electronegativity, etc. obtained in advance from atomic

properties [72]. For input feature development compositional descriptors were used

from Xenonpy [62].

 Weighted average (abbr: ave)

 Weighted variance (abbr: var)

 Geometric mean (abbr: gmean)

 Harmonic mean (abbr: hmean)

 Max-pooling (abbr: max)

 Min-pooling (abbr: min)

 Weighted sum (abbr: sum)

2.1.2.7 Procedure for Feature Development

Based on formula XxYyZz in which X, Y, and Z share the j property. Average, sum, and

variance are computed using the formulas below:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑥𝑋𝑗

𝑥 + 𝑦 + 𝑧
+

𝑦𝑌𝑗

𝑥 + 𝑦 + 𝑧
+

𝑧𝑍𝑗

𝑥 + 𝑦 + 𝑧
 (2.8)

19

𝑆𝑢𝑚 = 𝑥𝑋𝑗 + 𝑦𝑌𝑗 + 𝑧𝑍𝑗 (2.9)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
(𝑋 −𝑉)2 +(𝑌 − 𝑉)2+(𝑍 −𝑉)2

𝑁
 (2.10)

where V is the number of elements.

 𝑉 =
𝑋𝑗 + 𝑌𝑗 + 𝑍𝑗

𝑁
 (2.11)

2.1.2.8 Feature Learning

In machine learning, a system that automatically discovers the representations needed

to detect or classify features from raw data is known as feature learning or

representation learning [73]. This technique involves transforming raw data into

representations that can be effectively used for machine learning tasks or features. It

eliminates the manual feature engineering that would otherwise be required and allows

machines to learn both specific tasks (using features) and the features themselves.

The main reason for feature learning is that ML tasks often require inputs that is both

mathematically and computationally convenient. Raw data must be transformed into

useful features or representations. In order to automate and generalize these

processes, efficient feature learning techniques are required. Features are learned

with labelled input data. In this work, to give the model a useful angle about the

important properties of the data, we created a mathematical representation of the data.

2.2 Hyperparameter Tuning

The tuning process is an effort to improve a model's performance without generating

high variance or overfitting. All machine learning systems have hyperparameters, and

the main goal of automated machine learning (AutoML) is to automatically set these

hyperparameters as much as possible to maximize performance [74]. By choosing

appropriate hyperparameters in machine learning, algorithms can learn models with

significant differences in performance from the same training dataset.

20

It is imperative to explore an optimal combination of hyperparameters that minimizes

the loss function for optimizing the model. The objective is to obtain better results by

minimizing the loss function. Having enough resources, an optimized learning

algorithm should achieve performance that is arbitrarily close to optimal. The interplay

between random search and more complex optimization techniques, therefore, is an

effective way to ensure a minimal rate of convergence, as well as to enhance model-

based search [75]. It is also useful to perform a random search to start the search

process, as it explores the entire configuration space and can often find settings that

are reasonably performant. Figure 2.1 depicts the steps for hyperparameter tuning

which is explained in detail in the following discussion.

As first step, data is loaded through the data loading process, which is the process by

which source data is loaded from a file, folder, or application to a database or similar

application. The relevant data is pre-processed, then hyperparameters are optimized

using cross-validation. Accordingly, the tuned algorithm is fit to the training data, which

comprised 70% of the data in this study, and finally learned model is applied to the

test set which comprised of 30% of the data. The second step is

hyperparameterization. As part of the hyperparameter optimization procedure, grid

search cross validation is performed to determine the optimal parameters for each

model. Performing a grid search is the standard method of tuning hyperparameters.

Grid search validates the model for each hyperparameter value specified in the grid.

The parameters are initially defined in terms of their range, and this is done to identify

the minimum and maximum values.

There are certain parameters whose values are optimal within certain ranges. The grid

is rendered more detailed according to the range. For the split to be optimized, two

parameters need to be adjusted, number of trees (n_estimator) and number of

features (max_features).

21

Figure 2.1: Steps considered for hyperparameter tuning [76].

The grid can be built by adjusting two parameters: n_estimator, which determines how

many trees are estimated, and max_features, which specifies how many features are

predicted. The grid could be constructed as follows in the first instance:

a. max_features: [1, 0.8, 0.4, 0.3, 0.2]

b. n_estimators: [100,150, 200, 250, 300,1000]

Scikit-learn [66] was used to train each model in Python [77]. Scikit-learn is a Python

library used to build state-of-the-art machine learning algorithms. Each regression

algorithm is designed to build an automatic ML model for each dataset that selects the

best regression algorithm based on the prediction accuracy. Coding involves

importing, reading datasets, and understanding target variables. Output variables are

analyzed according to their distribution [78].

The determination of hyperparameters is often carried out via cross validation (CV)

[79]. A popular cross-validation method is known as K-fold cross-validation. Suppose

we have a hyperparameter, where the training dataset is divided into K-folds. As a

training dataset, the remaining K-1 folds is used to learn the model parameters and

test the model's performance on that fold. After averaging the results, the remaining

22

K-fold is used to test the model's accuracy. In a cross-validation process, the

hyperparameter is determined in such a way that the average performance is

maximized [80].

Decision Tree (DT) and K -Nearest Neighbour (KNN) are optimized using 10-fold cross

validation. Initially, it divides the dataset into 10 sections of similar size and variable

distribution, by choosing one section as the test set and the rest as the training set for

10 rounds. So, 10 sets of training and 10 test sets are taken and used 10 times for

training and validation. The final evaluation results are based on the average

performance of the test set over 10 rounds of experiments. Optimal hyperparameters

are those that yield the highest performance [81].

Model development and model evaluation, evaluation is step 3 and 4 respectively.

These two steps are explained under chapter 3.

2.3 Machine Learning Formulation

For materials science problems that require ML, it is important to build a machine

learning system. In general, these machine learning systems follow this paradigm:

𝐺𝑜𝑎𝑙 + 𝑆𝑎𝑚𝑝𝑙𝑒 + 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 𝑀𝑜𝑑𝑒𝑙 (2.12)

The goal is the problem at hand, it usually takes the form of an objective function.

Typically, a sample is a subset of the population which is selected according to some

predetermined rules [82]. The raw data is transformed into the sample through data

pre-processing, such as data cleaning and feature engineering. An algorithm, which

includes machine learning algorithms and model optimization algorithms. In machine

learning, Support Vector Machines (SVM), Decision Trees (DT), and Artificial Neural

Networks (ANN) algorithms are most commonly used. The most important model

optimization algorithms include Genetic Algorithms (GA), Simulated Annealing

Algorithms (SAA), and Particle Swarm Optimization algorithms (PSO). Model is a

mathematical formulation of the system and referred to as the algorithm built upon the

sample.

23

The machine learning formulation is imperative in materials science, it helps identifying

the task at hand, data type and availability, it also helps in determining which

algorithms will be optimal for the task.

2.4 Machine Learning Algorithms

A key component of ML is its algorithms, and these can generally be grouped into

traditional ML algorithms primarily based on statistics and Neural Networks (NN). Most

classical machine learning algorithms include Bayesian, Decision Trees, Support

Vector Machines, Cluster Analysis (CA), and Random Forests (RF). In Python, Scikit-

learn contains most of the classical ML algorithms, which can be accessed easily [83].

Model selection depends on the problem to solve [84], as such there is no single

algorithm that fits all. Every time a new situation arises, cognitive system reaches for

the past experience, for guidance. Considering past scenarios, decisions, and

experience, better decision making in the future can be done.

A machine-learning algorithm creates a relationship between a dependent attribute

and an independent one and then predicts new input data outcomes based on that

relationship [85]. ML regression algorithms are used to predict the value of the target

variable based on a set of independent variables, also called features. Basically, the

algorithm is trained to predict over time, using examples to verify the predictions. After

that, the algorithm modifies its structure to minimize errors [86].

The term clustering algorithm refers to algorithms that cluster data sets without any

prior knowledge of them. When data is clustered based on density, high-density areas

are surrounded by low-density areas. Data points are classified into clusters based on

their probability of belonging to a particular cluster with distribution-based clustering.

ML methods work by building a model (which can be seen as a function) that

transforms inputs (also called descriptors, describing the materials) into outputs

(usually a material property, such as formation energy, final energy, Fermi energy,

energy above hull, density, and band gap as selected in this study). The descriptors

should be as close to the targets as possible (the actual values of the material

properties). To analyze and predict data, machine learning algorithms create statistical

models by learning from data. Without being specifically programmed. Using

24

regression module pycaret.regression import * [87], 17 machine learning regression

models are imported to set up the pycaret environment and target properties are

estimated, in this study the target properties were formation energy, final energy,

Fermi energy, energy above hull, density and band gap.

To analyze our data, six regression models: were considered, namely light gradient

boosting machine (LGBM), gradient boosting regressor (GBR), extra trees regressor

(ETR), random forest regressor (RFR), Bayesian ridge (BR), and orthogonal matching

pursuit (OMP). Below is the command that generates the regressor algorithm for our

ML models.

The models considered in our study are briefly explained in the next subsections.

2.4.1 Gradient Boosting Regressor

Gradient Boosting Regressor (GBR) is a supervised learning method used for

regression problems. Gradient boosting was developed, by Jerome H. Friedman,

based on Leo Breiman's observation that boosting may be interpreted as an

optimization algorithm [88]–[90]. In practice, it is a powerful machine learning tool. This

is a method that uses the loss function of the base models, usually decision trees to

give a predictive model in the form of an ensemble of weak predictive models. Training

data overfits quickly with this technique. Through regularization techniques, it

penalizes different parts of the algorithm, reducing overfitting and improving

performance.

Using the gradient boosting method with regression trees as weak learners, the

following is the basic principle:

For the sample space N = {(x1, y1), (x2, y2), ... , (xN, yN)}. The aim is to find the

prediction function F(x) minimizing the loss function L(y,F(x)) among all x-y mappings.

The prediction function is then represented as:

from pycaret import *

from pycaret.regression import *

https://en.wikipedia.org/wiki/Ensemble_learning

25

𝐹(𝑋) = ∑ 𝛽𝑚ℎ(𝑥; 𝑎𝑚)𝑀
𝑚=1 (2.13)

where h(x; am) is the mth subtree of the weak learner, m = 1, 2, ... , m; am is the

parameter for the mth subtree, βm is the subtree weight. If the prediction function

produced by the first m training weak learners is Fm(x), the optimization problem is

equivalent to finding the parameters of a new subtree (βm,am),

(𝛽𝑚, 𝑎𝑚) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖,𝐹𝑚−1
𝑁
𝑖=1 (𝑋𝑖) + 𝛽𝑚ℎ(𝑥; 𝛼𝑚)) (2.14)

For the above conditions (2.13) and (2.14), gradient boosting is updated as follows:

The first step is to initialize the regression tree:

𝐹0 =𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖,ℎ0
𝑁
𝑖=1 (𝑥; 𝛼𝑚) (2.15)

The second step: for m = 1, 2, 3... M, the negative gradient of the loss function is:

𝑦𝑖𝑚 = − [
𝜕𝐿(𝑦𝑖,𝐹(𝑋𝑖))

𝜕𝐹(𝑋𝑖)
]

𝐹(𝑋)=𝐹𝑚−1(𝑋)
 (2.16)

Fit a new subtree with ỹim as the training target, and determine the leaf node area by

calculating the subtree parameters:

𝑎𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ [𝑌𝑖𝑚
𝑁
𝑖=1 − 𝛽𝑚ℎ(𝑥𝑖,𝛼𝑚)]² (2.17)

where,

𝛽𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖,𝐹𝑚−1
𝑁
𝑖=1 (𝑋𝑖) + 𝛽𝑚ℎ(𝑥; 𝛼𝑚)) (2.18)

Updating the prediction function takes the form:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈𝛽𝑚ℎ(𝑥; 𝛼𝑚) (2.19)

where 𝜈 is the step size used to control the learning rate. To achieve the required

prediction accuracy, m must be set to a smaller value; because, if the m is set too

large, it may be more difficult to achieve the required prediction accuracy.

26

2.4.2 Light Gradient Boosting Machine

Light Gradient Boosting Machine (LGBM) is an open-source library that gives effective

and compelling uses of the algorithm. It takes gradient boosting one step further by

adding an automatic feature selection method as well as boosting examples with large

gradients. In some cases, this can result in a remarkable improvement in coaching

performance and predictability. Due to this, light gradient boosting machine has

become one of the most popular algorithms in machine learning competitions for the

analysis of tabular data for regression and classification prediction modelling tasks.

The LGBM method has high prediction accuracy, a fast computation rate and a

capability of minimizing overfitting issues relative to other methods, it has been widely

used in numerous fields [91]. Two novel techniques used in the LGBM algorithm, are

of gradient-based one-side sampling and exclusive feature bundling.

Given the supervised training dataset: 𝑋 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛

, LGBM aims to find an

approximation 𝑓(𝑥) to a certain function 𝑓∗(𝑥) that minimizes the expected values of

a specific loss function L(y, f(x)) as follows:

𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝐸𝑦,𝑋
𝐿(𝑦, 𝑓(𝑥)) (2.20)

The LGBM integrates several T-regression trees ∑ 𝑓𝑡
𝑇
𝑡=1 (𝑋) to estimate the final

model, which is;

𝑓𝑇(𝑋) = ∑ 𝑓𝑡(𝑋) 𝑇
𝑡=1 (2.21)

if J, q, and w represent the number of leaves, the decision rules of the tree, and the

sample weight of leaf nodes, respectively, the regression trees can be expressed

as wq(x), q ∈ {1, 2, ..., J} and it is possible to train the LGBM in an additive form at t:

𝛤𝑡 ≅ ∑ 𝐿(𝑦𝑖, 𝑓𝑡−1(𝑥𝑖) + 𝑓𝑡(𝑥𝑖))𝑁
𝑡=1 (2.22)

Newton's method is used to rapidly approximate the objective function in LGBM.

Removing the constant expression from the above equation, the objective function is

reduced to:

27

𝛤𝑡 ≅ ∑ ((𝑔𝑖𝑓𝑖(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖))𝑁
𝑖=1 (2.23)

where gi and hi represent the first- and second-order gradient statistical results of the

loss function, respectively. The equation (1.23) could then be transformed to:

𝛤𝑡 = ∑ ((∑ 𝑔𝑖𝑖є𝐼𝑗
) 𝑤𝑗 +

1

2
(∑ ℎ𝑖𝑖є𝐼𝑗

+ 𝜆) 𝑤𝑗
2)𝐽

𝑖=1 (2.24)

where, Ij represents the sample set of leaf j.

With respect to the tree structure q(x), the optimum leaf weights of the leaf nodes 𝑤𝑗
∗

and extreme values of ΓT are determined by equations (2.25) and (2.26), respectively:

𝑤𝑗
∗ = −

∑ 𝑔𝑖𝑖є𝐼𝑗

∑ ℎ𝑖+𝜆𝑖є𝐼𝑗

 (2.25)

𝛤𝑇
∗ = −

1

2
∑

(∑ 𝑔𝑖𝑖є𝐼𝑗
)

2

∑ ℎ𝑖+𝜆𝑖є𝐼𝑗

𝐽
𝑗=1 (2.26)

where is the weight function that measures the quality of the tree structure q(x). Finally,

the objective function is obtained by integrating the split:

𝐺 =
1

2
(

(∑ 𝑔𝑖𝑖є𝐼𝑙
)

2

∑ ℎ𝑖+𝜆𝑖є𝐼𝑙

+
(∑ 𝑔𝑖𝑖є𝐼𝑟)

2

∑ ℎ𝑖+𝜆𝑖є𝐼𝑟

−
(∑ 𝑔𝑖𝑖є𝐼)2

∑ ℎ𝑖+𝜆𝑖є𝐼
) (2.27)

where 𝐼𝑙 and 𝐼𝑟 are samples of the left and right branch, respectively.

2.4.3 Random Forest Regressor

Random Forests (RF) are ensembles of multiple decision trees that are trained in a

random manner. We used RF in this study as a predictor i.e., random forest regressor

(RFR), but it can also be applied as a classifier. In contrast to using a single decision

tree, RF addresses the problem of biased variance using an ensemble of decision

trees. Based on the features and the data points, each decision tree in the RF is trained

on its own random features. The overall regression value is obtained by averaging the

results of each tree [92]. This technique operates quickly over large datasets due to

its high computational efficiency. Through feature bagging and tree bagging, the

random forest technique performs regression tasks. Each node in the decision tree is

split using the feature bagging technique.

28

For regression tasks, random forests are usually defined by growing trees based on a

random vector f(θ), so that the predictor (i.e., a decision tree) h(x, θ) take the values

instead of labels. In this case, the regression values will be real. Training samples are

randomly selected from a distribution (Y, X). Typically, the prediction task is usually

defined as a Mean-Square Error (MSE) as follows:

𝐸𝑋,𝑌(𝑌 − ℎ(𝑋))2 (2.28)

where X and Y are the training samples and labels (values), respectively. After solving

this equation, the random forest h(x, θ) can be used to predict each test sample x to

get regression results [93].

2.4.4 Extra Trees Regressor

The term "Extra-Tree (ET) method" is short for extremely randomized trees. A great

deal of variance in induced trees arises from choosing the optimal cut-point when

considering input features (numerical). Therefore, randomizing tree building is

important. A tree-based ensemble, the extra tree regression (ETR) algorithm is an

extension of the random forest algorithm. A random subset of features is used to train

each base estimator, like how random forests work [94].

Splitting occurs in each node of the decision tree with the feature bagging technique.

Using the entire training dataset instead of the bagging step, the extra tree regressor

trains on the decision trees. ETR algorithm increases the performance of the model

since it is less susceptible to overfitting. In order to generate output features, input

feature pairs are generated as shown by the equations (2.28) and (2.29):

𝐹 = {𝑓𝑛}𝑛 = 1
𝑁 (2.29)

𝐵 = {𝐵𝑛}𝑛 = 1
𝑁 (2.30)

In view of the fact that extra trees regressor performance is affected by factors such

as tree number (N), number of samples split from a node (nmin), tree depth (dmin) and

selection of attributes (K) [94]. Then, it is worth mentioning that the number of trees is

directly related to computational time, and therefore a reasonable number of trees

needs to be selected to optimise prediction performance and computational time. With

29

the increase in the number of training data sample, it is expected that the prediction

accuracy of the model will increase. Since K is the number of randomly selected

features at each node during the tree growing process, it determines the strength of

variable selection process and for most regression problems.

2.4.5 Bayesian Ridge

Bayesian Ridge (BR) estimates a probabilistic model for regression problem. The prior

for the coefficient w is given by a spherical Gaussian:

𝑝(𝑤|𝜆) = 𝒩(𝑤|𝜆−1𝐼𝑝) (2.31)

where, w is the regularization parameter, and λ and Ip are the hyperparameters of

the gamma prior distribution.

The priors over α and λ are chosen to be gamma distributions, which are conjugate

priors to the Gaussian. The resulting model is known as Bayesian ridge regression,

which is similar to classical Ridge Regression. In this work Bayesian ridge regression

was used to predict the formation and final energy. The parameters w, α, and λ are

jointly estimated during model fitting, and the regularization parameters α and λ are

estimated by maximizing the log-marginal likelihood [95], [96].

To estimate regularization parameters, Bayesian ridge regression techniques can be

applied. The regularization parameter is not determined in a hard-and-fast manner but

is rather tailored to the data frame. The model's hyperparameters can be reconstructed

using uninformative priors. Regularization with L2 in Ridge Regression (RR) and

classification, it is equivalent to exactly finding the largest posterior estimate under a

Gaussian prior with coefficient w with precision λ−1. To generate a full probabilistic

model, the output y is assumed to be Gaussian with respect to Xw:

𝑝(𝑦|𝑋, 𝑤, 𝛼) = 𝒩(𝑦|𝑋𝑤, 𝛼) (2.32)

where α is treated as a random variable and is estimated from the data. As a Bayesian

regression method, it is able to adjust to the data at hand and can be used to determine

regularization parameters in the estimation process. Unfortunately, inference of the

model can be slow [97].

https://en.wikipedia.org/wiki/Gamma_distribution

30

2.4.6 Orthogonal Matching Pursuit

The goal of the Orthogonal Matching Pursuit (OMP) algorithm is to approximate the

solution of one of two problems.

The sparsity constrained sparse coding problem given by:

𝛾 = 𝐴𝑟𝑔𝑚𝛾𝑖𝑛 ‖𝑥 − 𝐷𝛾‖
2

2

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑇𝑜 ‖𝛾‖
0

≤ 𝐾 (2.33)

and the error- constrained sparse coding problem, given by:

𝛾 = 𝐴𝑟𝑔𝑚𝛾𝑖𝑛 ‖𝛾‖
0

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑇𝑜 ‖𝑥 − 𝐷𝛾‖
2

2

≤ є (2.34)

We assume, for simplicity, the columns of D are normalized to unit 2 lengths (although

this constraint can be easily lifted). The greedy OMP algorithm selects the atom with

the highest correlation to the current residue at each step. The signal is projected

orthogonally to the selected span of atoms, the rest are recalculated, and the process

is repeated [98].

2.5 Evaluation Methods

Metrics of evaluation explain the performance of a machine learning model. They are

used to determine how well the model performs. Among the most important aspects

of evaluation metrics is their ability to discriminate between results. Since the problem

at hand is a regression then evaluation indices for regression are briefly explained in

the next subsections.

2.5.1 Mean

An arithmetic mean or arithmetic average is a central value of a finite number set:

specifically, the sum of the values divided by the number of values. A distribution's

mean, or expected value, is one of its most recognized properties. The mean is

denoted by the symbol µ, and is defined as follows:

µ =
∑ x

n
 (2.35)

31

where ∑x is the sum of all the observations and n is the total number of elements in

the dataset.

2.5.2 Variance

The variance of a random variable is defined as the squared variation of the mean

value, in probability and statistics. It is simply the average taken out of the standard

deviation. Variance measures how spread out a set of numbers (randomly) are from

their mean. Variance can be symbolized by σ2, s2, or Var(X). The mathematical

formulation is given by:

𝑉𝑎𝑟(𝑋2) = 𝐸[(𝑋 − µ)2] (2.36)

from which

𝐸[𝑋] = µ2 + 𝜎2 (2.37)

2.5.3 Standard Deviation

The standard deviation (std) provides a measure of the spread of values, it is simply

stated as the observation that are measured through a given dataset. Essentially,

standard deviation is calculated by square rooting the variance. Standard deviations

for the sample and population are represented by the symbols σ and s, respectively.

The standard deviation is expressed as:

σ = √Var(X) = √∑ (𝑥𝑖−�̅�)2𝑁
𝑖=1

𝑁−1
 (2.38)

where 𝑥𝑖 is the terms given in the data, �̅� is the mean of the data and N is the total

number of terms.

32

2.5.4 Mean Square Error

The Mean Squared Error (MSE) quantifies the difference between what is predicted

and the actual result by calculating the average of the squares of the errors generated

by an estimator. MSE can provide an indication of the quality of the model, and it is

defined as:

MSE =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)²𝑛

𝑖 =1 (2.39)

where n is the number of data points, yi the observed true value, and ŷi predicted value

of the i-th sample. Zero mean square error shows that the model predicted 100%

correct actual values, the model must achieve the mean square error closer to zero.

The mean square error can never have negative values.

2.5.5 Root Mean Square Error

The root mean squared error (RMSE) is a commonly employed metric for quantifying

the discrepancies between the values that are predicted by a model or estimator and

the observed values. It is also referred to as the root mean square deviation and is

expressed by the square root of the mean square error:

RMSE = √𝑀𝑆𝐸 = √
∑ (yi −ŷi)²n−1

n

n
 (2.40)

In training the model, we want to minimize the RMSE as much as possible. Therefore,

the smaller the RMSE, the better the model's performance. RMSE and standard

deviation may appear similar, but they are different. Std measures the spread of data

around a mean, whereas RMSE measures the difference between some values and

the predictions associated with them. It can be interpreted as the degree to which data

is concentrated around the line of best fit. In general, when the RMSE value is lower,

the better a model fits a dataset. Std and RMSE converge as the mean error

approaches 0 and n approaches infinity.

33

2.5.6 Mean Absolute Error

The mean absolute error (MAE) is a measure of the discrepancy between two identical

observations, which signify a specific phenomenon. This metric evaluates the

magnitude of the errors in a set of forecasts, disregarding the direction of the errors.

MAE is used to gauge accuracy for continuous variables since it is a linear score,

where the individual differences are equally taken into account for the overall mean.

The mean absolute error is formulated as:

MAE =
∑ |yi−xi|n

i=1

n
 (2.41)

where yi is the prediction, xi the true value and n is the total number of data points.

2.5.7 Mean Absolute Percentage Error

Mean Absolute Percentage Error (MAPE) is the most used error forecasting measure

and is most effective when there are no extremes in the data (no zeros). A regression

machine learning model's performance can be measured by the MAPE. Data scientists

use this metric to assess the model's accuracy for a variety of use cases and datasets

since it represents the error as a percentage. It is an easy metric for the end user to

understand and enables a clear comparison between the model's accuracy. It is

considered acceptable if the MAPE is less than 5%. MAPE is given by:

MAPE =
1

n
∑ |

At−Ft

At
|n

t=1 (2.42)

where At is the actual value, Ft is the forecast value, n is the number of fitted points.

2.5.8 Coefficient of Determination

The coefficient of determination, also referred to as the regression score (R2), is a

statistical indicator that reflects the degree to which a dependent variable can be

predicted based on the independent variable. It is measured using the following

formula:

34

 𝑅2 = 1 −
∑ (𝑦𝑖 −𝑖 �̂�𝑖)²

∑ (𝑦𝑖 −𝑖 �̅�𝑖)²
 (2.43)

where yi, ŷi, and ȳi are predicted values of machine learning mean y test value, actual

y test value and testing set sample size. It is recommended that an R2 reading of 0.6

or higher is adequate for a good reading, it indicates the model is fitting well and a

measure below 0.4 shows a low level of correlation. When the coefficient of

determination is equals to 1, this suggests that the model predicted 100% actual

values that are correct. Therefore, the best model should have regression score closer

to 1. To measure the accuracy of the models in this study, mean square error (MSE),

and regression score square (R2) will be used. The models are ranked according to

their ability to predict the validation data that was not used during the training phase

[78].

35

CHAPTER 3

MODEL DEVELOPMENT

In this section, the procedure for developing regression models based on the

supervised machine learning method is discussed. This involves data collection and

curation, model selection, model evaluation and validation.

3.1 Building the model

Model development is an iterative process in which many models are build and tested.

It is basically a black box that links input and output data using either linear or non-

linear functions. This method allows us to employ a sample of a desired function to

search for the factors where a specific mapping function will best replicate the desired

function. Models are built until they satisfy the desired criteria; this is often due to the

fact that the model already in use may be ill-suited for reuse and not be fully

understood.

Figure 3.1 shows the model development process, explaining how the machine

learning algorithms work. The models work by performing a pre-processing step to

generate a set of descriptive attributes as input features (X) and use known atomic

properties to generate chemical and physical descriptors [92]. The true labels (Y) of

the model during training are the properties computed by DFT, namely formation

energy, final energy, Fermi energy, energy above hull, density and band gap are the

true labels computed by density functional theory.

Figure 3.1: Machine learning approach for property prediction [92].

36

3.1 Machine Learning Workflow

Figure 3.2 shows the workflow that was followed in this study.

 Data collection and curation - the dataset containing 7397 SIB electrode

materials was collected from the Materials Project Database. The data was

cleaned (curated) by removing the duplicates of some materials and NaN not

existing numbers. Also, for band gap prediction materials that have a band gap

of zero, were eliminated, for better model performance.

 Feature engineering - important features were selected to train our machine

learning models. Feature engineering involves creating new features from the

original raw data by utilizing mathematical models. By using this mathematical

representation, the relationship among features can be refined, and create few

new features that accurately describe the sample data. The correlation

heatmap and feature importance plot were used to select optimal features.

 Dataset split and model training - after the ML algorithm uses the training data

set to create a model between the features and the objective function, we the

data was randomly split into a training data set and a test data set. In this work

the dataset was split into 70% train and 30% test set. The models were built

and trained.

 Model selection - the best models were selected based on the performance

accuracy. The evaluation indices selected for performance evaluation includes

regression score and mean square error.

 Hyperparameter tuning - the selected models were fine-tuned. To boost

performance and maintain an acceptable accuracy and computation cost of

the model, the hyperparameters of the algorithm were adjusted.

 Model validation and evaluation - the models were validated by checking the

performance accuracy on the train and test set. The validated model was then

used to predict data properties [83]. For model evaluation the DFT calculated

properties were compared with the corresponding machine learning predicted

values.

37

Figure 3.2: Machine learning workflow [99].

3.2 Dataset

Generally, a data set is a collection of information that corresponds to one or more

database tables, with each column representing a variable, and each row resembles

the given record for the information set in question. Basically, the data were organized

in a certain model that helps to process the needed information. The training data was

extracted from the Materials Project Database, containing a total of 7397 sodium-ion

battery materials properties calculated using DFT, which was our input dataset. The

DFT materials properties stored in materials project database was estimated and

optimized by the Vienna Ab initio Simulation Package (VASP). Chemical formula,

formation energy per atom, final energy per atom, Fermi energy, energy above hull,

band gap, and density for every material are included in the extracted dataset. The

meanings of these properties were detailed according to the explanation in the MPD

glossary.

i. Pretty formula (chemical formula): An expression in which the element set is

normalized.

ii. Density: Final relaxed density of the material, calculated bulk crystalline

density.

38

iii. Formation energy per atom: calculated formation energy from the elements

normalized to per atom in the unit cell, computed formation energy at 0 K, 0

atm using a reference state of zero for the pure elements.

iv. Energy above hull (e above hull): calculated energy at the convex hull of the

structure. The energy in eV/atom at which this material decomposes into the

most stable group of substances with this chemical composition. Stability is

normally tested for all possible chemical combinations resulting in the

composition of the material. A positive energy above the hull indicates that this

material is unstable to decomposition. A negative energy above hull indicates

that this material is stable. Zero energy above the hull indicates that this is the

most stable material in its composition.

v. Band gap: the band gap is defined as the energy difference in (eV) between

the upper valence band and lower conduction band of insulator and

semiconductor materials.

vi. Fermi energy: energy difference between the highest and lowest occupied

states of a non-interacting fermion system at absolute zero.

vii. Final energy per atom: the total energy of the materials after structural

relaxation.

3.2.1 Dataset for Selected Sodium Containing Materials

The data were accessed from the database via the Python Materials Genome

(Pymatgen) application programming interface for Materials Project [20]. Our dataset

is composed of predicted formation energy, Fermi energy, final energy, density,

energy above hull, and band gap for a variety of sodium-ion batteries calculated using

DFT. The following command was used to extract the materials properties from the

Materials Project:

39

As shown in Table 3.1, the following dataset was obtained from Materials Database

Project: chemical formula, formation energy per atom, Fermi energy, final energy per

atom, density, energy above hull, and band gap.

After data cleaning, the original data reduced from 7397 data samples to 4063 sodium-

ion data samples.

import json

import requests

data = {'criteria': { 'elements': { '$all': ['Na']}},

 'properties':
['pretty_formula','final_energy_per_atom','efermi','formation_energy_per_atom',

'density','e_above_hull', 'band_gap']}

r = requests.post('https://materialsproject.org/rest/v2/query',

 headers={'X-API-KEY': 'tXXXXXXXXJ'},

 data={k: json.dumps(v) for k,v in data.items()})

response_content = r.json()

train=pd.DataFrame(response_content['response'])

40

Table 3.1: Dataset for some of the selected sodium containing materials.

41

3.2.2 Dataset Split

The dataset split is the process of dividing the original dataset into two sets (training

set and test set) in order to coach ML models regardless of the data type used. The

training set is used for model training, while the test set is used to validate the model.

The low training data results in higher variances for parameter estimates and therefore

it is essential that the data is separated in such a way that neither is simply too high

nor too low, which is determined by the large amount of information generated.

For several problems, Joseph suggested a ratio of 70/30 or 80/20 (training/testing set)

[100]. Previous studies reported that increasing the training dataset from 70% to 80%

improved model performance and stability, and the testing performance could also be

improved. However, testing performance exhibited an opposite trend when training

size was increased from 80% to 90%. Overall, the size of the training set influenced

the prediction ability of the ML models [101].

Initially, 90% of the data was used for training and 10% for testing, the models did not

perform well during model selection process, so the split of the data was adjusted for

the models to better fit the data. Second case involved 80% train set and 20% test set,

the models performed better as compared to the first case of 90/10 splitting. In order

to maximise and improve performance, we further checked how the data may fit our

models with 70/30 train/test split and it was found to fit the data perfectly, hence 70/30

splitting used throughout the study for the predictions of the properties.

Below is the command for train/test split.

In splitting the 4063 dataset which was in a good format, readable by ML packages,

for the target properties the transformed train set was about 2844.

As illustrated in Figure 3.3 dataset splitting shows that 70% of the data was used for

the learning process or training of the models. The remaining 30% was used for the

validation process.

train_test_split = setup (data = X, target = 'property of interest', session_id=123, train_size

= 0.70)

42

Figure 3.3: Dataset split [99].

3.2.3 Cross Validation

Cross-validation (CV) is a resampling technique for evaluating ML models on a

restricted data. Statistical models such as regressions and classifications have been

extensively validated using cross-validation. This method provides unbiased

estimation and is easy to implement, as CV is well-known. There are several cross-

validation techniques.

i. Leave-p-out cross-validation - the leave-p-out cross-validation approach

(LpOCV) involves utilizing p-observations for validation purposes and the rest

of the available data for training. This procedure is repeated to divide the

original sample into a collection of p observations and a collection of training

observations in all possible ways.

ii. Leave-one-out cross validation - in cross-validation, leave-one-out cross-

validation (LOOCV) is an exhaustive technique. It is a type of LpOCV with the

case of p=1. An n-row dataset is divided into the validation row and the training

row (n+1). The second row will be selected for validation in the next iteration,

and the rest for training. Similarly, the process is repeated until n steps or the

desired number of operations have been completed. Both of these cross-

validation techniques are types of exhaustive cross-validation. When a cross-

validation method is exhaustive, it learns and tests in all possible ways. As a

result, model biases may be low, and the computational time may be excessive.

Yet, this technique is simple, straightforward, and can be implemented quickly

[102].

70%

30%

43

iii. Holdout cross-validation - with holdout cross-validation, a dataset is randomly

split into a training and a validation data. The training data is usually bigger than

the validation data. The training data is used to generate the model and the

validation part is used to assess its accuracy. Generally, the more data used

for the training, the better the model is. This kind of cross-validation method

isolates a large amount of data from the training data.

iv. Monte Carlo cross-validation - the Monte Carlo cross-validation technique, also

known as random subsampling validation, splits the dataset into training and

validation samples. The dataset was split, not in groups or folds, but in random

ways in this case, for cross-validation. Analyzing the data determines the

number of iterations. The average is then calculated over the splits. Monte

Carlo cross-validation does not depend on the number of iterations or partitions

how many trains and validations are done. There are also limitations to using

this technique, for instance, the training or validation of some samples may not

be possible, and it is not suitable for an imbalanced dataset.

v. K-fold cross validation - the technique contains a parameter called K, which

indicates how many groups the provided sample should be split into. Thus, the

technique is commonly referred to as K-fold cross-validation. It is important to

conduct cross validation because it gives more information about algorithm

performance. As an alternative to Leave one out (LOO), K-fold cross-validation

[103] has been proposed. Now, it is the simplest and most popular method of

estimating generalization error. This method has the obvious advantage of

requiring only K times calculations, which is far cheaper than (LOO) or Leave p

out (LPO). It is imperative to keep in mind that this approach could be more

prone to errors if the K-number is not large [104]. 5-fold or 10-fold cross-

validation may be used for large-size datasets because the computational

burden of leave-one out cross-validation is too heavy. The advantage of this

technique includes low model bias, low time complexity and the entire dataset

is used for both training and testing, however this method is not suitable for an

imbalanced dataset.

vi. Bootstrap cross-validation - due to the great variability in K-fold cross-validation

when the scale of the sample data is small, researchers proposed bootstrap

cross-validation (BCV). BCV has lower variability and fewer biases when the

44

scale of the samples is small compared to traditional validation methods [104],

[105]. Although, it is important to note that BCV will cause the computation

amount to rise sharply when the sample size is large.

There are a variety of cross validation methods, each with their own unique

characteristics [105].

In this work we employed K-fold and hold-out cross validation. During model

comparison, firstly the models were compared using cross validation 10-fold by

default, and later 5-fold was used to compare the models. Based on this analysis, the

5-fold cross validation was effective in comparing the models. The reasons for

changing the 10-to-5-fold cross validation were to improve the training time and the

model accuracy. Under model comparison the score grid shows metrices MAE, MSE,

RMSE, R2, and MAPE by default, which are already discussed in chapter 2. The hold-

out cross validation was used during dataset splitting, where a larger number of the

data was divided as the training set, which was used to train the models and the

remaining dataset as the testing set used to validate the models.

For each fold, in Figure 3.4; the following tests were performed: In split 1, the first fold

was used as validation (or holdout), while everything else was used as training data.

A 30% holdout provides a model quality measurement. Besides the second fold, we

take the data from split 2 (and train the model excluding the second fold). A second

gauge of model quality was then obtained using the holdout set. This process was

repeated one more time, with each fold being considered a holdout set.

45

Figure 3.4: Illustration of 5-fold cross-validation process [106].

3.3 Model Selection

The process of selecting a scientific model from a collection of several models and

data is called model selection [107]. It is always a good idea to consider prior data

sets. Regardless of the method, the task may include arranging tests so that the data

collected is well-suited to the matter of model selection. When inferring and learning

from data, there are two main objectives. The first is for scientific discovery,

understanding of the underlying mechanism for data generation, and interpretation of

the data itself. Predicting future or unknown observations is another objective of data

mining. A data scientist might not be specifically focused on obtaining an exact

probabilistic representation of the data for their second objective. Alternatively, both

directions may be of interest.

It is important to identify whether processed data have labels, i.e., target variables,

before any further analysis. If labels exist in a dataset, supervised learning algorithms

should be implemented, otherwise the issue should be classified as an unsupervised

learning problem. The type of labels (discrete or continuous) can also influence the

46

choice of classification or regression algorithms. Afterwards, the data can be trained

using a variety of algorithms and then select the best model depending on the

prediction's accuracy. It is usually more difficult to interpret and hinders further

understanding in the application domain to determine the model that can make the

most accurate prediction from the more complicated feature space and decision rules.

Selecting the right model and parameters for a particular task is the essence of model

selection. Furthermore, it is generally accepted that the selection of an optimal

algorithm should ideally consider the known physical properties of the descriptors and

target [108].

Consequently, selecting a model can be categorized into two distinct paths: model

selection for inference and model selection for prediction. It is essential to identify the

most suitable model for the data, which will most likely give a reliable interpretation of

the sources of uncertainty for scientific understanding [109]. In order to achieve this

goal, it is crucial that the selected model does not depend too much on the sample

size. Accordingly, the concept of selection consistency can be used to evaluate model

selection, meaning that, if sufficiently many data samples are available, the most

robust candidate will be selected consistently.

The second direction is to use a model that provides excellent prediction. Even when

a model is chosen based on luck among a few close competitors, it can still perform

well in predicting outcomes. If that's the case, selecting a model would be satisfactory

for the second objective (forecasting), but the utilization of the chosen model for insight

and interpretation would be completely unreliable and misleading. Moreover, for

extremely complex models selected this way, even predictions based on data are just

slightly different from those on which the selection was made may be unreasonable.

[109].

The Bayesian Ridge (BR), Light Gradient Boosting Machine (LGBM), Random Forest

Regressor (RFR), Gradient Boosting Regressor (GBR), Extra Random Tree (ETR),

and Orthogonal Matching Pursuit (OMP) were tested to select the most suitable one

using grid search strategies to increase efficiency. The Scikit library machine learning

module and Python programming language were utilized to develop the models.

As part of this project, resampling methods were applied. Resampling techniques were

used to measure the performance of a model (or, more precisely, the model

47

development process) by using data from outside the original sample. To achieve this,

the dataset was divided into two parts - train and test - and a model was trained based

on the train set, then evaluated on the test set. This procedure was repeated multiple

times and the average performance over all of the trials was reported. In this method,

out-of-sample data was used to estimate model performance under varying

resampling methods, although each trial is not necessarily independent since the

same data may appear in multiple training datasets or test datasets, depending on the

chosen resampling method. Three frequent resampling model selection techniques

include: Random train/test splits, Cross-Validation (K-fold, LOOCV, etc), and

Bootstrap. The data was split randomly and cross validated using K folds.

3.4 Model Tuning

Model tuning is also known as hyperparameter optimization, it is the process of finding

the optimal values of hyperparameters to maximize model performance. As soon as a

model has been trained, the model is validated using unseen data that differ from the

data in the training set. This validates the accuracy of the model. Bayesian ridge, light

gradient boosting machine, and extra trees regressor were used to model the dataset.

Modern classification and regression models can model complex relationships due to

their high adaptability. Nevertheless, they are capable of exaggerating patterns that

are not reproducible. When evaluating a model, without a methodological approach,

the modeler will not discover the problem until the next set of samples is predicted.

Several tests were run on improving the regression models by tuning hyperparameters

until the best model producing the results reported. We eliminated the models that did

not give accurate results to achieve better results. A number of hyperparameters were

tuned to accomplish this and are further discussed in chapter 4. Choosing the best

regularization is important, as small regularizations lead to complex models. It is also

not effective to use larger regularization, since it makes the model less useful. A grid

search technique was used to tune the models.

It is not necessary to understand the physical principles of material properties when

performing machine learning for predicting material properties. The algorithm

manages conversion of element-derived features into predictions using strictly

statistical methods.

https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/

48

3.5 Model Validation and Evaluation

Estimating the quality of the model (model evaluation) is the step in the data-driven

modeling process wherein the model's performance accuracy is assessed for both

existing and unseen data. From the perspective of the intended uses of a model,

validation is often defined as the process of determining whether the model accurately

represents the real world. ML models must be evaluated in order to be effective. A

model's performance metric refers to how well it performs on an unseen dataset. A

machine learning model is evaluated by using different evaluation metrics discussed

in section 2.5 to understand its performance as well as its strengths and weaknesses.

As a part of the initial research phases, model evaluation is important for assessing a

model's efficacy, as well as for monitoring it.

As a result, the model learned by the algorithm will not cover all situations, resulting in

an actual predicted output that differs from the actual value of the sample. On the

training and test sets, the ML model error is referred to as the training error, and on

the new sample, the error is called the generalization error. ML models should have a

small generalization error. However, the generalization error is difficult to calculate.

Typically, the dataset is divided into three parts: a training set, a validation set, and a

test set, and each is used to train the model, adjust the parameters, and calculate test

error. To evaluating the accuracy of a machine learning model, the test error

represents an approximate evaluation of the generalization error.

In order to make a model useful, it must address the correct problem, provide accurate

information about the system, and be useful to users. In this study, the predictive

accuracy of the model was evaluated by comparing the calculated DFT properties with

the corresponding predicted ML values which is discussed in detail under chapter 4.

The following accuracy measures were used to evaluate model performance:

coefficient of determination/regression score (R2) and mean squared error (MSE).

These accuracy measures were described briefly in chapter 2.

49

CHAPTER 4

4 RESULTS AND DISCUSSION

This section presents the results covering the following key steps, feature engineering,

model selection, model tuning and model performance. Model selection involves

selecting the best models based on their performance, the best selected models are

then fine-tuned to improve the performance score through a process called model

tuning. Lastly model performance is discussed, where the density functional calculated

properties are compared with the predicted machine learning target properties using

parity plots.

4.1 Feature Engineering

As discussed in chapter 2, feature engineering is the transformation of raw data into a

form that is more appropriate for use by a machine learning algorithm. In this study the

optimal features were engineered using correlation heatmap and feature importance

plots for various properties. It is an essential part of predicting material properties, as

it allows for the optimization of the features used to train the model, which can increase

the accuracy of the predictions. Feature selection is an important part of materials

science which is informed by data. In particular, the features used to model a particular

energy material must not only include the material's structural parameters, but also its

performance characteristics. There are two ways of engineering features, which is

correlation heatmap and feature importance. Features to calculate different properties

are discussed below.

4.1.1 Formation and Final Energy

For formation and final energies, the correlation heatmap was used to engineer the

features. A correlation heatmap is a graphical representation which displays the

strength of the relationship between numerical variables. In correlation plots, variables

are mapped against each other to determine the strength of their relationship.

50

Figure 4.1 shows 18 x18 matrix correlation heatmap ranging from -1 to 1, with squares

representing the relationship between variables to predict both the formation and final

energy of sodium containing materials. When the correlation is close to 1 or -1, it

implies that the variables have a strong relationship. In addition, a value closer to zero

indicates that the two variables are not linearly related. Since all the diagonals are 1

(fawn colour), there is a perfect correlation. A larger number and darker or lighter

colour indicates a stronger correlation between the two variables. In this study, 18

descriptors were considered and evaluated to determine the important descriptors in

predicting the energies. The average covalent radius (ave: covalent_radius_cordero,

ave: covalent_radius_pyykko) and average single bond covalent radius (ave:c6_gb)

were found to be the most important features, with feature correlation ranging between

0.82 and 0.99, respectively, as can be seen on the heatmap. Mphaka J. [110],

established a feature set containing atomic and elemental properties and predicted

formation energy of lithium-ion battery materials with 18 elemental descriptors. The

Catboost model selected the maximum electron negativity, electron negativity Pauling,

and average d valence as the major descriptors. In both cases, 18 key elemental

descriptors were selected for the prediction of LIB and SIB formation energy. It follows

that different descriptors predict similar properties differently based on the type of

material.

.

51

Figure 4.1: Correlation heatmap for the critical feature vectors selected by the

Bayesian ridge model.

4.1.2 Energy above Hull

As discussed in chapter 2, feature importance refers to the technique of calculating

scores for all input features for a given model, the scores simply represent the

"importance" of the input features. The higher the score, the greater the impact of that

specific feature on the model. The process of selection allows for easy interpretation

of the features. In tree-based machine learning algorithms such as random forest,

extra trees regressor and boosting algorithms, the feature importance attribute

provides a value between 0 and 100 to represent how useful each feature is in

predicting a target property. Thus, it enables us to determine what features contributed

to model accuracy and what features are not that important. Using this information,

52

the model can be tested as to weather is working as expected and discard those

features that do not add value. 18 features are considered, and the features are ranked

from the least to more important in calculating the target properties (bottom-up). In this

study light gradient boosting machine and extra trees regressor models are used to

determine important features required to predict the properties.

In order to engineer the features to accurately predict the energy above hull, feature

importance plot was considered. The feature importance plot was utilized for the Fermi

energy, energy above hull, band gap and density. Figure 4.2 illustrates the key feature

vectors selected by the light gradient boosting machine for predicting the energy above

hull. Average Mendeleev number (ave:mendeleev_number) and average atomic

weight (ave:atomic_weight) are the top important features in calculating the energy

above hull. The least important features are average Herfindal-Hirschman index (HHI)

reserves values (ave:hhi_r), sum covalent radius (sum:covalent_radius_cordero),

average atom volume in inorganic crystal structure database (ave:icsd_volume), and

average density functional theory energy per atom (ave:gs_energy).

Figure 4.2: Important features selected by the light gradient boosting machine for
energy above hull.

Figure 4.3 depicts the key descriptors selected by the extra trees regressor for

predicting the energy above hull. Variance atom volume in inorganic crystal structure

53

database (var:icsd_volume) and average density functional theory energy per atom

(ave:gs_energy) are top key features amongst others. Minimum density (min:density)

and average covalent radius (ave:covalent_radius_pyykko_triple) are the least

important features. The feature vectors selected by the light gradient boosting machine

and extra trees regressor predicts the different features vectors, with only two similar

features varying in their values. The worst two features selected by LGBM is seen as

the top two important features by the ETR. For LGBM model feature values are 20.5

out of 100 whereas, for ETR is 0.00200 out of 100, hence the LGBM was selected in

predicting the energy above hull, since the LGBM model features are highly useful

compared to the ETR feature vectors.

Figure 4.3: Optimal features selected by the extra trees regressor for energy above
hull.

4.1.3 Fermi Energy

Shown in Figure 4.4 are the key feature vectors selected by the light gradient boosting

machine for predicting the Fermi energy. Average estimated face centered cubic

lattice parameter based on density functional theory volume (ave:gs_est_fcc_latcnt),

average Ghosh’s scale of electronegativity (ave:en_ghosh) and average density

(ave:density) are the top three important features. Variance estimated body centred

54

cubic lattice parameter based on the density functional theory volume

(var_gs_est_bcc_latcnt) is the least important feature. The key feature vector shows

the contribution of body centred cubic and face centred cubic, and the results implies

that most of the materials used are cubic in nature.

Figure 4.4: Important features for Fermi energy selected by light gradient boosting
machine model.

The key features selected by the extra trees regressor for predicting the Fermi energy

are depicted in Figure 4.5. The maximum lattice constant (max:lattice_constant), sum

period (sum:period) and average atomic volume (ave:atomic_volume) are the most

important features. Both the light gradient boosting machine and extra trees regressor

predicted similar most feature vectors, namely, average Ghosh scale electronegativity

(ave:en_ghosh), average density (ave:density), average atomic volume

(ave:atomic_volume), varience covalent radius (var:covalent_radius_pyykko_double),

and average heat capacity molar. It is worth noting that the feature vectors selected

by the models vary by their importance, those that perform better at LGBM perform

worst for ETR.

55

Figure 4.5: Optimal features selected by the extra trees regressor for Fermi energy.

4.1.4 Density

Figure 4.6 illustrates the key features selected by the extra tree regressor for density

prediction, and it depicts that maximum mass specific heat capacity

(max:heat_capacity_mass) is the most important feature for calculating the density of

sodium-ion battery materials. The second important feature is variance density

functional theory energy per atom energy (var:gs_energy), followed by maximum

dipole polarizability (max:dipole_polarizability). Average electron negativity

(ave:electron_negativity) and variance bulk modulus (var:bulk_modulus) are the least

important features amongst the features selected.

56

Figure 4.6: Important feature vectors selected by the extra tree regressor for density.

Figure 4.7 depicts the key feature variables selected by the light gradient boosting

machine for predicting the density. Average density (ave:density), maximum Van der

Waals radius (max:vdw_radius_mm3), average lattice constant (ave:lattice_constant)

and average electronegativity Pauling (ave:en_pauling) feature vectors plays a critical

role in predicting the density by the LGBM model. The models have a common feature

vector, which is sum van der Waals radius (sum:vdw_radius), suggesting its

importance in predicting the density of a material using ML. The common feature

vector was the most important under the light gradient boosting machine, whereas of

least importance under the extra trees regressor. Afzal et al. [111], predicted organic

molecules packing density using Deep Neural Networks (DNNs). Approximately 197

descriptors were used, of which constitutional indices and functional group counts

were the most critical. The descriptors were reasonably accurate [111].

57

Figure 4.7: Optimal features selected by the light gradient boosting machine for
density.

4.1.5 Band Gap

Figure 4.8 illustrates the key features selected by the light gradient boosting machine

for predicting band gap. The features such as sum valence electron in d shell

(sum:num_d_valence), average van der Waals radius (ave:vdw_radius) and average

Ghosh’s scale of electronegativity (ave:en_ghosh) are the top three features attributing

the most to the predictive power of LGBM model for calculating the band gap. The

variance first ionisation energy (var:first_ion_en) was found to be the least important

feature.

58

Figure 4.8: Important features selected by the light gradient boosting machine for band
gap.

Figure 4.9: Optimal features selected by the extra trees regressor for predicting the
band gap.

59

Figure 4.9 depicts the key features selected by the extra trees regressor for band gap.

The important features in predicting the band gap are maximum electron negativity

(max:electron_affinity), maximum molar volume (max:molar_volume) and maximum

thermal conductivity (max:thermal_conductivity). The LGBM and ETR models have a

common feature vector, which is average atomic volume (ave:atomic_volume)

however, the other important features are different. The features selected by the

LGBM model have high predictive capability as compared to ETR features, this is

justified by the score of the values on the feature importance plot.

4.2 Model Selection

Model selection is the task of selecting statistical model from a candidate models,

given the data to be analysed. Model selection is used to determine which model is

most suitable for the data that has been collected by comparing their relative

advantages. The best model is selected based on its capability to predict the target

property, in this case the target properties included the formation energy, final energy,

Fermi energy, energy above hull, band gap, and density. The following models were

evaluated: Bayesian ridge (BR), extra trees regressor (ETR), light gradient boosting

machine (LGBM), orthogonal matching pursuit (OMP), random forest regressor (RFR)

and gradient boosting regressor (GBR).

Figure 4.10: Measures of predicted formation energy (a) coefficient of determination
and (b) mean square error as determined by various models.

(a) (b)

60

Figure 4.10 depicts the measures of the predicted coefficient of determination (a) and

mean square error (b) for formation energy as determined by various models. The

models in category from poor to best performing are the gradient boosting regressor,

random forest regressor and orthogonal matching pursuit with the same regression

score of 0.97 and MSE of 0.02, 0.03 and 0.02 eV, respectively. Both light gradient

boosting machine and extra trees regressor have a regression score of 0.98 and mean

square error of 0.02 eV. The Bayesian ridge with regression score of 0.99 and MSE

of 0.01 eV, predicts the formation energy with highest accuracy of 0.99 and a mean

square error closest to zero. Bayesian ridge is easy, fast to implement and can handle

large dataset in comparison to other regression models, it is also not sensitive to

unrelated features hence is more accurate than the other selected models. Mphaka

[110] used the catboost model to predict the formation energy of lithium-ion battery

materials, the model was reported to perform well, however it was not included in this

study. The catboost achieved a regression score of 0.95 and mean square error of

0.06 eV, which is good but not better than the Bayesian ridge used in this study.

Figure 4.11: Measures of predicted final energy (a) coefficient of determination and (b)
mean square error as determined by various models.

Figure 4.11 depicts the measures of predicted coefficient of determination (a) and

mean square error (b) for final energy. According to their performance, the following

models are categorized from poor to best: the orthogonal matching pursuit with

regression score of 0.95 and MSE of 0.10 eV was the poor performing model; followed

by random forest regressor with regression score of 0.97 and MSE of 0.07 eV. Light

gradient boosting machine, gradient boosting regressor, extra trees regressor, and

(a) (b)

61

Bayesian ridge, have the same regression score of 0.98, and MSE of 0.04, 0.05, 0.04

and 0.03 eV, respectively. The Bayesian ridge model may be regarded as the best in

predicting the final energy, since it has the least MSE compared to the other three

models with the same regression score. Bayesian ridge is straight forward to fit

complex datasets, and its results are highly interpretable and easy to understand.

Figure 4.12: Measures of predicted energy above hull (a) coefficient of determination
and (b) mean square error as determined by various models.

Figure 4.12 shows the measures of the predicted coefficient of determination (a) and

mean square error (b) for the energy above hull. Again, orthogonal matching pursuit

is the worst performing model with regression score of 0.55 and MSE of 0.12 eV,

followed by the Bayesian ridge with regression score of 0.63 and MSE of 0.11 eV and

random forest regressor with regression score of 0.64 and MSE of 0.11 eV. The three

aforementioned models performed poorly as compared to the extra trees regressor

with regression score of 0.66 and MSE of 0.11 eV, gradient boosting regressor with

regression score of 0.66 and MSE of 0.11 eV and light gradient boosting machine with

regression score of 0.67 and MSE of 0.01 eV. For LGBM model it is possible to reduce

memory usage and increase efficiency, it is capable of capturing complex patterns in

the data, this substantiate how best this model is in predicting energy above hull.

Overall, all the models did not predict the energy above hull well.

(a) (b)

62

Figure 4.13: Measures of predicted Fermi energy (a) coefficient of determination and
(b) mean square error as determined by various models.

Figure 4.13 depicts the measures of the predicted coefficient of determination (a) and

mean square error (b) for Fermi energy. The orthogonal matching pursuit with

regression score of 0.71 and MSE of 0.73 eV, followed by Bayesian ridge with

regression score of 0.75 and MSE of 0.67 eV and random forest regressor with

regression score of 0.77 and MSE of 0.68 eV. The three models mentioned above

were slightly outperformed by the gradient boosting regressor with regression score

of 0.77 and MSE of 0.64 eV, extra trees regressor with regression score of 0.79 and

MSE of 0.63 eV, and light gradient boosting machine with regression score of 0.82

and MSE of 0.54 eV. The MSE are far from zero, suggesting that, overall the Fermi

energy is not well predicted compared to the other properties discussed in the previous

subsections. Despite that all the models did not perform well, LGBM algorithm was

selected due to its exceptional results in a multitude of machine learning endeavours.

It wins in terms of performance and speed compared to the tested models.

(a) (b)

63

Figure 4.14: Measures of predicted band gap (a) coefficient of determination and (b)
mean square error as determined by various models.

The measures of the predicted coefficient of determination (a) and mean square error

(b) for band gap are shown in Figure 4.14. The orthogonal matching pursuit with

regression score of 0.62 and MSE of 1.14 eV and Bayesian ridge with regression score

of 0.65 and MSE of 1.05 eV are the poor performing models. The mean square error

of the Bayesian ridge model is very high suggesting worst performance. Random

forest regressor with regression score of 0.74 and MSE of 0.76 eV, gradient boosting

regressor with regression score of 0.75 and MSE of 0.77 eV, extra trees regressor

with regression score of 0.77 and MSE of 0.68 eV and light gradient boosting machine

with regression score of 0.78 and MSE of 0.66 eV. The extra trees regressor was

considered the best model since it had a regression score closest to 1 and mean

square error close to 0 as compared to other evaluated models. LGBM is capable of

capturing complex patterns in the data and increase efficiency hence it performed

better than other selected models. Li et al. [112], reported gradient boosting regressor

(GBR) model to be performing well in predicting the band gap of perovskites, achieving

a regression score of 0.87 and MSE of 0.21 eV. However, in this study GBR was

outperformed by light gradient boosting machine and ETR. These differences are

attributed by factors such as data used, model parameters, types of materials, etc.

(a) (b)

64

Figure 4.15: Measures of predicted density (a) coefficient of determination and (b)
mean square error as determined by various models.

Figure 4.15 illustrates the measures of the predicted coefficient of determination (a)

and mean square error (b) for density. Below are the models ranked from poor to best

performance: orthogonal matching pursuit with regression score of 0.90 and MSE of

0.16 eV, Bayesian ridge with regression score of 0.91 and MSE of 0.14 eV, random

forest regressor with regression score of 0.93 and MSE of 0.12 eV. Both gradient

boosting regressor and light gradient boosting machine have a regression score of

0.94, MSE of 0.10 eV and 0.08 eV, respectively. The extra trees regressor model

predicted the density with unprecedented high regression score of 0.95 and low MSE

of 0.09 eV. Unlike in other predicted properties discussed in the previous sections, all

the models achieved a performance score of above 0.9. Afzal et al. [111], used DNN

methods to predict organic molecular density and achieved a regression score of 0.98

and mean absolute error of 10.8 kg/m3. The DNN model predicted the density with

high accuracy [111].

4.3 Model Tuning/Hyperparameter Optimization

As discussed in chapter 3, model tuning is the process of finding the optimal values of

hyperparameters to maximize model performance. Choosing the best regularization is

critical, as small regularizations lead to complex models, while large regularizations

are not effective and make the model less useful. In this case, grid search technique

is used to tune the models. In the next three subsections, we discuss the parameters

tuned for various algorithms in order to improve their performance.

(a)
(b)

65

4.3.1 Bayesian Ridge

In this model, only iterations are considered and the hyperparameters are listed in

Table 4.1.

Table 4.1: Tuned Bayesian ridge model parameters from training set for formation
energy and final energy.

Target Property (eV) Bayesian Ridge Hyperparameter R2

Formation energy

Without CV

With CV

300

50

0.98

0.99

Final energy

Without CV

With CV

300

50

0.98

0.98

The hyperparameters without cross validation (CV) with iterations of 300, resulted with

model regression score of 0.98 for both energies. According to this matric evaluation

methods model Bayesian ridge seemed to be the best model with high capability for

the prediction of both formation energy and final energy. The iterations were changed

to 50, under 5-fold cross validation and regression scores of 0.99 and 0.98 are

obtained for formation energy and final energy, respectively as shown in table 4.1.

From the Scikit learn the maximum number of iterations for a Bayesian ridge model

should be greater or equals to 1. By default, Bayesian ridge also have alpha 1, alpha

2, lambda 1 and 2 which equals to 1x10-6 hyperparameters. After tuning the model by

increasing the iterations, the regression score reduced to 0.98, implying that the model

does not improve as it has a regression score of 0.98 for formation energy. Tuning the

iteration for final energy gave the same regression score of 0.98.

The algorithm handles the process of changing features obtained from elements into

a forecast utilizing purely statistical techniques. The expectation is that the key

characteristics must correspond to the formation and the final energy.

66

4.3.2 Light Gradient Boosting Machine

The light gradient boosting machine parameters that are considered for model tuning

are:

i. Maximum depth (max depth) - the maximum depth of a tree

ii. L2 regularization - the model needs L2 regularization to make predictions. The

model's ability to predict is determined by L2 values. These values are

estimated from data, or they can be learned from data. In many cases, they are

not set manually. They may be stored in learned models.

iii. Bagging temperature - Bayesian bootstrapping is controlled by this parameter,

ranging from zero to infinity.

Table 4.2: Tuned light gradient boosting machine model parameters from training set
for Fermi and energy above hull.

Target
Property (eV)

Number of
trees

Maximum
depth

L2 regularization Bagging
Temperature

R2

Fermi energy
Without CV
With CV

1000
350

3
10

1
10

1
20

0.80
0.82

Energy
above hull
Without CV
With CV

1000
350

3
10

1
10

1
20

0.58
0.67

For light gradient boosting machine model (table 4.2), hyperparameters without cross

validation are number of trees of 1000, maximum depth of 3, L2 regularization of 1,

bagging temperature of 1 which resulted in regression score of 0.80, and 0.58 for

Fermi energy and energy above hull, respectively. With cross validation, after tuning

the model by 5-fold, number of trees are 350, maximum depth of 10, L2 regularization

of 10 and bagging temperature of 20 the regression score improved. Regression score

of Fermi energy optimized from 0.80 to 0.82 and falls between the accepted score of

0.6 to 1, suggesting that the model does not suffer under or overfitting. The model

performance is fairly good. For energy above hull regression score improved from 0.58

to 0.67. The regression score for energy above hull now falls above 0.6, which is within

an acceptable score range. This lower regression score of 0.6 may have been caused

67

by model underfitting on the training dataset. The overall performance for energy

above hull is poor.

4.3.3 Extra Trees Regressor

The hyperparameters considered in tuning extra trees include:

i. Maximum depth - the maximum depth of a tree, the length of the longest path

from a root to a leaf to which each tree will be build.

ii. Maximum leaf node - the maximum node which does not have any child node,

it helps in reducing overfitting and reduce model biasness.

For extra tree regressor model (table 4.3), hyperparameters without cross validation

are maximum depth of 4, maximum leaf node of 1 which resulted in model regression

score of 0.94 and 0.76 for density and band gap, respectively. With cross validation

the maximum depth and maximum leaf node changed to 10 and 13, respectively. This

improved the regression score by 1 percent and regression score optimized from 0.94

to 0.95 for density. The regression score for band gap improved from 0.76 to 0.78.

Table 4.3: Tuned extra trees regressor model parameters from training set for density
and band gap.

Target property Maximum
 depth

Maximum leaf node R2

Density (g/cm3)
Without CV
With CV

4
10

1
13

0.94
0.95

Band gap (eV)
Without CV
With CV

4
10

1
13

0.76
0.78

4.4 Model Performance

Model performance is an assessment of the model’s ability to perform a task

accurately. It is measured based on the comparison of the models’ predictions with

the (known) values of the dependent variable in a dataset. The performance plays a

dominant role in the predictive modelling technique since it determines whether a

model is performing efficiently or not. The DFT calculated properties from the Materials

Project Database are compared with the corresponding ML predicted values for model

68

performance, using parity plots. For the best advantage most points should pass

through the diagonal regressor line.

Figure 4.16 shows a graphical representation of model performance of the training set

(left) and the testing set (right), containing data points reflecting the predicted

formation energy in (eV) as a function of DFT calculated formation energy in (eV).

Bayesian ridge regression with elemental descriptors predicted formation energy

scores of 0.99, 0.98 and 0.01 eV, 0.03 eV for coefficient of determination R2 and MSE

for the training and the testing sets, respectively. The results indicated an excellent

agreement between the calculated DFT and the predicted formation for the train and

the test sets. This further demonstrate the robustness nature of our machine-learning

model.

Figure 4.16: Parity plot of Bayesian ridge model predicted formation energy versus
DFT formation energy showing model performance for training set (left) and test set
(right).

Figure 4.17 shows the performance of the model on the training set (left) and the test

set (right), with data points representing predicted final energies in (eV) versus DFT

calculated final energies in (eV). Bayesian ridge regression was found to be the best

performing model, predicting the final energy with scores of 0.98, 097 and 0.03 eV,

0.04 eV for coefficient of determination and MSE for the training and the testing sets,

respectively. The regression score and the mean-square error of the calculated DFT

and predicted final energy of the train and the test sets showed a good consistency.

The results showed that the calculated final energies of SIB dataset from the MP

R2 = 0.99

MSE = 0.01 eV

R2 = 0.98

MSE = 0.03 eV

69

database can be used as a test set for further justification on the selection of ML

training using an experimental sample set.

Figure 4.17: The parity plot compares the predicted final energy with DFT final energy
for the training set (left) and test set (right) model performance by the Bayesian ridge.

Figure 4.18: Parity plot showing the performance of the extra trees regressor model

predicted density versus the DFT density in the training set (left) and test set (right).

A graphical representation of model performance is presented in training (left) and test

(right) sets in figure 4.18, with data points that show predicted density in (g/cm3) versus

DFT calculated density in (g/cm3). ETR regressor model with elemental descriptors,

predicted the density with scores of 0.95, 0.94 and 0.09 g/cm3, 0.06 g/cm3 for

coefficient of determination R2 and MSE for the training and testing sets, respectively.

R2 = 0.98

MSE = 0.03 eV

R2 = 0.97

MSE = 0.04 eV

 R2 = 0.95

MSE = 0.09 g/cm3

R2 = 0.94

MSE = 0.06 g/cm3

70

In comparison to the test set, the training set contains data points that are very close

to the regression line, and are also less dispersed. In addition, the regression scores

for both the training and the testing sets are close to 1, confirming that the extra trees

regressor model is the best effective model for predicting density.

The parity plot in Figure 4.19 represents the predicted Fermi energy in (eV) as a

function of the DFT calculated Fermi energy, also in (eV). LGBM predicted the Fermi

energy with coefficient of determination R2 of 0.82 and MSE of 0.57 eV and R2 of 0.80

and MSE of 0.57 eV for the training and the testing sets, respectively. The parity plot

in Figure 4.19 showed a satisfactory correlation between the calculated DFT and

predicted Fermi energy, and this is justified by the closeness of the data points to the

diagonal line, suggesting that the model accurately predicted the outcome of the DFT

calculations with a minimal error.

Figure 4.19: The parity plot of LGBM predicted Fermi energy versus DFT Fermi energy
model performance for training set (left) and test set (right).

Figure 4.20 depicts parity plots comparing band gap values computed using DFT

against predictions made using light gradient boosting machine model, trained using

compositional feature vectors. LGBM predicted band gap with scores of 0.78, 0.69

and 0.66 eV, 0.76 eV for coefficient of determination R2 and MSE for the training and

the testing sets, respectively. The training set data points are very close to the

regression line, and are also less dispersed, while some of the points for the testing

set are scattered outside the regression line. We also observed that there are many

outliers points for the testing set as compared to the training set, which explains why

R2 = 0.82

MSE = 0.52 eV

R2 = 0.80

MSE = 0.57 eV

71

coefficient of determination is smaller for the testing as compared to the one for the

training set. However, the regression score is also closer to 1, confirming that LGBM

is the best model for band gap prediction. Despite the large MSE, the linear

relationship between the predicted and DFT calculated band gap is still preserved by

our ML models. However, the poor performance of the model for this test set is

reflected in the relatively small R2 value as well as the ‘best fit line’.

Figure 4.20: The parity plot of LGBM predicted band gap versus DFT band gap
model performance for training set (left) and test set (right).

LGBM model performance in the train (left) and the test (right) sets is shown in Figure

4.21, which depicts DFT calculated energy above hull and the predicted energy above

hull in (eV). Based on elements descriptors, light gradient boosting machine predicted

energy above hull with scores of 0.67, 0.58 and 0.01 eV, 0.05 eV for coefficient of

determination and MSE for the training and testing sets, respectively. LGBM model

predicted the regression score 0.67, which is considered to be low according to the

regression accuracy measures. This may have been caused by the model’s failure to

select optimal features for this target property. We also observed that there are many

outliers for the testing set as compared to the training set, meaning the coefficient of

determination is smaller compared to the one for training set, hence the score of 0.58

was obtained. This regression score is too far from 1, implying that light gradient

boosting machine is not the best model for energy above hull prediction. The findings

correlated with those reported in model selection section. The model was trained

under several different conditions, however the accuracy of the model did not improve.

R2 = 0.78

MSE = 0.66 eV

R2 = 0.69

MSE = 0.76 eV

72

The few data points obtained could be contributing factor to the poor model

performance.

Figure 4.21: The parity plot of LGBM predicted energy above hull versus DFT energy
above hull model performance for training set (left) and test set (right).

R2 = 0.67

MSE = 0.01 eV

R2 = 0.58

MSE = 0.05 eV

73

CHAPTER 5

CONCLUSION

Machine learning models were successfully developed to predict properties of sodium-

ion battery materials, namely, formation energy, final energy, Fermi energy, energy

above hull, density and band gap . Firstly, feature engineering process was carried out

to determine the most important features for different properties, as there is no

descriptive information available from the literature. The importance of feature vectors

derived from the properties of the materials’ chemical compounds and the fundamental

properties of their constituents’ elements was evaluated for all the aforementioned

properties of interest. The average covalent radius and average single bond covalent

radius were found to be the most important descriptors for predicting the formation

and final energy of the SIB materials as per Bayesian ridge model. The average

estimated FCC lattice parameter based on the DFT volume, average Ghosh’s scale

of electronegativity and average density were the important features for predicting the

Fermi energy of SIB materials as per light gradient boosting machine algorithm. The

most targeted variables according to light gradient boosting machine resulting in

accuracy and performance for predicting the energy above hull were found to be the

average atomic number in Mendeleev’s periodic table and atomic weight. The

maximum mass specific heat capacity and variance of DFT energy per atom

descriptors are the most important features in predicting the density of the material.

The average Van der Waals radius, valence electron in d shell and average

electronegativity were the most important features for predicting the energy band gap

using LGBM. Essentially, we established important features for the different properties

associated with SIB materials.

Secondly, after the feature engineering process was completed, different ML models

were evaluated, and the best model was selected based on its accuracy in predicting

the afore-mentioned properties. Amongst various algorithms that were evaluated, the

Bayesian ridge model was found to be the best model in predicting the formation

energy with an accuracy of 0.99 and 0.01 eV coefficient of determination and mean

square error, respectively, as well as predicting the final energy with 0.98 and 0.03 eV

accuracy for the coefficient of determination and mean square error, respectively. Light

74

gradient boosting machine model was found to be the best model in predicting the

Fermi energy with an accuracy of 0.82 and 0.52 eV coefficient of determination and

mean square error, respectively, and energy above hull with 0.67 and 0.01 eV, for the

coefficient of determination and mean square error, respectively. Notably, although

LGBM was found to be the best model, the MSE for predicting the Fermi energy was

relatively higher in terms of accuracy of measure, on the other hand the R2 for the

energy above hull was lower. ETR is found to be the best model in predicting the

density with an accuracy of 0.95 and 0.09 g/cm3 for the coefficient of determination

and mean square error, respectively. Lastly, ETR predicted energy band gap with

accuracy of 0.78 and 0.66 eV, for the coefficient of determination and mean square

error, respectively. The LGBM poor performing model for energy above hull and Fermi

energy prediction can be attributed to the model’s failure to select optimal features for

the target properties, and by model under-fitting on the training dataset.

The machine learning models were further validated by comparing the DFT calculated

properties with their corresponding predicted machine learning values. The results

suggests that the developed ML models can predict formation energy, final energy,

Fermi energy, energy above hull, density, and band gap with near-DFT accuracy.

Thus, there is a good agreement between the model performance based on the train

and the test set. Machine learning models can yield accurate material properties

faster, making them useful in materials-properties prediction.

75

5.1 Recommendations and Future Work

This ground work could be a stepping stone for exploring other descriptors for

electrode materials. Future research requires the development of tools that will enable

scientists to predict and classify sodium-ion battery materials properties without going

through the different databases and all the machine learning steps. In that case, the

following are recommended for future works:

 Development of organized sodium-ion battery materials database that can be

easily stored and accessed.

 Development of ML workflows, indicating which steps are implemented and

how are the implemented.

 Building a tool that can be used to analyze SIB materials.

 Expanding the models to other types of materials and solving the model’s poor

performance which was attributed to failure to select optimal features for the

target properties, and model underfitting on the training data.

76

REFERENCES

[1] K. Steven, S. Kauwe, T. Rhone, and T. Sparks, “Data-driven studies of Li-ion

battery materials,” Crystals (Basel), vol. 9, pp. 1–9, 2019.

[2] L. Peng, Y. Zhu, D. Chen, R. Ruoff, and G. Yu, “Two-dimensional materials for

beyond lithium-ion batteries,” Adv. Energy Mater., vol. 6, p. 1600025, 2016.

[3] S. Kim, D. Seo, X. Ma, G. Ceder, and K. Kang, “Electrode materials for

rechargeable sodium-ion batteries: potential alternatives to current lithium-ion

batteries,” Adv. Energy Mater., vol. 2, pp. 710–721, 2012.

[4] Z. Xu, X. Liu, Y. Luo, L. Zhou, and J. Kim, “Nanosilicon anodes for high

performance rechargeable batteries,” Prog. Mater. Sci., vol. 90, pp. 1–44, 2017.

[5] J. Hwang, S. Myung, and Y. Sun, “Sodium-ion batteries: present and future,”

Chem. Soc. Rev., vol. 46, pp. 3529–3614, 2017.

[6] K. Abraham, “How comparable are sodium-ion batteries to lithium-ion

counterparts?,” ACS Energy Lett., vol. 5, pp. 3544–3547, 2020.

[7] “https://depts.washington.edu.”

[8] “https://www.hollingsworth-vose.com.”

[9] X. He, J. Wang, B. Qiu, E. Paillard, C. Ma, and X. Cao, “Durable high-rate

capability Na0.44MnO2 cathode material for sodium-ion batteries,” Nano Energy,

vol. 27, pp. 602–610, 2016.

[10] Y. Lu, L. Li, Q. Zhang, Z. Niu, and J. Chen, “Electrolyte and interface engineering

for solid-state sodium batteries,” J. (Basel), vol. 2, pp. 1747–1770, 2018.

[11] Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, and Y. Hu, “Direct atomic-scale

confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-

temperature sodium-ion batteries,” Nat. Commun., vol. 4, pp. 1–10, 2013.

[12] Z. Xu, J. Park, G. Yoon, H. Kim, and K. Kang, “Graphitic carbon materials for

advanced sodium‐ion batteries,” Small Methods, vol. 3, pp. 1–42, 2019.

[13] Z. Xu, S. Yao, J. Cui, L. Zhou, and J. Kim, “Atomic scale, amorphous

FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries,” Energy. Storage

Mater., vol. 8, pp. 10–19, 2017.

[14] Z. Hu, Q. Liu, S. Chou, and S. Dou, “Advances and challenges in metal

sulfides/selenides for next‐generation rechargeable sodium‐ion batteries,” Adv.

Mater., vol. 29, p. 1700606, 2017.

[15] M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, and S. Dou, “Alloy‐based anode

materials toward advanced sodium‐ion batteries,” Adv. Mater., vol. 29, p.

1700622, 2017.

77

[16] Y. Lu, Y. Lu, Z. Niu, and J. Chen, “Graphene-based nanomaterials for sodium-

ion batteries,” Adv. Energy Mater., vol. 8, p. 1702469, 2018.

[17] G. Hautier, C. Fischer, A. Jain, T. Mueller, and G. Ceder, “Finding nature’s

missing ternary oxide compounds using machine learning and density functional

theory,” Chem. Mater., vol. 22, pp. 3762–3767, 2010.

[18] R. Armiento, B. Kozinsky, G. Hautier, M. Fornari, and G. Ceder, “High-

throughput screening of perovskite alloys for piezoelectric performance and

thermodynamic stability,” Phys. Rev. B, vol. 89, p. 134103, 2014.

[19] “https://aflowlib.org/.”

[20] A. Jain, S. Ong, G. Hautier, W. Chen, W. Richards, and S. Dacek, “Commentary:

the materials project: a materials genome approach to accelerating materials

innovation,” APL Mater., vol. 1, p. 011002, 2013.

[21] “https://nomad-lab.eu.”

[22] “https://oqmd.org/.”

[23] S. Curtarolo, W. Setyawan, G. Hart, M. Jahnatek, R. Chepulskii, and R. Taylor,

“AFLOW: an automatic framework for high-throughput materials discovery,”

2013.

[24] W. Ye, C. Chen, S. Dwaraknath, A. Jain, S. Ong, and K. Persson, “Harnessing

the materials project for machine-learning and accelerated discovery,” MRS

Bull., vol. 43, pp. 664–669, 2018.

[25] J. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, “Materials design

and discovery with high-throughput density functional theory: the open quantum

materials database (OQMD),” JOM, vol. 65, pp. 1501–1509, 2013.

[26] C. Oses, C. Toher, and S. Curtarolo, “Data-driven design of inorganic materials

with the automatic flow framework for materials discovery,” MRS Bull., vol. 43,

pp. 670–675, 2018.

[27] A. Seko, K. Toyoura, S. Muto, T. Mizoguchi, and S. Broderick, “Progress in

nanoinformatics and informational materials science,” MRS Bull., vol. 43, pp.

690–695, 2018.

[28] K. Hatakeyama-Sato, T. Tezuka, Y. Nishikitani, H. Nishide, and K. Oyaizu,

“Synthesis of lithium-ion conducting polymers designed by machine learning-

based prediction and screening,” Chem. Lett., vol. 48, pp. 130–132, 2019.

[29] O. Allam, B. Cho, K. Kim, and S. Jang, “Application of DFT-based machine

learning for developing molecular electrode materials in Li-ion batteries,” RSC

Adv., vol. 8, pp. 39414–39420, 2018.

[30] T. Parthiban, R. Ravi, and N. Kalaiselvi, “Exploration of artificial neural network

[ANN] to predict the electrochemical characteristics of lithium-ion cells,”

Electrochim. Acta, vol. 53, pp. 1877–1882, 2007.

78

[31] Y. Liu, B. Guo, X. Zou, Y. Li, and S. Shi, “Machine learning assisted materials

design and discovery for rechargeable batteries,” Energy Storage Mater., vol.

31, pp. 434–450, 2020.

[32] R. Joshi, J. Eickholt, L. Li, M. Fornari, V. Barone, and J. Peralta, “Machine

learning the voltage of electrode materials in metal-ion batteries,” ACS Appl.

Mater. Interfaces, vol. 11, pp. 18494–18503, 2019.

[33] P. Attia, A. Grover, N. Jin, K. Severson, T. Markov, and Y. Liao, “Closed-loop

optimization of fast-charging protocols for batteries with machine learning,”

Nature, vol. 578, pp. 397–402, 2020.

[34] X. Chen, X. Liu, X. Shen, and Q. Zhang, “Applying machine learning to

rechargeable batteries: from the microscale to the macroscale,” Angew. Chem.

Int. Ed., vol. 60, pp. 24354–24366, 2021.

[35] Y. Okamoto and Y. Kubo, “Ab initio calculations of the redox potentials of

additives for lithium-ion batteries and their prediction through machine learning,”

ACS Omega, vol. 3, pp. 7868–7874, 2018.

[36] L. Kang, X. Zhao, and J. Ma, “A new neural network model for the state-of-

charge estimation in the battery degradation process,” Appl. Energy, vol. 121,

pp. 20–27, 2014.

[37] I. Haq, R. Saputra, F. Edison, D. Kurniadi, E. Leksono, and B. Yuliarto, “State of

charge (SoC) estimation of LiFePO4 battery module using support vector

regression,” in ICEVT & IMECE, 2015, pp. 16–21.

[38] D. Darbar and I. Bhattacharya, “Application of machine learning in battery: state

of charge estimation using feed forward neural network for sodium-ion battery,”

Electrochem., vol. 3, pp. 42–57, 2022.

[39] C. Ruhatiya, S. Singh, A. Goyal, X. Niu, T. Hanh Nguyen, and V. Nguyen,

“Electrochemical performance enhancement of sodium-ion batteries fabricated

with NaNi1/3Mn1/3Co1/3O2 cathodes using support vector regression-simplex

algorithm approach,” J. Electrochem. Energy Convers. Storage, vol. 17, 2020.

[40] J. Jo, E. Choi, M. Kim, and K. Min, “Machine learning-aided materials design

platform for predicting the mechanical properties of Na-ion solid-state

electrolytes,” ACS Appl. Energy. Mater., vol. 4, pp. 7862–7869, 2021.

[41] S. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, and W. Ju, “Multi-scale computation

methods: their applications in lithium-ion battery research and development,”

Chin. Phys. B, vol. 25, pp. 1–25, 2016.

[42] S. Shai and B. Shai, Understanding machine learning: from theory to algorithms.

New York: Cambridge University Press, 2014.

[43] A. Mansouri Tehrani, A. Oliynyk, M. Parry, Z. Rizvi, S. Couper, and F. Lin,

“Machine learning directed search for ultraincompressible, superhard materials,”

J. Am. Chem. Soc., vol. 140, pp. 9844–9853, 2018.

79

[44] S. Torp, “Prediction of battery materials properties with machine learning:

developing algorithms to discover electrodes for Li-ion and Mg-ion batteries,”

Master thesis, University of Oslo, 2020.

[45] M. Winter, B. Barnett, and K. Xu, “Before Li-Ion batteries,” Chem. Rev., vol. 118,

pp. 11433–11456, 2018.

[46] N. Nitta, F. Wu, J. Lee, and G. Yushin, “Li-ion battery materials: present and

future,” Mater. Today, vol. 18, pp. 252–264, 2015.

[47] C. Eames and M. Islam, “Ion intercalation into two-dimensional transition-metal

carbides: global screening for new high-capacity battery materials,” J. Am.

Chem. Soc., vol. 136, pp. 16270–16276, 2014.

[48] R. Joshi, B. Ozdemir, V. Barone, and J. Peralta, “Hexagonal BC3: a robust

electrode material for Li, Na, and K- ion batteries,” J. Phys. Chem. Lett., vol. 6,

pp. 2728–2732, 2015.

[49] P. Bhauriyal, A. Mahata, and B. Pathak, “Hexagonal BC3 electrode for a high-

voltage Al-ion battery,” J. Phys. Chem. C, vol. 121, pp. 9748–9756, 2017.

[50] J. Posada, A. Rennie, S. Villar, V. Martins, J. Marinaccio, and A. Barnes,

“Aqueous batteries as grid scale energy storage solutions,” Renew. Sust. Energ.

Rev., vol. 68, pp. 1174–1182, 2017.

[51] B. Dunn, H. Kamath, and J. Tarascon, “Electrical energy storage for the grid: a

battery of choices,” Sci., vol. 334, pp. 928–935, 2011.

[52] R. Guduru and J. Icaza, “A brief review on multivalent intercalation batteries with

aqueous electrolytes,” Nanomater., vol. 6, p. 41, 2016.

[53] V. Kulish, D. Koch, and S. Manzhos, “Ab initio study of Li, Mg and Al insertion

into rutile VO2: fast diffusion and enhanced voltages for multivalent batteries,”

Phys. chem. Chem. Phys, vol. 19, pp. 22538–22545, 2017.

[54] M. Thackeray, C. Wolverton, and E. Isaacs, “Electrical energy storage for

transportation approaching the limits of, and going beyond, lithium-ion

batteries,” Energy Environ. Sci., vol. 5, p. 7854, 2012.

[55] N. Rajput, T. Seguin, B. Wood, X. Qu, and K. Persson, Modeling electrochemical

energy storage at the atomic scale, vol. 11. Cham: Springer International

Publishing, 2018.

[56] J. Wei, X. Chu, X. Sun, K. Xu, H. Deng, and J. Chen, “Machine learning in

materials science,” InfoMat., vol. 1, pp. 338–358, 2019.

[57] A. Sendek, E. Cubuk, E. Antoniuk, G. Cheon, Y. Cui, and E. Reed, “Machine

learning-assisted discovery of solid Li-ion conducting materials,” Chem. Mater.,

vol. 31, pp. 342–352, 2019.

[58] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim,

“Machine learning in materials informatics: recent applications and prospects,”

npj. Comput. Mater., vol. 3, p. 54, 2017.

80

[59] K. Butler, D. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning

for molecular and materials science,” Nat., vol. 559, pp. 547–555, 2018.

[60] J. Schmidt, M. Marques, S. Botti, and M. Marques, “Recent advances and

applications of machine learning in solid-state materials science,” npj Comput.

Mater., vol. 5, p. 83, 2019.

[61] J. Schmidt, J. Shi, P. Borlido, L. Chen, S. Botti, and M. Marques, “Predicting the

thermodynamic stability of solids combining density functional theory and

machine learning,” Chem. Mater., vol. 29, pp. 5090–5103, 2017.

[62] “https://xenonpy.readthedocs.io.”

[63] S. Ong, W. Richards, A. Jain, G. Hautier, M. Kocher, and S. Cholia, “Python

materials genomics (pymatgen): a robust, open-source python library for

materials analysis,” Comput. Mater. Sci., vol. 68, pp. 314–319, 2013.

[64] M. Kusaba, C. Liu, Y. Koyama, K. Terakura, and R. Yoshida, “Recreation of the

periodic table with an unsupervised machine learning algorithm,” arXiv. Org, vol.

1912, p. 10708, 2019.

[65] H. Liu, E. Dougherty, J. Dy, K. Torkkola, E. Tuv, and H. Peng, “Evolving feature

selection,” IEEE Intell. Syst., vol. 20, pp. 64–76, 2005.

[66] “https://scikit-learn.org.”

[67] Y. Liu, T. Zhao, W. Ju, and S. Shi, “Materials discovery and design using

machine learning,” Journal of Materiomics, vol. 3, pp. 159–177, 2017.

[68] Y. Liu, O. Esan, Z. Pan, and L. An, “Machine learning for advanced energy

materials,” Energy and AI, vol. 3, p. 100049, 2021.

[69] “https://www.projectpro.io”.

[70] “https://www.analyticsvidhya.com/blog/author/sauravkaushik8/”.

[71] A. Ferreira and M. Figueiredo, “Efficient feature selection filters for high-

dimensional data,” Pattern Recognit. Lett., vol. 33, pp. 1794–1804, 2012.

[72] S. Kauwe, J. Graser, A. Vazquez, and T. Sparks, “Machine learning prediction

of heat capacity for solid inorganics,” Integr. Mater. Manuf. Innov., vol. 7, pp.

43–51, 2018.

[73] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: a review and

new perspectives,” IEEE Transact. Pattern Anal. Mach. Intell., vol. 35, pp.

1798–1828, 2013.

[74] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning. Cham:

Springer International Publishing, 2019.

[75] F. Hutter, H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization

for general algorithm configuration,” vol. 6683, Berlin: Springer, 2011, pp. 507–

523.

81

[76] “https://cambridgecoding.wordpress.com.”

[77] “https://www.python.org.”

[78] H. Adun, O. Bamisile, M. Mukhtar, M. Dagbasi, D. Kavaz, and A. Oluwasanmi,

“Novel python-based ‘all-regressor model’ application for photovoltaic plant-

specific yield estimation and systematic analysis,” Energy Sources A: Recovery

Util. Environ. Eff., pp. 1–19, 2021.

[79] M. Ghanbari and M. Goldani, “Support vector regression parameters

optimization using golden sine algorithm and its application in stock market,”

2021.

[80] B. Wang and N. Gong, “Stealing hyperparameters in machine learning,” IEEE

Secur. Priv., pp. 36–52, 2018.

[81] P. Wang, J. Fan, Y. Ou, Z. Li, Y. Wang, and B. Deng, “A comparative study of

machine learning based modeling methods for Lithium-ion battery,” IOP Conf.

Ser.: Earth. Environ. Sci., vol. 546, p. 052045, 2020.

[82] R. Peck, C. Olsen, and J. Devore, Introduction to statistics and data analysis,

5th ed. New York: Cengage Learning, 2015.

[83] T. Li, C. Zhang, and X. Li, “Machine learning for flow batteries: opportunities and

challenges,” Chem. Sci., vol. 13, pp. 4740–4752, 2022.

[84] M. Bojarski, D. del Testa, D. Dworakowski, B. Firner, P. Goyal, and L. Jackel,

“End to end learning for self-driving cars,” 2016.

[85] G. Fan, S. Ong, and H. Koh, “Determinants of house price: a decision tree

approach,” Urban Stud., vol. 43, pp. 2301–2315, 2006.

[86] D. Czerwinski, J. Gęca, and K. Kolano, “Machine learning for sensorless

temperature estimation of a BLDC motor,” J. Sens., vol. 21, p. 4655, 2021.

[87] “https://pycaret.org.”

[88] T. Hastie, R. Tibshirani, J. Friedman, and J. Friedman, The elements of

statistical learning: data mining, inference, and prediction, vol. 2. New York:

Springer International Publishing, 2009.

[89] X. He, J. Luo, P. Li, G. Zuo, and J. Xie, “A hybrid model based on variational

mode decomposition and gradient boosting regression tree for monthly runoff

forecasting,” Water Resour. Manag., vol. 34, pp. 865–884, 2020.

[90] S. Liao, Z. Liu, B. Liu, C. Cheng, X. Jin, and Z. Zhao, “Multistep-ahead daily

inflow forecasting using the ERA-Interim reanalysis data set based on gradient-

boosting regression trees,” Hydrology and Earth Syst. Sci., vol. 24, pp. 2343–

2363, 2020.

[91] J. Fan, X. Ma, L. Wu, F. Zhang, X. Yu, and W. Zeng, “Light gradient boosting

machine: an efficient soft computing model for estimating daily reference

82

evapotranspiration with local and external meteorological data,” Agric. Water.

Manag., vol. 225, p. 105758, 2019.

[92] R. Maphanga, T. Mokoena, and M. Ratsoma, “Estimating DFT calculated

voltage using machine learning regression models,” Mater. Today: Proc, vol. 38,

pp. 773–778, 2021.

[93] T. Oshiro, P. Perez, and J. Baranauskas, “How Many Trees in a Random

Forest?,” in Machine Learning and data mining in pattern recognition: lecture

notes in computer science, vol. 7376, Berlin: Springer, pp. 154–168, 2012.

[94] M. Ahmad, M. Mourshed, and Y. Rezgui, “Tree-based ensemble methods for

predicting PV power generation and their comparison with support vector

regression,” Energy, vol. 164, pp. 465–474, 2018.

[95] D. MacKay, “Bayesian interpolation,” Comput. Neural Syst., vol. 4, pp. 415–447,

1992.

[96] M. Tipping, “Sparse Bayesian learning and the relevance vector machine,” J.

Mach. Learn. Res., vol. 1, pp. 211–244, 2001.

[97] “https://scikit-learn.org.”

[98] R. Ron, Z. Michael, and E. Michael, “Efficient implementation of the K-SVD

algorithm using batch orthogonal matching pursuit,” 2008.

[99] “https://medium.com.”

[100] V. Joseph, “Optimal ratio for data splitting,” Stat. Anal. Data Min., vol. 15, pp.

531–538, 2022.

[101] C. Qi, A. Fourie, Q. Chen, and Q. Zhang, “A strength prediction model using

artificial intelligence for recycling waste tailings as cemented paste backfill,” J.

Clean. Prod., vol. 183, pp. 566–578, 2018.

[102] “http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html”.

[103] J. Rodriguez, A. Perez, and J. Lozano, “Sensitivity analysis of K-Fold cross

validation in prediction error estimation,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 32, pp. 569–575, 2010.

[104] P. Burman, “A comparative study of ordinary cross-validation, v-fold cross-

validation and the repeated learning-testing methods,” Biometrika, vol. 76, pp.

503–514, 1989.

[105] W. Fu, R. Carroll, and S. Wang, “Estimating misclassification error with small

samples via bootstrap cross-validation,” J. Bioinform., vol. 21, pp. 1979–1986,

2005.

[106] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, and O. Grisel,

“Scikit-learn: machine learning in python,” J. Mach. Learn. Res., vol. 12, pp.

2825–2830, 2012.

83

[107] M. Rupp, “Machine learning for quantum mechanics in a nutshell,” Int. J.

Quantum Chem., vol. 115, pp. 1058–1073, 2015.

[108] Z. Yang and W. Gao, “Applications of machine learning in alloy catalysts:

rational selection and future development of descriptors,” Adv. Sci., vol. 9, p.

2106043, 2022.

[109] J. Ding, V. Tarokh, and Y. Yang, “Model selection techniques: an overview,”

IEEE Signal Process Mag., vol. 35, pp. 16–34, 2018.

[110] J. Mphaka, “Development of a mathematical model to enable optimal efficiency

of the indabuko lithium-ion battery,” Master thesis, University of KwaZulu-Natal,

2020.

[111] M. Afzal, A. Sonpal, M. Haghighatlari, A. Schultz, and J. Hachmann, “A deep

neural network model for packing density predictions and its application in the

study of 1.5 million organic molecules,” Chem. Sci., vol. 10, pp. 8374–8383,

2019.

[112] C. Li, H. Hao, B. Xu, Z. Shen, and E. Zhou, “Improved physics-based structural

descriptors of perovskite materials enable higher accuracy of machine learning,”

Comput. Mater. Sci., vol. 198, p. 110714, 2021.

84

APPENDIX

 A.1 Papers Presented at Conferences

1. K. M Monareng, P. S Ntoahae and R. R Maphanga, Machine learning models

for predicting formation energy of lithium-ion battery materials, 65th Annual

conference of the SA Institute of Physics, University of North-West, July 2021

(Poster Presentation).

2. K. M Monareng, P. S Ntoahae and R. R Maphanga, Development of machine

learning models for predicting energies of sodium-ion battery materials,

66th Annual conference of the SA Institute of Physics, University of Nelson

Mandela, July 2022 (Oral Presentation).

3. K. M Monareng, P. S Ntoahae and R. R Maphanga, Machine learning models

for predicting the density of sodium-ion battery materials, 66th Annual

conference of the SA Institute of Physics, University of Nelson Mandela, July

2022 (Poster Presentation).

4. K. M Monareng, P. S Ntoahae and R. R Maphanga, Development of machine

learning models for predicting density of sodium-ion battery materials, 7th CSIR

Emerging Researchers Symposium, July 2022 (Oral Presentation).

5. K. M Monareng, P. S Ntoahae and R. R Maphanga, Machine learning models

for predicting Fermi energy of sodium-ion battery materials, 12th Postgraduate

Research Day, September 2022 (Oral Presentation).

6. K. M Monareng, P. S Ntoahae and R. R Maphanga, Fermi energy prediction of

sodium-ion battery cathode materials: a machine learning regression approach,

67th Annual conference of the SA Institute of Physics, University of Zululand,

July 2023 (Oral Presentation).

https://events.saip.org.za/event/225/contributions/8145/
https://events.saip.org.za/event/225/contributions/8145/

85

A.2 Code Details

The code employed to build and authenticate the ML models is outlined in the

appendix. Examples are showcased only for demonstration purposes and will not be

discussed as the essential elements have already been talked about in the

dissertation.

Figure A.1: Dataset extraction.

86

Figure A.2: Descriptor calculations.

87

Figure A.3: Pre-processed data.

Figure A.4: Performance of the models.

88

Figure A.5: Model building.

Figure A.6: Correlation heatmap for important features.

89

Figure A.7: Bayesian ridge performance for the testing data.

Figure A.8: DFT and Machine learning formation energy comparison.

Figure A.9: Scatter plot for testing data.

90

Figure A.10: Model predictions on the training data.

Figure A.11: Scatter plot for the training data.

Figure A.12: Model tuning.

91

Figure A.13: The dataframe for model results.

Figure A.14: Performance of the model based on regression score.

92

Figure A.15: Performance of the model based on mean square error.

93

Figure A.16: Feature importance for light gradient boosting machine and extra trees
regressor.

The other properties were predicted following the same procedure, with feature

importance plot as illustrated by figure A.16 instead of heatmaps.

