
  
 

DEVELOPMENT OF MACHINE LEARNING MODELS FOR 
PREDICTING PROPERTIES OF SODIUM-ION BATTERY 

MATERIALS 
 

By 

MONARENG KELETSO MABEL 

 

RESEARCH DISSERTATION 

 

Submitted in fulfilment of the requirements for the degree of  

 

MASTER OF SCIENCE  

In  

PHYSICS 

 

 In the 

 

FACULTY OF SCIENCE AND AGRICULTURE 

 

(School of Physical and Mineral Sciences) 

 

at the 

 

 UNIVERSITY OF LIMPOPO  

SUPERVISOR: Dr P. S. NTOAHAE 

CO-SUPERVISOR: Prof R. R. MAPHANGA (CSIR) 

 

2023 



i 
 

ABSTRACT 

 

In this work, machine learning regression techniques are applied to a large amount of 

data from Materials Project Database, to develop machine learning models capable of 

accurately predicting the properties of sodium-ion battery cathode materials. Different 

machine learning models, namely, Bayesian ridge, gradient boosting regressor, light 

gradient boosting machine, extra trees regressor, random forest, and orthogonal 

matching pursuit are successfully developed and validated, using SIB materials’ 

properties calculated from DFT as input dataset, with the models’ efficiency based on 

elemental properties of materials constituents feature vectors.  

The target properties in this work include formation energy, final energy, Fermi energy, 

energy above hull, density, and band gap. The importance of feature vectors derived 

from the properties of materials’ chemical compounds and elemental properties of their 

constituent is evaluated.  The average covalent radius and the average single bond 

covalent radius were found to be the most important descriptors in predicting formation 

and final energies, whilst the estimated face centred cubic lattice parameter, the 

average electronegativity, and the average density to be the most important 

descriptors for predicting the Fermi energy. The optimal features in predicting energy 

above hull were found to be the sum of sound velocity, sum of total unfilled electron, 

and the average ground state energy. Furthermore, the results show that maximum 

mass specific heat capacity and variance of density functional theory energy per atom 

descriptors are the most essential in accurately predicting the materials density and 

valence electron in d shell, the average radius and the average electronegativity been 

the most important features for predicting band gap. 

Amongst various algorithms that are evaluated, the Bayesian ridge model is found to 

be the best model in predicting the formation energy with an accuracy of 0.99 and 0.01 

eV coefficient of determination and mean square error, respectively, and final energy 

of 0.98 and 0.03 eV accuracy for the coefficient of determination and mean square 

error, respectively. Light gradient boosting machine model is found to be the best 

model in predicting the Fermi energy with an accuracy of 0.82 and 0.52 eV coefficient 

of determination and mean square error, respectively, and energy above hull of 0.67 

and 0.01 eV, for the coefficient of determination and mean square error, respectively. 



ii 
 

Extra trees regressor is found to be the best model in predicting the density with an 

accuracy of 0.95 and 0.09 g/cm3 coefficient of determination and mean square error, 

respectively, and band gap of 0.78 and 0.66 eV, for the coefficient of determination 

and mean square error, respectively. The models demonstrate an improvement 

accuracy in predicting the sodium-ion battery materials properties as demonstrated by 

the regression scores.  
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CHAPTER 1 
 

1 INTRODUCTION  

 

In this section, we discuss the transition from lithium-ion battery to sodium-ion 

batteries, machine learning basics, which include the definition of machine learning 

and the two main classes of machine learning which is supervised and unsupervised 

learning. The literature review, explaining how machine learning is applied in materials 

science. Research problem is also included with subsections problem statement and 

rationale. The purpose of the study, stating the aim, objectives, research questions 

and the research question approach. Lastly the dissertation structure is given. 

 

1.1 General Introduction 
 

The development of energy storage and conversion technologies is essential to 

mitigate renewable energy generation discontinuities and instability [1]. Presently, 

fossil fuels such as coal and oil are the main sources of energy world-wide, but burning 

of these fossil fuels emits carbon dioxide and other greenhouse gases, which are 

harmful to the atmosphere and subsequently causing global warming and climate 

changes. The current era necessitates the use of new, environmentally friendly 

sources of energy to reduce greenhouse gas emissions and ultimately benefit human 

health. 

Batteries are among the important energy storage technologies required to overcome 

the world’s dependent on fossil fuels while moving towards more efficient and 

environmentally friendly renewable energy sources. However, to successfully achieve 

this goal, a reliable energy storage technology, particularly battery sources system is 

required. In the past two decades, there has been tremendous advancements in 

lithium-ion batteries (LIBs) and solid-state electrochemistry research for application in 

portable electronics industry [2]. 

Lithium-ion batteries are utilized in a broad range of applications because of their life 

cycle, safety, high efficiency compared to other energy storage technologies. Despite 

their success, LIBs are expensive to produce due to limited lithium resources in the 
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Earth’s crust and their relatively low power and energy densities. Moreover, large-

scale application of LIB energy storage is not possible with their technology.  

In recent decades, research interest on alkaline-ion batteries has developed rapidly 

because of their high energy density and environmental friendliness [1]. These 

batteries have gained a good reputation as alternatives to LIBs due to the high 

abundance of Na- and K-ions in the Earth’s crust and seawater [3]–[5].  

Sodium-ion battery (SIB) technology has gained the privilege of enabling advanced 

and more demanding applications for large-scale energy storage systems. However, 

compared to lithium-ion, sodium-ion has a larger radius and heavier mass, which 

causes the SIB to have a lower specific energy and shorter cycle life. These factors 

impact the storage reaction mechanism. Therefore, the structural difference between 

lithium- and sodium-ions storage reaction is insufficient to devise SIB electrode 

materials by simply duplicating LIB electrode materials. Hence, recent research efforts 

have been directed towards discovering new material and plausible reaction 

mechanism for SIB-electrodes with enhance overall battery performance on specific 

energy, cycling life, good cycling stability and high energy density.    

The study aims to employ data-driven modelling to develop machine learning models 

that are capable of predicting the properties of sodium-ion battery cathode materials. 

 

1.2 Basic Components of Sodium-ion Batteries 
 

Sodium-ion battery consists of anode, cathode, electrolyte (non-aqueous/aqueous) 

and a separator. The sodium-ion is shuttle between positive cathode and negative 

anode during charging/discharging, operating the same way as lithium-ion battery. 

Typical components and working principle of sodium-ion battery are shown in Figure 

1.1. 
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Figure 1.1: Schematic diagram of the Na-ion battery [6]. 
 

There are four main segments in a standard sodium-ion battery. 

i. Anode - negatively charged or reducing electrode, responsible for releasing 

electrons into an external circuit and oxidizing during an electrochemical 

reaction [7]. 

ii. Cathode - a positive electrode, drawing electrons from an external circuit and 

reducing them through an electrochemical reaction [7]. 

iii. Separator - a kind of polymeric membrane situated between the anode with a 

positive charge and the cathode with a negative charge [8].  

iv. Electrolyte - a transport for ions to move between the anode and cathode in a 

cell. Generally, they are assumed to be liquids, consisting of acid, salt, and a 

solvent such as water, enabling the transfer of ions. However, some batteries 

include solid electrolytes, which can conduct ions even when operating at room 

temperature [7].  
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1.3 Literature Review  

The sodium-ion battery has shown promise in increasing energy storage capacity and 

safety; however, due to the high-voltage cathodes, its long-term cycling performance 

is limited, impacting the overall performance of SIBs. The biggest challenge is to 

develop new electrode materials that can easily promote intercalation/de-intercalation 

of sodium-ions in the electroactive substrate, as well as other components of the cell. 

In recent years, great efforts have been carried out to search for functional SIB 

electrode materials [9], [10], amongst those that are investigated are metal alloys, 

oxides, chalcogenides, phosphorus, and carbonaceous materials [11]–[16].  

Quantum mechanical methods such as density functional theory (DFT) have been 

proven to be effective in predicting and discovering functional novel materials. 

Although DFT has proved to be useful in materials design and discovery, it is 

computationally expensive and difficult for the techniques to handle complicated 

material and their associated scientific challenges. With data-driven machine learning 

(ML) approaches, material discovery is now possible at an accelerated rate and with 

fewer computational resources. 

Recent studies proved that combining density functional theory and machine learning 

approaches can speed up structure-property prediction and the discovery of new 

materials [17], [18]. Notably, the use of ML methods requires accessibility to a 

structured data, hence concerted efforts on developing materials databases. Among 

those that were recently developed, are DFT based electronic databases such as 

Automatic Flow for Materials Discovery (AFLOW) [19], Materials Project Database 

(MPD) [20], NOvel MAterials Discovery (NOMAD) [21] and Open Quantum Materials 

Database (OQMD) [22]. The databases were developed to mainly accelerate the 

application of ML in materials science. The goal is to develop new materials with 

enhanced or novel properties by employing advanced statistical methods on collected 

data sets. Stefano et al. [23] designed the high-throughput framework AFLOW which 

has been developing over the past decade. Ye et al. [24] developed the Materials 

Project Database, which contains DFT calculated results for most of the known 

inorganic materials. A DFT database called OQMD was developed by Saal et al. [25], 

to accelerate materials discovery and design rule extraction using informatics 

techniques. Oses et al. [26] illustrated that a combination of databases with ML tools 
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can be used predict thermodynamic formability modelling. Seko et al. [27] reported 

that nanomaterials can be characterized and designed by using a data-centric 

approach that integrates machine learning and DFT calculated data.  

Relevant to this study, machine learning models and algorithms are increasingly 

applied in battery materials research, with superior time efficiency and high accuracy 

in property prediction [28]–[32]. Recent studies demonstrated how ML provide insights 

into the battery's operation and guide the rational design of electrodes and electrolytes 

[33]–[35]. For example, Kang et al. [36] used Neural Network (NN) algorithm to 

develop a black box battery model. In another study, Haq et al. [37] used Support 

Vector Regression (SVR) algorithm to improve the black box battery model accuracy 

and performance. Darbar et al. [38] used the Feedback Neural Network (FNN) to 

accurately determine the state of charge (SOC) value of the highly nonlinear nature of 

Na-ion batteries, using a higher cut-off voltage of -4.5 V Na+ with different current 

rates and cycle data, and achieved R2 values of 0.97 to 0.99, respectively. 

Furthermore, Joshi et al. [32] used feature vectors derived from chemical properties 

and their basic components to develop machine learning algorithms. Using Deep 

Neural Networks (DNN), support vector machines (SVM), and Kernel Ridge 

Regression (KRR) algorithms, new 5000 electrode materials for Li, Na- and K-ion 

batteries were identified [32]. 

NaNi1/3Mn1/3Co1/3O2 cathode materials were used to model and optimize the 

manufacturing process of sodium-ion battery materials, resulting in a value better than 

that of conventional batteries [39]. Machine learning was recently used to predict the 

mechanical properties of sodium-ion solid state electrolyte, and the developed model 

performed well with a prediction accuracy (R2 score) of 0.72 and 0.87, with mean 

absolute errors of 11.8 and 15.3 GPa for the shear and bulk modulus, respectively 

[40]. To date, there is no literature on using machine learning techniques to predict 

sodium-ion properties such as formation energy, final energy, Fermi energy, energy 

above hull, density and band gap. 
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1.4 The Basics of Machine Learning  

 

1.4.1 The Definition 
 

Arthur Samuel first proposed machine learning in 1959, defining it as a field of study 

that enables computers to learn and even refine their abilities without being explicitly 

programmed [1]. Machine learning algorithms are usually expressed as computer 

programs that can learn from experience (E) in terms of classes of tasks (T) and 

measures of performance (P) [1]. Therefore, ML is simply denoted as a function ˂P, 

T, E˃. Thus, performance on tasks in T, as measured by P, is expected to improve 

with experience E. In general terms, machine learning is a branch of artificial 

intelligence (AI) that demonstrates its ability to be applied accurately to classification, 

regression, and other activities involving large-scale, high-dimensional data [41].  

The fundamental idea behind machine learning is to develop an algorithm that can 

take in input data and predict its output using statistical analysis. Machine learning is 

mainly useful where large amount (thousands) of data is available. Depending on the 

algorithm used for a particular task, machine learning can change from being simple 

to extremely complex. The ML algorithms can easily recognize trends and patterns, 

examine extensive amounts of data, and recognize particular patterns and trends 

which are not detectable by humans [42].  

In relation to materials research, when ML models are used the structure-property 

relationships and materials discovery can be made quickly using a simple model, 

which allows the analysis or prediction [43]. By predicting novel materials or properties 

using existing data, ML offers a solution to the materials search challenges. Some of 

the data generated from machine learning, e.g. new materials and their associated 

properties be used to further enhance the ML models. The aim of the models that are 

built using machine learning techniques is to provide fairly precise predictions that are 

more economical and more productive than computational, experimental, or human-

driven approaches.  
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1.4.2 Machine Learning Methods 

 

The main classes of machine learning include supervised and unsupervised learning. 

In the case of supervised learning, an artificial intelligence system is presented with 

labelled and categorized data. The aim is to estimate the mapping function so well 

such that when the new input data X is accessible, one may predict the output data. 

Training data consist of a set of input values and a corresponding set of output values. 

Examples of supervised learning include regression and classification.  During the 

monitored learning process, the training input xi  is fed to the learning system, which 

produces the output, yi. Training is called the learning process and estimates the 

learner's parameters based on the observed ground-truth data. The test is used to 

evaluate the learning predictions about the data [44]. Supervised regression, 

clustering, and classification algorithms are used for the prediction of materials 

properties on the macro- and micro-levels.  

In the case of unsupervised learning, an artificial intelligence system is presented with 

unlabelled, and uncategorized data. The output values are absent in the training data, 

and the aim is to recognize patterns in the input values it analyzes (without desired 

outputs). Examples of unsupervised learning include clustering and anomaly 

detection. In materials science, unsupervised probability estimation algorithms are 

mainly used for the discovery of new materials. Also, unsupervised learning can be 

applied to analyze compositional variations from combinatorial experiments, analyze 

micrographs, identify descriptors and dataset noise reduction. Shown in Figure 1.2 is 

a summarized description of supervised learning and unsupervised learning. 
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Figure 1.2: Two main categories of machine learning. 

 

1.5 Research Problem 
 

 

1.5.1 Problem Statement 

 

Despite concerted efforts to develop novel materials for energy storage technologies, 

there is a continuous need for technologies that can push the limits on material 

properties. Lithium-ion batteries revolutionised the development of energy storage 

technologies and opened unprecedented solutions for portable electronic devices [45], 

[46]. Despite their success, LIBs have relatively low power and energy density, raising 

the challenge of transferability to large-scale applications [46], [47]. Furthermore, the 

scarcity of Li reserves in the Earth’s crust, cost, and safety concerns raise 

uncertainties about their large-scale application [48]–[51]. All of these issues call for 

alternative technologies with better performance. Various metal-ion batteries, such as 

Na, Mg, Ca, K, and Al- ions, have been proposed. However, their technological 

developments are limited due to the lack of suitable electrode and electrolyte materials 

[47]–[49], [52]–[54] as well as difficulties in accurately screening their chemical and 

structural spaces [55]. Therefore, the study aims to employ data-driven modelling to 
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develop machine learning (ML) models that are capable of predicting the properties of 

sodium-ion battery (SIB) cathode materials. 

 

1.5.2 Rationale 

 

The discovery of new materials brings about immense progress in technological 

developments needed for human well-being. However, commonly used empirical trial-

and-error and DFT-based methods cannot meet the current need and demand for new 

materials [56], they cannot be applied to systems with a large number of electrons. 

Hence, big-data and machine learning methods have recently emerged as a driving 

force for the materials research revolution because of their low computational cost and 

shorter development cycle. The era of big data and information is upon us. Daily, there 

is an unprecedented amount of data generated, shared, processed, and stored on the 

planet and machine learning methods can be used to assist in decision-making. ML is 

efficient in such a way that it can take only a few minutes to build a model and only a 

fraction of a second to make predictions [57]. It identifies patterns from large datasets, 

quickly discovers hidden laws, and extracts useful information faster compared to 

conventional computational simulations. As such, it is well suited for the discovery of 

new materials, and the prediction processes for the properties of materials are 

accelerated.  

 

1.6 Purpose of the Study 
 

1.6.1 Aim 
 

The aim of this study is to apply machine learning regression techniques to a large 

amount of data to develop ML models capable of accurately predicting the properties 

of sodium-ion battery (SIB) cathode materials.  

 

1.6.2 Objectives 
 

The objectives of the study were the following. 

i. extract, process, and clean data provided from the Materials Project Database 

(data curation). 
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ii. identify optimal features for property prediction (feature selection and 

engineering). 

iii. develop machine learning models (model development). 

iv. validate the developed models (model evaluation). 

v. predict properties of SIB materials (property prediction). 

 

1.6.3 Research Questions 

 

 

This study seeks to answer the following questions. 

i. Can machine learning models be used to accurately predict the properties 

of SIB materials? 

ii. What feature vectors (also known as descriptors) are suited for a particular 

property? 

iii. Which machine learning algorithms are optimal for predicting the properties 

of SIB materials? 

 

1.7 Structure of the Dissertation 
 

In this dissertation, machine learning models are used to predict sodium-ion battery 

cathode properties such as formation energy, Fermi energy, energy above hull, final 

energy, band gap, and density. The dissertation is partitioned into five chapters as 

follows: 

 

Chapter 1: Presents the general introduction, followed by the fundamentals of 

machine learning, and literature review. Lastly, research problem which includes 

problem statement, rationale, aim, objectives, and research questions of this work is 

presented.  

 

Chapter 2: Presents methodology covering the following topics, main classes of 

machine learning, machine learning flowchart, hyperparameter tuning, machine 

learning formulation, machine learning algorithms and evaluation methods.  
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Chapter 3: Discusses the model development, i.e., the procedure followed to build, 

develop, select, and validate the models. 

 

Chapter 4: Discusses results for the target properties (i.e., formation energy, final 

energy, energy above hull, Fermi energy, density, and band gap), model performance 

and optimization. 

 

Chapter 5: Presents summary of the findings, concluding remarks, suggestions on 

future research, and appendix. Papers presented in conferences and the code that 

was developed for this work are given in the Appendices. 
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CHAPTER 2 
 

 METHODOLOGY 
 

In this chapter methodology on machine learning model development is discussed. 

The discussion covers; sample construction, hyperparameter tuning, machine learning 

algorithms and evaluation methods.  

The most relevant question new researchers need to ask is whether their problems 

are likely to lend themselves to data-driven methods or not. There is no doubt that 

having available, reliable historical data, or at least efforts to generate it uniformly and 

systematically for a subset of critical cases, is essential to the adoption of machine 

learning. To be effective, data-driven methods should tackle (1) properties that are 

extremely difficult to compute or measure using traditional methods, (2) complex 

phenomena that cannot be solved directly by solving fundamental equations, or (3) 

questions that have no known solutions, so that surrogate models can be built [58]. As 

discussed in chapter 1, machine learning algorithms can be divided into two main 

categories based on their purpose.  

2 MACHINE LEARNING STEPS 

There are four key steps involved in machine learning process and are discussed in 

the next subsections. 

2.1 Sample Construction 

 

2.1.1 Data Collection and Curation 

 

Sample construction is the first step in the machine learning model development 

process, it explains how the data is collected and curated. The original data is obtained 

and in this case from computational modelling simulations, and in other cases from 

experimental measurements. The data is normally incomplete and noisy; therefore, it 

is important to perform data cleaning during data processing of samples from the raw 

data. Errors must be identified and removed to prevent machine learning algorithms 

from being misled. Each sample obtained can be affected by several conditioning 



13 
 

factors, some of which are unrelated to the choice attributes. In this study the data was 

collected from the Materials Project Database, the data was cleaned by removing NaN 

(Not a Number) values and removing columns not adding value to the task at hand. 

2.1.2 Feature Engineering 

 

A featurization or feature engineering process read and transform raw data into the 

format that algorithms can understand [59]. It is more accurate for an algorithm to map 

input data to output data when the input data is more suitable. In feature engineering, 

raw data is used as input to algorithms for application. The performance of machine 

learning models is often constrained by it, as it is crucial for its functioning. Despite the 

fact that raw scientific data is often numerical, how the data is presented is often a key 

factor in machine learning. 

 

2.1.2.1 Features/Vectors 

 

An individual feature is a distinctive characteristic that is being considered by machine 

learning algorithms. Finding useful, discriminating, and independent features is a vital 

step in recognizing patterns, classifying data, and predicting outcomes. Features in 

material science must be capable of capturing all relevant information needed to 

distinguish between different atomic states [60]. Machine learning algorithms have 

trade-offs between the size of their feature vectors and their classification accuracy. 

Predicting and classifying with a large feature vector is significantly more complicated. 

On the other hand, in terms of classified objects/events, small feature vectors do not 

provide sufficient information about the objects/events. It is important to ensure that 

features are medium sized to capture the significance of the object/event and not 

overwhelm the user with too much information.  

A feature vector is just as important as an algorithm when it comes to using machine 

learning and must at least be unique to predict a certain property. It is important to 

understand which of the relevant and highly correlated properties in the features are 

relevant for predicting the target property. It is vital to note that small feature vectors, 

in which the objects/events are not sufficiently described, can result in poor 

classification accuracy. It is just as important to choose the optimal algorithm as to 

choose the feature vector that represents the problem [61]. 
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Here, we discuss how feature vectors are generated based on details of the chemical 

formula. The chemical formula is converted so that machine learning algorithms can 

be able to read it. A vector describing the formula in a meaningful way is required to 

provide information to the computer. This can be expressed as a vector in which each 

component represents a different chemical formula, for example (Na, Fe, O). This 

allows formulas to be expressed more easily, and in this case the compound Na2FeO3 

is encoded as (2, 1, 3). Using the atomic weight of all elements within a compound, 

we generate a vector known as average atomic weight. Variance, geometric mean, 

and so on are calculated in the same manner. Alternatively, instead of relying on the 

elements, Composition-Based Feature Vectors (CBFVs) can be built by mixing atomic 

and elemental properties [62]. 

Chemical descriptors are used to construct machine learning features based on 

fundamental atomic properties, such as the chemical formula and atomic number. 

Chemical descriptors are available from the Xenonpy package [62] in 74 element-level 

properties that consist of 118 elements. Considering a binary compound AwABwB, 

whose element-level features are denoted by fA,i and fB,i(i = 1, . . . , 58), the 290 

compositional descriptors for i = 1, . . . ,58 are calculated as follows:  

i. Weighted average: 𝑓𝑎𝑣𝑒,𝑖 = 𝑤𝐴
∗𝑓𝐴,𝑖 + 𝑤𝐵

∗ 𝑓𝑏,𝑖             (2.1) 

 

ii. Weighted variance: 𝑓𝑣𝑎𝑟,𝑖 = 𝑤𝐴
∗(𝑓𝐴,𝑖 − 𝑓𝑎𝑣𝑒,𝑖)

2
+ 𝑤𝐵

∗ (𝑓𝐵,𝑖 − 𝑓𝑎𝑣𝑒,𝑖)
2
  (2.2) 

            

iii. Geometric mean: 𝑓𝑔𝑚𝑒𝑎𝑛,𝑖 = √[𝑤𝐴 + 𝑤𝐵]𝑓𝐴,𝑖
𝑤𝐴 ∗ 𝑓𝑉,𝑖

𝑤𝐵
𝑤𝐴+𝑤𝐵

   (2.3) 

                  

iv. Harmonic mean: 𝑓ℎ𝑚𝑒𝑎𝑛,𝑖 =
𝑤𝐴+𝑤𝐵

1

𝑓𝐴,𝑖
∗𝑤𝐴+

1

𝑓𝐵,𝑖
∗𝑤𝐵

     (2.4) 

 

v. Max- pooling:  𝑓𝑚𝑎𝑥,𝑖 = 𝑚𝑎𝑥𝑓𝐴,𝑖, 𝑓𝐵,𝑖      (2.5) 

            

vi. Min- pooling:  𝑓𝑚𝑖𝑛,𝑖 = 𝑚𝑖𝑛𝑓𝐴,𝑖, 𝑓𝐵,𝑖       (2.6) 
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vii. Weighted sum:  𝑓𝑠𝑢𝑚,𝑖 = 𝑤𝐴𝑓𝐴,𝑖 + 𝑤𝐵𝑓𝐵,𝑖
      (2.7) 

      

where 𝑤𝐴
∗ and 𝑤𝐵

∗  represent normalized composition and sum up to one.  

 

The calculated features can be obtained by obtaining a pandas.DataFrame object [63], 

[64].  

 

2.1.2.2 Features Extraction 

 

The initial set of raw data is reduced by feature extraction to more manageable groups 

for further processing by reducing the dimensionality. Among the characteristics of 

these large data sets is the large number of variables, which can require large amounts 

of computing power. Feature extraction techniques select and combine variables into 

features to represent the original dataset while reducing the amount of data that needs 

to be processed accurately and completely. When it comes to reducing processing 

resources, feature extraction can be very useful, since it doesn't dilute or omit any 

important information. 

The purpose of feature extraction is to transform material space into descriptor space, 

i.e., input variables Xi,j. According to a particular application scenario, the number of 

Xi,j is different. However, as the number of independent variables increases, the 

selection of features and computational load will be more complicated. Most existing 

technologies for extracting features for energy materials rely on human judgment. 

Their primary aim is to assess the importance and correlation of the extracted features. 

 

2.1.2.3 Feature Selection 
 

A feature selection technique involves selecting the most relevant input features for 

predicting a specific target variable. It is important to avoid irrelevant and redundant 

input variables since they can distract and mislead learning algorithms, possibly 

resulting in poor predictions [65]. A feature attribute is used in order to find the least 

influential features. Scikit learn [66] machine learning module was used for analysis of 

the regressor classes. The calculation of out of bag errors calculated the importance 

of features. The least important features were removed, the regressor was retrained 
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and it turned out that most of the features could be eliminated without significantly 

affecting the predictive power of the model. 

Machine learning algorithms train faster when features are adequately selected, it 

simplifies the model and makes it easier to interpret. If the right subset is selected, the 

accuracy of the model is improved, in addition overfitting is minimized. It is important 

to use the correct feature selection method to see the subset of attributes used in the 

final simulation [67].  In this study, correlations and importance of selected features 

were determined by visible mapping [68]. A broader field of assessing the relative 

importance of input features is called feature importance. Many model-based methods 

exist, and their results can be used to aid model interpretation, dataset interpretation, 

or feature selection for modeling. The features should be uncorrelated because many 

correlated features can hinder the efficiency and accuracy of the model. In such cases, 

it is necessary to further select features to avoid the curse of dimensionality. 

2.1.2.4 Feature Selection Methods 
 

There are several methods used in feature selection and are briefly explained below:  

i. Filter methods - each feature is scored based on a statistical measure. A 

feature is ranked by its score and is either kept or removed from the dataset 

based on the score. It is common for methods to be univariate, describing 

features independently or with respect to the dependent variable. The filter 

method is used as a preprocessing step and the features are individually 

selected by machine learning algorithms; instead, feature selection is based on 

the results of various statistical tests that relate them to outcome variables. Chi-

square test, information gain, and correlation coefficient score are some of the 

filter methods that are commonly used [69]. 

 

ii. Wrapper Methods - trains the model with a subset of features. A model is 

trained using subsets of data. As a result of the model's output, features are 

added to retrain the model. Subsets are formed using a greedy approach, and 

accuracy is evaluated for all combinations of features. The computational cost 

of these methods is generally high. A wrapper method can be used to select 
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features forward, eliminate features backward, or recursively eliminate 

features. 

 

iii. Forward Selection - involves starting with no features and iterating through 

them one by one. In each iteration, the feature that best improves the model is 

added. 

 

iv. Backward Elimination - all features are analyzed at the outset, with the least 

significant features being removed at each iteration so that the model performs 

better. This procedure is repeated until the model no longer improves. 

 

v. Recursive Elimination - involves finding the optimal subset of features [70]. 

As a first step, the model is built based on all features and the importance of 

each feature is calculated. On the basis of model evaluation metrics (for 

example, RMSE, accuracy, and Kappa), the features are then ranked-ordered 

and the ones with the least importance are removed. 

 

vi. Embedded/ intrinsic methods - combine the benefits of both wrapper and 

filter methods, while at the same time maintaining a reasonable computational 

cost. As part of the embedded method, each iteration of the training process is 

taken care of, and the features that contribute most to the training process are 

selected [71]. 

In this study the filter method was used as a pre-processing step to select optimal 

features for each target property.  

 

2.1.2.5 Feature Importance Plot 

  

Feature importance plot is a graphical representation showing the ranking of features 

on how each feature contributes to the model. Features are plotted against their 

relative importance, that is the percentage importance of the most important feature. 

The term ‘Feature Importance’ describes a technique for computing scores for all input 

features for a given model. These values denote the "importance" of each feature. A 

high score indicates that the particular feature has a greater impact on the model used 
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to predict the particular variable/property. Descriptor imports can be obtained from 

model importance so that it can be determined which descriptors are most important 

for effective predictions. There are several reasons why feature importance is so vital: 

i. Data understanding 

ii. Model improvement 

iii. Model interpretability 

 

2.1.2.6 Features Construction/Input Features Development 
 

From the composition of the electrode materials, descriptive variables were created. 

These descriptors should be easily accessible, or easily measured, without requiring 

computer simulation. We create a mathematical description of the composition based 

on the atomic properties of the constituent elements. Sum, average, and variance of 

atomic weight, miracle radius, electronegativity, etc. obtained in advance from atomic 

properties [72]. For input feature development compositional descriptors were used 

from Xenonpy [62]. 

 Weighted average (abbr: ave) 

 Weighted variance (abbr: var) 

 Geometric mean (abbr: gmean) 

 Harmonic mean (abbr: hmean) 

 Max-pooling (abbr: max) 

 Min-pooling (abbr: min) 

 Weighted sum (abbr: sum) 

 

2.1.2.7 Procedure for Feature Development  
 

Based on formula XxYyZz in which X, Y, and Z share the j property. Average, sum, and 

variance are computed using the formulas below: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑥𝑋𝑗

𝑥 + 𝑦 + 𝑧
+

𝑦𝑌𝑗

𝑥 + 𝑦 + 𝑧
+

𝑧𝑍𝑗

𝑥 + 𝑦 + 𝑧
          (2.8)  
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𝑆𝑢𝑚 =  𝑥𝑋𝑗 + 𝑦𝑌𝑗 + 𝑧𝑍𝑗             (2.9) 

                                                                                                                 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
(𝑋 −𝑉)2 +(𝑌 − 𝑉)2+(𝑍 −𝑉)2

𝑁
        (2.10)        

      

where V is the number of elements.                                        

 

  𝑉 =   
𝑋𝑗 + 𝑌𝑗 + 𝑍𝑗

𝑁
           (2.11)    

      

2.1.2.8 Feature Learning 
 

In machine learning, a system that automatically discovers the representations needed 

to detect or classify features from raw data is known as feature learning or 

representation learning [73]. This technique involves transforming raw data into 

representations that can be effectively used for machine learning tasks or features. It 

eliminates the manual feature engineering that would otherwise be required and allows 

machines to learn both specific tasks (using features) and the features themselves. 

The main reason for feature learning is that ML tasks often require inputs that is both 

mathematically and computationally convenient. Raw data must be transformed into 

useful features or representations. In order to automate and generalize these 

processes, efficient feature learning techniques are required. Features are learned 

with labelled input data. In this work, to give the model a useful angle about the 

important properties of the data, we created a mathematical representation of the data. 

 

2.2 Hyperparameter Tuning 

 

The tuning process is an effort to improve a model's performance without generating 

high variance or overfitting. All machine learning systems have hyperparameters, and 

the main goal of automated machine learning (AutoML) is to automatically set these 

hyperparameters as much as possible to maximize performance [74]. By choosing 

appropriate hyperparameters in machine learning, algorithms can learn models with 

significant differences in performance from the same training dataset. 
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It is imperative to explore an optimal combination of hyperparameters that minimizes 

the loss function for optimizing the model. The objective is to obtain better results by 

minimizing the loss function. Having enough resources, an optimized learning 

algorithm should achieve performance that is arbitrarily close to optimal. The interplay 

between random search and more complex optimization techniques, therefore, is an 

effective way to ensure a minimal rate of convergence, as well as to enhance model-

based search [75]. It is also useful to perform a random search to start the search 

process, as it explores the entire configuration space and can often find settings that 

are reasonably performant. Figure 2.1 depicts the steps for hyperparameter tuning 

which is explained in detail in the following discussion. 

As first step, data is loaded through the data loading process, which is the process by 

which source data is loaded from a file, folder, or application to a database or similar 

application. The relevant data is pre-processed, then hyperparameters are optimized 

using cross-validation. Accordingly, the tuned algorithm is fit to the training data, which 

comprised 70% of the data in this study, and finally learned model is applied to the 

test set which comprised of 30% of the data. The second step is 

hyperparameterization. As part of the hyperparameter optimization procedure, grid 

search cross validation is performed to determine the optimal parameters for each 

model. Performing a grid search is the standard method of tuning hyperparameters. 

Grid search validates the model for each hyperparameter value specified in the grid. 

The parameters are initially defined in terms of their range, and this is done to identify 

the minimum and maximum values. 

There are certain parameters whose values are optimal within certain ranges. The grid 

is rendered more detailed according to the range. For the split to be optimized, two 

parameters need to be adjusted, number of trees (n_estimator) and number of 

features (max_features). 
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Figure 2.1: Steps considered for hyperparameter tuning [76]. 

 

The grid can be built by adjusting two parameters: n_estimator, which determines how 

many trees are estimated, and max_features, which specifies how many features are 

predicted. The grid could be constructed as follows in the first instance: 

a. max_features: [ 1, 0.8, 0.4, 0.3, 0.2] 

b. n_estimators: [100,150, 200, 250, 300,1000] 

 

Scikit-learn [66] was used to train each model in Python [77]. Scikit-learn is a Python 

library used to build state-of-the-art machine learning algorithms. Each regression 

algorithm is designed to build an automatic ML model for each dataset that selects the 

best regression algorithm based on the prediction accuracy. Coding involves 

importing, reading datasets, and understanding target variables. Output variables are 

analyzed according to their distribution [78]. 

The determination of hyperparameters is often carried out via cross validation (CV) 

[79]. A popular cross-validation method is known as K-fold cross-validation. Suppose 

we have a hyperparameter, where the training dataset is divided into K-folds. As a 

training dataset, the remaining K-1 folds is used to learn the model parameters and 

test the model's performance on that fold. After averaging the results, the remaining 
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K-fold is used to test the model's accuracy. In a cross-validation process, the 

hyperparameter is determined in such a way that the average performance is 

maximized [80].  

Decision Tree (DT) and K -Nearest Neighbour (KNN) are optimized using 10-fold cross 

validation. Initially, it divides the dataset into 10 sections of similar size and variable 

distribution, by choosing one section as the test set and the rest as the training set for 

10 rounds. So, 10 sets of training and 10 test sets are taken and used 10 times for 

training and validation. The final evaluation results are based on the average 

performance of the test set over 10 rounds of experiments. Optimal hyperparameters 

are those that yield the highest performance [81]. 

Model development and model evaluation, evaluation is step 3 and 4 respectively. 

These two steps are explained under chapter 3. 

 

2.3 Machine Learning Formulation 
 

For materials science problems that require ML, it is important to build a machine 

learning system. In general, these machine learning systems follow this paradigm: 

𝐺𝑜𝑎𝑙 + 𝑆𝑎𝑚𝑝𝑙𝑒 + 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 𝑀𝑜𝑑𝑒𝑙       (2.12) 
               

The goal is the problem at hand, it usually takes the form of an objective function. 

Typically, a sample is a subset of the population which is selected according to some 

predetermined rules [82]. The raw data is transformed into the sample through data 

pre-processing, such as data cleaning and feature engineering. An algorithm, which 

includes machine learning algorithms and model optimization algorithms. In machine 

learning, Support Vector Machines (SVM), Decision Trees (DT), and Artificial Neural 

Networks (ANN) algorithms are most commonly used. The most important model 

optimization algorithms include Genetic Algorithms (GA), Simulated Annealing 

Algorithms (SAA), and Particle Swarm Optimization algorithms (PSO). Model is a 

mathematical formulation of the system and referred to as the algorithm built upon the 

sample.  
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The machine learning formulation is imperative in materials science, it helps identifying 

the task at hand, data type and availability, it also helps in determining which 

algorithms will be optimal for the task. 

 

2.4 Machine Learning Algorithms 

 

A key component of ML is its algorithms, and these can generally be grouped into 

traditional ML algorithms primarily based on statistics and Neural Networks (NN). Most 

classical machine learning algorithms include Bayesian, Decision Trees, Support 

Vector Machines, Cluster Analysis (CA), and Random Forests (RF). In Python, Scikit-

learn contains most of the classical ML algorithms, which can be accessed easily [83]. 

Model selection depends on the problem to solve [84], as such there is no single 

algorithm that fits all.  Every time a new situation arises, cognitive system reaches for 

the past experience, for guidance. Considering past scenarios, decisions, and 

experience, better decision making in the future can be done. 

A machine-learning algorithm creates a relationship between a dependent attribute 

and an independent one and then predicts new input data outcomes based on that 

relationship [85].  ML regression algorithms are used to predict the value of the target 

variable based on a set of independent variables, also called features. Basically, the 

algorithm is trained to predict over time, using examples to verify the predictions. After 

that, the algorithm modifies its structure to minimize errors [86]. 

The term clustering algorithm refers to algorithms that cluster data sets without any 

prior knowledge of them. When data is clustered based on density, high-density areas 

are surrounded by low-density areas. Data points are classified into clusters based on 

their probability of belonging to a particular cluster with distribution-based clustering. 

ML methods work by building a model (which can be seen as a function) that 

transforms inputs (also called descriptors, describing the materials) into outputs 

(usually a material property, such as formation energy, final energy, Fermi energy, 

energy above hull, density, and band gap as selected in this study). The descriptors 

should be as close to the targets as possible (the actual values of the material 

properties). To analyze and predict data, machine learning algorithms create statistical 

models by learning from data. Without being specifically programmed. Using 
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regression module pycaret.regression import *  [87], 17 machine learning regression 

models are imported to set up the pycaret environment and target properties are 

estimated, in this study the target properties were formation energy, final energy, 

Fermi energy, energy above hull, density and band gap. 

To analyze our data, six regression models: were considered, namely light gradient 

boosting machine (LGBM), gradient boosting regressor (GBR), extra trees regressor 

(ETR), random forest regressor (RFR), Bayesian ridge (BR), and orthogonal matching 

pursuit (OMP). Below is the command that generates the regressor algorithm for our 

ML models. 

 

 

 

The models considered in our study are briefly explained in the next subsections. 

 

2.4.1 Gradient Boosting Regressor  

 

Gradient Boosting Regressor (GBR) is a supervised learning method used for 

regression problems. Gradient boosting was developed, by Jerome H. Friedman, 

based on Leo Breiman's observation that boosting may be interpreted as an 

optimization algorithm [88]–[90]. In practice, it is a powerful machine learning tool. This 

is a method that uses the loss function of the base models, usually decision trees to 

give a predictive model in the form of an ensemble of weak predictive models. Training 

data overfits quickly with this technique. Through regularization techniques, it 

penalizes different parts of the algorithm, reducing overfitting and improving 

performance.  

Using the gradient boosting method with regression trees as weak learners, the 

following is the basic principle:  

For the sample space N = {(x1, y1), (x2, y2), ... , (xN, yN)}. The aim is to find the 

prediction function F(x) minimizing the loss function L(y,F(x)) among all x-y mappings. 

The prediction function is then represented as: 

from pycaret  import *  

from pycaret.regression import * 

 

https://en.wikipedia.org/wiki/Ensemble_learning
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𝐹(𝑋) = ∑ 𝛽𝑚ℎ(𝑥; 𝑎𝑚)𝑀
𝑚=1          (2.13) 

                                                        

where h(x; am) is the mth subtree of the weak learner, m = 1, 2, ... , m; am is the 

parameter for the mth subtree, βm is the subtree weight. If the prediction function 

produced by the first m training weak learners is Fm(x), the optimization problem is 

equivalent to finding the parameters of a new subtree (βm,am), 

(𝛽𝑚, 𝑎𝑚)  = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖,𝐹𝑚−1
𝑁
𝑖=1 (𝑋𝑖) + 𝛽𝑚ℎ(𝑥; 𝛼𝑚))     (2.14) 

                                                                

For the above conditions (2.13) and (2.14), gradient boosting is updated as follows: 

The first step is to initialize the regression tree: 

𝐹0 =𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖,ℎ0
𝑁
𝑖=1 (𝑥; 𝛼𝑚)        (2.15) 

                                                                             

The second step: for m = 1, 2, 3... M, the negative gradient of the loss function is: 

𝑦𝑖𝑚    = − [
𝜕𝐿(𝑦𝑖,𝐹(𝑋𝑖))

𝜕𝐹(𝑋𝑖)
]

𝐹(𝑋)=𝐹𝑚−1(𝑋)
        (2.16) 

                                                                                                                                            

Fit a new subtree with ỹim as the training target, and determine the leaf node area by 

calculating the subtree parameters: 

𝑎𝑚  = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ [𝑌𝑖𝑚
𝑁
𝑖=1 − 𝛽𝑚ℎ(𝑥𝑖,𝛼𝑚)]²       (2.17) 

where, 

𝛽𝑚  = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖,𝐹𝑚−1
𝑁
𝑖=1 (𝑋𝑖) + 𝛽𝑚ℎ(𝑥; 𝛼𝑚))      (2.18) 

                                                          

Updating the prediction function takes the form: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈𝛽𝑚ℎ(𝑥; 𝛼𝑚)            (2.19) 
                                                                         

where 𝜈 is the step size used to control the learning rate. To achieve the required 

prediction accuracy, m must be set to a smaller value; because, if the m is set too 

large, it may be more difficult to achieve the required prediction accuracy. 

 

 



26 
 

2.4.2 Light Gradient Boosting Machine  

 

Light Gradient Boosting Machine (LGBM) is an open-source library that gives effective 

and compelling uses of the algorithm. It takes gradient boosting one step further by 

adding an automatic feature selection method as well as boosting examples with large 

gradients. In some cases, this can result in a remarkable improvement in coaching 

performance and predictability. Due to this, light gradient boosting machine has 

become one of the most popular algorithms in machine learning competitions for the 

analysis of tabular data for regression and classification prediction modelling tasks.  

The LGBM method has high prediction accuracy, a fast computation rate and a 

capability of minimizing overfitting issues relative to other methods, it has been widely 

used in numerous fields [91]. Two novel techniques used in the LGBM algorithm, are 

of gradient-based one-side sampling and exclusive feature bundling.  

Given the supervised training dataset: 𝑋 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛

, LGBM aims to find an 

approximation 𝑓(𝑥) to a certain function 𝑓∗(𝑥) that minimizes the expected values of 

a specific loss function L(y, f(x)) as follows: 

𝑓(𝑥)  = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝐸𝑦,𝑋
𝐿(𝑦, 𝑓(𝑥))         (2.20) 

                                                

The LGBM integrates several T-regression trees ∑ 𝑓𝑡
𝑇
𝑡=1 (𝑋) to estimate the final 

model, which is;  

𝑓𝑇(𝑋) = ∑ 𝑓𝑡(𝑋) 𝑇
𝑡=1           (2.21) 

                                                           

if J, q, and w represent the number of leaves, the decision rules of the tree, and the 

sample weight of leaf nodes, respectively, the regression trees can be expressed 

as wq(x), q ∈ {1, 2, ..., J} and it is possible to train the LGBM in an additive form at t: 

𝛤𝑡 ≅  ∑ 𝐿(𝑦𝑖, 𝑓𝑡−1(𝑥𝑖) +  𝑓𝑡(𝑥𝑖))𝑁
𝑡=1          (2.22) 

                    

Newton's method is used to rapidly approximate the objective function in LGBM. 

Removing the constant expression from the above equation, the objective function is 

reduced to: 
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𝛤𝑡 ≅ ∑ ((𝑔𝑖𝑓𝑖(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖))𝑁
𝑖=1         (2.23) 

                                                         

where gi and hi represent the first- and second-order gradient statistical results of the 

loss function, respectively. The equation (1.23) could then be transformed to: 

𝛤𝑡 = ∑ ((∑ 𝑔𝑖𝑖є𝐼𝑗
) 𝑤𝑗 +

1

2
(∑ ℎ𝑖𝑖є𝐼𝑗

+ 𝜆) 𝑤𝑗
2)𝐽

𝑖=1      (2.24) 

where, Ij represents the sample set of leaf j. 

With respect to the tree structure q(x), the optimum leaf weights of the leaf nodes 𝑤𝑗
∗
 

and extreme values of ΓT are determined by equations (2.25) and (2.26), respectively: 

𝑤𝑗
∗ = −

∑ 𝑔𝑖𝑖є𝐼𝑗

∑ ℎ𝑖+𝜆𝑖є𝐼𝑗

           (2.25)  

𝛤𝑇
∗ = −

1

2
∑

(∑ 𝑔𝑖𝑖є𝐼𝑗
)

2

∑ ℎ𝑖+𝜆𝑖є𝐼𝑗

𝐽
𝑗=1         (2.26) 

                                   

where is the weight function that measures the quality of the tree structure q(x). Finally, 

the objective function is obtained by integrating the split: 

𝐺 =  
1

2
(

(∑ 𝑔𝑖𝑖є𝐼𝑙
)

2

∑ ℎ𝑖+𝜆𝑖є𝐼𝑙

+
(∑ 𝑔𝑖𝑖є𝐼𝑟 )

2

∑ ℎ𝑖+𝜆𝑖є𝐼𝑟

−
(∑ 𝑔𝑖𝑖є𝐼 )2

∑ ℎ𝑖+𝜆𝑖є𝐼
)       (2.27) 

                                                                                                
where 𝐼𝑙 and 𝐼𝑟 are samples of the left and right branch, respectively. 

 

2.4.3 Random Forest Regressor  

 

Random Forests (RF) are ensembles of multiple decision trees that are trained in a 

random manner. We used RF in this study as a predictor i.e., random forest regressor 

(RFR), but it can also be applied as a classifier. In contrast to using a single decision 

tree, RF addresses the problem of biased variance using an ensemble of decision 

trees. Based on the features and the data points, each decision tree in the RF is trained 

on its own random features. The overall regression value is obtained by averaging the 

results of each tree [92]. This technique operates quickly over large datasets due to 

its high computational efficiency. Through feature bagging and tree bagging, the 

random forest technique performs regression tasks. Each node in the decision tree is 

split using the feature bagging technique. 
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For regression tasks, random forests are usually defined by growing trees based on a 

random vector f(θ), so that the predictor (i.e., a decision tree) h(x, θ) take the values 

instead of labels. In this case, the regression values will be real. Training samples are 

randomly selected from a distribution (Y, X). Typically, the prediction task is usually 

defined as a Mean-Square Error (MSE) as follows: 

𝐸𝑋,𝑌(𝑌 − ℎ(𝑋))2          (2.28) 

                                                                                                                                      
where X and Y are the training samples and labels (values), respectively. After solving 

this equation, the random forest h(x, θ) can be used to predict each test sample x to 

get regression results [93]. 

 

2.4.4 Extra Trees Regressor  

 

The term "Extra-Tree (ET) method" is short for extremely randomized trees. A great 

deal of variance in induced trees arises from choosing the optimal cut-point when 

considering input features (numerical). Therefore, randomizing tree building is 

important. A tree-based ensemble, the extra tree regression (ETR) algorithm is an 

extension of the random forest algorithm. A random subset of features is used to train 

each base estimator, like how random forests work [94]. 

Splitting occurs in each node of the decision tree with the feature bagging technique. 

Using the entire training dataset instead of the bagging step, the extra tree regressor 

trains on the decision trees. ETR algorithm increases the performance of the model 

since it is less susceptible to overfitting. In order to generate output features, input 

feature pairs are generated as shown by the equations (2.28) and (2.29): 

𝐹 = {𝑓𝑛}𝑛 = 1
𝑁            (2.29) 

                                                                                                                                   

𝐵 = {𝐵𝑛}𝑛 = 1
𝑁           (2.30) 

                                                                                                         

In view of the fact that extra trees regressor performance is affected by factors such 

as tree number (N), number of samples split from a node (nmin), tree depth (dmin) and 

selection of attributes (K) [94]. Then, it is worth mentioning that the number of trees is 

directly related to computational time, and therefore a reasonable number of trees 

needs to be selected to optimise prediction performance and computational time. With 
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the increase in the number of training data sample, it is expected that the prediction 

accuracy of the model will increase. Since K is the number of randomly selected 

features at each node during the tree growing process, it determines the strength of 

variable selection process and for most regression problems. 

 

2.4.5 Bayesian Ridge  

 

Bayesian Ridge (BR) estimates a probabilistic model for regression problem. The prior 

for the coefficient w is given by a spherical Gaussian: 

𝑝(𝑤|𝜆) = 𝒩(𝑤|𝜆−1𝐼𝑝)          (2.31) 

 

where, w is the regularization parameter, and λ and Ip are the hyperparameters of 

the gamma prior distribution. 

The priors over α and λ are chosen to be gamma distributions, which are conjugate 

priors to the Gaussian. The resulting model is known as Bayesian ridge regression, 

which is similar to classical Ridge Regression. In this work Bayesian ridge regression 

was used to predict the formation and final energy. The parameters w, α, and λ are 

jointly estimated during model fitting, and the regularization parameters α and λ are 

estimated by maximizing the log-marginal likelihood [95], [96]. 

To estimate regularization parameters, Bayesian ridge regression techniques can be 

applied. The regularization parameter is not determined in a hard-and-fast manner but 

is rather tailored to the data frame. The model's hyperparameters can be reconstructed 

using uninformative priors. Regularization with L2 in Ridge Regression (RR) and 

classification, it is equivalent to exactly finding the largest posterior estimate under a 

Gaussian prior with coefficient w with precision λ−1. To generate a full probabilistic 

model, the output y is assumed to be Gaussian with respect to Xw: 

𝑝(𝑦|𝑋, 𝑤, 𝛼) = 𝒩(𝑦|𝑋𝑤, 𝛼)         (2.32) 
                                                                                   

where α is treated as a random variable and is estimated from the data. As a Bayesian 

regression method, it is able to adjust to the data at hand and can be used to determine 

regularization parameters in the estimation process. Unfortunately, inference of the 

model can be slow [97]. 

 

https://en.wikipedia.org/wiki/Gamma_distribution
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2.4.6 Orthogonal Matching Pursuit  

 

The goal of the Orthogonal Matching Pursuit (OMP) algorithm is to approximate the 

solution of one of two problems. 

The sparsity constrained sparse coding problem given by: 

𝛾  = 𝐴𝑟𝑔𝑚𝛾𝑖𝑛 ‖𝑥 − 𝐷𝛾‖
2

2

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑇𝑜 ‖𝛾‖
0

≤  𝐾     (2.33) 

 

and the error- constrained sparse coding problem, given by:  

𝛾  = 𝐴𝑟𝑔𝑚𝛾𝑖𝑛 ‖𝛾‖
0

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑇𝑜 ‖𝑥 − 𝐷𝛾‖
2

2

≤  є      (2.34) 

                                                 
We assume, for simplicity, the columns of D are normalized to unit 2 lengths (although 

this constraint can be easily lifted). The greedy OMP algorithm selects the atom with 

the highest correlation to the current residue at each step. The signal is projected 

orthogonally to the selected span of atoms, the rest are recalculated, and the process 

is repeated [98]. 

 

2.5 Evaluation Methods 

 

Metrics of evaluation explain the performance of a machine learning model. They are 

used to determine how well the model performs. Among the most important aspects 

of evaluation metrics is their ability to discriminate between results. Since the problem 

at hand is a regression then evaluation indices for regression are briefly explained in 

the next subsections. 

 

2.5.1 Mean 

 

An arithmetic mean or arithmetic average is a central value of a finite number set: 

specifically, the sum of the values divided by the number of values. A distribution's 

mean, or expected value, is one of its most recognized properties. The mean is 

denoted by the symbol µ, and is defined as follows: 

µ =
∑ x

n
           (2.35) 
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where ∑x is the sum of all the observations and n is the total number of elements in 

the dataset. 

 

2.5.2 Variance 

 

The variance of a random variable is defined as the squared variation of the mean 

value, in probability and statistics. It is simply the average taken out of the standard 

deviation. Variance measures how spread out a set of numbers (randomly) are from 

their mean. Variance can be symbolized by σ2, s2, or Var(X). The mathematical 

formulation is given by: 

𝑉𝑎𝑟(𝑋2) = 𝐸[(𝑋 − µ)2]         (2.36) 

 

from which 

 

𝐸[𝑋] = µ2 + 𝜎2               (2.37)             

       

2.5.3 Standard Deviation 

 

The standard deviation (std) provides a measure of the spread of values, it is simply 

stated as the observation that are measured through a given dataset. Essentially, 

standard deviation is calculated by square rooting the variance. Standard deviations 

for the sample and population are represented by the symbols σ and s, respectively. 

The standard deviation is expressed as: 

σ = √Var(X)  = √∑ (𝑥𝑖−�̅�)2𝑁
𝑖=1

𝑁−1
        (2.38) 

 

where 𝑥𝑖 is the terms given in the data, �̅� is the mean of the data and N is the total 

number of terms.      
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2.5.4 Mean Square Error 

  

The Mean Squared Error (MSE) quantifies the difference between what is predicted 

and the actual result by calculating the average of the squares of the errors generated 

by an estimator.  MSE can provide an indication of the quality of the model, and it is 

defined as: 

MSE =
1

𝑛
∑ (𝑦𝑖  − �̂�𝑖)²𝑛

𝑖 =1          (2.39) 

                                                                                                   

where n is the number of data points, yi  the observed true value, and ŷi predicted value 

of the i-th sample. Zero mean square error shows that the model predicted 100% 

correct actual values, the model must achieve the mean square error closer to zero. 

The mean square error can never have negative values. 

 

2.5.5 Root Mean Square Error  

 

The root mean squared error (RMSE) is a commonly employed metric for quantifying 

the discrepancies between the values that are predicted by a model or estimator and 

the observed values. It is also referred to as the root mean square deviation and is 

expressed by the square root of the mean square error: 

RMSE = √𝑀𝑆𝐸  = √
∑ (yi −ŷi)²n−1

n

n
        (2.40) 

In training the model, we want to minimize the RMSE as much as possible. Therefore, 

the smaller the RMSE, the better the model's performance. RMSE and standard 

deviation may appear similar, but they are different. Std measures the spread of data 

around a mean, whereas RMSE measures the difference between some values and 

the predictions associated with them. It can be interpreted as the degree to which data 

is concentrated around the line of best fit. In general, when the RMSE value is lower, 

the better a model fits a dataset. Std and RMSE converge as the mean error 

approaches 0 and n approaches infinity. 
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2.5.6 Mean Absolute Error  

 

The mean absolute error (MAE) is a measure of the discrepancy between two identical 

observations, which signify a specific phenomenon. This metric evaluates the 

magnitude of the errors in a set of forecasts, disregarding the direction of the errors. 

MAE is used to gauge accuracy for continuous variables since it is a linear score, 

where the individual differences are equally taken into account for the overall mean. 

The mean absolute error is formulated as: 

MAE =
∑ |yi−xi|n

i=1

n
         (2.41) 

  

where yi is the prediction, xi the true value and n is the total number of data points. 

 

2.5.7 Mean Absolute Percentage Error  

 

Mean Absolute Percentage Error (MAPE) is the most used error forecasting measure 

and is most effective when there are no extremes in the data (no zeros). A regression 

machine learning model's performance can be measured by the MAPE. Data scientists 

use this metric to assess the model's accuracy for a variety of use cases and datasets 

since it represents the error as a percentage. It is an easy metric for the end user to 

understand and enables a clear comparison between the model's accuracy. It is 

considered acceptable if the MAPE is less than 5%. MAPE is given by: 

MAPE =
1

n
∑ |

At−Ft

At
|n

t=1         (2.42) 

                                                                                                                

where At is the actual value, Ft is the forecast value, n is the number of fitted points. 

 

2.5.8 Coefficient of Determination  

 

The coefficient of determination, also referred to as the regression score (R2), is a 

statistical indicator that reflects the degree to which a dependent variable can be 

predicted based on the independent variable. It is measured using the following 

formula: 
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 𝑅2 = 1 −
∑ (𝑦𝑖 −𝑖 �̂�𝑖)²

∑ (𝑦𝑖 −𝑖 �̅�𝑖)²
           (2.43) 

                                                                                                                                              
where yi, ŷi, and ȳi are predicted values of machine learning mean y test value, actual 

y test value and testing set sample size. It is recommended that an R2 reading of 0.6 

or higher is adequate for a good reading, it indicates the model is fitting well and a 

measure below 0.4 shows a low level of correlation. When the coefficient of 

determination is equals to 1, this suggests that the model predicted 100% actual 

values that are correct. Therefore, the best model should have regression score closer 

to 1. To measure the accuracy of the models in this study, mean square error (MSE), 

and regression score square (R2) will be used. The models are ranked according to 

their ability to predict the validation data that was not used during the training phase 

[78].   
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CHAPTER 3 
 

MODEL DEVELOPMENT 
 

In this section, the procedure for developing regression models based on the 

supervised machine learning method is discussed. This involves data collection and 

curation, model selection, model evaluation and validation.  

 

3.1 Building the model 
 

Model development is an iterative process in which many models are build and tested. 

It is basically a black box that links input and output data using either linear or non-

linear functions. This method allows us to employ a sample of a desired function to 

search for the factors where a specific mapping function will best replicate the desired 

function. Models are built until they satisfy the desired criteria; this is often due to the 

fact that the model already in use may be ill-suited for reuse and not be fully 

understood. 

Figure 3.1 shows the model development process, explaining how the machine 

learning algorithms work.  The models work by performing a pre-processing step to 

generate a set of descriptive attributes as input features (X) and use known atomic 

properties to generate chemical and physical descriptors [92]. The true labels (Y) of 

the model during training are the properties computed by DFT, namely formation 

energy, final energy, Fermi energy, energy above hull, density and band gap are the 

true labels computed by density functional theory. 

 

Figure 3.1: Machine learning approach for property prediction [92]. 
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3.1 Machine Learning Workflow 
 

Figure 3.2 shows the workflow that was followed in this study. 

 Data collection and curation - the dataset containing 7397 SIB electrode 

materials was collected from the Materials Project Database. The data was 

cleaned (curated) by removing the duplicates of some materials and NaN not 

existing numbers. Also, for band gap prediction materials that have a band gap 

of zero, were eliminated, for better model performance. 

 Feature engineering - important features were selected to train our machine 

learning models. Feature engineering involves creating new features from the 

original raw data by utilizing mathematical models. By using this mathematical 

representation, the relationship among features can be refined, and create few 

new features that accurately describe the sample data. The correlation 

heatmap and feature importance plot were used to select optimal features. 

 Dataset split and model training - after the ML algorithm uses the training data 

set to create a model between the features and the objective function, we the 

data was randomly split into a training data set and a test data set. In this work 

the dataset was split into 70% train and 30% test set. The models were built 

and trained. 

 Model selection - the best models were selected based on the performance 

accuracy.  The evaluation indices selected for performance evaluation includes 

regression score and mean square error. 

 Hyperparameter tuning - the selected models were fine-tuned. To boost 

performance and maintain an acceptable accuracy and computation cost of 

the model, the hyperparameters of the algorithm were adjusted.  

 Model validation and evaluation - the models were validated by checking the 

performance accuracy on the train and test set. The validated model was then 

used to predict data properties [83]. For model evaluation the DFT calculated 

properties were compared with the corresponding machine learning predicted 

values.  
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Figure 3.2: Machine learning workflow [99]. 
 

3.2 Dataset 
 

Generally, a data set is a collection of information that corresponds to one or more 

database tables, with each column representing a variable, and each row resembles 

the given record for the information set in question. Basically, the data were organized 

in a certain model that helps to process the needed information. The training data was 

extracted from the Materials Project Database, containing a total of 7397 sodium-ion 

battery materials properties calculated using DFT, which was our input dataset. The 

DFT materials properties stored in materials project database was estimated and 

optimized by the Vienna Ab initio Simulation Package (VASP). Chemical formula, 

formation energy per atom, final energy per atom, Fermi energy, energy above hull, 

band gap, and density for every material are included in the extracted dataset. The 

meanings of these properties were detailed according to the explanation in the MPD 

glossary. 

i. Pretty formula (chemical formula): An expression in which the element set is 

normalized. 

ii. Density: Final relaxed density of the material, calculated bulk crystalline 

density. 
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iii. Formation energy per atom: calculated formation energy from the elements 

normalized to per atom in the unit cell, computed formation energy at 0 K, 0 

atm using a reference state of zero for the pure elements. 

iv. Energy above hull (e above hull): calculated energy at the convex hull of the 

structure. The energy in eV/atom at which this material decomposes into the 

most stable group of substances with this chemical composition. Stability is 

normally tested for all possible chemical combinations resulting in the 

composition of the material. A positive energy above the hull indicates that this 

material is unstable to decomposition. A negative energy above hull indicates 

that this material is stable. Zero energy above the hull indicates that this is the 

most stable material in its composition. 

v. Band gap: the band gap is defined as the energy difference in (eV) between 

the upper valence band and lower conduction band of insulator and 

semiconductor materials. 

vi. Fermi energy: energy difference between the highest and lowest occupied 

states of a non-interacting fermion system at absolute zero. 

vii. Final energy per atom: the total energy of the materials after structural 

relaxation. 

 

3.2.1 Dataset for Selected Sodium Containing Materials  
 

The data were accessed from the database via the Python Materials Genome 

(Pymatgen) application programming interface for Materials Project [20]. Our dataset 

is composed of predicted formation energy, Fermi energy, final energy, density, 

energy above hull, and band gap for a variety of sodium-ion batteries calculated using 

DFT. The following command was used to extract the materials properties from the 

Materials Project:  
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As shown in Table 3.1, the following dataset was obtained from Materials Database 

Project: chemical formula, formation energy per atom, Fermi energy, final energy per 

atom, density, energy above hull, and band gap. 

After data cleaning, the original data reduced from 7397 data samples to 4063 sodium-

ion data samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

import json 

import requests 

data = {'criteria': { 'elements': { '$all': ['Na']}}, 

 'properties': 
['pretty_formula','final_energy_per_atom','efermi','formation_energy_per_atom', 

'density','e_above_hull', 'band_gap']} 

r = requests.post('https://materialsproject.org/rest/v2/query', 

                 headers={'X-API-KEY': 'tXXXXXXXXJ'}, 

                 data={k: json.dumps(v) for k,v in data.items()}) 

response_content = r.json()  

train=pd.DataFrame(response_content['response']) 
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Table 3.1: Dataset for some of the selected sodium containing materials.  
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3.2.2 Dataset Split 
 

The dataset split is the process of dividing the original dataset into two sets (training 

set and test set) in order to coach ML models regardless of the data type used. The 

training set is used for model training, while the test set is used to validate the model. 

The low training data results in higher variances for parameter estimates and therefore 

it is essential that the data is separated in such a way that neither is simply too high 

nor too low, which is determined by the large amount of information generated.  

For several problems, Joseph suggested a ratio of 70/30 or 80/20 (training/testing set) 

[100]. Previous studies reported that increasing the training dataset from 70% to 80% 

improved model performance and stability, and the testing performance could also be 

improved. However, testing performance exhibited an opposite trend when training 

size was increased from 80% to 90%. Overall, the size of the training set influenced 

the prediction ability of the ML models [101]. 

Initially, 90% of the data was used for training and 10% for testing, the models did not 

perform well during model selection process, so the split of the data was adjusted for 

the models to better fit the data. Second case involved 80% train set and 20% test set, 

the models performed better as compared to the first case of 90/10 splitting. In order 

to maximise and improve performance, we further checked how the data may fit our 

models with 70/30 train/test split and it was found to fit the data perfectly, hence 70/30 

splitting used throughout the study for the predictions of the properties. 

Below is the command for train/test split. 

 

 

In splitting the 4063 dataset which was in a good format, readable by ML packages, 

for the target properties the transformed train set was about 2844. 

As illustrated in Figure 3.3 dataset splitting shows that 70% of the data was used for 

the learning process or training of the models. The remaining 30% was used for the 

validation process. 

train_test_split = setup (data = X, target = 'property of interest', session_id=123, train_size 

= 0.70) 
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Figure 3.3: Dataset split [99]. 
 

 

3.2.3 Cross Validation 

 

Cross-validation (CV) is a resampling technique for evaluating ML models on a 

restricted data. Statistical models such as regressions and classifications have been 

extensively validated using cross-validation. This method provides unbiased 

estimation and is easy to implement, as CV is well-known. There are several cross-

validation techniques. 

i. Leave-p-out cross-validation - the leave-p-out cross-validation approach 

(LpOCV) involves utilizing p-observations for validation purposes and the rest 

of the available data for training. This procedure is repeated to divide the 

original sample into a collection of p observations and a collection of training 

observations in all possible ways. 

ii. Leave-one-out cross validation - in cross-validation, leave-one-out cross-

validation (LOOCV) is an exhaustive technique. It is a type of LpOCV with the 

case of p=1. An n-row dataset is divided into the validation row and the training 

row (n+1). The second row will be selected for validation in the next iteration, 

and the rest for training. Similarly, the process is repeated until n steps or the 

desired number of operations have been completed. Both of these cross-

validation techniques are types of exhaustive cross-validation. When a cross-

validation method is exhaustive, it learns and tests in all possible ways. As a 

result, model biases may be low, and the computational time may be excessive. 

Yet, this technique is simple, straightforward, and can be implemented quickly 

[102]. 

 

70% 

 

30% 
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iii. Holdout cross-validation - with holdout cross-validation, a dataset is randomly 

split into a training and a validation data. The training data is usually bigger than 

the validation data. The training data is used to generate the model and the 

validation part is used to assess its accuracy. Generally, the more data used 

for the training, the better the model is. This kind of cross-validation method 

isolates a large amount of data from the training data. 

iv. Monte Carlo cross-validation - the Monte Carlo cross-validation technique, also 

known as random subsampling validation, splits the dataset into training and 

validation samples. The dataset was split, not in groups or folds, but in random 

ways in this case, for cross-validation. Analyzing the data determines the 

number of iterations. The average is then calculated over the splits. Monte 

Carlo cross-validation does not depend on the number of iterations or partitions 

how many trains and validations are done. There are also limitations to using 

this technique, for instance, the training or validation of some samples may not 

be possible, and it is not suitable for an imbalanced dataset. 

v. K-fold cross validation - the technique contains a parameter called K, which 

indicates how many groups the provided sample should be split into. Thus, the 

technique is commonly referred to as K-fold cross-validation. It is important to 

conduct cross validation because it gives more information about algorithm 

performance. As an alternative to Leave one out (LOO), K-fold cross-validation 

[103] has been proposed. Now, it is the simplest and most popular method of 

estimating generalization error. This method has the obvious advantage of 

requiring only K times calculations, which is far cheaper than (LOO) or Leave p 

out (LPO). It is imperative to keep in mind that this approach could be more 

prone to errors if the K-number is not large [104]. 5-fold or 10-fold cross-

validation may be used for large-size datasets because the computational 

burden of leave-one out cross-validation is too heavy. The advantage of this 

technique includes low model bias, low time complexity and the entire dataset 

is used for both training and testing, however this method is not suitable for an 

imbalanced dataset. 

vi. Bootstrap cross-validation - due to the great variability in K-fold cross-validation 

when the scale of the sample data is small, researchers proposed bootstrap 

cross-validation (BCV). BCV has lower variability and fewer biases when the 
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scale of the samples is small compared to traditional validation methods [104], 

[105]. Although, it is important to note that BCV will cause the computation 

amount to rise sharply when the sample size is large. 

There are a variety of cross validation methods, each with their own unique 

characteristics [105]. 

In this work we employed K-fold and hold-out cross validation. During model 

comparison, firstly the models were compared using cross validation 10-fold by 

default, and later 5-fold was used to compare the models. Based on this analysis, the 

5-fold cross validation was effective in comparing the models. The reasons for 

changing the 10-to-5-fold cross validation were to improve the training time and the 

model accuracy. Under model comparison the score grid shows metrices MAE, MSE, 

RMSE, R2, and MAPE by default, which are already discussed in chapter 2.  The hold-

out cross validation was used during dataset splitting, where a larger number of the 

data was divided as the training set, which was used to train the models and the 

remaining dataset as the testing set used to validate the models. 

For each fold, in Figure 3.4; the following tests were performed: In split 1, the first fold 

was used as validation (or holdout), while everything else was used as training data. 

A 30% holdout provides a model quality measurement.  Besides the second fold, we 

take the data from split 2 (and train the model excluding the second fold). A second 

gauge of model quality was then obtained using the holdout set. This process was 

repeated one more time, with each fold being considered a holdout set. 
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Figure 3.4: Illustration of 5-fold cross-validation process [106]. 
 

3.3 Model Selection 
 

The process of selecting a scientific model from a collection of several models and 

data is called model selection [107]. It is always a good idea to consider prior data 

sets. Regardless of the method, the task may include arranging tests so that the data 

collected is well-suited to the matter of model selection. When inferring and learning 

from data, there are two main objectives. The first is for scientific discovery, 

understanding of the underlying mechanism for data generation, and interpretation of 

the data itself. Predicting future or unknown observations is another objective of data 

mining. A data scientist might not be specifically focused on obtaining an exact 

probabilistic representation of the data for their second objective. Alternatively, both 

directions may be of interest. 

It is important to identify whether processed data have labels, i.e., target variables, 

before any further analysis. If labels exist in a dataset, supervised learning algorithms 

should be implemented, otherwise the issue should be classified as an unsupervised 

learning problem. The type of labels (discrete or continuous) can also influence the 
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choice of classification or regression algorithms. Afterwards, the data can be trained 

using a variety of algorithms and then select the best model depending on the 

prediction's accuracy. It is usually more difficult to interpret and hinders further 

understanding in the application domain to determine the model that can make the 

most accurate prediction from the more complicated feature space and decision rules. 

Selecting the right model and parameters for a particular task is the essence of model 

selection. Furthermore, it is generally accepted that the selection of an optimal 

algorithm should ideally consider the known physical properties of the descriptors and 

target [108].  

Consequently, selecting a model can be categorized into two distinct paths: model 

selection for inference and model selection for prediction. It is essential to identify the 

most suitable model for the data, which will most likely give a reliable interpretation of 

the sources of uncertainty for scientific understanding [109]. In order to achieve this 

goal, it is crucial that the selected model does not depend too much on the sample 

size. Accordingly, the concept of selection consistency can be used to evaluate model 

selection, meaning that, if sufficiently many data samples are available, the most 

robust candidate will be selected consistently. 

The second direction is to use a model that provides excellent prediction. Even when 

a model is chosen based on luck among a few close competitors, it can still perform 

well in predicting outcomes. If that's the case, selecting a model would be satisfactory 

for the second objective (forecasting), but the utilization of the chosen model for insight 

and interpretation would be completely unreliable and misleading. Moreover, for 

extremely complex models selected this way, even predictions based on data are just 

slightly different from those on which the selection was made may be unreasonable. 

[109]. 

The Bayesian Ridge (BR), Light Gradient Boosting Machine (LGBM), Random Forest 

Regressor (RFR), Gradient Boosting Regressor (GBR), Extra Random Tree (ETR), 

and Orthogonal Matching Pursuit (OMP) were tested to select the most suitable one 

using grid search strategies to increase efficiency. The Scikit library machine learning 

module and Python programming language were utilized to develop the models.  

As part of this project, resampling methods were applied. Resampling techniques were 

used to measure the performance of a model (or, more precisely, the model 
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development process) by using data from outside the original sample. To achieve this, 

the dataset was divided into two parts - train and test - and a model was trained based 

on the train set, then evaluated on the test set. This procedure was repeated multiple 

times and the average performance over all of the trials was reported. In this method, 

out-of-sample data was used to estimate model performance under varying 

resampling methods, although each trial is not necessarily independent since the 

same data may appear in multiple training datasets or test datasets, depending on the 

chosen resampling method. Three frequent resampling model selection techniques 

include: Random train/test splits, Cross-Validation (K-fold, LOOCV, etc), and 

Bootstrap. The data was split randomly and cross validated using K folds. 

 
3.4 Model Tuning 
 

Model tuning is also known as hyperparameter optimization, it is the process of finding 

the optimal values of hyperparameters to maximize model performance. As soon as a 

model has been trained, the model is validated using unseen data that differ from the 

data in the training set. This validates the accuracy of the model. Bayesian ridge, light 

gradient boosting machine, and extra trees regressor were used to model the dataset. 

Modern classification and regression models can model complex relationships due to 

their high adaptability. Nevertheless, they are capable of exaggerating patterns that 

are not reproducible. When evaluating a model, without a methodological approach, 

the modeler will not discover the problem until the next set of samples is predicted. 

Several tests were run on improving the regression models by tuning hyperparameters 

until the best model producing the results reported. We eliminated the models that did 

not give accurate results to achieve better results. A number of hyperparameters were 

tuned to accomplish this and are further discussed in chapter 4. Choosing the best 

regularization is important, as small regularizations lead to complex models. It is also 

not effective to use larger regularization, since it makes the model less useful. A grid 

search technique was used to tune the models.  

It is not necessary to understand the physical principles of material properties when 

performing machine learning for predicting material properties. The algorithm 

manages conversion of element-derived features into predictions using strictly 

statistical methods.  

https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
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3.5 Model Validation and Evaluation 
 

Estimating the quality of the model (model evaluation) is the step in the data-driven 

modeling process wherein the model's performance accuracy is assessed for both 

existing and unseen data. From the perspective of the intended uses of a model, 

validation is often defined as the process of determining whether the model accurately 

represents the real world. ML models must be evaluated in order to be effective. A 

model's performance metric refers to how well it performs on an unseen dataset. A 

machine learning model is evaluated by using different evaluation metrics discussed 

in section 2.5 to understand its performance as well as its strengths and weaknesses. 

As a part of the initial research phases, model evaluation is important for assessing a 

model's efficacy, as well as for monitoring it. 

As a result, the model learned by the algorithm will not cover all situations, resulting in 

an actual predicted output that differs from the actual value of the sample. On the 

training and test sets, the ML model error is referred to as the training error, and on 

the new sample, the error is called the generalization error. ML models should have a 

small generalization error. However, the generalization error is difficult to calculate. 

Typically, the dataset is divided into three parts: a training set, a validation set, and a 

test set, and each is used to train the model, adjust the parameters, and calculate test 

error. To evaluating the accuracy of a machine learning model, the test error 

represents an approximate evaluation of the generalization error.  

In order to make a model useful, it must address the correct problem, provide accurate 

information about the system, and be useful to users. In this study, the predictive 

accuracy of the model was evaluated by comparing the calculated DFT properties with 

the corresponding predicted ML values which is discussed in detail under chapter 4. 

The following accuracy measures were used to evaluate model performance: 

coefficient of determination/regression score (R2) and mean squared error (MSE). 

These accuracy measures were described briefly in chapter 2. 
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CHAPTER 4 
 

4 RESULTS AND DISCUSSION 
 

This section presents the results covering the following key steps, feature engineering, 

model selection, model tuning and model performance. Model selection involves 

selecting the best models based on their performance, the best selected models are 

then fine-tuned to improve the performance score through a process called model 

tuning. Lastly model performance is discussed, where the density functional calculated 

properties are compared with the predicted machine learning target properties using 

parity plots. 

 

4.1 Feature Engineering 
 

As discussed in chapter 2, feature engineering is the transformation of raw data into a 

form that is more appropriate for use by a machine learning algorithm. In this study the 

optimal features were engineered using correlation heatmap and feature importance 

plots for various properties. It is an essential part of predicting material properties, as 

it allows for the optimization of the features used to train the model, which can increase 

the accuracy of the predictions. Feature selection is an important part of materials 

science which is informed by data. In particular, the features used to model a particular 

energy material must not only include the material's structural parameters, but also its 

performance characteristics. There are two ways of engineering features, which is 

correlation heatmap and feature importance. Features to calculate different properties 

are discussed below. 

 

4.1.1 Formation and Final Energy 

 
For formation and final energies, the correlation heatmap was used to engineer the 

features. A correlation heatmap is a graphical representation which displays the 

strength of the relationship between numerical variables. In correlation plots, variables 

are mapped against each other to determine the strength of their relationship. 
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Figure 4.1 shows 18 x18 matrix correlation heatmap ranging from -1 to 1, with squares 

representing the relationship between variables to predict both the formation and final 

energy of sodium containing materials. When the correlation is close to 1 or -1, it 

implies that the variables have a strong relationship. In addition, a value closer to zero 

indicates that the two variables are not linearly related. Since all the diagonals are 1 

(fawn colour), there is a perfect correlation. A larger number and darker or lighter 

colour indicates a stronger correlation between the two variables. In this study, 18 

descriptors were considered and evaluated to determine the important descriptors in 

predicting the energies. The average covalent radius (ave: covalent_radius_cordero, 

ave: covalent_radius_pyykko) and average single bond covalent radius (ave:c6_gb) 

were found to be the most important features, with feature correlation ranging between 

0.82 and 0.99, respectively, as can be seen on the heatmap. Mphaka J. [110], 

established a feature set containing atomic and elemental properties and predicted 

formation energy of lithium-ion battery materials with 18 elemental descriptors. The 

Catboost model selected the maximum electron negativity, electron negativity Pauling, 

and average d valence as the major descriptors. In both cases, 18 key elemental 

descriptors were selected for the prediction of LIB and SIB formation energy. It follows 

that different descriptors predict similar properties differently based on the type of 

material. 

. 
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Figure 4.1: Correlation heatmap for the critical feature vectors selected by the 

Bayesian ridge model. 

 

4.1.2 Energy above Hull 
 

As discussed in chapter 2, feature importance refers to the technique of calculating 

scores for all input features for a given model, the scores simply represent the 

"importance" of the input features. The higher the score, the greater the impact of that 

specific feature on the model. The process of selection allows for easy interpretation 

of the features. In tree-based machine learning algorithms such as random forest, 

extra trees regressor and boosting algorithms, the feature importance attribute 

provides a value between 0 and 100 to represent how useful each feature is in 

predicting a target property. Thus, it enables us to determine what features contributed 

to model accuracy and what features are not that important. Using this information, 
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the model can be tested as to weather is working as expected and discard those 

features that do not add value. 18 features are considered, and the features are ranked 

from the least to more important in calculating the target properties (bottom-up). In this 

study light gradient boosting machine and extra trees regressor models are used to 

determine important features required to predict the properties.  

In order to engineer the features to accurately predict the energy above hull, feature 

importance plot was considered. The feature importance plot was utilized for the Fermi 

energy, energy above hull, band gap and density. Figure 4.2 illustrates the key feature 

vectors selected by the light gradient boosting machine for predicting the energy above 

hull. Average Mendeleev number (ave:mendeleev_number) and average atomic 

weight (ave:atomic_weight) are the top important features in calculating the energy 

above hull. The least important features are average Herfindal-Hirschman index (HHI) 

reserves values (ave:hhi_r), sum covalent radius (sum:covalent_radius_cordero), 

average atom volume in inorganic crystal structure database (ave:icsd_volume), and 

average density functional theory energy per atom (ave:gs_energy). 

 

Figure 4.2: Important features selected by the light gradient boosting machine for 
energy above hull. 
 

Figure 4.3 depicts the key descriptors selected by the extra trees regressor for 

predicting the energy above hull. Variance atom volume in inorganic crystal structure 
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database (var:icsd_volume) and average density functional theory energy per atom 

(ave:gs_energy) are top key features amongst others. Minimum density (min:density) 

and average covalent radius (ave:covalent_radius_pyykko_triple) are the least 

important features. The feature vectors selected by the light gradient boosting machine 

and extra trees regressor predicts the different features vectors, with only two similar 

features varying in their values. The worst two features selected by LGBM is seen as 

the top two important features by the ETR.  For LGBM model feature values are 20.5 

out of 100 whereas, for ETR is 0.00200 out of 100, hence the LGBM was selected in 

predicting the energy above hull, since the LGBM model features are highly useful 

compared to the ETR feature vectors. 

 

 

Figure 4.3: Optimal features selected by the extra trees regressor for energy above 
hull. 
 

4.1.3 Fermi Energy  
 

Shown in Figure 4.4 are the key feature vectors selected by the light gradient boosting 

machine for predicting the Fermi energy. Average estimated face centered cubic 

lattice parameter based on density functional theory volume (ave:gs_est_fcc_latcnt), 

average Ghosh’s scale of electronegativity (ave:en_ghosh) and average density 

(ave:density) are the top three important features. Variance estimated body centred 
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cubic lattice parameter based on the density functional theory volume 

(var_gs_est_bcc_latcnt) is the least important feature. The key feature vector shows 

the contribution of body centred cubic and face centred cubic, and the results implies 

that most of the materials used are cubic in nature.  

 

Figure 4.4: Important features for Fermi energy selected by light gradient boosting 
machine model. 
 

The key features selected by the extra trees regressor for predicting the Fermi energy 

are depicted in Figure 4.5. The maximum lattice constant (max:lattice_constant), sum 

period (sum:period) and average atomic volume (ave:atomic_volume) are the most 

important features. Both the light gradient boosting machine and extra trees regressor 

predicted similar most feature vectors, namely, average Ghosh scale electronegativity 

(ave:en_ghosh), average density (ave:density), average atomic volume 

(ave:atomic_volume), varience covalent radius (var:covalent_radius_pyykko_double), 

and average heat capacity molar. It is worth noting that the feature vectors selected 

by the models vary by their importance, those that perform better at LGBM perform 

worst for ETR. 
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Figure 4.5: Optimal features selected by the extra trees regressor for Fermi energy. 
 

4.1.4 Density 

 

Figure 4.6 illustrates the key features selected by the extra tree regressor for density 

prediction, and it depicts that maximum mass specific heat capacity 

(max:heat_capacity_mass) is the most important feature for calculating the density of 

sodium-ion battery materials. The second important feature is variance density 

functional theory energy per atom energy (var:gs_energy), followed by maximum 

dipole polarizability (max:dipole_polarizability). Average electron negativity 

(ave:electron_negativity) and variance bulk modulus (var:bulk_modulus) are the least 

important features amongst the features selected. 
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Figure 4.6: Important feature vectors selected by the extra tree regressor for density. 
 

Figure 4.7 depicts the key feature variables selected by the light gradient boosting 

machine for predicting the density. Average density (ave:density), maximum Van der 

Waals radius (max:vdw_radius_mm3), average lattice constant (ave:lattice_constant) 

and average electronegativity Pauling (ave:en_pauling) feature vectors plays a critical 

role in predicting the density by the LGBM model. The models have a common feature 

vector, which is sum van der Waals radius (sum:vdw_radius), suggesting its 

importance in predicting the density of a material using ML. The common feature 

vector was the most important under the light gradient boosting machine, whereas of 

least importance under the extra trees regressor.  Afzal et al. [111], predicted organic 

molecules packing density using Deep Neural Networks (DNNs). Approximately 197 

descriptors were used, of which constitutional indices and functional group counts 

were the most critical. The descriptors were reasonably accurate [111]. 
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Figure 4.7: Optimal features selected by the light gradient boosting machine for 
density. 
 

4.1.5 Band Gap 

 

Figure 4.8 illustrates the key features selected by the light gradient boosting machine 

for predicting band gap. The features such as sum valence electron in d shell 

(sum:num_d_valence), average van der Waals radius (ave:vdw_radius) and average 

Ghosh’s scale of electronegativity (ave:en_ghosh) are the top three features attributing 

the most to the predictive power of LGBM model for calculating the band gap. The 

variance first ionisation energy (var:first_ion_en) was found to be the least important 

feature. 
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Figure 4.8: Important features selected by the light gradient boosting machine for band 
gap. 

  

 

Figure 4.9: Optimal features selected by the extra trees regressor for predicting the 
band gap. 
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Figure 4.9 depicts the key features selected by the extra trees regressor for band gap. 

The important features in predicting the band gap are maximum electron negativity 

(max:electron_affinity), maximum molar volume (max:molar_volume) and maximum 

thermal conductivity (max:thermal_conductivity).  The LGBM and ETR models have a 

common feature vector, which is average atomic volume (ave:atomic_volume) 

however, the other important features are different. The features selected by the 

LGBM model have high predictive capability as compared to ETR features, this is 

justified by the score of the values on the feature importance plot. 

 

4.2 Model Selection 

 

Model selection is the task of selecting statistical model from a candidate models, 

given the data to be analysed. Model selection is used to determine which model is 

most suitable for the data that has been collected by comparing their relative 

advantages. The best model is selected based on its capability to predict the target 

property, in this case the target properties included the formation energy, final energy, 

Fermi energy, energy above hull, band gap, and density. The following models were 

evaluated: Bayesian ridge (BR), extra trees regressor (ETR), light gradient boosting 

machine (LGBM), orthogonal matching pursuit (OMP), random forest regressor (RFR) 

and gradient boosting regressor (GBR). 

    

Figure 4.10: Measures of predicted formation energy (a) coefficient of determination 
and (b) mean square error as determined by various models.   
 

(a) (b) 
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Figure 4.10 depicts the measures of the predicted coefficient of determination (a) and 

mean square error (b) for formation energy as determined by various models. The 

models in category from poor to best performing are the gradient boosting regressor, 

random forest regressor and orthogonal matching pursuit with the same regression 

score of 0.97 and MSE of 0.02, 0.03 and 0.02 eV, respectively. Both light gradient 

boosting machine and extra trees regressor have a regression score of 0.98 and mean 

square error of 0.02 eV. The Bayesian ridge with regression score of 0.99 and MSE 

of 0.01 eV, predicts the formation energy with highest accuracy of 0.99 and a mean 

square error closest to zero. Bayesian ridge is easy, fast to implement and can handle 

large dataset in comparison to other regression models, it is also not sensitive to 

unrelated features hence is more accurate than the other selected models. Mphaka 

[110] used the catboost model to predict the formation energy of lithium-ion battery 

materials, the model was reported to perform well, however it was not included in this 

study. The catboost achieved a regression score of 0.95 and mean square error of 

0.06 eV, which is good but not better than the Bayesian ridge used in this study. 

 

    

Figure 4.11: Measures of predicted final energy (a) coefficient of determination and (b) 
mean square error as determined by various models. 
 

Figure 4.11 depicts the measures of predicted coefficient of determination (a) and 

mean square error (b) for final energy. According to their performance, the following 

models are categorized from poor to best: the orthogonal matching pursuit with 

regression score of 0.95 and MSE of 0.10 eV was the poor performing model; followed 

by random forest regressor with regression score of 0.97 and MSE of 0.07 eV. Light 

gradient boosting machine, gradient boosting regressor, extra trees regressor, and 

(a) (b) 
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Bayesian ridge, have the same regression score of 0.98, and MSE of 0.04, 0.05, 0.04 

and 0.03 eV, respectively. The Bayesian ridge model may be regarded as the best in 

predicting the final energy, since it has the least MSE compared to the other three 

models with the same regression score. Bayesian ridge is straight forward to fit 

complex datasets, and its results are highly interpretable and easy to understand.   

              

         

Figure 4.12: Measures of predicted energy above hull (a) coefficient of determination 
and (b) mean square error as determined by various models. 
 

Figure 4.12 shows the measures of the predicted coefficient of determination (a) and 

mean square error (b) for the energy above hull. Again, orthogonal matching pursuit 

is the worst performing model with regression score of 0.55 and MSE of 0.12 eV, 

followed by the Bayesian ridge with regression score of 0.63 and MSE of 0.11 eV and 

random forest regressor with regression score of 0.64 and MSE of 0.11 eV. The three 

aforementioned models performed poorly as compared to the extra trees regressor 

with regression score of 0.66 and MSE of 0.11 eV, gradient boosting regressor with 

regression score of 0.66 and MSE of 0.11 eV and light gradient boosting machine with 

regression score of 0.67 and MSE of 0.01 eV. For LGBM model it is possible to reduce 

memory usage and increase efficiency, it is capable of capturing complex patterns in 

the data, this substantiate how best this model is in predicting energy above hull. 

Overall, all the models did not predict the energy above hull well. 

(a) (b) 
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Figure 4.13: Measures of predicted Fermi energy (a) coefficient of determination and 
(b) mean square error as determined by various models. 
 

Figure 4.13 depicts the measures of the predicted coefficient of determination (a) and 

mean square error (b) for Fermi energy. The orthogonal matching pursuit with 

regression score of 0.71 and MSE of 0.73 eV, followed by Bayesian ridge with 

regression score of 0.75 and MSE of 0.67 eV and random forest regressor with 

regression score of 0.77 and MSE of 0.68 eV. The three models mentioned above 

were slightly outperformed by the gradient boosting regressor with regression score 

of 0.77 and MSE of 0.64 eV, extra trees regressor with regression score of 0.79 and 

MSE of 0.63 eV, and light gradient boosting machine with regression score of 0.82 

and MSE of 0.54 eV. The MSE are far from zero, suggesting that, overall the Fermi 

energy is not well predicted compared to the other properties discussed in the previous 

subsections.  Despite that all the models did not perform well, LGBM algorithm was 

selected due to its exceptional results in a multitude of machine learning endeavours. 

It wins in terms of performance and speed compared to the tested models. 

 

 

(a) (b) 
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Figure 4.14: Measures of predicted band gap (a) coefficient of determination and (b) 
mean square error as determined by various models. 
 

The measures of the predicted coefficient of determination (a) and mean square error 

(b) for band gap are shown in Figure 4.14. The orthogonal matching pursuit with 

regression score of 0.62 and MSE of 1.14 eV and Bayesian ridge with regression score 

of 0.65 and MSE of 1.05 eV are the poor performing models. The mean square error 

of the Bayesian ridge model is very high suggesting worst performance. Random 

forest regressor with regression score of 0.74 and MSE of 0.76 eV, gradient boosting 

regressor with regression score of 0.75 and MSE of 0.77 eV, extra trees regressor 

with regression score of 0.77 and MSE of 0.68 eV and light gradient boosting machine 

with regression score of 0.78 and MSE of 0.66 eV. The extra trees regressor was 

considered the best model since it had a regression score closest to 1 and mean 

square error close to 0 as compared to other evaluated models. LGBM is capable of 

capturing complex patterns in the data and increase efficiency hence it performed 

better than other selected models. Li et al. [112], reported gradient boosting regressor 

(GBR) model to be performing well in predicting the band gap of perovskites, achieving 

a regression score of 0.87 and MSE of 0.21 eV. However, in this study GBR was 

outperformed by light gradient boosting machine and ETR. These differences are 

attributed by factors such as data used, model parameters, types of materials, etc. 

 

(a) (b) 
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Figure 4.15: Measures of predicted density (a) coefficient of determination and (b) 
mean square error as determined by various models. 
 

Figure 4.15 illustrates the measures of the predicted coefficient of determination (a) 

and mean square error (b) for density. Below are the models ranked from poor to best 

performance: orthogonal matching pursuit with regression score of 0.90 and MSE of 

0.16 eV, Bayesian ridge with regression score of 0.91 and MSE of 0.14 eV, random 

forest regressor with regression score of 0.93 and MSE of 0.12 eV. Both gradient 

boosting regressor and light gradient boosting machine have a regression score of 

0.94, MSE of 0.10 eV and 0.08 eV, respectively. The extra trees regressor model 

predicted the density with unprecedented high regression score of 0.95 and low MSE 

of 0.09 eV. Unlike in other predicted properties discussed in the previous sections, all 

the models achieved a performance score of above 0.9. Afzal et al. [111], used DNN 

methods to predict organic molecular density and achieved a regression score of 0.98 

and mean absolute error of 10.8 kg/m3. The DNN model predicted the density with 

high accuracy [111]. 

 

4.3 Model Tuning/Hyperparameter Optimization 
 

As discussed in chapter 3, model tuning is the process of finding the optimal values of 

hyperparameters to maximize model performance. Choosing the best regularization is 

critical, as small regularizations lead to complex models, while large regularizations 

are not effective and make the model less useful. In this case, grid search technique 

is used to tune the models. In the next three subsections, we discuss the parameters 

tuned for various algorithms in order to improve their performance. 

(a) 
(b) 



65 
 

4.3.1 Bayesian Ridge  
 

In this model, only iterations are considered and the hyperparameters are listed in 

Table 4.1. 

Table 4.1: Tuned Bayesian ridge model parameters from training set for formation 
energy and final energy. 
 

Target Property (eV) Bayesian Ridge Hyperparameter  R2 

 

Formation energy 

Without CV 

With CV 

 

300  

50  

 

0.98 

0.99 

Final energy 

Without CV 

With CV 

 

300  

50  

 

0.98 

0.98 

 

The hyperparameters without cross validation (CV) with iterations of 300, resulted with 

model regression score of 0.98 for both energies. According to this matric evaluation 

methods model Bayesian ridge seemed to be the best model with high capability for 

the prediction of both formation energy and final energy. The iterations were changed 

to 50, under 5-fold cross validation and regression scores of 0.99 and 0.98 are 

obtained for formation energy and final energy, respectively as shown in table 4.1. 

From the Scikit learn the maximum number of iterations for a Bayesian ridge model 

should be greater or equals to 1. By default, Bayesian ridge also have alpha 1, alpha 

2, lambda 1 and 2 which equals to 1x10-6 hyperparameters. After tuning the model by 

increasing the iterations, the regression score reduced to 0.98, implying that the model 

does not improve as it has a regression score of 0.98 for formation energy. Tuning the 

iteration for final energy gave the same regression score of 0.98. 

The algorithm handles the process of changing features obtained from elements into 

a forecast utilizing purely statistical techniques. The expectation is that the key 

characteristics must correspond to the formation and the final energy. 
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4.3.2 Light Gradient Boosting Machine  
 

The light gradient boosting machine parameters that are considered for model tuning 

are: 

i. Maximum depth (max depth) - the maximum depth of a tree 

ii. L2 regularization - the model needs L2 regularization to make predictions. The 

model's ability to predict is determined by L2 values. These values are 

estimated from data, or they can be learned from data. In many cases, they are 

not set manually. They may be stored in learned models. 

iii. Bagging temperature - Bayesian bootstrapping is controlled by this parameter, 

ranging from zero to infinity. 

 

Table 4.2: Tuned light gradient boosting machine model parameters from training set 
for Fermi and energy above hull. 
 

Target 
Property (eV) 

Number of 
trees 

Maximum 
depth 

L2 regularization Bagging 
Temperature 

R2 

 
Fermi energy 
Without CV 
With CV 

 
 
1000 
350 

 
 
3 
10 

 
 
1 
10 

 
 
1 
20 

 
 
0.80 
0.82 

Energy 
above hull 
Without CV 
With CV 

 
 
1000 
350 

 
 
3 
10 

 
 
1 
10 

 
 
1 
20 

 
 
0.58 
0.67 

 

For light gradient boosting machine model (table 4.2), hyperparameters without cross 

validation are number of trees of 1000, maximum depth of 3, L2 regularization of 1, 

bagging temperature of 1 which resulted in regression score of 0.80, and 0.58 for 

Fermi energy and energy above hull, respectively. With cross validation, after tuning 

the model by 5-fold, number of trees are 350, maximum depth of 10, L2 regularization 

of 10 and bagging temperature of 20 the regression score improved. Regression score 

of Fermi energy optimized from 0.80 to 0.82 and falls between the accepted score of 

0.6 to 1, suggesting that the model does not suffer under or overfitting. The model 

performance is fairly good. For energy above hull regression score improved from 0.58 

to 0.67. The regression score for energy above hull now falls above 0.6, which is within 

an acceptable score range. This lower regression score of 0.6 may have been caused 
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by model underfitting on the training dataset. The overall performance for energy 

above hull is poor. 

 

4.3.3 Extra Trees Regressor  

 

The hyperparameters considered in tuning extra trees include: 

i. Maximum depth - the maximum depth of a tree, the length of the longest path 

from a root to a leaf to which each tree will be build. 

ii. Maximum leaf node - the maximum node which does not have any child node, 

it helps in reducing overfitting and reduce model biasness. 

 

For extra tree regressor model (table 4.3), hyperparameters without cross validation 

are maximum depth of 4, maximum leaf node of 1 which resulted in model regression 

score of 0.94 and 0.76 for density and band gap, respectively. With cross validation 

the maximum depth and maximum leaf node changed to 10 and 13, respectively. This 

improved the regression score by 1 percent and regression score optimized from 0.94 

to 0.95 for density. The regression score for band gap improved from 0.76 to 0.78. 

 

Table 4.3: Tuned extra trees regressor model parameters from training set for density 
and band gap. 
 

Target property  Maximum 
 depth 

Maximum leaf node R2 

Density (g/cm3) 
Without CV 
With CV 

 
4 
10 

 
1 
13 

 
0.94 
0.95 

Band gap (eV) 
Without CV 
With CV 

 
4 
10 

 
1 
13 

 
0.76 
0.78 

 

4.4 Model Performance 
 

Model performance is an assessment of the model’s ability to perform a task 

accurately. It is measured based on the comparison of the models’ predictions with 

the (known) values of the dependent variable in a dataset. The performance plays a 

dominant role in the predictive modelling technique since it determines whether a 

model is performing efficiently or not. The DFT calculated properties from the Materials 

Project Database are compared with the corresponding ML predicted values for model 
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performance, using parity plots. For the best advantage most points should pass 

through the diagonal regressor line. 

Figure 4.16 shows a graphical representation of model performance of the training set 

(left) and the testing set (right), containing data points reflecting the predicted 

formation energy in (eV) as a function of DFT calculated formation energy in (eV). 

Bayesian ridge regression with elemental descriptors predicted formation energy 

scores of 0.99, 0.98 and 0.01 eV, 0.03 eV for coefficient of determination R2 and MSE 

for the training and the testing sets, respectively. The results indicated an excellent 

agreement between the calculated DFT and the predicted formation for the train and 

the test sets. This further demonstrate the robustness nature of our machine-learning 

model. 

   

Figure 4.16: Parity plot of Bayesian ridge model predicted formation energy versus 
DFT formation energy showing model performance for training set (left) and test set 
(right). 
 

Figure 4.17 shows the performance of the model on the training set (left) and the test 

set (right), with data points representing predicted final energies in (eV) versus DFT 

calculated final energies in (eV). Bayesian ridge regression was found to be the best 

performing model, predicting the final energy with scores of 0.98, 097 and 0.03 eV, 

0.04 eV for coefficient of determination and MSE for the training and the testing sets, 

respectively. The regression score and the mean-square error of the calculated DFT 

and predicted final energy of the train and the test sets showed a good consistency. 

The results showed that the calculated final energies of SIB dataset from the MP 

R2 = 0.99 

MSE = 0.01 eV 

 

R2 = 0.98 

MSE = 0.03 eV  
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database can be used as a test set for further justification on the selection of ML 

training using an experimental sample set. 

 

         

Figure 4.17: The parity plot compares the predicted final energy with DFT final energy 
for the training set (left) and test set (right) model performance by the Bayesian ridge.   

 

     

Figure 4.18: Parity plot showing the performance of the extra trees regressor model 

predicted density versus the DFT density in the training set (left) and test set (right). 

 

A graphical representation of model performance is presented in training (left) and test 

(right) sets in figure 4.18, with data points that show predicted density in (g/cm3) versus 

DFT calculated density in (g/cm3).  ETR regressor model with elemental descriptors, 

predicted the density with scores of 0.95, 0.94 and 0.09 g/cm3, 0.06 g/cm3 for 

coefficient of determination R2 and MSE for the training and testing sets, respectively. 

R2 = 0.98 

MSE = 0.03 eV 

 

R2 = 0.97 

MSE = 0.04 eV 

 

 R2 = 0.95 

MSE = 0.09 g/cm3 

 

R2 = 0.94 

MSE = 0.06 g/cm3 
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In comparison to the test set, the training set contains data points that are very close 

to the regression line, and are also less dispersed. In addition, the regression scores 

for both the training and the testing sets are close to 1, confirming that the extra trees 

regressor model is the best effective model for predicting density. 

The parity plot in Figure 4.19 represents the predicted Fermi energy in (eV) as a 

function of the DFT calculated Fermi energy, also in (eV). LGBM predicted the Fermi 

energy with coefficient of determination R2 of 0.82 and MSE of 0.57 eV and R2 of 0.80 

and MSE of 0.57 eV for the training and the testing sets, respectively. The parity plot 

in Figure 4.19 showed a satisfactory correlation between the calculated DFT and 

predicted Fermi energy, and this is justified by the closeness of the data points to the 

diagonal line, suggesting that the model accurately predicted the outcome of the DFT 

calculations with a minimal error.  

     

Figure 4.19: The parity plot of LGBM predicted Fermi energy versus DFT Fermi energy 
model performance for training set (left) and test set (right). 
 

 

Figure 4.20 depicts parity plots comparing band gap values computed using DFT 

against predictions made using light gradient boosting machine model, trained using 

compositional feature vectors. LGBM predicted band gap with scores of 0.78, 0.69 

and 0.66 eV, 0.76 eV for coefficient of determination R2 and MSE for the training and 

the testing sets, respectively. The training set data points are very close to the 

regression line, and are also less dispersed, while some of the points for the testing 

set are scattered outside the regression line. We also observed that there are many 

outliers points for the testing set as compared to the training set, which explains why 

R2 = 0.82 

MSE = 0.52 eV  

 

R2 = 0.80 

MSE = 0.57 eV  
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coefficient of determination is smaller for the testing as compared to the one for the 

training set. However, the regression score is also closer to 1, confirming that LGBM 

is the best model for band gap prediction. Despite the large MSE, the linear 

relationship between the predicted and DFT calculated band gap is still preserved by 

our ML models. However, the poor performance of the model for this test set is 

reflected in the relatively small R2 value as well as the ‘best fit line’. 

 

     

Figure 4.20: The parity plot of LGBM predicted band gap versus DFT band gap 
model performance for training set (left) and test set (right). 
 

LGBM model performance in the train (left) and the test (right) sets is shown in Figure 

4.21, which depicts DFT calculated energy above hull and the predicted energy above 

hull in (eV). Based on elements descriptors, light gradient boosting machine predicted 

energy above hull with scores of 0.67, 0.58 and 0.01 eV, 0.05 eV for coefficient of 

determination and MSE for the training and testing sets, respectively. LGBM model 

predicted the regression score 0.67, which is considered to be low according to the 

regression accuracy measures. This may have been caused by the model’s failure to 

select optimal features for this target property. We also observed that there are many 

outliers for the testing set as compared to the training set, meaning the coefficient of 

determination is smaller compared to the one for training set, hence the score of 0.58 

was obtained. This regression score is too far from 1, implying that light gradient 

boosting machine is not the best model for energy above hull prediction. The findings 

correlated with those reported in model selection section. The model was trained 

under several different conditions, however the accuracy of the model did not improve. 

R2 = 0.78 

MSE = 0.66 eV 

R2 = 0.69  

MSE = 0.76 eV 



72 
 

The few data points obtained could be contributing factor to the poor model 

performance. 

 

     

Figure 4.21: The parity plot of LGBM predicted energy above hull versus DFT energy 
above hull model performance for training set (left) and test set (right). 

 

 

  

R2 = 0.67 

MSE = 0.01 eV 

R2 = 0.58 

MSE = 0.05 eV 
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CHAPTER 5 
 

CONCLUSION 
 

Machine learning models were successfully developed to predict properties of sodium-

ion battery materials, namely, formation energy, final energy, Fermi energy, energy 

above hull, density and band gap . Firstly, feature engineering process was carried out 

to determine the most important features for different properties, as there is no 

descriptive information available from the literature. The importance of feature vectors 

derived from the properties of the materials’ chemical compounds and the fundamental 

properties of their constituents’ elements was evaluated for all the aforementioned 

properties of interest.  The average covalent radius and average single bond covalent 

radius were found to be the most important descriptors for predicting the formation 

and final energy of the SIB materials as per Bayesian ridge model. The average 

estimated FCC lattice parameter based on the DFT volume, average Ghosh’s scale 

of electronegativity and average density were the important features for predicting the 

Fermi energy of SIB materials as per light gradient boosting machine algorithm. The 

most targeted variables according to light gradient boosting machine resulting in 

accuracy and performance for predicting the energy above hull were found to be the 

average atomic number in Mendeleev’s periodic table and atomic weight. The 

maximum mass specific heat capacity and variance of DFT energy per atom 

descriptors are the most important features in predicting the density of the material. 

The average Van der Waals radius, valence electron in d shell and average 

electronegativity were the most important features for predicting the energy band gap 

using LGBM. Essentially, we established important features for the different properties 

associated with SIB materials.  

Secondly, after the feature engineering process was completed, different ML models 

were evaluated, and the best model was selected based on its accuracy in predicting 

the afore-mentioned properties. Amongst various algorithms that were evaluated, the 

Bayesian ridge model was found to be the best model in predicting the formation 

energy with an accuracy of 0.99 and 0.01 eV coefficient of determination and mean 

square error, respectively, as well as predicting the final energy with 0.98 and 0.03 eV 

accuracy for the coefficient of determination and mean square error, respectively. Light 
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gradient boosting machine model was found to be the best model in predicting the 

Fermi energy with an accuracy of 0.82 and 0.52 eV coefficient of determination and 

mean square error, respectively, and energy above hull with 0.67 and 0.01 eV, for the 

coefficient of determination and mean square error, respectively. Notably, although 

LGBM was found to be the best model, the MSE for predicting the Fermi energy was 

relatively higher in terms of accuracy of measure, on the other hand the R2 for the 

energy above hull was lower. ETR is found to be the best model in predicting the 

density with an accuracy of 0.95 and 0.09 g/cm3 for the coefficient of determination 

and mean square error, respectively. Lastly, ETR predicted energy band gap with 

accuracy of 0.78 and 0.66 eV, for the coefficient of determination and mean square 

error, respectively. The LGBM poor performing model for energy above hull and Fermi 

energy prediction can be attributed to the model’s failure to select optimal features for 

the target properties, and by model under-fitting on the training dataset. 

The machine learning models were further validated by comparing the DFT calculated 

properties with their corresponding predicted machine learning values. The results 

suggests that the developed ML models can predict formation energy, final energy, 

Fermi energy, energy above hull, density, and band gap with near-DFT accuracy. 

Thus, there is a good agreement between the model performance based on the train 

and the test set. Machine learning models can yield accurate material properties 

faster, making them useful in materials-properties prediction.    
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5.1 Recommendations and Future Work 

 
This ground work could be a stepping stone for exploring other descriptors for 

electrode materials. Future research requires the development of tools that will enable 

scientists to predict and classify sodium-ion battery materials properties without going 

through the different databases and all the machine learning steps. In that case, the 

following are recommended for future works: 

 Development of organized sodium-ion battery materials database that can be 

easily stored and accessed. 

 Development of ML workflows, indicating which steps are implemented and 

how are the implemented. 

 Building a tool that can be used to analyze SIB materials. 

 Expanding the models to other types of materials and solving the model’s poor 

performance which was attributed to failure to select optimal features for the 

target properties, and model underfitting on the training data. 
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A.2 Code Details 
 

The code employed to build and authenticate the ML models is outlined in the 

appendix. Examples are showcased only for demonstration purposes and will not be 

discussed as the essential elements have already been talked about in the 

dissertation.  

 

Figure A.1: Dataset extraction. 
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Figure A.2: Descriptor calculations. 
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Figure A.3: Pre-processed data. 

 

 

Figure A.4: Performance of the models. 
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Figure A.5: Model building. 

 

 

Figure A.6: Correlation heatmap for important features. 
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Figure A.7: Bayesian ridge performance for the testing data. 

 

 

Figure A.8: DFT and Machine learning formation energy comparison. 

 

    

 

Figure A.9: Scatter plot for testing data.  
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Figure A.10: Model predictions on the training data. 

 

 

 

Figure A.11: Scatter plot for the training data. 

  

 

Figure A.12: Model tuning.  
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Figure A.13: The dataframe for model results. 

 

 

Figure A.14: Performance of the model based on regression score. 
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Figure A.15: Performance of the model based on mean square error. 
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Figure A.16: Feature importance for light gradient boosting machine and extra trees 
regressor. 
 

The  other properties were predicted following the same procedure, with feature 

importance plot as illustrated by figure A.16 instead of heatmaps. 

 

 

 


