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Abstract

In this dissertation, we study P -frames and their generalisations. On the generalisations of P -

frames we consider, in particular essential P -frames, CP -frames, almost P -frames, F -frames,

F ′-frames and PF -frames. We show that a frame L is a P -frame if and only if every ideal of

RL is a z-ideal. We also consider R-modules and then show that a frame L is a P -frame if and

only if every RL-module is flat. Furthermore, we consider the Artin-Rees property and show

that a frame L is a P -frame if and only if RL is an Artin-Rees ring. Concerning CP -frames

we show, analogously to P -frames, that a frame L is a CP -frame if and only if every ideal of

RcL is a zc-ideal. It turns out that in CP -frame radical ideals are precisely zc-ideals. We show,

regarding F -frames, that L is an F -frame if and only if RL is a Bézout ring. We show that L

is an F -frame if and only if every ideal of RL is convex. Finally, we introduce PF -frames and

show that L is a PF -frame if and only if it is an essential P -frame which is also an F -frame.

Key Words: Frames, P -frames, basically disconnected frames, weakly cozero complemented

frames, essential P -frames, CP -frames, almost P -frames, F -frames, F ′-frames, PF -frames.
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Chapter 1

Introduction and Preliminaries

1.1 History of P -spaces and P -frames

The concept of a P -space was introduced by Gillman and Henriksen [50], and provided various

characterisations of these spaces (see also [52]). A topological space X is said to be a P -

space if every countable intersection of open sets in X is open, which is equivalent to stating

that every cozero set in X is closed. Hewitt [57] demonstrated that when X is an almost

compact space, it is C∗-embedded in any space in which it is embedded. Similarly, Aull [9]

established that a P -space X is C∗-embedded in every P -space in which it is embedded when

X is an almost Lindelöf space. Although P -spaces are rare, they play a fundamental role in the

study of disconnected topological spaces. The extension of P -spaces to a point-free setting was

initiated by Ball and Walters-Wayland [16]. They defined P -frames as frames in which every

cozero element is complemented. Ball et al [17] demonstrated the existence of P -frames with

quotients that are not P -frames. Additionally, Dube [31, 36] established connections between

P -frames and ring-theoretic properties of RL (where RL is the ring of real-valued continuous

functions on a frame L). In particular, he outlined that a frame L is a P -frame if and only if

every ideal in RL is a z-ideal, following the definition given by Mason [71]. Moreover, Dube

and Ighedo [37] showed that a frame L is a P -frame if and only if every radical ideal in L is
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a z-ideal. Recently, Abedi [1] provided some characterizations of P -frames associated with the

Artin-Rees property, stating that a frame L is a P -frame if and only if RL is an Artin-Rees

ring.

The notion of essential P -spaces was introduced by Osba et al [78], and they defined a space

X to be an essential P -space if, with the exception of at most one point, all points in X are

P -points. They also established that the ring C(X) is V N -local if and only if X is an essential

P -space. Furthermore, Osba and Henriksen [79] studied proper essential P -spaces, stating that

a space X falls into this category if and only if C(X) has at least one non-maximal prime ideal,

and the non-maximal ideal of C(X) is contained in a single maximal ideal. Dube [36] further

extended this concept to frames by introducing the notion of an essential P -frame. A frame L

is classified as an essential P -frame if it possesses purely maximal ideals or contains at most one

non-pure maximal ideal. Furthermore, proper essential P -frames are defined as frames L for

which RL has at least one non-maximal prime ideal and all of the non-maximal prime ideals

of RL are covered by a single maximal ideal.

Almost P -frames were introduced by Ball and Walters-Wayland [16] and further examined by

Henriksen and Walters-Wayland [55] and Dube [36]. In [36], almost P -frames were subjected

to various characterisations in terms of ring-theoretic properties of RL. Almost P -frames are

extensions of almost P -spaces. Almost P -spaces were introduced by Veksler [85], and further

investigated by Kim [63] and Levy [67].

Ball and Walters-Wayland [16] introduced the notion of F -frames and F ′-frames. These are

extensions of F -spaces and F ′-spaces in classical topology. The notion of F -spaces was intro-

duced by Gillman and Henriksen [51]. F -spaces were further investigated by Henriksen and

Woods [56], Dow and Förster [30]. F ′-spaces were investigated by Comfort et al [27] and Dow

[29]. Dube [35], Dube and Nsonde-Nsayi [39] studied numerous characterisations of F -frames

in designation of RL.

Azarpanah et al [14] introduced the notion of PF -spaces and showed that a weakly cozero
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complemented PF -space is precisely a basically disconnected essential almost P -space. The

class of CP -frames were introduced by Estaji and Robat Sarpoushi [44].

The motivation for studying P -frames and their generalizations, except essential P -frames, CP -

frames, and PF -frames, originated from the work of Ball and Walters-Wayland [16]. The authors

did not only provide the definitions of these frames but also presented a few characterizations

for each of them. Subsequently, various authors (see [11, 13, 63, 67]) contributed additional

characterizations for these frames. Here, we also consider CP -frames introduced by Estaji and

Robat Sarpoushi [44] and we introduce the concept of PF -frames which captures the notion of

PF -spaces introduced by Azarpanah et al [14].

1.2 Synopsis of the dissertation

In this dissertation we study P -frames and their generalisations, namely, essential P -frames,

CP -frames, almost P -frames, F - and F ′-frames, and PF -frames.

Here is the outline of the dissertation. Chapter 1 is mainly introductory. In this chapter, we

provide the relevant notions pertaining to frames and give the relevant background for the

ensuing chapters.

In Chapter 2, we study P -frames and show that the class of P -frames is contained in the

class of basically disconnected frames which in turn is contained in the class of weakly cozero

complemented frames. We characterise P -frames as those frames which every coz-onto quotient

maps out of them are C-quotient maps. We also give algebraic characterisation of P -frames

and show amongst other characterisations that L is a P -frame if and only if every ideal of

RL is a z-ideal if and only if every RL-module is flat. Furthermore, we study the Artin-Rees

property and show that L is a P -frame if and only if RL is an Artin-Rees ring.

In Chapter 3, we put our attention to essential P -frames and CP -frames. We show that a

normal frame is an essential P -frame if and only if RL is V N -local. We show further that an

essential P -frame is strongly zero-dimensional. The class of CP -frames contains the class of
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P -frames. We show that L is a CP -frame if and only if every ideal of RcL is a zc-ideal if and

only if every radical ideal of RcL is a zc-ideal.

Chapter 4 is entirely almost P -frames. The class of almost P -frames contains the class of P -

frames and shows further, that P -frames is the intersection of almost P -frames and basically

disconnected frames, also the intersection of almost P -frames with Oz-frames. We show that

L is a P -frame if and only if it is an almost P -frame with countable chain condition (ccc).

Lastly, we show that every weakly Lindelöf almost P -frame is Lindelöf and we give a few

characterisations of almost P -frames in terms of ring-theoretic properties.

Chapter 5 catalogues the characterisations of F -frames and F ′-frames. We show that the class

of F -frames contains the class of P -frames, essential P -frames, and almost P -frames. We also

show that the class of basically disconnected frames is also contained in the class of F -frames.

We show that L is an F -frame if and only if RL is a Bézout ring if and only if every ideal of RL

is convex. We show that the classes of P -frames, basically disconnected frames and F -frames

are contained in the class of F ′-frames. We also show that every weakly Lindelöf F ′-frame is an

F -frame and every zero-dimensional weakly Lindelöf F ′-frame is a strongly zero-dimensional

F -frame. Lastly, we give some ring-theoretic characterisation of F ′-frames.

Chapter 6 catalogues the PF -frames and we observed in the first section that the class of P -

frames is contained in the class of PF -frames, in turn, is contained in the class of F -frames,

and PF -frames and basically disconnected frames are incomparable. We show that a frame

L is a PF -frame if and only if βL is a PF -frame. We show amongst other characterisations

of PF -frames, that L is a PF -frame if and only if it is an essential P -frame which is also an

F -frame.

1.3 Preliminaries

In this section, a brief introduction to some needed background material on a frame theory is

given. We focus on the definitions, results, and properties required for this dissertation. For
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the convenience of the reader, full details can be found in [59] and [80] (see also [81]) and we

present them with some proofs from the aforementioned texts.

1.3.1 Posets and lattices

Definition 1.3.1. A binary relation ≤ on a set L is called a partial order if it satisfies the

following:

(i) reflexive, that is to say for all a ∈ L, a ≤ a,

(ii) antisymmetric, that is to say for all a, b ∈ L, a ≤ b and b ≤ a implies a = b, and

(iii) transitive, that is to say for all a, b, c ∈ L, a ≤ b and b ≤ c implies a ≤ c.

Furthermore, the set L together with the partial order ≤ is called a partially ordered set or

poset.

Definition 1.3.2. If A is a subset of a poset L, then b ∈ L is called an upper bound respectively,

(lower bound) of A if a ≤ b respectively (a ≥ b), for all a ∈ A. Furthermore, the join

respectively, (meet) of A is the least upper bound respectively when it exists (the greatest

lower bound) of A.

We denote the join of A by
∨
A and the meet by

∧
A. If A = {a, b} has only two elements,

then we write
∨
A = a ∨ b and

∧
A = a ∧ b. In addition, a poset L is:

(i) a meet-semilattice (join-semilattice), if there exists a meet (join) for any two elements

a, b ∈ L,

(ii) a lattice if there is a meet and a join for any two elements in L. A lattice L is called:

(a) modular if the implication below holds for all elements a, b, c ∈ L,

a ≤ c⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c,

(b) distributive if the equality below holds for all elements a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

5



(iii) a bounded lattice whenever all finite subsets of L have a meet and a join. This means that

L is a lattice which has a greatest (top) element 1L and a least (bottom) element 0L,

(iv) a complete lattice if every subset of L has a meet and a join. Note that every complete

lattice L is bounded with

0L =
∨
∅ =

∧
L and 1L =

∧
∅ =

∨
L.

Definition 1.3.3. A complemented lattice is a bounded lattice, in which every element a has

a complement, i.e. an element b such that:

a ∨ b = 1 and a ∧ b = 0.

A complemented, distributive lattice is called a Boolean algebra.

Definition 1.3.4. A mapping f : X → Y between two posets X and Y is called monotone if:

f(x) ≤ f(y) whenever x ≤ y.

It is called an isomorphism if it is bijective and its inverse is monotone as well. Moreover, we

say that f is a lattice homomorphism if X and Y are lattices and:

f(x ∨ y) = f(x) ∨ f(y), f(x ∧ y) = f(x) ∧ f(y), for all x, y ∈ X.

An adjunction map is a pair of monotone maps f and g between two posets such that for all

x ∈ X and y ∈ Y the relation holds:

f(x) ≤ y if and only if x ≤ g(y).

Then f is called a left adjoint of g and g is the right adjoint of f . General theory tells us that:

(i) adjoints are unique,

(ii) a right (left) adjoint preserves all existing meets (joins),
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(iii) a monotone map f : X → Y has a right adjoint g if and only if for all y ∈ Y the right-hand

side in the identity below exists and f preserves all such joins; then the right adjoint of

g is given by the formula

g(y) =
∨
{x | f(x) ≤ y},

(iv) dually, a monotone map f : X → Y has a left adjoint g if and only if for all y ∈ Y the

right-hand side in the identity below exists and f preserves all such meets,

g(y) =
∧
{x | y ≤ f(x)}.

Definition 1.3.5. In a complete lattice L, an element a in L is said to have a pseudocomplement

if there exists a largest (greatest) element x in L such that a ∧ x = 0. We denote such an x by

a∗. Equivalently, a∗ is a pseudocomplement of a if:

x ∧ a = 0⇐⇒ x ≤ a∗, for all x ∈ L.

More formally

a∗ =
∨
{x ∈ L | x ∧ a = 0}.

The complete lattice L is called pseudocomplemented if every element in L has a pseudocom-

plement. For example every finite distributive lattice is pseudocomplemented.

Note that lattice homomorphisms do not necessarily preserve pseudocomplements. One has

obviously f(a∗) ≤ f(a)∗ if f is monotone, but the other inequality, generally does not hold.

1.3.2 Frames

Definition 1.3.6. A frame L is a complete lattice such that for any point a ∈ L and any set

B ⊆ L the following infinite distributive law holds:

a ∧
∨
B =

∨
{a ∧ b | b ∈ B}.

7



Since the De Morgan law for meets does not hold in frames, frames in which this law holds are

called De Morgan frames.

Definition 1.3.7. A frame L is called a Boolean frame if L = BL, where BL is the set of all

complemented elements of the frame L. A frame L which is a Boolean algebra coincides with

a Boolean frame.

Example 1.3.1. Any complete Boolean algebra is a frame.

Definition 1.3.8. A subframe M of a frame L is a subset M ⊆ L which is a frame under the

same operations (∧ and
∨

) as L with 1L, 0L ∈M .

Definition 1.3.9. A notion is said to be a conservative notion if whenever it holds in a space

X, it also holds in OX ( where OX, denotes the lattice of open subsets of a topological space

X) and vice-versa.

Example 1.3.2. OX is a complete lattice, hence is a frame.

Definition 1.3.10. A frame is said to be spatial if it isomorphic to a topology.

Example 1.3.3. OX is a complete lattice, hence is a spatial frame.

Definition 1.3.11. An atom (co-atom) in a frame is an element a such that a > 0 (a < 1)

such that for each b ∈ L, a ≥ b > 0 implies that b = a (a ≤ b < 1 implies that b = a). A

Boolean algebra is atomic if each of its element is a join of atoms.

Example 1.3.4. A Boolean algebra is atomic if each element of L is a meet of co-atoms.

The following is an example of a non-spatial frame.

Example 1.3.5. A Boolean frame without atoms.

Recall that a pseudocomplement of an element a is a∗ such that for y ∈ L, y ≤ a∗ ⇒ a∧ y = 0.

However a ∨ a∗ = 1 does not hold in general. In the case where a ∨ a∗ = 1, we say a is

complemented.

Pseudocomplements, if they exist, satisfy the following properties:
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(i) a ≤ a∗∗,

(ii) a∗ = a∗∗∗,

(iii) a ≤ b implies b∗ ≤ a∗,

(iv) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗,

(v) (a ∨ b)∗ = a∗ ∧ b∗ [De Morgan’s Law],

(vi) 1∗ = 0 and 0∗ = 1,

(vii) a ∧ b = 0 implies a ≤ b∗ and b ≤ a∗.

Another property of the pseudocomplement of a frame that we will employ freely is

(∨
i∈I

ai

)∗
=
∧
i∈I

a∗i .

Definition 1.3.12. For an element a ∈ L, if a∗∗ = a, then we say a is regular. If every element

of a frame is regular, then we say the frame is Boolean.

Definition 1.3.13. An element a in L is said to be dense if its pseudocomplement is the

bottom element. That is, a ∈ L is dense if a∗ = 0.

Definition 1.3.14. A frame homomorphism is a map h : L → M between two frames which

preserves:

(i) All finite meets, that is, binary meets h(x ∧ y) = h(x) ∧ h(y) for all x, y ∈ L, and the

empty meet h(1) = 1.

(ii) All arbitrary joins h(
∨
X) =

∨
{h(x) | x ∈ X}, for any X ⊆ L, and the empty join

h(0) = 0.

Note that such an h is automatically order preserving and preserves both the top (that is

h(1L) = 1M) and the bottom (that is h(0L) = 0M).

9



Definition 1.3.15. By a quotient of a frame L, we mean an onto homomorphic image of L.

That is, M is a quotient of L precisely if there is an onto frame homomorphism h : L→M . In

such a case h is called a quotient map.

When we say a quotient h : L → M has a property of frames we shall mean that M has that

property. Likewise, to say a quotient h : L→M has a property of homomorphisms means that

h has that property.

Definition 1.3.16. A frame homomorphism h : L→M is said to be:

(i) dense if h(a) = 0⇒ a = 0,

(ii) codense if h(a) = 1⇒ a = 1,

(iii) a quotient map if it is onto,

(iv) an isomorphism if it is onto (surjective) and one-to-one (injective).

Because a frame homomorphism h preserves arbitrary joins, h has a right adjoint h∗ : M → L

satisfying the property that x ≤ h∗(y) in L if and only if h(x) ≤ y in M . For a ∈M

h∗(a) =
∨
{x ∈ L | h(x) ≤ a}.

A homomorphism h : L→M is called closed if h∗(h(x) ∨ y) = x ∨ h∗(y), for all x ∈ L and for

all y ∈M .

Example 1.3.6. If X is a topological space, then the set OX of all open subsets of X forms a

frame ordered by set inclusion. Let f : X → Y be a continuous map between topological spaces

X and Y , the map Of : OY → OX which is given by

Of(U) = f−1(U), ∀U ⊆ Y with U open ,

is a frame homomorphism.
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Definition 1.3.17. Let L be a frame. We call D ⊆ L a downset if x ∈ D and y ≤ x implies

y ∈ D, and U ⊆ L an upset if u ∈ U and u ≤ v implies v ∈ U . For any a ∈ L, we write

↓a = {x ∈ L|x ≤ a},

that is a downset, and

↑a = {x ∈ L | a ≤ x},

that is an upset. We note that ↓a is a frame whose bottom element is 0 ∈ L and top element a.

Similarly, ↑a is a frame and has 1 ∈ L as the top element and a as its bottom element. These

frames are in fact the quotients of L via the maps L →↑a and L →↓a, given respectively by

x 7→ a∨x and x 7→ a∧x. These quotients are known as the closed quotients and open quotients

respectively.

1.3.3 Cozero elements and cozero map

An element a in a frame L is said to be a cozero element if there is a frame homomorphism:

ϕ : L(R)→ L, such that a = ϕ(−, 0) ∨ ϕ(0,−),

where (−, 0) =
∨
{(p, 0) | 0 > p ∈ Q} in L(R) and (0,−) =

∨
{(0, q) | 0 < p ∈ Q}. We

recall from [54] that L(R) may be equivalently defined as the frame generated by the (p,−)

and (−, q), where p, q ∈ Q, subject to the relations:

(i) (p,−) ∧ (−, q) = 0 whenever p ≥ q,

(ii) (p,−) ∨ (−, q) = 0 whenever p < q,

(iii) (p,−) =
∨

s∈Q,r>p
p(r,−),

(iv) (−, q) =
∨

s∈Q,s<q
q(−, s),

(v)
∨
q∈Q

(p,−) = 1, and
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(vi)
∨
q∈Q

(−, q) = 1.

We usually express the cozero element a above as a = cozϕ, for some ϕ ∈ L(R).The following

results show that cozero elements can be characterised without requiring reference to the frame

of reals, L(R). The properties of the cozero map coz : RL→ L, given by

cozϕ =
∨
{ϕ(p, 0) ∨ ϕ(0, q) | p, q ∈ Q} = ϕ((−, 0) ∨ (0,−)),

Now it is clear that a cozero element of a frame L is an element of the form cozϕ for some

ϕ ∈ RL. For details about the map coz, we refer to [10, 16] and [19]. This map has the

following properties:

(i) cozγδ = cozγ ∧ cozδ.

(ii) coz(γ + δ) ≤ coz(γ) ∨ coz(δ).

(iii) coz(γ + δ) = coz(γ) ∨ coz(δ) if γ, δ ≥ 0.

(iv) cozϕ = 0 if and only if ϕ = 0.

(v) ϕ is invertible if and only if cozϕ = 1.

Regular and completely regular

Definition 1.3.18. An element a ∈ L is said to be rather below b ∈ L, denoted by a ≺ b, if

there exists an element c ∈ L such that

a ∧ c = 0 and c ∨ b = 1.

We call c a separating element of a and b. L is pseudocomplemented, then this is equivalent to:

a ≺ b⇔ a∗ ∨ b = 1L.

A frame L is called regular if for every b ∈ L,

b =
∨
{a ∈ L | a ≺ b}.
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Regularity for frames is a conservative notion, meaning that for a topological space X, X is

regular (as a space) if and only if OX is regular (as a frame). Next, we turn to some properties

of the (rather below) relation ≺ that will prove to be useful in chapters to come:

(i) a ≺ b⇒ a ≤ b, and for any a, 0 ≺ a ≺ 1.

(ii) x ≤ a ≺ b ≤ y ⇒ x ≺ y.

(iii) If a ≺ b, then b∗ ≺ a∗.

(iv) If a ≺ b, then a∗∗ ≺ b.

(v) If ai ≺ bi for i = 1, 2, then a1 ∨ a2 ≺ b1 ∨ b2 and a1 ∧ a2 ≺ b1 ∧ b2.

Definition 1.3.19. For any a, b ∈ L, a is said to be completely below b, denoted by a ≺≺ b, if

there is a sequence of elements

{cr ∈ L | r ∈ Q
⋂

[0, 1]}

such that a = c0 and b = c1, cp ≺ cr when p < r. We say that the sequence {cr} witnesses

the relation a ≺≺ b. A frame L is called completely regular in case every b in L is the join of

elements completely below it,

b =
∨
{a ∈ L | a ≺≺ b}.

The properties that hold true for the relation ≺, also hold true for ≺≺:

(i) a ≺≺ b⇒ a ≤ b, and for any a, 0 ≺≺ a ≺≺ 1.

(ii) x ≤ a ≺≺ b ≤ y ⇒ x ≺ y.

(iii) If a ≺≺ b, then b∗ ≺≺ a∗.

(iv) If a ≺≺ b, then a∗∗ ≺≺ b.

(v) If ai ≺≺ bi for i = 1, 2, then a1 ∨ a2 ≺≺ b1 ∨ b2 and a1 ∧ a2 ≺≺ b1 ∧ b2.
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Proposition 1.3.1. [80, Proposition 6.2.3] For any frame L the following are equivalent for

each a ∈ L:

(1) a ∈ CozL.

(2) a =
∨
xn where xn ≺≺ a for all n=1, 2, ....

(3) a =
∨
an where an ≺≺ an+1 for all n=1, 2, ....

The authors in [23] have also shown the following as significant consequences of Proposition

1.3.1 for any frame L: The cozero part of L, is denoted by CozL = {cozϕ | ϕ ∈ RL}, is the

regular sub-σ-frame consisting of all the cozero elements of L. A frame is completely regular

if and only if it is generated by its cozero part. We have the following properties of cozero

elements and the cozero part of a frames.

(i) If a ≺≺ b, there is cozero element c such that a ≺≺ c ≺≺ b.

(ii) If a ≺≺ b, there is cozero element c such that a ∧ c = 0 and c ∨ b = 1.

1.3.4 C- and C∗-quotients maps

Definition 1.3.20. A frame homomorphism h : L→M is said to be:

(i) coz-codense if the only cozero element it maps to the top element is the top element.

(ii) almost coz-codense if for each c ∈ CozL such that h(c) = 1, there exists d ∈ CozL such

that c ∨ d = 1 and h(d) = 0.

(iii) coz-onto if for every d ∈ CozM , there exists c ∈ CozL such that h(c) = d.

Proposition 1.3.2. [40, Proposition 3.3] For any homomorphism h : L → M , the following

are equivalent.

(1) h is coz-onto.

14



(2) For all a, b ∈ CozM such that a ∧ b = 0, there exist c, d ∈ CozL such that c ∧ d = 0,

h(c) = a and h(d) = b.

(3) For all a, b ∈ CozM with a ∧ b = 0, there exist c, d ∈ CozL such that c ∧ d = 0, a ≤ h(c)

and b ≤ h(d).

Definition 1.3.21. A cover C of a frame L is a subset C of L such that
∨
C = 1. A subcover

D of C, we mean a subset D ⊆ C such that
∨
D = 1. A frame L is said to be normal if for any

two a, b ∈ L such that a ∨ b = 1, there exist c, d ∈ L such that c ∧ d = 0 and c ∨ a = 1 = d ∨ b.

The CozL is normal (see [23]). In frame theory, the set of all covers of L is denoted by CovL.

Let A,B ∈ CovL, then we say that A refines B (written A ≤ B) if for any a ∈ A there is

b ∈ B such that a ≤ b. Moreover, we say that A star refines B (written A ≤∗ B) if and only if

AA ≤ B with

AA = {Ax | x ∈ A} and Ax =
∨
{q ∈ A | q ∧ x 6= 0}.

A cover A of a frame L is said to be normal whenever there exist a sequence (An)n∈N of covers

such that A = A1 and An+1 ≤∗ An, for all n. Then L is called fully normal if every cover of it

is normal.

Proposition 1.3.3. [16, Theorem 7.1.1] The following are equivalent for a quotient map h :

L→M :

(1) h is a C∗-quotient map.

(2) Every binary cozero cover of M is refined by the image of a binary cozero cover of L.

(3) Every binary cozero cover of M is the image of a binary cozero cover of L.

Proposition 1.3.4. [16, Theorem 7.2.7] The following are equivalent for a quotient map h :

L→M :

(1) h is a C-quotient map.
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(2) h is a C∗-quotient map and almost coz-codense.

(3) h is coz-onto and almost coz-codense.

Lemma 1.3.1. [16, Corollary 3.2.11] Every open quotient of a cozero element of a frame is

coz-onto.

We note the following lemma that relates surjective homomorphisms, their adjoints and pseu-

docomplements.

Lemma 1.3.2. For a surjective frame homomorphism h : L→M with a ∈M and

h∗(a) =
∨
{x ∈ L | h(x) = a}.

If h is dense surjective, then h∗(a
∗) = (h∗(a))∗.

Lemma 1.3.3. [80, Proposition 2.2.2] In a regular frame, any dense frame homomorphism is

injective.

Note that the relation ≺≺ is the largest interpolative relation contained in ≺ (a relation K is

interpolative if aKb⇒ aKcKb for some c).

Lemma 1.3.4. [80, Lemma 5.9.1] In a normal frame L the relation ≺ interpolates and coincides

with the ≺≺ one, which implies that regularity coincides with complete regularity.

Frame of reals

There are various equivalent ways to introduce the frame of real numbers. We consider the

description which is introduced in [19]. Recall that frame of reals, denoted by L(R), is the

frame generated by all ordered pairs (p, q) where p, q ∈ Q, subject to the relations:

(i) (p, q) ∧ (s, t) = (p ∨ s, q ∧ t).

(ii) (p, q) ∨ (s, t) = (p, t) where p ≤ s < q ≤ t.

(iii) (p, q) =
∨
{(s, t) | p < s < t < q}.
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(iv) 1L(R) =
∨
{(p, q) | p, q ∈ Q}.

Remark : It follows from (iii) that if q ≤ p, then (p, q) = 0.

Proposition 1.3.5. [80] The frame L(R) is completely regular.

Proof. If p < s < t < q, then (s, t) ≺ (p, q). Consider {(u, v) | p < u < s < t < v < q in Q} it

is clear that (s, t) ≺≺ (p, q), and then by (iii), it immediately follows that L(R) is completely

regular.

1.3.5 Coproducts of frames

Let A and B be frames. Then A⊕B is generated by elements a⊕ b (a ∈ A, b ∈ B) such that

(i)
∨
i∈I

(ai ⊕ b) =

(∨
i∈I
ai

)
⊕ b and

∨
i∈I

(a⊕ bi) = a⊕
(∨
i∈I
bi

)
,

(ii) (a1 ⊕ b1) ∧ (a2 ⊕ b2) = (a1 ∧ a2)⊕ (b1 ∧ b2), and

(iii) for a, b, c 6= 0, a⊕ b ≤ c⊕ d if and only if a ≤ c and b ≤ d.

The coproduct injections or inclusions iA : A → A ⊕ B and iB : B → A ⊕ B are given by

a 7→ a⊕ 1 and b 7→ 1⊕ b so that a⊕ b = iA(a) ∧ iB(b).

1.3.6 Compactification of frames

Definition 1.3.22. A frame L is compact (countably compact) if each of its covers (countable

covers), admits a finite subcover. Similarly, L is Lindelöf if each of its covers admits a countable

subcover. In any completely regular Lindelöf frame L, a ∈ L is cozero if and only if it is Lindelöf.

Definition 1.3.23. A surjective (quotient) dense frame homomorphism h : L→M is called a

compactification of M if L is a compact regular frame.
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Stone-Čech compactification

For a completely regular frame L, a compact frame K together with a dense (onto) frame

homomorphism h : K → L is called the Stone-Čech compactification of the frame L if for every

dense homomorphism with compact domain ϕ : K ′ → L there is a unique frame homomorphism

ϕ∗ : K ′ → K such that ϕ = h ◦ ϕ∗ the following diagram commutes.

K ′
ϕ //

ϕ∗

  

L

K

h

??

The existence of such compactification for completely regular frames is well established in

point-free topology. We note the following results without proof.

Proposition 1.3.6. [80]

(1) Each dense frame homomorphism h : L → M is injective if M is compact and L is

regular.

(2) Each compact regular frame is spatial.

Lemma 1.3.5. [80]

(1) For every cover {aj | j ∈ N} of a normal frame L there is a cover

{bj | j ∈ N} such that bj ≺ aj, for all j.

(2) A compact regular frame is normal.

Note: Compactness in frames is hereditary. This is easy to see because joins in a sub-frame

are exactly as in the larger frame.

Ideals
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Definition 1.3.24. A non-empty subset I of a frame L is an ideal if it satisfies the following:

(i) 0 ∈ I,

(ii) a downset (a ≤ b and b ∈ I ⇒ a ∈ I), and

(iii) closed under finite joins (a, b ∈ I ⇒ a ∨ b ∈ I).

If 1 /∈ I, then an ideal I is said to be proper. Let R be a ring, and I and J be ideals in R. The

sum of I and J is the ideal I + J = {i+ j | i ∈ I, j ∈ J}. If I + J = R, then I and J are said

to be comaximal. The product of two ideals, I and J is the ideal consisting of all finite sums of

products of the form ij where i ∈ I and j ∈ J .

Lemma 1.3.6. Let I and J be ideals in a ring R. Then the following hold:

(1) I ∩ J is an ideal, and is the smallest ideal of R containing both I and J .

(2) I + J is an ideal, and the ideal IJ is contained in I ∩ J . Furthermore, if I + J = R, then

IJ = I ∩ J .

An ideal I of L is said to be completely regular if for each x ∈ I, there is a y ∈ I such that

x ≺≺ y.

The set βL of all completely regular ideals of a frame L under set inclusion is a compact

completely regular frame, and β : βL → L, defined by β(I) =
∨
I, is a dense surjective frame

homomorphism, so that βL is a compactification of L. Furthermore, any frame homomorphism

f : M → L from a compact completely regular frame M factors uniquely through βL, i.e., there

exists a unique frame homomorphism f ∗ : M → βL such that f = β ◦f ∗. The compactification

βL is known as the Stone-Čech compactification of the frame L. It is clear that βL is finite if

and only if L is finite. The right adjoint β∗ : L → βL of the surjective frame homomorphism

β is denoted by r, and r(a) = {x ∈ L : x ≺≺ a} for all a ∈ L. There are several other
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equivalent descriptions of βL (see [19] and [24]); however, in this dissertation, we shall use the

above-mentioned description (see [80]).

A frame L is said to be pseudocompact if every continuous real-valued function on L is bounded,

that is if RL = R∗(L) (denotes, the ring of real-valued continuous functions on L is equals to

the ring of bounded real-valued continuous functions on L). Equivalently, βL = υL (Stone-

Čech compactification is equals to Hewitt real compactification), for more details (see [77]).

Moreover, L is pseudocompact if and only if CozL is a compact σ-frame, that is, if every

countable cover of L by cozero elements admits a finite subcover (see [23] for details; [19]

contains the result for completely regular frame).

For completely regular frame L, the frame of its completely regular ideals is denoted by βL. If

L is normal, then r preserves finite joins as was shown in [15, Lemma 3.1]. We shall frequently

use that if I, J ∈ βL and I ≺≺ J , then
∨
I ∈ J . An application of Zorn’s Lemma shows that

in any compact frame every element, but the top, below a maximal element. We denote by∑
βL the set of all maximal elements of βL.
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Chapter 2

P -frames

In this chapter, we study P -frames. We show that the class of P -frames is contained in the

class of basically disconnected frames which in turn is contained in the class of weakly cozero

complemented frames. We characterise P -frames as those frames which in every coz-onto

quotient maps out of them are C-quotient maps. We also give an algebraic characterisation of

P -frames. Amongst other characterisations we show that L is a P -frame if and only if every

ideal of RL is a z-ideal if and only if every RL-module is flat. Furthermore, we study the

Artin-Rees property and show that L is a P -frame if and only if RL is an Artin-Rees ring.

2.1 Introduction

We recall that a topological space X is said to be a P -space if every zero-set is open. Since a

zero-set is a closed set it follows that in a P -space every zero-set is clopen. Adapting this to

frames, Ball and Walters-Wayland [16] have formulated the following:

Definition 2.1.1. A frame L is said to be a P -frame if every a ∈ CozL is complemented. We

emphasise that in P -frames, CozL = BL.

That is to say for every a ∈ CozL there exists a∗ ∈ L such that a ∨ a∗ = 1, which implies

that a∗ ∈ CozL. Clearly, X is a P -space ⇔ OX is a P -frame; so that we have a conservative

21



extension of the topological notion.

Recall that an element a in a frame L is said to be dense if a∗ = 0. The following proposition

is taken from [1].

Proposition 2.1.1. [1, Lemma 3] A frame L is a P -frame if and only if every non-dense cozero

element of L is complemented.

Proof. The right-to-left implication is trivial, since every cozero element is complemented. Con-

versely, let a be a dense cozero element of L. Therefore a 6= 0, and so, by complete regularity,

there exists b ∈ CozL with b ≺≺ a. If b is dense, then the equality b∗ ∨ a = 1 implies a = 1,

which is complemented. If b is not dense, then b ∨ b∗ = 1, by hypothesis which makes b∗ a

cozero element. Since a∧ b∗ ≤ b∗ and b∗ is not dense (lest we have b = 0), a∧ b∗ is a non-dense

cozero element of L, and so a∧ b∗ ∨ (a∧ b∗)∗ = 1 which implies a∨ (a∧ b∗)∗ = 1. We therefore

have b ≺ a and a ∧ b∗ ≺ a, which implies b ∨ (a ∧ b∗) ≺ a. But

b ∨ (a ∧ b∗) = (b ∨ a) ∧ (b ∨ b∗) = a,

and so a ≺ a, implying that a is complemented.

Recall from [16] that a frame L is said to be basically disconnected if for every cozero element,

the join of its pseudocomplement with its double pseudocomplement is the top element. That

is to say for all a ∈ CozL, a∗ ∨ a∗∗ = 1. We show below that the class of P -frames is contained

in the class of basically disconnected frames.

Proposition 2.1.2. Every P -frame is basically disconnected.

Proof. Suppose that L is a P -frame and let a ∈ CozL. Then there is b ∈ L such that a∧ b = 0

and a ∨ b = 1. Hence b = a∗ and a∗∗ = a . It follows that

a∗ ∨ a∗∗ = b ∨ a = 1.

Thus L is basically disconnected.

22



Recall from [38] that a frame L is said to be weakly cozero complemented if for each a ∈ CozL

there exists b ∈ CozL such that a ∧ b = 0 and a ∨ b is dense. In this dissertation, we call

frames with this property weakly cozero complemented in order to distinguish them from P -

frames. The class of basically disconnected frames is contained in the class of weakly cozero

complemented frames. We show this in the following lemma.

Lemma 2.1.1. [16] Every basically disconnected frame is weakly cozero complemented.

Proof. Let a ∈ CozL. The frame L is basically disconnected, so a∗ ∨ a∗∗ = 1. Thus a∗ is

complemented and so, a∗ ∈ CozL with the required property. That is a ∧ a∗ = 0 and a ∨ a∗ is

dense. Hence L is weakly cozero complemented.

The converse of the above lemma does not hold in general. We will show in Chapter 5, that

the converse holds if L is a weakly cozero complemented F -frame. From Lemma 2.1.1, the

following corollary is immediate.

Corollary 2.1.1. [39] Every P -frame is weakly cozero complemented.

We give the following proposition without proof.

Proposition 2.1.3. [16, Proposition 3.2.10] If a ∈ CozL and b ∈ Coz(↓a), then b ∈ CozL.

Ball and Walters-Wayland [16] have shown that a quotient map is a C-quotient if and only

if it is coz-onto and almost coz-codense. In line with this the authors; obtained the following

proposition that a frame L is said to be a P -frame if and only if open quotient h : L→↓a is a

C-quotient for each a ∈ CozL.

Proposition 2.1.4. [40, Proposition 4.9] The following statements are equivalent.

(1) L is a P -frame.

(2) Every quotient of L is almost coz-codense.

(3) Every coz-onto quotient of L is a C-quotient.
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(4) The open quotient of a cozero element of L is a C-quotient.

Proof. (1) ⇒ (2): Let h : L → M be a quotient of L and a ∈ CozL such that h(a) = 1.

Thus a∗ ∈ CozL such that a ∨ a∗ = 1 and h(a∗) = h(a∗) ∧ h(a) = h(a∗ ∧ a) = h(0) = 0. Or,

alternatively, h(a∗) ≤ h(a)∗ = 1∗ = 0. Hence h : L→M is almost coz-codense.

(2) ⇒ (3): Recall from Proposition 1.3.4 that a quotient map h : L→M is a C-quotient map

if and only if h is coz-onto and almost coz-codense. We are done.

(3)⇒ (1): Let a ∈ CozL and contemplate open quotient h : L→↓a, it is a coz-onto homomor-

phism. Therefore it is C-quotient, so hence L is a P -frame.

(1) ⇔ (4): Suppose that L is a P -frame, and consider the open quotient map f : L →↓a for

some a ∈ CozL. Then f is a coz-onto by Proposition 2.1.3, and is almost coz-codense because

a∗ ∨ b = 1 for any b ∈ CozL such that f(b) = b ∧ a = 1 = a. Therefore f is a C-quotient map

by Proposition 1.3.4, ↓a is C-quotient and (4) holds.

Conversely, let a ∈ CozL, then by (4) h : L →↓a is almost coz-codense and this requires the

existence of some b ∈ CozL such that h(b) = b ∧ a = 0 and b ∨ a = 1. That is, b is the

complement of a, and (1) holds.

2.2 Ring-theoretic characterisations of P -frames

A ring R is commutative if the multiplication of its elements is commutative, that is ϕα = αϕ

for any α, ϕ ∈ R. Let R be a commutative ring with unity element. Throughout, by the term

ring, we mean a commutative ring with a unity unless stated otherwise. A set I ⊆ R is said to

be an ideal in R if ar ∈ I for each a ∈ I and r ∈ R. Recall from [53] that an element ϕ ∈ R

is idempotent if ϕ = ϕϕ = ϕ2. If every element ϕ ∈ R is an idempotent, then R is a Boolean

ring.

An element ϕ ∈ R is a von Neumann inverse (VN-inverse), if ϕ = ϕ2α for some α ∈ R. Let
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R be a ring is called von Neumann regular ring (VN-regular ring) if for every ϕ ∈ R is a

V N -inverse. The pure part of a ring R is the ideal

mI = {a ∈ R | a = ab for some b ∈ I, where I is an ideal of R}.

An ideal I is pure if I = mI. We refer to z-ideals as defined in [71] as z-ideals á la Mason.

This algebraic definition of z-ideals was coined in the context of rings of continuous functions

by Kohls [65] and is also captured by Gillman and Jerison [52]. Dube [31] introduced z-ideals

in point-free topology in terms of the cozero map. We shall see however that an ideal of RL is

a z-ideal if and only if it is a z-ideal à la Mason. We denote by Max(R) the set of all maximal

ideals of R. For any a ∈ R and I ⊆ R, we set

M(a) = {M ∈Max(R)) | a ∈M} and M(I) = {M ∈Max(R) |M ⊇ I},

and note that, since an ideal contains an element if and only if it contains the principal ideal

generated by the element, we have that M(a) =M(〈a〉). An ideal I of a ring R is a z-ideal à

la Mason if whenever M(a) ⊇M(b) and b ∈ I implies that a ∈ I.

In any ring R, let vr(R) denote the set of elements that have a von Neumann inverse and

nvr(R) = R\vr(R).

If S ⊂ R, then the annihilator A(S) of S = {x ∈ R | xS = {0}}, and if {s} is a singleton,

let A(s) = A({s}). The Jacobson radical J(R) of R is the intersection of the elements of

Max(R) and is given by {a ∈ R | (1 − ax) is invertible for all x ∈ R}, nil(R) denotes the

ideal of nilpotent elements of R. If I ⊂ R is an ideal, then I∗ will denote I\0. Note that

nil(R)∗ ⊂ J(R)∗ ⊂ nvr(R) and that each of these inclusions can be proper. Note that, also

mI = {a ∈ R | I + A(a) = R}. The principal ideal of a ring generated by an element q is

denoted by 〈q〉.

Lemma 2.2.1. [78, Lemma 2.3] If a ∈ R, then the ideal 〈a〉 is pure if and only if 〈a〉+A(a) = R.

Proof. Suppose that 〈a〉 is pure, then there exists x = ar ∈ 〈a〉 such that a = ax = a2r. So

a(1− ar) = 0 which implies that 1− ar ∈ A(a). Hence 1 = ar + 1− ar ∈ 〈a〉+ A(a).
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Conversely, assume that 〈a〉+A(a) = R. Then there exist r ∈ R, b ∈ A(a) such that ar+b = 1.

Multiply both sides by a to get a2r = a. If c = ay ∈ 〈a〉, then

c = ay = (a2r)y = (ay)(ar) = c(ar).

Hence 〈a〉 is pure.

The following theorem together with its proof is taken from [78].

Theorem 2.2.2. [78, Theorem 2.4] Suppose a ∈ R. Then a has a von Neumman inverse if

and only if for each maximal ideal M , a ∈M implies a ∈ mM .

Proof. Suppose that a = a2b for some b ∈ R. If M ∈ Max(R) is such that a ∈ M , then

a = a2b = a(ab) ∈ mM .

Conversely, suppose that for each maximal ideal M , a ∈ M implies a ∈ mM . If for such an

a,A(a) ⊂ M as well, then a(1−m) = 0 for some m ∈ M , in which case (1−m) ∈ M . Hence

〈a〉+ A(a) = R. So by Lemma 2.2.1, 〈a〉 is pure. Hence a has a von Neumman inverse.

Definition 2.2.1. A z-ideal is strong if it is the intersection of maximal ideals.

Every ideal I is contained in a least z-ideal, namely Jz = {J ⊆ K | K is a z-ideal}. We have

the following property of Jz (see [71]).

(i) (Jn)z = Jz for all positive integers n;

The following are characterisations of von Neumann regular rings given by Mason [71].

Theorem 2.2.3. The following are equivalent for a ring R:

(1) Every ideal is a strong z-ideal.

(2) Every ideal is a z-ideal.

(3) Every principal ideal is a z-ideal.

(4) R is regular.
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Proof. The following are trivial: (1) ⇒ (2) and (2) ⇒ (3).

(3) ⇒ (4): Since J2 = (J2)z = Jz = J for any principal z-ideal, therefore for any a ∈ R,

a2R = aR.

(4) ⇒ (1): Every ideal in a regular ring is the intersection of the maximal ideals containing

it.

Recall from [53] that an integral domain R is a commutative ring with unity having no zero

divisors, i.e. for x, y ∈ R, xy = 0 implies either x = 0 or y = 0 (or both). A field is a

commutative ring with unity, in which every nonzero element has a multiplicative inverse.

The following proposition which gives a characterisation of regular rings is taken from [31]

and we supply the proof here for the sake of completeness. The following also follows from

Theorem 2.2.2, Theorem 2.2.3, and also from the characterisations of regular rings in [53]. In

constructing the proof, we used the following; [8], [41], [42], [52], [68] and [78].

Proposition 2.2.1. [31, Proposition 3.2] The following are equivalent for a ring R.

(1) R is regular ring.

(2) Every principal ideal is generated by idempotents.

(3) Every prime ideal is maximal.

(4) Every ideal is an intersection of maximal ideals.

(5) Every ideal is a z-ideal à la Mason.

(6) Every principal ideal is a z-ideal à la Mason.

(7) Every maximal ideal is pure.

Proof. (1)⇒ (2): Let R be a von Neumann regular ring and let a be an element that generates

a principal ideal I = 〈a〉 for a ∈ R. Since R is von Neumann regular, there exists an element
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x such that a = axa. Let e = ax = axax. Then, e is idempotent, meaning e2 = e. We will

now show that I is generated by e. First, note that every element in I is of the form xa for

some x ∈ R. But xa = exa, so xa ∈ 〈e〉. This shows that I ⊆ 〈e〉. Next, let r be an element in

〈e〉. Then, r = ex for some x ∈ R. But r = axaxx = axr, so r is in 〈a〉 = I. This shows that

〈e〉 ⊆ I. Therefore, we have shown that I is generated by e, which is an idempotent element.

(2) ⇒ (4): In a von Neumann regular ring R where every principal ideal is generated by an

idempotent element, we show that every ideal of R is the intersection of maximal ideals. To

begin, let I be an ideal of R and use the von Neumann regularity to find an idempotent element

e ∈ R such that I = eR. As e is idempotent, we have e2 = e and hence e ∈ I. Consider the

setM of all maximal ideals of R that contain I. Since every maximal ideal of R is of the form

M = eR where e is an idempotent element of R, we can write

M = {eR | e ∈ E where E is the set of all idempotent elements of R that contain I}.

Note that M is non-empty since it contains I = eR. We claim that
⋂
M∈MM = I. First, it is

clear that I ⊆ M for every M ∈ M. To prove the reverse inclusion, let x ∈
⋂
M∈MM . Then,

x ∈ M = eR for every M ∈ M, so there exists an idempotent element eM ∈ R such that

x = eeM for every M ∈ M. Since M is non-empty, we can choose a maximal ideal M0 ∈ M

and let e0 be the corresponding idempotent element. Then, we have e0 ∈ E and e0 ∈ M0,

so e0 ∈ I. Thus, we have e0 = e0e = e0eM0 , which implies x = ee0eM0 = e0eM0 = e0 ∈ I.

Therefore, we have shown that
⋂
M∈MM = I. Since M is the set of all maximal ideals of R

that contain I, we have shown that I is the intersection of maximal ideals of R. Therefore,

every ideal of R is the intersection of maximal ideals, as desired.

(1)⇒ (3): Suppose R is a von Neumann regular ring, and let P be a prime ideal of R. We want

to show that P is a maximal ideal of R. Assume for contradiction that there exists an ideal Q

of R such that P ( Q. Since P is prime, Q/P is a proper nonzero ideal of R/P . Because R is

von Neumann regular, there exists an element r ∈ R such that r− 1 +Q/P = 0 in R/P . This

implies that r − 1 ∈ Q, which in turn implies that r is invertible in R/Q. Since r is invertible
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in R/Q, there exists an element s ∈ R such that rs − 1 ∈ Q. But then, (rs − 1)r ∈ Q, and

since r is invertible in R/Q, we have s ∈ Q. Therefore, Q is not a proper subset of P , which is

a contradiction. Thus, we conclude that every prime ideal of R is maximal.

(3) ⇒ (5): Assume that every prime ideal in R is maximal. We want to show that every ideal

in R is a z-ideal à la Mason. Let I be an ideal of R and let a, b ∈ R such that aR ∩ bI = abI.

We need to show that a ∈ I. Suppose not, then I ( I + (a), which means I + (a) is a proper

ideal of R. By assumption, there exists a maximal ideal M such that I + (a) ⊆M . Since M is

maximal, R/M is a field, and therefore an integral domain. Let ā be the image of a in R/M ,

and x̄ be the image of x in R/M for any x ∈ R. Since āx̄ = 0 for all x̄ ∈ R/M , either ā = 0

or x̄ = 0. If ā = 0, then a ∈ M , which implies I + (a) ⊆ M , a contradiction. Therefore, x̄ = 0

for all x̄ ∈ R/M , which implies x ∈M for all x ∈ R. Since M is a maximal ideal, it is a prime

ideal, and therefore maximal by assumption. Thus, aR ⊆ M . Now, let y ∈ I be arbitrary.

Then by ∈ bI and by ∈ aR, which implies by ∈ abI. Since I ⊆ abI, we have by ∈ I, and so I is

a z-ideal à la Mason.

(4) ⇒ (5): Let I be any ideal of R. By assumption, I is the intersection of all maximal ideals

containing it. Hence, for any a, b ∈ R such that ab ∈ I, we have ab ∈M for all maximal ideals

M containing I. This implies that a ∈ M or b ∈ M for all such M , and hence either a ∈ I or

b ∈ I. Therefore, I is a z-ideal à la Mason.

(5) ⇒ (6): Let I = 〈a〉 be a principal ideal of R, and let x ∈ R such that ax = a. Then,

a ∈ 〈ax〉 and x ∈ 〈xa〉. By assumption, I is a z-ideal à la Mason, which implies that either

a ∈ 〈xa〉 or x ∈ 〈ax〉. If a ∈ 〈xa〉, then there exists r ∈ R such that a = rxa, which implies that

a(1− rxa) = 0. Since R is a domain, this implies that 1− rxa = 0, and hence xa is a unit in R.

Thus, I = 〈a〉 is a principal ideal z-ideal à la Mason. Let R be a von Neumann regular ring.

Suppose that every ideal of R is a z-ideal à la Mason, and let I = 〈a〉 be a principal ideal of R.

We want to show that I is a z-ideal à la Mason. Since R is von Neumann regular, there exists

x ∈ R such that axa = a. Then, a ∈ 〈axa〉 and x ∈ 〈xax〉 = 〈ax〉, since R is commutative.
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By assumption, I is a z-ideal à la Mason, which implies that either a ∈ 〈xa〉 or x ∈ 〈ax〉. If

a ∈ 〈xa〉, then there exists r ∈ R such that a = rxa, which implies that a(1− rxa) = 0. Since

R is an integral domain, this implies that 1− rxa = 0, and hence xa is a unit in R. Thus, I is

a principal which is a z-ideal à la Mason.

(6) ⇒ (7): Suppose R is a ring where every principal ideal is a z-ideal à la Mason, and let

M be a maximal ideal of R. We want to show that M is a pure ideal. Let I be an ideal of

R such that I ⊆ M . We want to show that I is a pure ideal, i.e., I = J ∩M for some ideal

J of R. Since R is a ring where every principal ideal is a z-ideal à la Mason, we know that

every principal ideal is a z-ideal à la Mason. In particular, M is a z-ideal à la Mason, which

means that M is the intersection of all maximal ideals containing it. Let M be the set of all

maximal ideals of R containing I. Since M is a maximal ideal containing I, we have M 6= ∅.

Moreover, since R is a ring where every principal ideal is a z-ideal à la Mason , every principal

ideal is pure. Thus, I is a pure ideal, which means that I = J1 ∩ J2 ∩ · · · ∩ Jn for some ideals

J1, J2, . . . , Jn of R.

Now, let N = M ∩ J1 ∩ J2 ∩ · · · ∩ Jn. We claim that N is a maximal ideal containing I. To see

this, suppose for contradiction that there exists an ideal K such that N ( K ⊆ R and I ⊆ K.

Since I ⊆ M , we have K * M , which means that there exists a maximal ideal M ′ such that

M ( M ′ ⊆ K. But then M ′ ∈ M, which means that I ⊆ M ′, contradicting the assumption

that K contains I. Since N is a maximal ideal containing I, and every maximal ideal containing

I belongs toM, we haveN ⊆M . But sinceM is a z-ideal à la Mason, we haveM =
⋂
M ′∈MM ′.

Therefore, N = M ∩ J1 ∩ J2 ∩ · · · ∩ Jn = (J1 ∩M) ∩ (J2 ∩M) ∩ · · · ∩ (Jn ∩M) = J ∩M for

some ideal J of R, which shows that I is a pure ideal. Therefore, M is a pure ideal.

(1) ⇔ (7): It follows from Theorem 2.2.2 that nvr(R) = ∅ if and only if M = mM for each

M ∈Max(R) and hence the result (see [78, Corollary 2.5]).

Definition 2.2.2. An ideal I of a ring RL is a prime ideal if whenever τϕ ∈ I implies that
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either τ ∈ I or ϕ ∈ I.

A point in a frame L is a frame homomorphism ζ : L → 2 (2 is the frame with two elements

0 ≤ 1). The set of all points of a frame L is denoted by
∑
L = Pt(L), this is called the

spectrum of L. Next, we turn to the characterisation in terms of ideals. We start by recalling

from [36] how the M- and O-ideals are defined. For each I ∈ βL, the ideals MI and OI of RL

are defined by

MI = {ϕ ∈ RL | r(cozϕ) ⊆ I} and OI = {ϕ ∈ RL | r(cozϕ) ≺≺ I}.

Clearly, OI ⊆MI . Since, for any I ∈ βL and a ∈ L, r(a) ≺≺ I if and only if a ∈ I, it follows

that

OI = {ϕ ∈ RL | cozϕ ∈ I}.

The following are shown in [36]:

(i) An ideal of RL is maximal if and only if it is of the form MI for some I ∈
∑
βL.

(ii) MI is maximal ideal if and only if I is a prime element of βL.

(iii) For any prime ideal P of RL, there is a unique I ∈
∑
βL such that OI ⊆ P ⊆MI .

(iv) For any I ∈
∑
βL, MI is the unique maximal ideal containing OI .

(v) The ideals MI (respectively, OI) are distinct for distinct I for I ∈
∑
βL.

(vi) If MI = MJ , then I = J .

(vii) For any I ∈
∑
βL and ϕ ∈ RL, ϕ ∈ OI if and only if γϕ = 0 for some γ /∈MI .

Lemma 2.2.4. [35, Lemma 4.8] Suppose cozγ ≺≺ cozδ for some γ, δ ∈ RL, then there exists

an invertible τ ∈ RL such that γ = γτδ2. Hence, γ is a multiple of δ.

Proof. Since cozγ ≺≺ cozδ, there exists τ, δ ∈ RL such that cozγ ∧ cozτ = 0 and

cozδ ∨ cozτ = 1.
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Then coz(τ 2+δ2) = 1 since τ 2, δ2 ≥ 0 as squares are nonnegative in any f -ring. In consequence,

τ 2 + δ2 is invertible. Now we have that coz(γτ) = 0. so γτ = 0. Thus

γ = γ τ
2+δ2

τ2+δ2
= γτ2+γδ2

τ2+δ2
= δ γδ

τ2+δ2
,

which proves the result.

The following lemma is taken from [31], we omit the proof.

Lemma 2.2.5. [31, Lemma 3.4] For any ideal Q of RL,

mQ = {α ∈ RL | cozα ≺≺ cozβ for some β ∈ I}.

The pure part of the ideal MI is the ideal OI .

Lemma 2.2.6. [31, Lemma 3.5] For any I ∈ ΣβL, mMI = OI .

Proof. Let α ∈ OI . Then cozα ∈ I. Since I is a completely regular ideal, there exists γ ∈ RL

such that cozα ≺≺ cozγ ∈ I. But cozγ ∈ I implies that γ ∈MI . This shows, by Lemma 2.2.5,

that α ∈ mMI . Therefore OI ⊆ mMI . Next, let α ∈ mMI and pick γ ∈MI such that α = αγ.

Thus α(1 − γ) = 0. Since MI is a proper ideal and γ ∈MI , we have that 1 − γ /∈MI . Now,

since α is an annihilated by an element not belonging to MI , α ∈ OI . Therefore mMI ⊆ OI ,

and hence mMI = OI .

The following lemma is taken from [31], we omit the proof.

Lemma 2.2.7. [31, Lemma 3.7] Let Q be an ideal of RL. Then

∩M(Q) =

{
ϕ ∈ RL | r(cozϕ) ≤

∨
α∈Q

r(cozα)

}
.

Hence, for any γ ∈ RL, ∩M(γ) = {ϕ ∈ RL | cozϕ ≤ cozγ}.
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Definition 2.2.3. The radical of an ideal I of a ring R, denoted by
√
I, is the ideal

√
I = {x ∈ R | xn ∈ I for some n ∈ N}.

If I =
√
I, then I is called a radical ideal.

Definition 2.2.4. An ideal I of a ring RL is a z-ideal if cozf = cozg with g ∈ I implies

f ∈ I. Put

Rad(I) =
⋂
{P | P is a prime ideal,I ⊆ P}.

The following corollary and proof is taken from [31].

Corollary 2.2.1. [31, Corollary 3.8] An ideal of RL is a z-ideal if and only if it is a z-ideal à

la Mason.

Proof. Let Q be a z-ideal and suppose M(α) ⊇ M(β) for some β ∈ Q. Then α ∈ ∩M(α) ⊆

M(β), and so cozα ≤ cozβ, thus cozα = coz(αβ), and since αβ ∈ Q, we have that α ∈ Q

because Q is a z-ideal. Therefore Q is a z-ideal à la Mason.

Conversely, suppose that cozα = cozβ with β in the ideal Q. Then by Lemma 2.2.7, α ∈

∩M(β). But this implies that M(α) ⊇ M(β), and consequently that α ∈ Q by hypothesis.

Therefore Q is a z-ideal.

The following are characterisations of von Neumann inverses that are initiated in [78].

(i) ϕ has a V N -inverse if and only if for each ϕ ∈MI implies ϕ ∈ mMI .

(ii) ϕ has a V N -inverse if and only if ϕα is idempotent for some invertible α.

In classical context we have that a point p ∈ βX is called P-point if Op = Mp (see [4]). We now

recall from [72] that a point I of βL is a P-point if MI = OI . Note that if ν is an idempotent

in RL, then cozν is complemented because cozν ∧ coz(1 − ν) = 0 and cozν ∨ coz(1 − ν) = 1

(see [34]).

Proposition 2.2.2. [31, Proposition 3.9] The following are equivalent for a frame L:
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(1) L is a P -frame.

(2) RL is a regular ring.

(3) Every ideal of RL is a z-ideal.

(4) Every ideal of RL is an intersection of prime ideals.

(5) Every ideal of RL is an intersection of maximal ideals.

(6) Every prime ideal of RL is an intersection of maximal ideals.

(7) Every z-ideal of RL is an intersection of maximal ideals.

(8) For every γ, δ ∈ RL, 〈γ, δ〉 = 〈γ2 + δ2〉.

(9) Every principal ideal of RL is generated by an idempotent.

(10) OI = MI for each I ∈
∑
βL.

Proof. (1) ⇔ (2): Let a ∈ CozL, then there is ϕ ∈ RL such that a = cozϕ is complemented

(since L is a P -frame). Furthermore, if ϕ ∈ MI for some I ∈ ΣβL, since r preserves the

completely below relation, thus r(a) ≺≺ r(a) ≤ I, showing that ϕ ∈ OI . Consequently ϕ has

a von Neumann inverse by Theorem 2.2.6 and first result quoted from [78] of characterisations

of von Neumann inverses. Thus RL is regular.

Conversely, assume RL is regular. Let ϕ ∈ RL. Then ϕ has a von Neumann inverse. Thus by

second result quoted from [78] of characterisations of von Neumann inverses, there is α ∈ RL

such that ϕα is idempotent and α is invertible. Furthermore coz(ϕα) is complemented. But

ϕ2α = ϕϕα = ϕ and cozα = 1; so that coz(ϕα) = cozϕ ∧ cozα = cozϕ ∧ 1 = cozϕ; so thus

cozϕ is complemented. Therefore L is a P -frame.

The equivalences of (1), (3), (5), (9) and (10) now follow from Proposition 2.2.1.

(3) ⇒ (4): Let I be an ideal of RL. It suffices to show that I =
√
I, its radical. So let δ ∈

√
I.
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Then there is a natural number n such that δn ∈ I. But cozδ = coz(δn), and so δ ∈ I, since I

is a z-ideal by (3). This shows that I =
√
I, an intersection of prime ideals.

(4) ⇒ (2): Let γ ∈ RL. Any prime ideal of RL contains γ if and only if it contains γ2. So the

present hypothesis implies that 〈γ〉 = 〈γ2〉, and consequently γ = δγ2, for some δ ∈ RL. We

are done.

(5) ⇒ (6): It is trivial.

(6) ⇒ (2): Since every prime ideal is contained in a maximal ideal. The hypothesis implies

that every prime ideal is maximal, so that RL is regular by Proposition 2.2.1.

(5) ⇒ (7): It is trivial.

(7) ⇒ (10): For any J ∈ ΣβL, OJ is a z-ideal, and MJ is the unique maximal ideal containing

it. So the present hypothesis implies that OJ = MJ .

(3) ⇒ (8): Clearly, 〈γ2 + δ2〉 ⊆ 〈γ + δ〉. Now let φ ∈ 〈γ + δ〉. Then φ = µ1γ + µ2δ for some

µ1, µ2 ∈ RL. Therefore

cozφ ≤ cozγ ∨ cozδ = coz(γ2) ∨ coz(δ2) = coz(γ2 + δ2).

By (3), 〈γ2 + δ2〉 is z-ideal, it follows that φ ∈ 〈γ2 + δ2〉. Thus 〈γ2 + δ2〉 = 〈γ + δ〉.

(8) ⇒ (2): Let γ ∈ RL, and consider the principal ideal 〈γ〉 in RL. By (8), we have

〈γ〉 = 〈γ, 0〉 = 〈γ2〉.

Therefore γ = δγ2 for some δ ∈ RL. We are done.

The following lemmas are taken from [58], we omit the proofs.

Lemma 2.2.8. [58, Lemma 2.1.3] For any α, β ∈ RL, the following are equivalent:

(1) M(α) =M(β).
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(2) Mcozα = Mcozβ.

(3) cozα = cozβ.

The class of z-ideals contains the class of maximal ideals and the class of minimal prime ideals.

Lemma 2.2.9. We have the following for z-ideals:

(1) Every maximal ideal is a z-ideal.

(2) Every minimal prime ideal is a z-ideal.

(3) Intersections of z-ideals are z-ideals.

Definition 2.2.5. An ideal J of RL is a d-ideal if for any α ∈ RL and η ∈ J , cozα ≤ (cozη)∗∗

implies α ∈ J . Equivalently if, for any a ∈ J , Pa ⊆ J , where Pa is the intersection of all

minimal prime ideals of RL containing a.

The following proposition is taken from [58], we omit the proof.

Proposition 2.2.3. [58, Proposition 4.1.1] The following are equivalent for a singular ideal Q

of RL:

(1) Q is a d-ideal.

(2) For any α, β ∈ RL, if α ∈ Q and (cozβ)∗ = (cozα)∗ imply β ∈ Q.

(3) For any α, β ∈ RL, if α ∈ Q and (cozα)∗ ≤ (cozβ)∗ imply β ∈ Q.

(4) For any α, β ∈ RL, if α ∈ Q and cozβ ≤ (cozα)∗∗ imply β ∈ Q.

An f -ring R is a lattice-ordered ring such that (a∧b)c = (ac)∧(bc) holds for every a, b ∈ R and

c ∈ R+ = {x ∈ A | x ≥ 0}. It has bounded inversion if every element a ≥ 1 in R is invertible

in R. One of special property of f -rings that we note is, for all a, b ∈ A

a2 ≥ 0 and | ab |=| a || b |.
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For general information on f -rings (see [26]). We say an element a of an f -ring is positive if

a ≥ 0. If a is an invertible positive element in an f -ring, then a−1 is also positive. For squares

in any f -ring, and a−1 = (a−1)2a, which is a product of two positive elements. This one shows

that if R is an f -ring with bounded inversion (which is to say any element above the identity

of the ring is invertible), then for any a ∈ R, 1
1+|a| and a

1+|a| are bounded. A ring ideal I of an

f -ring R is an l-ideal if |x| ≤ |y|, y ∈ I implies x ∈ I. We recall from Larson [66] that minimal

prime l-ideals are z-ideals, z-ideals are semiprime and an l-ideal is semiprime if and only if it

is an intersection of prime l-ideals.

See also [84], for the following definition.

Definition 2.2.6. An ideal I of a f -ring R is said to be essential if it intersects every nonzero

ideal of the ring non-trivially. Equivalently, if for any nonzero element a of a ring, there exists

a nonzero element b ∈ I such that b is a multiple of a.

The following lemma and its proof is taken from [36].

Lemma 2.2.10. [36, Lemma 4.3] An ideal I in RL is essential if and only if
∨
{cozϕ | ϕ ∈ I}

is dense.

Proof. (⇒) Let c ∈ CozL such that c ∧
∨
{cozϕ | ϕ ∈ I} = 0. We will show that c = 0. Let

τ ∈ RL such that cozτ = c. Then
∨
{cozτ ∧ cozϕ | ϕ ∈ I} = 0, which implies that τϕ = 0 for

each ϕ ∈ I. Therefore the principal ideal 〈τ〉 is the zero ideal, for otherwise there exists α ∈ RL

such that 0 6= ατ ∈ I; a contradiction because 0 = coz(ατ)τ = coz(ατ) implies ατ = 0. Thus

c = 0, and hence
∨
{cozϕ | ϕ ∈ I} is dense by complete regularity.

(⇐) Let J be a nonzero ideal of RL and take 0 6= α ∈ J . Then cozα ∧
∨
{cozϕ | ϕ ∈ I} 6= 0.

This implies 0 6=
∨
{cozα ∧ cozϕ | ϕ ∈ I} =

∨
{coz(αϕ) | ϕ ∈ I}, which in turn implies that

coz(αδ) 6= 0 for some δ ∈ I, and hence αδ 6= 0. So I meets J non-trivially since αδ ∈ I ∩J .

Lemma 2.2.11. [35, Lemma 4.4] For any I ∈ βL, we have
∨
coz[OI ] =

∨
coz[MI ] =

∨
I.
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Proof. The forward implication is trivial, since
∨
coz[OI ] ≤

∨
coz[MI ]. If γ ∈ MI , then

r(cozγ) ⊆ I. Taking joins yields cozγ ≤
∨
I. Thus,

∨
coz[OI ] ≤

∨
coz[MI ] ≤

∨
I. Now let

c ∈ CozL in I. Say c = cozγ for some γ ∈ RL. Then γ ∈ OI , and so c ≤
∨
coz[OI ]. Since every

element of I is below some cozero element in I, it follows that
∨
coz[MI ] ≤

∨
I ≤

∨
coz[OI ].

Thus
∨
coz[OI ] =

∨
coz[MI ] =

∨
I.

Definition 2.2.7. An ideal I of an f -ring R is called:

(1) convex if, for any a, b ∈ R

0 ≤ a ≤ b and b ∈ I implies that a ∈ I.

(2) absolutely convex if, for any a, b ∈ R,

0 ≤ |a| ≤ |b| and b ∈ I implies that a ∈ I.

The following lemma is taken from [58], we omit the proof.

Lemma 2.2.12. [58, Corollary 7.2.1] An ideal of RL is a z-ideal if and only if its radical is a

z-ideal.

The following lemma is taken from [37], we omit the proof.

Lemma 2.2.13. [37, Lemma 3.5] Every radical ideal in RL is absolutely convex.

Definition 2.2.8. A ring R is said to be a z-good if it has the property that an ideal of R is

a z-ideal if and only if its radical is a z-ideal. Equivalently, if every ideal of R whose radical is

a z-ideal is itself a z-ideal.

Lemma 2.2.14. [37, Lemma 3.1] A z-good ring is von Neumann regular if and only if every

prime ideal in it is a z-ideal.
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Proof. The left-to right implication follows by Theorem 2.2.3 because in a von Neumann regular

ring every ideal is a z-ideal.

Conversely, Let R be a z-good ring in which every prime ideal is a z-ideal. Let J be an ideal of

R. Since
√
J is an intersection of prime ideals, it is an intersection of z-ideals, and is therefore

itself a z-ideal. Then J is a z-ideal because R is a z-good, and therefore R is von Neumann

regular by Theorem 2.2.3.

The following lemma is taken from [37], we omit the proof.

Lemma 2.2.15. [37, Lemma 3.4] RL is a z-good ring.

Every d-ideal is a z-ideal, and in von Neumann regular rings d-ideals coincide with z-ideals.

Theorem 2.2.16. [37, Proposition 3.1] The following are equivalent for a completely regular

frame L.

(1) L is a P -frame.

(2) Every essential ideal in RL is a z-ideal.

(3) Every radical ideal in RL is a z-ideal.

Proof. (1) ⇒ (2): By (1), it follows that every essential ideal in RL is a z-ideal, since every

ideal in RL is a z-ideal.

(2) ⇒ (3): Let I be a radical ideal in RL. Consider any prime ideal Q containing I. If Q is

essential, then it is a z-ideal by hypothesis, and if it non-essential then it is a z-ideal. Thus, I

is an intersection of z-ideals, and is therefore a z-ideal.

(3)⇒ (1): Since RL is a z-good ring, it follows from Lemma 2.2.14 that RL is a von Neumann

regular ring and hence L is a P -frame.

Dube and Ighedo [37], wrote Spec(R), Rad(R), Abs(R) and Con(R) for the set of primes,

radical, absolutely convex, and convex ideals of R. The authors had the following inclusions
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Spec(R) ⊆ Rad(R) and Abs(R) ⊆ Con(R).

If R is a z-good f -ring for which Rad(R) ⊆ Abs(R), then R is a von Neumann regular if and

only if every ideal in any of the collections above is a z-ideal. For any completely regular frame

L, Rad(RL) ⊆ Abs(RL), which is the result proved by Banaschewski, the proof is recorded

in [35, Lemma 3.5], uses uniform frames. It is shown that in C(X) prime ideals are absolute

convex, which then applies to all radical ideals (see [52, Theorem 5.5]). Dube and Ighedo also

in [37], noted that any convex radical ideal I in an f -ring is actually absolutely convex. The

following theorem is immediate.

Theorem 2.2.17. [37, Proposition 3.2] The following are equivalent for a completely regular

frame L.

(1) L is a P -frame.

(2) Every convex ideal in RL is a z-ideal.

(3) Every absolutely convex ideal in RL is a z-ideal.

Remark: The proof of the above Theorem 2.2.17 is also discussed in various other texts on the

theory of frames and ordered algebraic structures, such as in [28] and [59]. The characterisations

in Theorem 2.2.16 and Theorem 2.2.17 hold with z-ideals replaced by d-ideals.

Next, we give some background about R-modules in order to give a characterisation of P -frames

in terms of flat RL-modules. We have the following definition from [82].

Definition 2.2.9. A right R-module, where R is a ring, is an additive abelian group M with 0

as the identity, and having a scalar multiplication M ×R→M , denoted by (m, r) 7→ mr such

that, for all m, ḿ ∈M and r, ŕ ∈ R.

(1) (m+ ḿ)r = mr + ḿr,

(2) m(r + ŕ) = mr +mŕ,
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(3) m(rŕ) = (mr)ŕ, and

(4) m = m1.

Definition 2.2.10. A left R-module, where R is a ring, is an additive abelian group M with 0

as the identity, and having a scalar multiplication R×M →M , denoted by (r,m) 7→ rm such

that, for all m, ḿ ∈M and r, ŕ ∈ R.

(1) r(m+ ḿ) = rm+ rḿ,

(2) (r + ŕ)m = rm+ ŕm,

(3) (rŕ)m = (rm)ŕ, and

(4) m = 1m.

Remark: Note that if R is commutative ring, then the conditions of right and left R-module

are equivalent. In that case we say M is an R-module.

Example 2.2.1.

(1) Every abelian group is a Z-module.

(2) Every ring R is a module over itself if we define scalar multiplication R×R→ R to be a

given multiplication of element of R. More generally, every left ideal in R is a R-module.

Let M and N be two R-modules. An R-module homomorphism is a map

φ : M → N

such that

φ(m+ n) = φ(m) + φ(n) and φ(rm) = rφ(m).
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An R-module isomorphism is a bijective R-module homomorphism. We will also say that φ is

R-linear.

Let M be an R-module. A submodule N of M is a subset that is a module with inherited

addition and scalar multiplication.

If f : M → N is an R-map between left R-modules, then

kernel f = kerf = {m ∈M | f(m) = 0},

image f = imf = {n ∈ N | there exist m ∈M with n = f(m)}.

The kernel is a submodule.

Let M be an R-module and let X be a subset. The R-module generated by X, denoted by

〈X〉, is equal to the smallest submodule that contains X. We say that the set X generates M

if the submodule generated by X is the whole of M . We say that M is finitely generated if it

is generated by a finite set. We say M is cyclic if it is generated by a single element.

Definition 2.2.11. Let M and N be two R-modules. The direct sum of M and N , denoted

by M⊕N , is the R-module, which as a set is the Cartesian product of M and N , with addition

and multiplication defined coordinate by coordinate:

(m1, n1) + (m2, n2) = (m1 +m2, n1 + n2) and r(m,n) = (rm, rn).

Note that the direct sum is a direct sum in the category of R-modules. Note that the direct

sum of R with itself is generated by (1, 0) and (0, 1).

Theorem 2.2.18. Let φ : M → N be a surjective R-linear homomorphism, with kernel K.

Then N ∼= M/N .

Definition 2.2.12. Let M be an R-module. We say that M is free if it is isomorphic to a

direct sum of copies (possibly infinite) of R.
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Definition 2.2.13. A finite or infinite sequence of R-homomorphism and left R-modules

· · · →Mn+1
fn+1−−→Mn

fn−→Mn−1 → · · ·

is called an exact sequence if imfn+1 = kerfn, where imfn+1 denotes image of fn+1 and kerfn

denotes kernel of fn.

Observe that there is no need to label arrows 0
f−→ A and B

g−→ 0: in either case, there is a unique

map, namely f : 0 7→ 0 or the constant homomorphism g(b) = 0 for all b ∈ B. Here are some

simple consequences of a sequence of homomorphism being exact. The following proposition is

taken from [82], we omit the proof.

Proposition 2.2.4. [82, Proposition 2.18]

(1) A sequence 0→ A
ϕ−→ B is exact if and only if ϕ is injective.

(2) A sequence B
ϕ−→ C → 0 is exact if and only if ϕ is surjective.

(3) A sequence 0→ A
ϕ−→ B → 0 is exact if and only if ϕ is isomorphism.

Next, Let R be a ring. Let A be a right R-module, B be a left R-module, and G be an (additive)

abelian group. A function f : A × B → G is called R-biadditive if, for all a, a′ ∈ A, b, b′ ∈ B,

and r ∈ R, we have:

(i) f(a+ a′, b) = f(a, b) + f(a′, b).

(ii) f(a, b+ b′) = f(a, b) + f(a, b′).

(iii) f(ar, b) = f(a, rb).

If R is commutative and A, B and M are R-modules, then a function f : A×B →M is called

R-bilinear if f is R-biadditive and also

f(ar, b) = f(a, rb) = rf(a, b)
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(rf(a, b) makes sense here because f(a, b) now lies in the R-module M).

Given a ring R and modules A and B, then their tensor product is an abelian group A
⊗

RB

and an R-biadditive function

h : A×B → A
⊗
R

B

such that, for every abelian group G and every R-biadditive f : A × B → G, there exists a

unique Z-homomorphism f̃ : A
⊗

RB → G making the following diagram commutes.

A×B f //

h

##

G

A
⊗

RB

f̃

<<

The following definition is culled from Acharyya et al [82].

Definition 2.2.14. An ideal I of RL is called flat if the tensor product I
⊗
RL- is an exact

functor, i.e, if

0→ N1
i−→ N → N2 → 0

is an exact sequence of RL-modules, then

0→M
⊗
RLN1

1M
⊗
i−−−−→M

⊗
RLN

1M
⊗
p−−−−→M

⊗
RLN2 → 0

is an exact sequence of abelian groups.

Because the functors I
⊗
RL- : RLMod→ Ab are right exact, we see that a right RL-module I

is flat if and only if whenever i : N1 → N is an injective, then 1M
⊗

i : M
⊗
RLN1 →M

⊗
RLN

is also injective. Where RLMod is the category of allRL-modules and Ab is the category where

the objects are abelian groups, morphisms are homomorphisms, and composition is the usual

composition. A quotient of a flat module is not necessarily flat; after all, free modules are flat,

and every module is a quotient of a free module.
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Lemma 2.2.19. [82, Proposition 3.60] Let 0 → K → F
ϕ−→ A → 0 be an exact sequence of

R-modules in which F is flat. Then A is a flat module if and only if K ∩ FI = KI for every

finitely generated left ideal I.

Lemma 2.2.20. [82, Lemma 4.8] If R is a von Neumann regular ring, then every finitely

generated left (or right) ideal is a principal, and it is generated by an idempotent.

In the following theorem, the ring R is not assumed to be commutative ring.

Theorem 2.2.21. [82, Theorem 4.9] A ring R is is von Neumann regular if and only if every

right R-module is flat.

Proof. Assume that R is von Neumann regular and B is a right R-module. If

0→ K → F → B → 0

is an exact sequence of R-modules with F free, then Lemma says B is flat if KI = K ∩ FI for

every finitely generated left ideal I. By Lemma 2.2.20, I is principal say I = Ra. We must

show that if k ∈ K and k = fa ∈ Fa, then k ∈ Ka. But k = fa = faá ∈ Ka. Therefore, B is

flat.

Conversely, take a ∈ R. By hypothesis, the cyclic right R-module R/aR is flat. Since R is free,

applies to the exact sequence

0→ aR→ R→ R/aR→ 0

to give (aR)I = aR ∩ RI = aR ∩ I for every left ideal I. In particular, if I = Ra, the

aRa = aR ∩ Ra. Thus, there is some á ∈ R such that a = aáa, and so R is von Neumann

regular.

Recall that an element a ∈ L is called prime if a 6= 1 and b ∧ c ≤ a implies either b ≤ a or

c ≤ a, and maximal if it is maximal below the top element of L.

Remark : Prime elements are precisely the points of a frame introduced earlier.

It can be shown that in a completely regular frame L, the prime elements are exactly the
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maximal elements (see [84]). A prime ideal P in R is called an upper ideal if the set of all its

predecessors in the family of prime ideals partially ordered under set inclusion has a maximal

element (see [52, Chapter 14]). Acharyya et al [5] proved the following two theorems, in our

case we omit the proofs. It is important to note them down.

Theorem 2.2.22. An upper ideal of RL is not a z-ideal.

Theorem 2.2.23. (Main Theorem on the Existence of an Ascending Chain). If P is a non-

maximal prime ideal of RL and M is the unique maximal ideal extending P, then there exists

a strictly ascending chain of upper ideals of RL that lie between P and M .

To add the list in Theorem 2.2.16, we give the following result obtained by Acharyya et al [6].

Proposition 2.2.5. [6, Theorem 4.1] A frame L is a P -frame if and only if each prime ideal

of RL is a z-ideal.

Proof. If L is a P -frame, then each ideal and hence each prime ideal of RL is a z-ideal by

Proposition 2.2.2. Conversely, if L is not a P -frame, then there is a non-maximal prime ideal

P of RL by Proposition 2.2.2. Let M be a unique maximal ideal containing P , then there is

an upper ideal U in between P and M by Theorem 2.2.23. Therefore we get a prime ideal U

of RL which is not a z-ideal, as it is an upper ideal by Theorem 2.2.22. Hence the proposition

is proved.

Proposition 2.2.6. [6, Theorem 4.3] A frame L is a P -frame if and only if every RL-module

is flat.

Proof. Since, L is a P -frame if and only if RL is a von Neumann regular ring by Proposition

2.2.2, the result follows from Theorem 2.2.21.

Recall the definition of the right adjoint r, the following lemma.

Lemma 2.2.24. [2, Lemma 4.4] The following statements hold for a regular frame L.

(1) If p ∈ Pt(L), then either p∗ = 0 or p ∨ p∗ = 1.
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(2) If p ∈ Pt(L) and p ∨ p∗ = 1, then r(p) ∨ (r(p))∗ = 1βL.

(3) If I is a complemented point of βL, then OI = MI .

Proof. (1). Since p ≤ p ∨ p∗ and every prime element in regular frames is maximal, it follows

that p = p∨p∗ or p∨p∗ = 1. The former case implies that p∗ ≤ p which means that p∗∧p∗ = 0

that is, p∗ = 0.

(2). Since (r(p))∗ = r(p∗), p ∈ r(p), and p∗ ∈ r(p∗), we can conclude that r(p)∨ (r(p))∗ = 1βL.

(3). We are required to show MI ⊆ OI . Suppose ϕ ∈MI . Then r(cozϕ) ⊆ I. Now, I ≺≺ I,

we have r(cozϕ) ≺≺ I. It follows that ϕ ∈ OI . Hence MI ⊆ OI .

Proposition 2.2.7. The following are equivalent for a completely regular frame L:

(1) L is a P -frame.

(2) If I + J is a z-ideal, then both I and J are z-ideals.

(3) If I ∩ J is a z-ideal, then both I and J are z-ideals.

Proof. (1) ⇒ (2): Let I and J be ideals in RL such that I + J is a z-ideal. By hypothesis,

every ideal in RL is a z-ideal. Hence I and J are z-ideals.

(2) ⇒ (3): If I ∩ J is a z-ideal. Now since I ∩ J ⊆ I + J , by hypothesis I and J are z-ideals.

(3) ⇒ (1): Let Q be an ideal in RL. Then either Q ⊂ I ∩ J or I ∩ J ⊂ Q where I ∩ J is a

z-ideal of RL. If I ∩ J ⊂ Q, then by (3), Q is a z-ideal. If Q ⊂ I ∩ J , then by (2), Q is a

z-ideal. But Q is an arbitrary ideal in RL, so every ideal of RL is a z-ideal and hence L is a

P -frame.

Lemma 2.2.25. [31, Lemma 3.6] If H is an ideal of RL and α ∈ RL such that

r(cozα) ≺≺ ∨{r(cozγ) | γ ∈ H},

then α ∈ H.
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Proof. If r(cozα) ≺≺ ∨{r(cozγ) | γ ∈ H}, then r(cozα)∗ ≺≺ ∨{r(cozγ) | γ ∈ H} = 1, and

therefore, by compactness of βL, there are finitely many elements α1, ..., αm of H such that

r(cozα)∗ ∨ r(coz(α1)) ∨ · · · ∨ r(coz(αm)) = 1.

This implies that

r(cozα) ≺≺ r(coz(α1)
2) ∨ · · · ∨ r(coz(αm)2) = r(coz(α1

2 + · · ·+ αm
2)).

Acting the join map yields coz(α) ≺≺ coz(αm)2) = r(coz(α1
2 + · · · + αm

2). Therefore, by

Lemma 2.2.4, α is a multiple of the element α1
2 + · · ·+ αm

2 ∈ H, and so α ∈ H.

Pure ideals of RL are precisely the ideals OI for I ∈ βL (see [33, Proposition 4.3]).

Proposition 2.2.8. [31, Corollary 3.10] A frame L is a P -frame if and only if every ideal of

RL is pure.

Proof. If L is a P -frame and H is an ideal of RL, then we claim that H = OI for

I =
∨
{r(cozα | α ∈ H)}.

To see this, let γ ∈ OI . Then r(cozγ) ≺≺ I, which implies, by Lemma 2.2.25 that γ ∈ H. So

OI ⊆ H. On the other hand, let γ ∈ H. Hence, in view of L being a P -frame, cozγ = cozγ,

implying that r(cozγ) ≺≺ r(cozγ) ≤ H. Therefore γ ∈ OI , and hence H ⊆ OI . Consequently,

every ideal of RL is pure. The converse holds because being pure implies MI = mMI = OI

for each I ∈
∑
βL.

Abedi [1] abbreviated Mr(a) as Ma and Or(a) as Oa, for for a ∈ L. Hence

Ma = {ϕ ∈ RL | cozϕ ≤ a} and Oa = {ϕ ∈ RL | cozϕ ≺≺ a}.

The following definition is culled from [1].
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Definition 2.2.15. An ideal I of a ring R has the Artin-Rees property (AR property) if for

each ideal Q of R there exist n ∈ N such that In ∩Q ⊆ IQ. We say a ring R is an Artin-Rees

ring (AR-ring) if for every ideal of R has Artin-Rees property. An ideal I of a ring R is called

an Artin-Rees ideal (AR-ideal) if for any two sub ideals M and N of I there exists n ∈ N such

that

Mn ∩K ⊆MN.

Recall the pure part of an ideal of a ring on page 25. This is equivalent to the statement that

for every ideal J of R, the equality I ∩ J = IJ holds (see also [59]). Johnstone [59] showed

that every pure ideal in RL is a pure ideal, and Dube [31] showed that every pure ideal in RL

is z-ideal. Every pure ideal of a ring R has AR property.

Lemma 2.2.26. [1, Lemma 1] Every z-ideal of a ring R with the AR property is pure.

Proof. Let E be a z-ideal of a ring R with the AR property, and q ∈ E. Then there exists

n ∈ N such that En ∩ 〈q〉 ⊆ E〈q〉, which implies that E ∩ 〈q〉 ⊆ E〈q〉 since E is a z-ideal. Now,

q ∈ E ∩ 〈q〉 ⊆ E〈q〉 implies that q = qf for some f ∈ E. Therefore, E is a pure ideal.

Proposition 2.2.9. [1, Proposition 2] An ideal of RL is a z-ideal with the AR property if and

only if it is pure.

Proof. It is trivial, since every AR-ideal has the AR property, and on the other hand we have

that every pure ideal in RL is a z-ideal.

Lemma 2.2.27. [1, Lemma 4] If a = cozτ for some τ ∈ RL, then a ∈ BL if and only if τ is

a regular element if and only if there is ρ ∈ RL such that τ = ρτ and cozρ ≤ cozτ .

Proof. Assume that a = cozτ ∈ BL. Then cozτ ≺≺ cozτ , and hence there exists ρ ∈ RL

such that τ = ρτ 2, that is, τ is a regular element. If τ is a regular element, then there exists

υ ∈ RL such that τ = υτ 2. If we put ω = υτ , then we have τ = ωτ and cozω ≤ cozτ . Then

τ(1− 0) = 0, this shows that cozτ ∧ coz(1− ω) = 0. On the other hand,

1 = coz(1− ω + ω) ≤ coz(1− ω) ∨ cozω ≤ coz(1− ω) ∨ cozτ,
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which implies coz(1− ω) ∨ cozτ = 1. Therefore, a = cozτ ∈ BL.

Recall that BL denote the set of all complemented elements of L, that is

BL = {a ∈ L | a ∨ a∗ = 1}

is a sublattice of L.

Theorem 2.2.28. [1, Theorem 5] The following are equivalent for a frame L:

(1) L is a P -frame.

(2) RL is an AR-ring.

(3) Every z-ideal of RL has the AR property.

(4) Every prime d-ideal of RL has the AR property.

(5) Every maximal ideal of RL has the AR property.

(6) Every ideal of RL with the AR property is an AR-ideal.

Proof. (1) ⇒ (2): By Propositions 2.2.8 and Proposition 2.2.9, we say RL is an AR-ring.

(2) ⇒ (3): It is trivial from the definition of AR-ring.

(3) ⇒ (4): Since z-ideals are d-ideals, we are done.

(4) ⇒ (5): It is trivial, since prime d-ideals are maximal ideals.

(5) ⇒ (1): By equivalence of (1) and (10) from Proposition 2.2.2, it remains to show that

OJ = MJ for every J ∈ Pt(βL). Let J ∈ Pt(βL). Then by (5) it implies that MJ is a pure

ideal. Now, Lemma 2.2.6 shows that OJ = MJ .

(1) ⇔ (6): If L is a P -frame, thus every ideal is pure. By Proposition 2.2.8, every ideal is

an AR-ideal and we are done. Conversely, suppose a ∈ CozL such that a = cozϕ for some

ϕ ∈ RL. Proposition 2.1.1 tells us that we can assume a∗ 6= 0. Then, by completely regularity,
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there is t ∈ CozL such that t ≺≺ a∗, and hence a = cozϕ ≤ a∗∗ ≺≺ t∗, which implies ϕ ∈ Ot∗ .

Since Ot∗ is a pure ideal, it has the AR property, and so, (6) implies that Ot∗ is an AR-ideal.

Since Ma, 〈ϕ〉 ⊆ Ot∗ , we have Ma ∩ 〈ϕ〉 ⊆Ma〈ϕ〉. Now, ϕ ∈Ma ∩ 〈ϕ〉 implies ϕ ∈Ma〈ϕ〉, it

follows that there exist µ ∈Ma and ν ∈ RL so that ϕ = ϕµν. Since coz(µν) ≤ cozµ ≤ cozϕ,

the Lemma 2.2.27 says a = cozϕ ∈ BL.

We give a brief account of P -ideals and also provide the characterisations of P -frames associated

with P -ideals. P -ideals were first introduced and studied in C(X) (denote, the ring of real-

valued continuous functions on a completely regular Hausdorff space X) by Rudd [83]. Recall

that a nonzero ideal I of C(X) (denotes, the ring of all real-valued continuous functions on a

completely regular Hausdorff space X) is called a P -ideal if every proper prime ideal of I is

maximal in I. We have the following definition of P -ideal in terms of RL as follows.

Definition 2.2.16. A nonzero ideal I in RL is said to be a P -ideal, if every proper prime

ideal in I is maximal in I.

Theorem 2.2.29. An ideal I in RL is a P -ideal if and only if every prime ideal of RL which

does not contain I is maximal in RL.

Proof. Suppose I is a P -ideal and Q is prime in RL with Q + I. Then I ∩Q is a proper prime

ideal of I and therefore it is maximal in I, I ∩ Q = I ∩M for some maximal ideal M in RL.

It follows that Q = M . For the converse, if M is a prime ideal in RL with I * M . So I ∩M

is a proper prime ideal in I. By hypothesis, M is maximal in RL, so I ∩M is maximal in I.

The proof is complete.

For any ideal Q in RL, the maximal ideals of Q are precisely those ideals of the form Q
⋂
M

for M + Q.

Lemma 2.2.30. [83, Lemma 1.4] If I is a P -ideal, then I = mI.
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Proof. Let ϕ ∈ I, and assume on contrary that ϕ /∈ mI. Since mI is a semiprime in RL, there

exists a prime ideal Q in RL with mI ⊂ Q and ϕ /∈ Q. But then I * Q, and hence Q is

maximal in RL. Since mI ⊆ Q, we have Q
⋂
mI = mI is a proper prime ideal of I which is

maximal in I. But then this contradicts that Q is maximal in RL. Hence I = mI and we are

done.

We recall from [4] that if a space X is a P -space, then every ideal of C(X) is a P -ideal. We

have the following as a translation to frame-theoretic property.

Proposition 2.2.10. If a frame L is a P -frame, then every ideal of RL is a P -ideal.

Proof. It follows immediately from Proposition 2.2.8 and Lemma 2.2.30.
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Chapter 3

Essential P -frames and CP -frames

In this chapter, we study essential P -frames and CP -frames. In the first section, we focus

on essential P -frames and show that a normal frame is an essential P -frame if and only if

RL is V N (von Neumann)-local. We also show that an essential P -frame is a strongly zero-

dimensional frame. In the second section, we show that the class of CP -frames contains the

class of P -frames. Furthermore, we show that L is a CP -frame if and only if every ideal of RcL

is a zc-ideal if and only if every radical ideal of RcL is a zc-ideal.

3.1 Essential P -frames

We start with a definition of an essential P -frame which originated with Dube [31] and it

captures the notion of essential P -spaces in a point-free setting. He was able to do this by

combining Theorem 2.6 and Corollary 5.5 of the article of Osba et al [78]. Recall from [79] that

a space X is called an essential P -space if it has at most one point which fails to be a P -point.

We have that X is an essential P -space if and only if all maximal ideals of C(X) except at

most one are pure. The following definition, as we can recall from the definition of a P -point,

follows nicely.

Definition 3.1.1. A frame L is an essential P -frame if there is at most one I ∈
∑
βL such
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that OI 6= MI . It is a proper essential P -frame if it is an essential P -frame which is not a

P -frame. Now OI 6= MI if and only if there exists c ∈ CozL such that c /∈ I, but r(c) ⊆ I.

Equivalently, if at most one a ∈ CozL fails to be a cozero complemented element.

The following result follows as a corollary to Proposition 2.2.2 and the above definition.

Corollary 3.1.1. Every P -frame is an essential P -frame.

Proposition 3.1.1. [31, Proposition 4.2] A frame L is a proper essential P -frame if and only

if RL has at least one non-maximal prime ideal, and the non-maximal ideals of RL are all

contained in one maximal ideal.

Proof. (⇒): Since L is not a P -frame by hypothesis, RL does have a non-maximal prime ideal.

Let Q be such an ideal, and I be an element of
∑
βL such that OI 6= MI . Since Q is a prime

ideal, there exist a unique J ∈
∑
βL such that OJ ⊆ Q ⊆ MJ . Since Q 6= MI , as Q is not

a maximal ideal, it follows that OJ 6= MJ , and hence J = I, since L is a proper essential

P -frame. Therefore all non-maximal ideals are contained in the maximal ideal MI .

(⇐): Let MI be the maximal ideal containing all non-maximal prime ideals of RL. We claim

that OI 6= MI and OJ = MJ for every J ∈
∑
βL different from I. Let J ∈

∑
βL such that

J 6= I. The ideal OJ is a z-ideal, and therefore equals to its radical. Consequently, OJ is

the intersection of the prime ideals containing it. Now there is no non-maximal prime ideal

containing OJ , for if there were, then by hypothesis, such an ideal would be contained in MI ,

implying that OJ ⊆MI for J 6= I, which is false. Consequently the only prime ideal containing

OJ is MJ , and so OJ = MJ . As this is true for every J ∈
∑
βL different from I, and since L

is not a P -frame, we must have that OI 6= MI .

The following corollary is immediate.

Corollary 3.1.2. A Tychonoff space X is a proper essential P -space if and only if C(X) has

at least one non-maximal prime ideal, and the non-maximal ideal of C(X) is contained in one

maximal ideal.
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According to Osba et al [78], a ring R is von Neumann local (henceforth abbreviated V N -local)

if for each a ∈ R, at least one of a or 1− a has a V N -inverse, that is, there is b ∈ R such that

at least one of a or 1− a, we have aba = a or (1− a)b(1− a) = (1− a).

Lemma 3.1.1. [31, Lemma 4.5] The following are equivalent:

(1) RL is V N-local ring.

(2) For every f ∈ RL, then cozf or coz(1− f) is complemented.

(3) If c ∨ d = 1 in CozL, then c or d is complemented.

Proof. (1) ⇒ (2): By (1), either f or 1 − f has a V N -inverse. Say f has a V N -inverse.

Take an invertible τ ∈ RL such that fτ is idempotent. Then coz(fτ) is complemented. But

coz(fτ) = cozf ∧ cozτ = cozf , since cozτ = 1, as τ is invertible.

(2) ⇒ (3): Let c ∨ d = 1 in CozL. Take γ, δ ∈ RL such that c = cozγ and d = cozδ. Then

coz(γ2+δ2) = 1, so that γ2+δ2 is invertible. Let f = γ2(γ2+δ2)−1. Then 1−f = δ2(γ2+δ2)−1.

Thus cozf = cozγ = c and coz(1 − f) = cozδ = d. Now, (2) implies that either c or d is

complemented.

(3) ⇒ (1): Let f ∈ RL. Then cozf ∨ coz(1− f) = 1. So, by hypothesis, we may assume that

cozf is complemented. Now if f ∈MI for some I ∈
∑
βL. Then f ∈ OI , since cozf ≺≺ cozf .

Consequently, f has a V N -inverse.

It has been shown that a Tychonoff space X is an essential P -space if and only if C(X) is a

V N -local ring. Dube extended this result, but for normal frames. An obstacle is a point that

fails to be a P -point.

Proposition 3.1.2. [31, Proposition 4.6] If a frame L is an essential P -frame, then RL is

V N-local. The converse holds only if L is normal.

Proof. If L is a P -frame, then RL is regular and hence V N -local. Suppose L is a proper

essential P -frame with obstacle I. Let f be a non-invertible element of RL such that 1 − f
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is also non-invertible. Since MI is a proper ideal, it cannot contain both f and 1 − f . Let it

misses f . Since f is not invertible, there is at least one maximal ideal that contains it. Say MJ

be a maximal ideal such that f ∈ MJ . Then J 6= I, and so MJ = OJ = mMJ . Therefore f

has a V N -inverse.

For the second assertion, suppose, by way of contradiction, that there exist distinct I1, I2 ∈∑
βL such that OIi 6= MIi for i = 1, 2. Then, by what we observed earlier, there exist c1, c2 ∈

CozL such that r(ci) ⊆ Ii but ci /∈ Ii for i = 1, 2. By maximality of Ii, we have I1 ∨ I2 = 1βL.

Therefore there exist ui ∈ Ii such that u1 ∨ u2 = 1. Consequently, (c1 ∨ u1)∨ (c2 ∨ u2) = 1. So,

by hypothesis and Lemma 3.1.1, we may assume that (c1 ∨ u1) is complemented. By normality

of L we have r(c1 ∨ u1) = r(c1) ∨ r(u1) ⊆ I1. Since c1 ∨ u1 is complemented, it follows that

c1 ∨ u1 ∈ I1, implying that c1 ∈ I1, and hence a contradiction.

The following is immediate.

Corollary 3.1.3. [31, Corollary 4.7] A normal frame L is an essential P -frame if and only if

RL is V N-local.

As in the case of spaces (see [78, Definition 1.4]), we say a frame L is strongly V N -local if for

any S ⊆ RL, 〈S〉 = RL implies that some elements of S has a V N -inverse. Osba et al [78,

Corollary 5.5], showed that for any Tychonoff space X, C(X) is a strongly V N -local ring if

and only if it is a V N -local. We show that the results extend in normal frames.

Proposition 3.1.3. [31, Proposition 4.8] For any normal frame L, RL is strongly V N-local if

and only if it is V N-local.

Proof. The forward implication is trivial. Conversely, if L is a P -frame, then the result is

immediate because RL is regular and hence V N -local. So, we may assume that there is exactly

one I ∈
∑
βL such that OI 6= MI . Now let S ⊆ RL. Take ϕ1, ..., ϕm ∈ S and α1, ..., αm ∈ RL

such that α1ϕ1, ..., αmϕm = 1. Then

cozα1ϕ1 ∨ · · · ∨ cozαmϕm = 1,
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which implies that

cozϕ1 ∨ · · · ∨ cozϕm = 1,

and hence

coz(ϕ2
1 + · · ·+ ϕ2

m) = 1.

As a consequence, MI cannot contain all the ϕi, lest it contain an invertible element. So say

ϕ1 /∈MI . Now, MI being the only maximal ideal unequal to its pure part, it follows that if a

maximal ideal contains ϕ, then so it does its pure part. Therefore ϕ1 has a V N -inverse. Thus,

L is strongly V N -local.

We recall from Banaschewski and Brümmer [20] that a frame is said to be strongly zero-

dimensional if its Stone-Čech compactification is generated by its complemented elements, and

showed that L is strongly zero-dimensional if and only if a ≺≺ b in L implies the existence of

complemented element c in L such that a ≤ c ≤ b. We adopt the definition that a Tychonoff

space X is strongly zero-dimensional in case βX has a base of clopen sets. Dube [31] observed

that X is strongly zero-dimensional if and only if OX is strongly zero-dimensional.

Proposition 3.1.4. [31, Proposition 5.1] Every essential P -frame is strongly zero-dimensional.

Proof. Let a ≺≺ b in an essential P -frame L. Take c ∈ CozL such that a ≺≺ c ≺≺ b. If c

is complemented, then we are done. So suppose c is not complemented. Take s ∈ CozL such

that a ∧ s = 0 and s ∨ c = 1. Since L is an essential P -frame and c is not complemented, thus

s is complemented by Lemma 3.1.1. Hence s∗ is also complemented. Now a ∧ s = 0 implies

that a ≤ s∗, and s ∨ c = 1 implies that s∗ ≤ c. Consequently, a ≤ s∗ ≤ b. Thus L is strongly

zero-dimensional.

Since essential P -frames and strongly zero-dimensional frames are conservative notions, the

following is immediate.

Corollary 3.1.4. [31, Corollary 5.2] An essential P -space is strongly zero-dimensional.
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If L is a P -frame, then every ideal of RL is generated by idempotents, since RL is regular; and

so, in particular, OI is generated by idempotents for each I ∈ βL. We show that each ideal

OI is generated by idempotents precisely when the frame is strongly zero-dimensional. Before

proving this let us notice the following about idempotents of RL and complemented elements of

L. Dube [34] observed that cozη is complemented for every idempotent η. On the other hand,

let c be a complemented element of L and take γ ∈ RL such that cozγ = c. Then cozγ ≺≺ cozγ,

and hence, by Lemma 2.2.4 there is an invertible τ ∈ RL such that γ = γ(γ2τ) = γ3τ . This

implies that γτ = (γτ)2. Since τ is invertible, coz(γτ) = cozγ ∧ cozτ = cozγ ∧ 1 = cozγ = c.

Therefore γ2τ is an idempotent such that coz(γ2τ) = c.

The following definition is culled from [66].

Definition 3.1.2. A proper ideal I in R is said to be a semiprime ideal if, whenever Jn ⊂ I

for an ideal J of R and some positive integer n, then J ⊂ I. Equivalently an l-ideal I of an

f -ring R is called semiprime if a2 ∈ I implies a ∈ I.

Lemma 3.1.2. [7, Lemma 1.1] Let I be an ideal of R and H be a semiprime ideal in the ideal

I, then H is an ideal in R.

Proof. Suppose that a ∈ H and r ∈ R, hence r2a ∈ I which implies that (ra)2 = (r2a)a ∈ H.

This shows that ra ∈ H.

The following results are culled from Abedi [2].

(i) Every element of RL has an nth root, for any odd n ∈ N.

(ii) Every position element of RL has an nth root, for any n ∈ N.

Since there is a frame map ρ : L(R) → L(R) such that for every p, q ∈ Q, p(p, q) = (pn, qn).

For α ∈ RL, Abedi defined the frame map n
√
α : L(R)→ L to be given as n

√
α = α ◦ ρ. By the

following proposition, n
√
α is an nth root of α.

Proposition 3.1.5. [2, Proposition 3.1] Let α ∈ RL and let n ∈ N be an odd number. Then

( n
√
α)n = α.
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Proposition 3.1.6. [2, Proposition 3.2] If I and J are prime ideals of RL, then their inter-

section is equals to IJ .

Proof. Let α ∈ I ∩ J . Since α
2
3α

1
3 = α ∈ I ∩ J , we conclude that α

1
3 ∈ I ∩ J . Therefore

α = α
2
3α

1
3 ∈ I ∩ J , that is , I ∩ J ⊆ IJ . Now, the proof is complete since the reverse inclusion

is always true.

The following propositions are point-free versions of characterisations of essential P -spaces (see

[14]).

Proposition 3.1.7. A frame L is an essential P -frame if and only if for a, b ∈ CozL such that

a ∨ b = 1, then at least one of them is complemented.

Proof. (⇒): Let a, b ∈ CozL such that a ∨ b = 1. Then it is immediate by the definition of an

essential P -frame that at least one is complemented because L has at most one cozero element

which is not complemented.

(⇐): Suppose that a ∨ b = 1 such that a is complemented (by hypothesis), then a ∨ a∗ = 1.

Now, a ∨ b = 1 implies that a∗ ≤ b. If b is not complemented, then b ∨ b∗ 6= 1. Suppose

on contrary that u is another cozero element such that u ∨ a = 1. Again by hypothesis, a is

complemented. Then a ∨ a∗ = 1, and u ∨ a = 1 implies that a∗ ≤ u. Therefore, u = b. Thus L

has only one cozero element which is not complemented. Hence L is an essential P -frame.

The following proposition is a point-free version of [14, Proposition 2.2].

Proposition 3.1.8. The following statements are equivalent:

(1) A frame L is an essential P -frame.

(2) Of any two comaximal ideals of R(L), one is a z-ideal.

(3) Of any two comaximal principal ideals of R(L), one is semiprime.

(4) For any a, b ∈ CozL such that a∨ b is complemented , then one of them is complemented.
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Proof. (1) ⇒ (2): Suppose that I and J are ideals of RL such that I + J = RL. We need to

show that either I is a z-ideal or J is a z-ideal. Let τ ∈ RL and ϕ ∈ I such that cozτ = cozϕ.

L is an essential P -frame so there is a c ∈ CozL such that c /∈ I, but r(c) ⊆ I. Hence

c 6= cozϕ = cozτ that does not belong to cozϕ and cozτ . Since c is the only cozero element

which is not complemented, it follows that both cozϕ and cozτ are cozero complemented.

Therefore, either ϕ ≤ τ or τ ≤ ϕ. Then either ϕ ∈ J or τ ∈ I and hence either I or J is a

z-ideal.

(2) ⇒ (3): Let 〈φ〉 and 〈ϕ〉 be two comaximal principal ideals of RL, one is a z-ideal. Say 〈φ〉

is a z-ideal and let α2 ∈ 〈φ〉. Then for any ω ∈ RL such that coz(α2) = cozω. By z-ideal, we

have cozα = cozα ∧ cozα = coz(α2) = cozω. Hence α ∈ 〈φ〉.

(3) ⇒ (1): Let I and J be two comaximal ideals of RL such that I = 〈ϕ〉 and J = 〈δ〉. Then

there exist τ = ϕn + δm, for some n,m ∈ N. We assume without loss of generality that τ 6= ϕn

and τ 6= δm. That is, τ /∈ I and τ /∈ J . Then c = cozτ /∈ I and c = cozτ /∈ J . Now,

c = cozτ = coz(ϕn + δm) = coz|ϕn| ∨ coz|δm|. So, we can write τ = δ(ϕp + δq); where δ = ϕk

and δ = δs, so that δ ∈ I ∩ J and for some p, q, k, s ∈ N. Hence

r(c) = r(cozτ) = r(coz(δ(ϕp + δq))) = r(coz(δ(ϕp))) ∨ r(coz(δ(δq))).

By hypothesis (one is semiprime), say I is semiprime. Hence c ∈ CozL, c /∈ I but r(c) ⊆ I,

showing that L is an essential P -frame.

(1) ⇔ (4): It is trivial, from Proposition 3.1.7.

Remark : (2) ⇔ (3): Also hold for the fact that in a commutative ring with unity, every

z-ideal is a semiprime. Hence for any two comaximal principal ideals, one being a z-ideal.

Thus the one that is a z-ideal is semiprime.
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3.2 CP -frames

In [49], Cc(X) is defined to be the largest subalgebra of C(X) whose elements have countable

images. The reader should know that Rc(OX) (denotes, the ring of all real-valued continuous

functions on a frame OX that have countable images) the following properties that we shall

use (see [45]);

(i) Cc(X) ∼= Rc(OX) ∼= Rc(βL) ∼= R∗c(L).

A space X is a CP -space if Cc(X) is regular. Hence, a topological space X is a CP -space if

and only if the frame OX is a CP -frame. This kind of subalgebra Cc(X) has recently received

some more attention (see [12, 25, 43, 48, 60, 61, 73, 74]). Ghadermazi et al [49] introduced the

concept of CP -spaces as follows: a topological space X is a CP -space if Cc(X) is a regular

ring and studied the relation between P -spaces and CP -spaces. Karimi Feizabadi et al [62]

introduced the ring RcL as a point-free version of the ring Cc(X). In 2021, Estaji and Robat

Sarpoushi [44] introduced the concept of CP -frames which refers to countable P -frames.

The homomorphism τ : L(R) → OX given by (p, q) 7→ §p, q§ is an isomorphism, where

(p, q) ∈ Q and §p, q§ = {x ∈ R | p < x < q} (see [19]). Recall from [62] that an element

α ∈ RL is said to be an overlap of a subset S of R, denoted by α J S, if τ(u) ∩ S ⊆ τ(v) ∩ S

implies α(u) ≤ α(v), for every u, v ∈ L(R). Also, we recall from [62, Lemma 3.5] that for any

α ∈ RL and S ⊆ R, the following statements are equivalent:

(i) α J S.

(ii) τ(u) ∩ S = τ(v) ∩ S implies α(u) = α(v), for u, v ∈ L(R).

(iii) τ(p, q) ∩ S = τ(v) ∩ S implies α(p, q) = α(v), for v ∈ L(R) and any p, q ∈ Q.

(iv) τ(p, q) ∩ S ⊆ τ(v) ∩ S implies α(p, q) ≤ α(v), for v ∈ L(R) and any p, q ∈ Q.

We say that αRL has a point-free countable image if there exists a countable subset S of R

such that α J S. We write RcL for the set of all αRL such that α has the point-free countable
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image (see [46]). It is shown that for each completely regular frame L, the set RcL is the

sub-f -ring of RL (see [62]). The following definition is culled from [44].

Definition 3.2.1. A frame L is said to be a CP -frame if RcL is regular.

We need to show that the class of CP -frames contains the class of P -frames. To show this

we need the next few results. We make use of an interesting function introduced by Ball

and Walters-Wayland [16]. Let a be a complemented element of L. Define the frame map

ea : L(R)→ L by

ea(p, q) =



1 if p < 0 < q,

a∗ if p < 0 < q ≤ 1,

a if 0 ≤ p < 1 < q,

0 otherwise,

for each p, q ∈ Q. Then ea ∈ RL, coz(ea) = a, and coz(1 − ea) = a∗. Also, for each α ∈ RL,

αea ∈ RL and it is easy to check that

α(ea)(p, q) =

α(p, q) ∨ a∗ if p < 0 < q,

α(p, q) ∧ a otherwise,

for each p, q ∈ Q. It is well known that a map α from the subbase of L(R) into a frame L

defines a frame homomorphism L(R)→ L if and only if it sends the relations (i)-(vi) from page

(16 to 17) to identities in L..

Proposition 3.2.1. [44, Proposition 3.2] Let α ∈ RcL such that cozα ∨ (cozα)∗ = 1. Then

ια : L(R)→ L given by

ια(p, q) =

(cozα)∗ ∨ α((−, 1
p
) ∨ (1

q
,−)) if p < 0 < q,

α(1
q
, 1
p
) if p < q ≤ 0 or 0 ≤ p < q,

for each p, q ∈ Q, determines a real-valued continuous functions in RcL.
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Proof. First, it should be pointed out that when p < q ≤ 0 if q = 0, then we have

ια(p, q) = α

(
−, 1

p

)
and also when 0 ≤ p < q if p = 0, then we have ια(p, q) = α(1

q
,−). Since

cozα ∨ (cozα)∗ = 1.

Hence ια ∈ RL, by Lemma 4.9 in [3]. So, we need only to show that ια is an overlap of a

countable subset T of R. Since α ∈ RcL, it follows that we can select a countable subset S of

R such that α J S. If we put T = { 1
x
| x ∈ S, x 6= 0} ∪ {0}, then it is routine to show that

ια J T .

The foregoing proposition tells us that ια ∈ RcL, and coz(ια) = cozα when α ∈ RcL and

cozα ∨ (cozα)∗ = 1. We recall from [45] that for a frame L, CozcL = {cozα | α ∈ RcL}. Then

the following is immediate:

Corollary 3.2.1. [44, Corollary 3.3] If a ∈ L is such that a ∨ a∗ = 1, then a, a∗ ∈ Cozc(L).

Proposition 3.2.2. [44, Proposition 3.4] Let L be a P -frame. For every α ∈ RcL, ιαα = ecozα,

where ια is the real-valued continuous function in the Proposition 3.2.1.

Proof. Using the fact that if L is a regular frame and f, g : L→M are frame homomorphisms

such that f(x) ≤ g(x) for every x ∈ L, then f = g (see [80]), it suffices to show that, for each

p, q ∈ Q, αια(p, q) ≤ ecozα(p, q) since L(R) is a regular frame. Let p, q ∈ Q. We consider four

cases.

Case 1: Assume 0, 1 /∈ τ(p, q). If there exist u, v, w, z ∈ Q such that 〈u, v〉〈w, z〉 ⊆ 〈p, q〉, then

( 1
v
, 1
u
) ∧ (w, z) = 0, which implies that

ιαα(p, q) =
∨
{ια(u, v) ∧ α(w, z) : 〈u, v〉〈w, z〉 ⊆ 〈p, q〉}

= α

(∨{(
1

v
,

1

u

)
∧ (w, z) : 〈u, v〉〈w, z〉 ⊆ 〈p, q〉

})
= 0

= ecozα(p, q).
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Case 2: Assume 0, 1 ∈ τ(p, q). Since ecozα(p, q) = 1, it follows

αια(p, q) ≤ ecozα(p, q).

Case 3: Assume 0 /∈ τ(p, q) and 1 ∈ τ(p, q). Then

αια(p, q) ≤ coz(αια) = cozα = ecozα(p, q).

Case 4: Assume 0 ∈ τ(p, q) and 1 /∈ τ(p, q). Then

αια(p, q) ∧ cozα = αια(p, q) ∧ coz(αια)

= αια(p, q) ∧ αια((−, 0) ∨ (0,−))

= αια(p, q) ∧ ((−, 0) ∨ (0,−))

= αια((p, q) ∧ ((−, 0) ∨ (0,−)))

= αια((p, 0) ∨ (0, q)).

Now, considering case 1, we can conclude that αια(p, q) ∧ cozα = 0, which implies

αια(p, q) ≤ (cozα)∗ = ecozα(p, q).

The class of CP -frames contains the class of P -frames as it is observed below.

Proposition 3.2.3. [44, Proposition 3.5] Every P -frame is a CP -frame.

Proof. Let L be a P -frame. We want to show that RcL is regular. Consider α ∈ RcL. Since

cozα ∨ (cozα)∗ = 1, it follows by Proposition 3.2.1 that iα ∈ RcL and hence by Proposition

3.2.2, we have αiα = ecozα, which implies α2iα = αecozα. Furthermore

coz(α(1− ecozα)) = cozα ∧ coz(1− ecozα) = cozα ∧ (cozα)∗ = 0,

so that α = αecozα. Thus, α2iα = α. This shows that RcL is regular.
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Estaji and Robat Sarpoushi [44] gave an example of a CP -space which is not a P -space. Now,

using that P -frames and CP -frames are conservative notions, we, therefore, conclude that there

is a CP -frame which is not a P -frame. Next, we give some properties of CP -frames. We start

with a lemma.

Lemma 3.2.1. [44, Lemma 4.1] Let L be a frame and A be a regular subring of RL. Then for

every α ∈ A, cozα is complemented in CozL.

Proof. Consider α ∈ A. Since A is regular, it follows that there exists an element β ∈ A such

that α = α2β. So

cozα = coz(α2β) = coz(α2) ∧ cozβ = cozα ∧ cozβ = coz(αβ).

Since αβ an idempotent element of RL, we conclude that cozα is complemented.

Proposition 3.2.4. [44, Proposition 4.2] A frame L is a CP -frame if and only if every cozα ∈

CozcL is complemented in CozcL.

Proof. Let L be a CP -frame. Then RcL is regular and by Lemma 3.2.1, we are done. Con-

versely, suppose the lattice CozcL is complemented and let α ∈ RcL. Since cozα∨ (cozα)∗ = 1,

it follows that ια ∈ RcL by Proposition 3.2.1. Now, similar to Proposition 3.2.3, we would have

α2ια = α. Therefore RcL is regular, that is, L is a CP -frame.

The concept of zc-ideals introduced by Estaji et al [45]. We recall the following definitions from

[45].

Definition 3.2.2. An ideal I in a ring RcL is called a zc-ideal if, for every α ∈ RcL and β ∈ I,

cozα = cozβ implies α ∈ I.

Definition 3.2.3. For every a ∈ L, let Mc
a = {α ∈ RcL | cozα ≤ a}.

We are now ready for the following proposition.

Proposition 3.2.5. [45, Proposition 3.5] The following statements are equivalent for an ideal

I of RcL.
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(1) I is a zc-ideal.

(2) For any α, β ∈ RcL, β ∈ I and cozα ≤ cozβ implies α ∈ I.

(3) I =
⋃
{Mc

cozα | α ∈ I}.

Proof. (1) ⇒ (2): Suppose α ∈ I and cozβ ≤ cozα. Then

cozβ = cozα ∧ cozβ = coz(αβ).

Since αβ ∈ I, by (1), we conclude that β ∈ I.

(2) ⇒ (3): It is clear that I ⊆
⋃
{Mc

cozα | α ∈ I}, since for every γ ∈ RcL, γ ∈Mc
cozγ. To see

the inverse inclusion, let α ∈ I and consider β ∈Mc
cozα. This means that cozβ ≤ cozα, so that,

by hypothesis, β ∈ I. Therefore Mc
cozα ⊆ I, hence we are done.

(3) ⇒ (1): Let α ∈ I and β ∈ RcL with cozα = cozβ. Then β ∈ Mc
cozβ = Mc

cozα ⊆ I, and

hence we are done.

Lemma 3.2.2. [45, Lemma 3.8] Every maximal ideal of RcL is a zc-ideal.

The following lemma will be useful in the sequel. We omit the proof.

Lemma 3.2.3. [45, Lemma 3.13] Let α ∈ RL and ρ3 : L(R) → L(R) by ρ3(p, q) = (p3, q3).

Then

(1) ρ3 ∈ R(L(R)).

(2) ρ3
3 = idL(R).

(3) (α ◦ ρ3)3 = α.

(4) coz(α ◦ ρ3) = cozα.

(5) if α ∈ RcL, then α ◦ ρ3 ∈ RcL.
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The following proposition shows that if I and J are zc-ideals in RcL, then the product IJ is a

zc-ideal.

Proposition 3.2.6. [45, Proposition 3.14] If I and J are zc-ideals in RcL, then IJ = I ∩ J .

Proof. It is trivial that IJ ⊆ I ∩ J , we show the reverse inclusion. Let α ∈ I ∩ J . Suppose

that ρ3 be the same in Lemma 3.2.3. Then, by Lemma 3.2.3 (3, 5), we have α
1
3 ∈ RcL and

α
1
3α

1
3 ∈ RcL. Also, α = (α

1
3 )3 = α

1
3α

2
3 and cozα = coz(α

1
3 ). Now, since α ∈ I ∩J and I and J

are zc-ideals, we infer that α
1
3 ∈ I and α

1
3 ∈ J . Therefore α = α

1
3α

2
3 ∈ IJ and we are done.

If we relax the strict equality in Lemma 2.2.8, we have the following.

Lemma 3.2.4. [45, Lemma 3.26] For α, β ∈ RcL, the following are equivalent.

(1) cozβ ≤ cozα.

(2) Mc
cozβ ⊆Mc

cozα.

(3) Mc(α) ⊆Mc(β).

The following proposition shows that zc-ideals in RcL are precisely z-ideals á la Mason.

Proposition 3.2.7. [45, Proposition 3.27] An ideal I in RcL is a zc-ideal if and only if it is a

z-ideal á la Mason.

Proof. Let I be a zc-ideal and suppose that α, β ∈ RcL such that M(α) ⊆ M(β) and α ∈ I.

Since Mc(α) ⊆ Mc(β), we conclude by Lemma 3.2.4 that cozβ ≤ cozα, which follows that

β ∈ I, because I is a zc-ideal (by Proposition 3.2.5). Therefore I is a z-ideal á la Mason.

Conversely, let I be a z-ideal á la Mason. Suppose that cozβ ≤ cozα and α ∈ I. Then, by

Lemma 3.2.4, Mc(α) ⊆ Mc(β), which follows that M(α) ⊆ M(β). Therefore, we have β ∈ I

because I is a z-ideal á la Mason.

Proposition 3.2.8. [45, Proposition 4.6] Every prime ideal of RcL is contained in a unique

maximal ideal.
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Resulting from [53], [71], and from Proposition 2.2.2, we now give a characterisation of CP -

frames. We noticed the mistake made by Estaji and Robat Sarpoushi [44] by citing the wrong

article for Proposition 2.2.2.

Theorem 3.2.5. [44, Theorem 4.3] The following are equivalent for a frame L.

(1) L is a CP -frame.

(2) Each ideal of RcL is a zc-ideal.

(3) Each ideal of RcL is an intersection of a set of prime ideals.

(4) Each ideal of RcL is an intersection of a set of all maximal ideals.

(5) Each prime ideal of RcL is an intersection of a set of maximal ideals.

(6) For each α, β ∈ RcL, 〈α, β〉 = 〈α2 + β2〉.

(7) Each principal ideal of RcL is generated by an idempotent.

(8) Each prime ideal of RcL is maximal.

(9) For each α ∈ RcL, cozα ∨ (cozα)∗ = 1.

Proposition 3.2.9. [45, Proposition 3.20] Let Q be an ideal of RcL, and α ∈ RcL. If Mc
cozα ⊆

√
Q, then Mc

cozα ⊆ Q.

Corollary 3.2.2. [45, Corollary 3.21] An ideal of RcL is a zc-ideal if and only if its radical

ideal is a zc-ideal.

Proof. (⇒): By Proposition 3.2.5 and 3.2.9, it follows that its radical ideal is a zc-ideal.

(⇐): Let Q be an ideal of RcL. Suppose that for α, β ∈ RcL, α ∈ Q and cozα = cozβ.

Since
√
Q is a zc-ideal, β ∈

√
Q. By Proposition 3.2.9, Mc

cozβ ⊆
√
Q and hence Mc

cozβ. Since

β ∈Mc
cozβ ⊆ Q, it implies that β ∈ Q. Therefore Q is a zc-ideal.
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The following lemma is immediate from Corollary 3.2.2.

Lemma 3.2.6. [44, Lemma 4.9] RcL is a z-good ring.

The two lemmas, Lemma 2.2.14 and Lemma 3.2.6 are sufficient to prove the following results

in an analogous way with the P -frames.

Corollary 3.2.3. [44, Corollary 4.10] The following statements are equivalent for a frame L.

(1) L is a CP -frame.

(2) Each essential ideal in RcL is a zc-ideal.

(3) Each radical ideal in RcL is a zc-ideal.

Proof. It is evident.

Every radical ideal in RcL is absolutely convex in an analogous way with the P -frames. With

this fact, we arrive at the following characterisation of CP -frames.

Corollary 3.2.4. [44, Corollary 4.11] The following statements are equivalent for a frame L.

(1) L is a CP -frame.

(2) Each convex ideal in RcL is a zc-ideal.

(3) Each absolutely convex ideal in RcL is a zc-ideal.
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Chapter 4

Almost P -frames

In this chapter, we study almost P -frames as another generalisation of P -frames. Almost P -

frames originated in [16] as point-free extensions of almost P -spaces and were further examined

in [55] and [36]. We show that the class of P -frames is contained in the class of almost P -

frames, and a frame is a P -frame if and only if it is a basically disconnected (weakly cozero

complemented) almost P -frame. We also show that a frame is a P -frame if and only if it is

both an Oz-frame and an almost P -frame in turn if and only if it is an almost P -frame with

countable chain condition (ccc). Lastly, we show that every weakly Lindelöf almost P -frame

is Lindelöf. We also give a few characterisations of almost P -frames in terms of ring-theoretic

properties.

4.1 Basic Concepts

We start with a definition culled from [16].

Definition 4.1.1. A frame L is said to be an almost P -frame if for every a ∈ CozL, a = a∗∗.

We observe that a basically disconnected frame is not necessarily an almost P -frame.

Let a ∈ CozL. If L is a basically disconnected frame, then a∗ ∨ a∗∗ = 1. It follows that a∗ and

a∗∗ are complemented elements of L and hence are cozeros. By normality of CozL there exist

70



u, v ∈ CozL such that u ∧ v = 0, and u ∨ a∗ = 1 = a∗∗ ∨ v. Since a ≤ a∗∗, implies

a ∨ a∗ ≤ a∗∗ ∨ a∗ = 1.

Thus 1 is not the only dense cozero element. Therefore L is not an almost P -frame. Unlike

P -frames, almost P -frames are not necessarily basically disconnected. However, we do not have

an example at the moment to illustrate this. Next, we show that the class of almost P -frames

contains the class of P -frames.

Proposition 4.1.1. [39] Every P -frame is an almost P -frame.

Proof. Let a ∈ CozL. Then a∗ ∈ CozL, a ∧ a∗ = 0 and a ∨ a∗ = 1. Thus a = a∗∗, as

required.

The following proposition is an extension of [63, Corollary 2.7] to a point-free setting.

Proposition 4.1.2. [16, Proposition 8.4.7] A frame is a P -frame if and only if it is basically

disconnected almost P -frame.

Proof. The left to right implication is trivial. Conversely, suppose that L is a basically discon-

nected almost P -frame and let a ∈ CozL. Then by basically disconnectedness of L, we have

a∗ ∨ a∗∗ = 1. The frame L is an almost P -frame, so a = a∗∗. Thus a∗ ∨ a = 1, as required.

The following result is stronger than the result just proved. To see this, we observe from

Matlabyana [72] that basically disconnected frames are weakly cozero complemented. See also

from Dube and Nsonde-Nsayi [39] that every weakly cozero complemented almost P -frame is

a P -frame.

Proposition 4.1.3. A frame is a P -frame if and only if it is a weakly cozero complemented

almost P -frame.

Proof. The left to right implication is immediate from Proposition 4.1.2. Conversely, suppose

that a ∈ CozL. We want to show that a is complemented. Since L is weakly cozero comple-

mented, it follows that there exists b ∈ CozL such that a ∧ b = 0 and a ∨ b is dense. Then
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a∗ ∧ b∗ = (a ∨ b)∗ = 0 ⇒ (a∗ ∧ b∗)∗ = 0∗ = 1. Since L is an almost P -frame, it follows that

a = a∗∗ and so, a ∨ b∗∗ = 1. Thus a is complemented. Therefore L is a P -frame.

Oz-frames were introduced by Banaschewski and Gilmour [22] and we recall from [21] that

s ∈ L is coz-embedded if s ∧ − : L →↓s is a coz-onto. A frame L is an Oz-frame if every

a ∈ L is coz-embedded (see [21] and [22]). It is shown in [21, Proposition 2.2] that a frame

L is an Oz- frame if and only if every regular element of L is a cozero element. Using this

characterisation Matlabyana [72] has shown that an Oz-frame is weakly cozero complemented.

Recall also that a frame L has the countable chain condition (abbreviated ccc) if every collection

of pairwise disjoint elements of L is countable. He then showed that every ccc is weakly cozero

complemented. Therefore, the following corollaries are immediate.

Corollary 4.1.1. A frame is a P -frame if and only if it is both an Oz-frame and an almost

P -frame.

Corollary 4.1.2. A frame is a P -frame if and only if is an almost P -frame with ccc.

The following proposition is taken from Dube [36] as an example, that if the coproduct of two

frames is an almost P -frame, then each summand is an almost P -frame.

Proposition 4.1.4. [36, Example 3.2] If A ⊕ B is almost P -frame, then A and B are both

almost P -frames.

Proof. Let iA and iB be coproduct inclusions for almost P -frames A and B, respectively. Let

a ∈ CozA implies c⊕ 1 ∈ Coz(A⊕ B) as a⊕ 1 = iA(a) ∧ iB(1), meet of two cozero elements.

Since (a⊕b)∗∗ = a∗∗⊕b∗∗ for all a ∈ CozA and for all b ∈ CozB. So a∗∗⊕1∗∗ = (a⊕1)∗∗ = a⊕1

(since, A⊕B is almost P -frame). Hence a = a∗∗.

Theorem 4.1.1. [36, Proposition 3.3] For any frame L, the following are equivalent:

(1) L is an almost P -frame.

(2) The only dense cozero element of L is the top element 1.
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(3) Every dense onto homomorphism h : L→M is coz-codense.

(4) Every dense onto, coz-onto homomorphism h : L→M is a C-quotient map.

(5) For every dense c ∈ CozL, the homomorphism h : L→↓a is a C-quotient map.

Proof. (1) ⇔ (2): Let a ∈ CozL be a dense cozero element. Then a∗ = 0 and a∗∗ = 0∗ = 1.

But L is an almost P -frame, so a = a∗∗ = 1. Conversely, let a ∈ CozL, we must show

that a = a∗∗. Let x ≺≺ a∗∗. Take s ∈ CozL such that x ∧ s = 0 and s ∨ a∗∗ = 1. Now

(s ∨ a)∗ = s∗ ∧ a∗ = (s ∨ a∗∗)∗ = 0 since s ∨ a∗∗ = 1. This shows that s ∨ a is dense. Therefore

s ∨ a = 1, showing that x ≺ a. Therefore a = a∗∗.

(2) ⇒ (3): Let a ∈ CozL such that h(a) = 1. Then 0 = h(a)∧ h(a∗) implies that h(a∗) = 0, in

addition hence a∗ = 0 (h is dense). Therefore, a = 1.

(3)⇒ (4): It follows from Proposition 1.3.4, that an onto homomorphism that is both coz-onto

and coz-codense is a C-quotient map.

(4) ⇒ (5): If a ∈ CozL is dense, then Coz(↓a) = (↓a)
⋂
CozL. Hence L →↓a is both dense

and coz-onto.

(5) ⇒ (2): Let a ∈ CozL such that a is dense and f : L →↓a be homomorphism x 7→ x ∧ a.

By hypothesis it implies that f is almost coz-codense. Since f(a) = 1↓a, it follows that there

exists b ∈ CozL such that a ∨ b = 1L and f(b) = 0. Hence a ∧ b = 0, and therefore b = 0 since

a is dense. Consequently, a = 1L.

Next, we show that dense frame homomorphisms preserve almost P -frames, and also that

almost P -frames are reflected by coz-codense frame homomorphisms.

Lemma 4.1.2. [36, Lemma 3.4]

(1) Let h : L → M be a dense onto, coz-onto homomorphism. If L is an almost P -frame,

then so is M .
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(2) Let h : L→M be a dense onto, coz-codense homomorphism. If M is an almost P -frame,

then so is L.

Proof. (1). Let a ∈ CozM and take b ∈ CozL such that h(b) = a. Since a dense onto

homomorphism commutes with pseudocomplementation, we have that

a = h(b) = h(b∗∗) = h(b)∗∗ = a∗∗.

Therefore M is an almost P -frame.

(2). Let a be a dense cozero element of L. Then h(a) is a dense cozero element of M , and

therefore h(a) = 1 since M is an almost P -frame. Since h is coz-codense, this implies that

a = 1, and so L is an almost P -frame.

As a consequence of Lemma 4.1.2, we have the following.

Theorem 4.1.3. [36, Proposition 3.5] L is an almost P -frame if and only if υL is an almost

P -frame.

Proof. If υL is almost P -frame, then h : υL→ L, is given by join, is dense onto and coz-onto.

Then L is an almost P -frame. Conversely, suppose L is an almost P -frame and h : L→ υL is

given by join, it is a dense onto and coz-codense. Then υL is an almost P -frame.

We recall from [38] that a frame L is said to be weakly Lindelöf if every cover of L has a

countable subset that is dense. For the following proposition, we relax the complete regularity

condition and consider a regular frame. This is a frame version of [86, Theorem 16.8].

Proposition 4.1.5. Every regular Lindelöf frame is normal.

Proof. Let a, b ∈ L be such that a ∨ b = 1. Then the set {a, b} is a binary cover of L. Put

a =
∨
{x | x ≺ a} and b =

∨
{y | y ≺ b}. By Lindelöfness there is a countable subcover T of L,
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where T = {xi ∨ yi | xi ≺ a, yi ≺ b}i∈I . Then(∨
i∈I

T

)∗
=

(∨
i∈I

{xi ∨ yi | xi ≺ a, yi ≺ b}

)∗
= 1∗ = 0.

⇒
∧
i∈I

{xi∗ ∧ yi∗ | xi ≺ a, yi ≺ b} = 0.

⇒
∧
i∈I

{xi∗ | xi ≺ a} ∧
∧
i∈I

{yi∗ | yi ≺ b} = 0.

Put c =
∧
i∈I
{xi∗ | xi ≺ a} and d =

∧
i∈I
{yi∗ | yi ≺ b} are such that c∧ d = 0 and c∨ a = 1 = d∨ b.

Now, c and d are the required elements to satisfy the condition for normality. Hence L is normal

as required.

Next, we show that in almost P -frames the property of weakly Lindelöfness and the property

of Lindelöfness coincide.

Proposition 4.1.6. Every weakly Lindelöf almost P -frame is Lindelöf.

Proof. Let a ∈ CozL. L is almost P -frame, so the only dense element of L is 1. Since 1 = (1∗)∗,

we have

1 = (1∗)∗ = 0∗ =
∨
{x ∈ L | x ∧ 0 = 0}.

Thus
∨
{x ∈ L | x∧ 0 = 0} is a cover of L. L is weakly Lindelöf, so there is a countable subset

T = {xi}i∈I whose join is dense. Therefore L is Lindelöf.

The following corollary is a consequence of Proposition 4.1.6 and Proposition 4.1.5.

Corollary 4.1.3. Every weakly Lindelöf almost P -frame is normal.

4.2 Ring-theoretic characterisations of almost P -frames

In this section, we give characterisations of almost P -frames in terms of ideals in rings. The

annihilator of S ⊆ R is an ideal

Ann(S) = {a ∈ R | as = 0 for every s ∈ S}.
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If S is a singleton, say S = {a}, Ann(S) will be abbreviated as Ann(a), for more detail (see

[77]). We start with lemmas culled from [36], and we omit the proof for the first and the third

lemma. The proof of the second lemma is also found in [72], using a different approach.

Lemma 4.2.1. [36, Lemma 4.1] Let ϕ, ψ ∈ RL. Then (cozϕ)∗ ≤ (cozψ)∗ if and only if

Ann(ϕ) ⊆ Ann(ψ).

Lemma 4.2.2. [36, Corollary 4.2] Any ϕ ∈ RL is a zero divisor if and only if cozϕ is not

dense.

Proof. We know that cozϕ is dense if and only if (cozϕ)∗ = 0, if and only if

(cozϕ)∗ ≤ 0 = (coz1)∗,

if and only if Ann(ϕ) ⊆ Ann(1) = {0}, if and only if Ann(ϕ) = {0}, if and only if ϕ is not a

zero divisor.

Lemma 4.2.3. [36, Lemma 4.4] Suppose cozγ ≺≺ cozψ for some γ, ψ ∈ RL. Then there exists

α ∈ RL such that γ = αψ.

We have the following from [36].

Proposition 4.2.1. [36, Proposition 4.5] The following are equivalent for a frame L:

(1) L is almost P -frame.

(2) Every non-zero divisor in RL is invertible.

(3) Every proper ideal of RL contains only zero-divisors.

(4) Every proper principal ideals of RL is non-essential.

(5) Every fixed countably generated ideal of RL is contained in a non-essential principal ideal.
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Proof. (1) ⇒ (2): Let ϕ ∈ RL be a non-zero divisor. Then a = cozϕ is a dense cozero element

of L by Lemma 4.2.2. So the homomorphism h : L→↓a is a C-quotient map by Theorem 4.1.1.

It is therefore almost coz-codense by Proposition 1.3.4, hence coz-dense because of denseness.

But a = cozϕ = 1, thus ϕ is invertible.

(2)⇒ (3): Because non-zero divisors are invertible, if an ideal contains one such then it contains

the ring unity and is therefore improper.

(3) ⇒ (4): Let 〈ϕ〉 be a proper principal ideal of RL. By (3), thus ϕ is a zero-divisor, so cozϕ

is not dense by Lemma 4.2.2. But
∨
{cozϕ | ϕ ∈ I} = cozϕ, so 〈ϕ〉 is not essential by Lemma

2.2.10.

(4) ⇒ (5): Let I = {ϕn | n ∈ N} be fixed. Let a =
∨
coz(ϕn) and note that

1 6=
∨
{cozα | α ∈ I} = a ∈ CozL.

Let τ ∈ RL such that a = cozτ . Then the principal ideal 〈τ〉 is proper, and is therefore

non-essential by hypothesis. So, thus a is not dense. Take 0 6= b ∈ CozL such that a ∧ b = 0.

Let u be a non-zero cozero element of L such that u ≺≺ b. Pick s ∈ CozL such that u ∧ s = 0

and s ∨ b = 1. Let ψ ∈ RL such that s = cozψ. Since s is not dense, 〈ϕ〉 is not essential. For

any n ∈ N, b ∧ coz(ϕn) = 0 and therefore coz(ϕn) ≺≺ cozψ (since b ∨ cozψ = 1). There exists

rn ∈ RL for each n such that ϕn = ψrn. Therefore I ⊆ 〈ψ〉.

(5) ⇒ (1): Let 1 6= a ∈ CozL, and let ϕ ∈ RL such that a = cozϕ. Therefore the principal

ideal 〈ϕ〉 is proper, 〈ϕ〉 is not essential and thus ϕ is not dense. Hence L is an almost P -frame

(by Theorem 4.1.1).

The following proposition is culled from [36].

Proposition 4.2.2. [36, Proposition 4.13] The following are equivalent for a frame L:

(1) L is almost P -frame.

(2) Every z-ideal of RL is a d-ideal.
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(3) Every maximal ideal of RL is a d-ideal.

Proof. (1) ⇒ (2): It is immediate since cozα = (cozα)∗∗ if L is an almost P -frame.

(2) ⇒ (3): Since every maximal ideal is a z-ideal in RL, we are done.

(3) ⇒ (1): Let a be a dense cozero element of L. Suppose on contrary, that a 6= 1. Then

set J = {α ∈ RL | cozα ≤ a} is a proper ideal of RL since coz(τ + υ) ≤ cozτ ∨ cozυ and

coz(αρ) = cozα ∧ cozρ. Let I be a maximal ideal of RL such that J ⊆ I. Take η ∈ RL such

that a = cozη. Now, by (3), I is a d-ideal containing η. But coz1 ≤ (cozη)∗∗, which implies

that 1 ∈ I; a contradiction since I is a proper ideal.

Theorem 4.2.4. [36, Proposition 4.14] A frame L is almost P -frame if and only if⋃{
OI | I ∈

∑
βL} =

⋃
{MI | I ∈

∑
βL
}
.

Proof. Let a be a dense cozero element of L. Suppose on contrary that a 6= 1. Let α ∈ RL such

that a = cozα. Pick I ∈
∑
βL such that r(cozα) ⊆ I. Then α ∈ MI , and so, by hypothesis,

there exists J ∈
∑
βL such that α ∈ OJ . But this implies that cozα ∈ J , which is not possible

since J 6= 1.

Conversely, the one inclusion is trivial since OI ⊆ MI for each I. Let I ∈
∑
βL and let

α ∈MI . Since MI is a proper ideal, it follows from Proposition 4.2.1 that α is a zero-divisor.

Pick a nonzero ϕ ∈ RL such that αϕ = 0. Since ϕ 6= 0, r(cozϕ) 6= 0. By spatiality of βL it

follows that there exists J ∈
∑
βL such that r(cozϕ) * J . Consequently r(cozϕ) ∨ J = 1, by

maximality of J . But r(cozϕ) ∧ r(cozα) = 0, so r(cozα) ≺≺ J , which implies that α ∈ OJ .

This establishes the other inclusion.

We close this chapter with the following proposition, which is culled from [31].

Proposition 4.2.3. [31, Proposition 4.4] Let L be a proper essential P -frame with obstacle I.

Then the following are equivalent.

(1) L is an almost P -frame.
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(2) For every f ∈MI\OI , there exists J ∈
∑
βL, J 6= I such that f ∈ OJ .

(3) For every c ∈ CozL such that r(c) ⊆ I and c /∈ I, there exists J ∈
∑
βL, J 6= I, such

that c ∈ J .
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Chapter 5

F - and F ′-frames

In this chapter, we study F -frames and F ′-frames. In the first section, we focus on F -frames

and show that the class of F -frames contains the class of P -frames. We also note that the

class of basically disconnected frames is also contained in the class of F -frames. We give ring-

theoretic characterisations of F -frames in the first subsection. We show that L is an F -frame

if and only if RL is a Bézout ring. In the second section, we show that the classes of P -frames,

basically disconnected frames and F -frames are contained in the class of F ′-frames. We also

show that every weakly Lindelöf F ′-frame is an F -frame and every zero-dimensional weakly

Lindelöf F ′-frame is a strongly zero-dimensional F -frame. Lastly, we give a few ring-theoretic

characterisation of F ′-frames.

5.1 F -frames

In this section, our focus is on F -frames as another generalisation of P -frames. F -frames were

originally introduced by Ball and Walters-Wayland [16]. We start with a definition.

Definition 5.1.1. The frame L is said to be an F -frame if ϕ : L →↓a is a C∗-quotient map

for every a ∈ CozL.

We have the following as a characterisation of F -spaces, a space X is said to be an F -space if
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whenever A and B are disjoint cozero sets, then Ā ∩ B̄ = ∅. We can see that; A and B are

completely separated. This was extended to frames by Ball and Walters-Wayland [16], a frame

L is an F -frame if and only if whenever a, b ∈ CozL such that a∧ b = 0 there exist c, d ∈ CozL

such that c ∨ d = 1 and c ∧ a = 0 = d ∧ b (see [16, Proposition 8.4.10]).

Proposition 5.1.1. [16, Proposition 8.4.3] Every basically disconnected frame is an F -frame.

Proof. To show that L is an F -frame, let a, b ∈ CozL be such that a ∧ b = 0. Basically

disconnected frames are De Morgan frames, so a ∧ b = 0 implies that (a ∧ b)∗ = a∗ ∨ b∗ = 1.

Hence L is an F -frame.

The following corollary follows immediately from Proposition 2.1.2 and Proposition 5.1.1.

Corollary 5.1.1. [16, Proposition 8.4.7] Every P -frame is an F -frame.

Dube [33] indicated that the following proposition can be shown easily with frame-theoretic

terms without supplying proof. For the sake of completeness, we supply the proof.

Proposition 5.1.2. A frame is basically disconnected if and only if it is a weakly cozero com-

plemented F -frame.

Proof. If L is a basically disconnected, then by Lemma 2.1.1 it is weakly cozero complemented.

To show that it is an F -frame, let a, b ∈ CozL be such that a ∧ b = 0. By Proposition 5.1.1,

we are done.

Conversely, let a ∈ CozL. By hypothesis L is weakly cozero complemented, so find b ∈ CozL

such that a∧ b = 0 = (a∨ b)∗. The frame L is an F -frame, so there exist c, d ∈ CozL such that

c ∨ d = 1 and c ∧ b = 0 = d ∧ a. Therefore b ≺ d and a ≺ c so that b∗ ∨ d = 1 and a∗ ∨ c = 1.

Now a∗ ∧ b∗ = 0 implies that a∗ ≤ b∗∗ and b∗ ≤ a∗∗. Also b ∧ c = 0 = d ∧ a implies that c ≤ b∗

and d ≤ a∗. Hence

1 = c ∨ d ≤ a∗ ∨ b∗ ≤ a∗ ∨ a∗∗.

Thus L is basically disconnected as expected.
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Theorem 5.1.1. [16, Proposition 8.4.11] If L is an F -frame, then βL is an F -frame.

Proof. Assume that L is an F -frame. Take J ∈ Coz(βL), and put a ≡
∨
J ∈ CozL. Now take

g : O[0, 1]→↓J and consider the following diagram:

βL l //

m

��

↓J

k

��

O[0, 1]

g′

}}

g

==

h

aa

f

!!
L n

// ↓a

The maps in the diagram arise as follows: m is the canonical join map I →
∨
I, and k is its

restriction to ↓J ; f is kg; n is the open quotient map of a; g′ is the extension of f over n whose

existence is guaranteed by the fact that n is a C∗-quotient map; h is the result of factoring g′

through m, which can be done because m is the co-reflection of L in compact regular frames;

l is the open quotient map of J . We claim that h is an extension of g over l, i.e., that lh = g.

To establish this claim first note that the outer square commutes, i.e., that kl = nm, since∨
(J ∧ I) =

∨
J ∧

∨
I = a ∧

∨
I.

Therefore

kg = f = ng′ = nmh = klh,

and since k is monic in regular frames by virtue of being dense, it follows that g = lh.

The following proposition is taken from [16, Corollary 8.4.12], our method of proof is different.

Proposition 5.1.3. [16, Corollary 8.4.12] If L is an F -frame, then ↓a is an F -frame for each

a ∈ CozL.

82



Proof. If c, d ∈ Coz(↓a) such that c ∧ d = 0↓a, then c, d ∈ CozL such that c ∧ d = 0L. L

is an F -frame, so there exist u, v ∈ CozL such that u ∨ v = 1L and c ∧ u = 0 = d ∧ v.

Now, (a ∧ u) ∨ (a ∧ v) = a ∧ (u ∨ v) = a ∧ 1 = a and a ∧ (c ∧ u) = 0 = a ∧ (d ∧ v). Thus

(a ∧ u), (a ∧ v) ∈ Coz(↓a). Hence ↓a is an F -frame.

A frame homomorphism is said to satisfy property (β), if for every a, b ∈ CozL with

h(a) ∨ h(b) = 1,

then there exist c, d ∈ CozL such that c ∨ d = 1, h(c) ≤ h(a) and h(d) ≤ h(b).

The following proposition is taken from [32]. We omit the proof.

Proposition 5.1.4. [32, Proposition 2.6] A quotient map h : L→ M is a C∗-quotient map if

and only if it is coz-onto and satisfies (β).

The following result comes from [35].

Proposition 5.1.5. [35, Proposition 3.9] The following are equivalent for a completely regular

frame L.

(1) L is an F -frame.

(2) Every quotient map h : L→M satisfies (β).

(3) Every coz-onto homomorphism h : L→M is a C∗-quotient map.

Proof. (1) ⇒ (2): Let a, b ∈ CozL such that h(a) ∨ h(b) = 1. Since the join of cozeros is a

cozero, it follows that a∨b ∈ CozL and L is an F -frame. The open quotient map g : L→↓(a∨b)

is a C∗-quotient map. By proposition 5.1.4, g satisfies (β). Since a, b ∈ Coz(↓(a ∨ b)) with

g(a) ∨ g(b) = 1↓(a∨b), there exist c, d ∈ CozL such that c ∨ d = 1, g(c) ≤ g(a), and g(d) ≤ g(b).
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Then c ∧ (a ∨ b) ≤ a and d ∧ (a ∨ b) ≤ b, which implies h(c) ∧ h(a ∨ b) = h(c) ≤ h(a) and

h(d) ∧ h(a ∨ b) = h(d) ≤ h(b). It follows that h satisfies (β).

(2) ⇒ (3): By complete regularity, every coz-onto homomorphism h : L→M is onto. So from

Proposition 5.1.4, it follows that h is a C∗-quotient map.

(3) ⇒ (1): For any a ∈ CozL, the open quotient map L →↓a is a coz-onto map by Lemma

1.3.1, and hence, a C∗-quotient map by hypothesis. Furthermore, L is an F -frame.

Corollary 5.1.2. [77, Lemma 6.2.2] If L is an F -frame and h : L → M is a quotient map,

then M is an F -frame.

A weakly Lindelöf element a is an element that is dense which is a join of countably many

elements that are rather below (or, completely below) a.

Lemma 5.1.2. [55, Proposition 7] Every cozero element of a weakly Lindelöf frame is weakly

Lindelöf.

Proposition 5.1.6. [23, Corollary 4] The cozero elements of a Lindelöf frame are precisely the

Lindelöf elements.

The following lemma is found in [21] and [40].

Lemma 5.1.3. Let h : L→M be a quotient map. If M is Lindelöf and L is completely regular,

then h is coz-onto.

Proof. Let a ∈ CozM and A = {x ∈ CozL | x ≤ h∗(a)}. Then, by completely regularity,

we have a = hh∗(a) =
∨
h[A]. Hence there is a countable B ⊆ A such that a =

∨
h[B]. By

Proposition 5.1.6, thus
∨
B is a cozero element of L mapped to a by h.

Ball and Walters-Wayland [16] showed that a quotient map h : L → M is a C∗-quotient map

if and only if every two-element cover of M by cozero elements is the image of some two-

element cover of L consisting of cozero elements. The following proposition is shown using this

characterisation and the use of Proposition 1.3.3, and is the translation of a classical result

from [75, Theorem 5.2] .
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Proposition 5.1.7. [35] Let L be an F -frame and h : L → M be a quotient map. If M is

Lindelöf, then h is a C∗-quotient map.

Proof. Let a, b ∈ CozM such that a ∧ b = 0M ,

A = {x ∈ CozL | x ≤ h∗(a)} and B = {y ∈ CozL | y ≤ h∗(b)}.

Since L is an F -frame, it is completely regular. Then

a = hh∗(a) =
∨
h[A] and b = hh∗(b) =

∨
h[B].

Hence there are countable C ⊆ A and D ⊆ B such that a =
∨
h[C] and b =

∨
h[D]. Since h

is coz-onto and by Proposition 5.1.6, hence there exist
∨
C,
∨
D ∈ CozL such that(∨

C
)
∧
(∨

D
)

= 0L,

mapped to a and b by h. That is,

0M = a ∧ b =
∨

h[C] ∧
∨

h[D] = h
[∨

C
]
∧ h

[∨
D
]

= h
[(∨

C
)
∧
(∨

D
)]

= h(0L).

Let n,m ∈ CozM such that n ∨m = 1M . The frame L is an F -frame, hence for

(
∨

C) ∧ (
∨

D) = 0L

implies that there exist u, v ∈ CozL such that u ∨ v = 1L and (
∨
C) ∧ u = 0 = (

∨
D) ∧ v,

n = h(u) and m = h(v). Now

1M = h(1L) = h(u ∨ v) = h(u) ∨ h(v) = n ∨m.

Dube [35] noted that a Lindelöf quotient of an F -frame is a C∗-quotient without proving it.

According to Dube, it follows from [16, Corollary 8.2.7], that if L is a Lindelöf F -frame, then

βL is the only compactification of L which is an F -frame.
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Lemma 5.1.4. Let h : L→M be a quotient map. If M is weakly Lindelöf and L is completely

regular, then h is coz-onto.

Proof. Obviously for 1 ∈ M , 1 ∈ CozM . We have 1 ∈ 1L, 1 ∈ CozL such that h(1L) = 1M .

Now let a ∈ CozM such that a 6= 1 and A = {x ∈ CozL | x ≤ h∗(a)}. Then, by completely

regular, we have a = hh∗(a) =
∨
h[A]. Hence there is a countable B ⊆ A such that a =

∨
h[B].

By Lemma 5.1.2, thus
∨
B is a cozero element of L mapped to a by h.

The following proposition is a point-free version of classical result in [29].

Proposition 5.1.8. Let L be an F -frame and h : L → M be a quotient map. If M is weakly

Lindelöf, then M is an F -frame.

Proof. Let a, b ∈ CozM such that a ∧ b = 0M . By coz-onto (see Proposition 1.3.2), there exist

c, d ∈ CozL such that c ∧ d = 0L, a = h(c) and b = h(d). Since L is an F frame, there exist

n,m ∈ CozL such that n ∨m = 1L. Now

1M = h(1L) = h(n ∨m) = h(n) ∨ h(m).

Thus h(n), h(m) ∈ CozM , since h preserves cozero elements. Therefore M is an F -frame.

We end this section by strengthening Proposition 5.1.7 as follows, and the following proposition

is a point-free version of classical result in [29].

Proposition 5.1.9. Let L be an F -frame and h : L → M be a quotient map. If M is weakly

Lindelöf, then h is a C∗-quotient map.

Proof. Let a, b ∈ CozM such that a ∧ b = 0M . By coz-onto (see Proposition 1.3.2), there exist

c, d ∈ CozL such that c ∧ d = 0L. The frame L is an F -frame, there exist u, v ∈ CozL such

that u ∨ v = 1L and u ∧ c = 0L = v ∧ d. Now

1M = h(0L) = h(u ∨ v) = h(u) ∧ h(v)

and
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h(u) ∧ a = h(u) ∧ h(c) = h(u ∧ c) = 0M = h(v ∧ d) = h(v) ∧ h(d) = h(v) ∧ b.

Thus h(u), h(d) ∈ CozM , since h preserves cozero elements. Hence h is C∗-quotient map.

5.1.1 Ring-theoretic characterisations of F -frames

In this subsection, we show that a frame L is an F -frame if and only if the ring RL is a Bézout

ring. We will make use of the following facts.

(i) For any space X, C(X) and R(OX) are isomorphic f -rings.

(ii) For any frame L, R(βL) and R∗(βL) are isomorphic as f -rings.

(iii) A space X is an F -space if and only if OX is an F -frame.

(iv) A frame L is an F -frame if and only if βL is an F -frame.

We shall use the properties of f -rings and characterisations of Bézout rings established in [70].

A homomorphic image of a Bézout ring is a Bézout ring. A ring is said to be reduced if it has

no non-zero nilpotent elements. We omit the proof for the following lemma taken from [35].

Lemma 5.1.5. [35, Lemma 3.1] Let R be a reduced commutative f -ring with unity, and let R∗

denote its bounded part. Then the following holds.

(1) If a is a nonnegative invertible element of R, then 1
a

is nonnegative.

(2) Suppose R has the bounded inversion property. Then R is Bézout if and only if R∗ is

Bézout.

Proposition 5.1.10. [35, Proposition 3.2] A completely regular frame L is an F -frame if and

only if RL is a Bézout ring.
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Proof. The Lemma 5.1.5 and the facts preceding it show that L is an F -frame if and only if

βL is an F -frame if and only if RL is Bézout if and only if R∗(L) is Bézout if and only if RL

is Bézout.

Thus, a spatial frame L is an F -frame if and only if RL is a Bézout ring.

Any completely regular frame L has the Hewitt realcompactification υL and the Lindelöfication

λL. The join map υL→ L and the join map λL→ L are both dense (so that each of the induced

ring homomorphisms R(υL)→ RL and R(λL)→ RL is one-to-one by [18, Lemma 1] and are

C-quotient maps (so that each of the induced ring homomorphisms is onto). As a consequence

we have:

Corollary 5.1.3. [17, 35] The following are equivalent for a completely regular frame L.

(1) L is an F -frame.

(2) υL is an F -frame.

(3) λL is an F -frame.

Next, we turn to the characterisation in terms of ideals. We start by recalling how the M- and

O-ideals are defined. Let h : βL→M be a quotient map. Denote by Mh and Oh the ideals of

RL by

Mh = {ϕ ∈ RL | h(r(cozϕ)) = 0} and Oh = {ϕ ∈ RL | h(r(cozϕ)∗) = 1}.

In particular, if I ∈ βL and h : βL→↑I is the closed quotient map determined by I, we denote

Mh and Oh by MI and OI , respectively. Thus

MI = {ϕ ∈ RL | r(cozϕ) ⊆ I} and OI = {ϕ ∈ RL | I
∨

r((cozϕ)∗) = 1},

and hence, in light of properties of r,

OI = {ϕ ∈ RL | r(cozϕ) ≺ I} = {ϕ ∈ RL | cozϕ ∈ I}.
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We recall from [33] that an ideal I of a frame L is coz-prime whenever it contains the meet of

two cozero elements, then it contains at least one of the elements. The following proposition is

taken from [33], we omit the proof.

Proposition 5.1.11. [33, Proposition 4.9] The following statements are equivalent for a frame

L.

(1) L is an F -frame.

(2) OI is prime for each maximal I ∈ βL.

(3) Each maximal I ∈ βL is coz-prime.

According to Dube [33], condition (4) in the following proposition is not straightforward, but

clearly it holds (see [35, Proposition 3.4]).

Proposition 5.1.12. [33, Corollary 4.10] The following are equivalent for a completely regular

frame L.

(1) L is an F -frame.

(2) OI is a prime ideal for each point I of βL.

(3) Minimal prime ideals of RL are precisely the ideals OI for I a point of βL.

(4) Every maximal ideal of RL contains a unique minimal prime ideal.

(5) Every prime ideal of RL contains a unique minimal prime ideal.

Proof. (1) ⇒ (2): Let µν ∈ OI , and suppose µ ∈ OI . We must show that ν ∈ OI . Since

µν ∈ OI , there exist τ /∈MI such that τµν = 1. Thus cozν = coz(τµ). Since L is an F -frame,

there exist γ, δ ∈ RL such that

cozγ ∨ cozδ = 1 and cozγ ∧ cozν = 0 = cozδ ∧ cozτµ.
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Since MI is a proper ideal, it cannot contain both γ and δ, lest it contain the invertible element

r2 + δ2. Since coz(δτ) ∧ cozµ = 0 (so that δτµ = 0), we have that δτ ∈MI , for otherwise we

would have µ ∈ OI . As τ /∈MI , it follows by primeness that δ ∈MI . Consequently γ /∈MI .

But γν = 0, so we conclude that ν ∈ OI .

(2) ⇒ (3): By Proposition 5.1.11, OI is prime for each I maximal in βL. But each element

of OI is annihilated by an element outside OI , so OI is a minimal prime ideal. Now let P

be a minimal prime ideal of RL, and take a maximal I ∈ βL such that OI ⊆ P ⊆ MI . The

minimality condition on P therefore yields P = OI . We are done.

(3) ⇒ (4): This is immediate since, by (3), OI is the only minimal prime ideal contained in

MI .

(4) ⇒ (1): Let I be a maximal element of βL. We show that OI is prime. The radical
√

OI

of OI is the intersection of all prime ideals containing OI . Each prime ideal containing OI

contains a minimal prime ideal, which
√

OI still contains OI . Thus,
√

OI is the intersection

of all minimal prime ideals containing OI . But now, any minimal prime ideal containing OI is

contained in MI . By (4) there is only one minimal prime ideal contained in MI , so
√

OI is minimal prime. But OI =
√

OI , for if ν ∈
√

OI and n is a nonnegative integer such

that νn ∈ OI , then cozν = coz(νn) ∈ I, showing ν ∈ OI . Therefore OI is a prime ideal, and

hence L is an F -frame.

(4) ⇒ (5): It is trivial, since every maximal ideal is prime.

(5) ⇒ (1): It is immediate from (4) ⇒ (1).

For the rest of this subsection, the results are based on the article by Acharyya et al [6] unless

stated otherwise.

Proposition 5.1.13. A frame L is an F -frame if and only if every finitely generated ideal of

RL is flat.

Proof. Suppose, L is an F -frame. Let I be a finitely generated ideal of RL by Proposition
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5.1.10. Since L is an F -frame, I = 〈f〉 for some f ∈ RL. Now it can be easily checked that

0→ K → RL ϕ−→ I → 0

is an exact sequence of RL-modules, where K = {k ∈ RL : kf = 0} and ϕ(g) = fg, g ∈ RL.

Let J be another finitely generated ideal. Then J is also principal ideal and so J = 〈r〉 for

some r ∈ RL. We shall show that K ∩ J = kJ . Firstly, KJ ⊆ K ∩ J always, so we must

show that K ∩ J ⊆ KJ . Let gr ∈ K with g ∈ RL. Then grf = 0 and so coz(fg) ∧ cozr = 0.

Therefore coz(fg) and cozr are disjoint cozero elements of L, also since L is an F -frame,

they are completely separated. Hence there exists h ∈ RL such that coz(fg) ∧ cozh = 0

and cozr ∧ coz(1 − h) = 0. First equality ensures that, gh ∈ K and second ensures that,

gr = ghr ∈ KJ . Therefore by Lemma 2.2.19 and taking care of the fact that RL is flat as it is

free and hence projection and every projective module is flat (see [82]), we can conclude that

I is flat.

Conversely, suppose that every finitely generated ideal of RL is flat. To show that L is an

F -frame, it is sufficient to show that disjoint cozero elements of L are completely separated.

Let cozf ∧ cozr = 0 with f, r ∈ RL, from which it follows that fr = 0. Consider the principal

ideals I = 〈f〉, J = 〈r〉 and the exact sequence

0→ K → RL ϕ−→ I → 0

of RL-modules with K = {k ∈ RL : kf = 0} and ϕ(g) = fg, g ∈ RL. Then since I and RL

are both flat we have K ∩ J = KJ , by Lemma 2.2.19. Since r ∈ K ∩ J (as rf = 0), it follows

that r = kr for some k ∈ K. So cozf ∧ cozk = 0 and hence cozf and cozr are completely

separated by k.

The following corollary turns out to be the point-free extension of the classical result, which

says that X is an F -space if and only if each ideal of C(X) is flat, and this was established by

Neville (see [76, Corollary 1.6]).

Corollary 5.1.4. A frame L is an F -frame if and only if every ideal of RL is flat.
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Proof. Follows from [82, Proposition 3.48] and Proposition 5.1.13.

The pos(f) and neg(f), denotes the positive part and the negative part of the function f ,

respectively.

Lemma 5.1.6. Let f ∈ RL. Then the ideal 〈f, | f |〉 is principal if and only if pos(f) and

neg(f) are completely separated.

A well-known characterisation of F -spaces says that; X is an F -space if and only if each ideal

of the lattice ordered ring C(X) is convex if and only if the positive and negative parts of each

function in C(X) are completely separated (see [52, Theorem 14.25]). We have the following

proposition as a point-free version of this result.

Proposition 5.1.14. For a frame L, pos(f) and neg(f) are completely separated, for each

f ∈ RL if and only if it is an F -frame.

Proof. First suppose that L is an F -frame and f ∈ RL. Then

pos(f) ∧ neg(f) = coz(f+) ∧ coz(f−) = coz(f+f−) = 0

implies that pos(f) and neg(f) are completely separated.

Conversely, suppose that pos(f) and neg(f) are completely separated for each f ∈ RL. To

show L is an F -frame, it is sufficient to show in view of Corollary 5.1.3 and Proposition 5.1.12

that, OI = {g ∈ R(λL) : g ∈ I} is a prime ideal of R(λL), for each prime element I of β(λL),

λL is the Lindelöf corefletion of L. Since OI is a z-ideal of R(λL), it is sufficient to show

that, for any f ∈ R(λL) there exists g ∈ OI such that pos(f) ≤ cozg or neg(f) ≤ cozg (see [5,

Lemma 4.8]). So let f ∈ R(λL). Then by hypothesis pos(λL◦f) and neg(λL◦f) are completely

separated and hence there exist k, l ∈ RL such that pos(λL◦f)∧cozk = 0 = neg(λL◦f)∧cozl

and cozk ∨ cozl = 1, here λL : λL → L is the coreflection map. Now, since L is a C-quotient

of λL (see [16, Corollary 8.2.13]), we must have k̄, l̄ ∈ R(λL) such that k = λL ◦ k̄ and

l = λL ◦ l̄. So 0 = pos(λL ◦ f) ∧ cozk = λL(pos(f)) ∧ λL(cozk̄) = λL(pos(f) ∧ cozk̄) implies
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pos(f) ∧ cozk̄ = 0, as λL is dense. Similarly, neg(f) ∧ cozl̄ = 0 and 1 = cozk ∨ cozl =

λL(cozk̄ ∨ cozl̄) implies cozk̄ ∨ cozl̄ = 1, as λL is coz-codense (see [16, Theorem 8.2.12]). So

pos(f) and neg(f) are completely separated in λL and hence (pos(f))∗∨(negf)∗ = 1. Therefore

rλL((pos(f))∗ ∨ (neg(f))∗) = rλL((pos(f))∗) ∨ rλL((neg(f))∗) = λL (see ([15, Lemma 3.1]) and

hence rλL((pos(f))∗) * I or rλL((neg(f))∗) * I, as I is prime. If rλL((pos(f))∗) * I, then

rλL((pos(f))∗) ∨ I = λL, as I is a maximal element of β(λL) and so there exists x ∈ λL with

x ≺≺ (pos(f))∗ and y ∈ I such that x∨y = 1. But y ∈ I implies y ≤ cozg ∈ I with g ∈ R(λL).

So x ∨ cozg = 1 and pos(f) ≤ (pos(f))∗∗ ≤ x∗ ≤ cozg with g ∈ OI .

A space X is an F -space if and only if each ideal of C(X) is convex. We have the following.

Theorem 5.1.7. A frame L is an F -frame if and only if each ideal of RL is convex.

Proof. Since RL is a semiprime f -ring with bounded inversion property (see [19, Proposition

11]), we have from [70, Theorem 1] that, every ideal of RL is convex if and only if it is Bézout

ring. Therefore L is an F -frame by Proposition 5.1.10. Thus we get the required result.

5.2 F ′-frames

In this section, we investigate F ′-frames which is part of generalisations of P -frames. F ′-frames

originally, were introduced by Ball and Walters-Wayland [16]. We study characterisations of

F ′-frames proposed by Dube [35] and other authors. We start with a definition culled from

[16].

Definition 5.2.1. A frame L is said to be an F ′-frame if for any two cozero elements in L

which do not meet, then the join of their pseudocomplements is the top element.

Proposition 5.2.1. [16] Every basically disconnected frame is an F ′-frame.

Proof. Let L be a basically disconnected frame and a, b ∈ CozL such that a ∧ b = 0. Thus

a∗ ∨ a∗∗ = 1 = b∗ ∨ b∗∗. Since b∗∗ ≤ a∗ and a∗∗ ≤ b∗, thus
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1 = (a∗ ∨ a∗∗) ∨ (b∗ ∨ b∗∗) ≤ (a∗ ∨ b∗) ∨ (b∗ ∨ a∗) = a∗ ∨ b∗.

Therefore a∗ ∨ b∗ = 1, thus L is an F ′-frame.

The following corollary is an immediate consequence of Proposition 2.1.2 and Proposition 5.2.1.

Corollary 5.2.1. [16] Every P -frame is an F ′-frame.

The class of F ′-frames contains the class of P -frames and the class of F -frames. It is only

sufficient here to show that the class of F -frames is contained in the class of F ′-frames. This

statement is also mentioned by Ball and Walters-Wayland [16].

Lemma 5.2.1. [16] Every F -frame is an F ′-frame.

Proof. Let L be an F -frame. We want to show that L is an F ′-frame. Let a, b ∈ CozL, such

that a ∧ b = 0. Then there exist a∗, b∗ ∈ CozL⇒ a∗, b∗ ∈ L such that a ∧ a∗ = 0 = b ∧ b∗, but

L is an F -frame, thus a∗ ∨ b∗ = 1. Therefore L is an F ′-frame.

Theorem 5.2.2. [40, Corollary 4.7] Every normal F ′-frame is an F -frame.

Proof. Let a, b ∈ CozL be such that a ∧ b = 0. L is an F ′-frame, so a∗ ∨ b∗ = 1. Furthermore,

L is normal so there exist c, d ∈ CozL such that c ≤ a∗ and d ≤ b∗ with c ∨ d = 1. Now

c ∧ a ≤ a∗ ∧ a = 0 and d ∧ b ≤ b∗ ∧ b = 0. Thus L is an F -frame.

The following corollaries are the consequence of Proposition 4.1.5, Corollary 4.1.3, and Theorem

5.2.2.

Corollary 5.2.2. Every Lindelöf F ′-frame is an F -frame.

Corollary 5.2.3. Every weakly Lindelöf almost P -frame which is also an F ′-frame is an F -

frame.

The following remark is obtained in [72].

Remark : Let L be a frame and a ∈ L, for any x ∈↓a, let x� denote the pseudocomplement

of x in ↓ a. The x� = x∗ ∧ a.
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Proof. The element x∗ ∧ a ∈↓a and x ∧ (x∗ ∧ a) = 0. Therefore x∗ ∧ a ≤ x�. Now let z ∈↓a be

such that z ∧ x = 0↓a. Then z ≤ x∗. But z ≤ a, so z ≤ x∗ ∧ a. Since x� is an element of ↓a

with x ∧ x� = 0↓a = 0, it follows that x� ≤ x∗ ∧ a. Hence x� = x∗ ∧ a.

It is worthwhile to recall from Kohls [64] that every open subspace of an F ′-space is an F ′-

space. This is captured in frames (see [35, Proposition 4.1]), we include it here for the sake of

completeness and easy reference for the reader.

Proposition 5.2.2. [35, Proposition 4.1] If L is an F ′-frame, then ↓a is an F ′-frame for each

a ∈ L.

Proof. Let c, d ∈ Coz(↓a) be such that c ∧ d = 0. Since for any x ∈↓a, the pseudocomplement

of x in ↓a is given by x� = a∧ x∗, we must show that (a∧ c∗)∨ (a∧ d∗) = a. Let u be a cozero

element of L with u ≤ a. The map ↓a →↓u given by x 7→ u ∧ x is a frame homomorphism.

Therefore, u ∧ c, u ∧ d ∈ Coz(↓a) such that (u ∧ c) ∧ (u ∧ d) = u ∧ (c ∧ d) = 0. Since ↓u is an

F ′-frame, it follows that

(u ∧ (u ∧ c)∗) ∨ (u ∧ (u ∧ d)∗ = u. (‡‡)

Now (u∧ (u∧ c)∗)∧ c = (u∧ c)∧ (u∧ c)∗ = 0, which implies that (u∧ (u∧ c)∗) ≤ c∗. Similarly,

(u∧(u∧d)∗) ≤ d∗. So it follows from (‡‡) that u ≤ c∗∨d∗. Since, by complete regularity, a is the

join of cozero elements of L below it, it follows that a ≤ c∗ ∨ d∗. Furthermore a = a∧ (c∗ ∨ d∗),

as required.

Recall from [35] that a frame L is said to be locally F ′-frame if for each a ∈ L there exists

A ⊆ L such that a =
∨
A, and ↓w is an F ′-frame for each w ∈ A. The following result also

comes from [35].

Proposition 5.2.3. [35, Corollary 4.2] A necessary and sufficient condition that a completely

regular frame be an F ′-frame is that it be locally an F ′-frame.

Proof. Let a, b ∈ CozL such that a ∧ b = 0. There is a subset A of L such that 1L =
∨
A and

↓w is an F ′-frame for each w ∈ A. For any t ∈ A, we have that (t ∧ a), (t ∧ b) ∈ Coz(↓t) such
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that (a ∧ t) ∧ (b ∧ t) = 0. Thus, (t ∧ a∗) ∨ (t ∧ b∗) = t, implying that t ∧ (a∗ ∨ b∗) = t, hence

t ≤ (a∗ ∨ b∗). Consequently, 1 ≤ a∗ ∨ b∗. Thus a∗ ∨ b∗ = 1, and so L is an F ′-frame.

The next result shows that F ′-frames are preserved by coz-onto homomorphisms. The result

comes from [40, Lemma 4.4].

Proposition 5.2.4. [40, Lemma 4.4] Let h : L → M be a coz-onto homomorphism. If L is

F ′-frame, then so is M .

Proof. Let a, b ∈ CozM such that a ∧ b = 0M , there exist x, y ∈ CozL such that h(x) = a

and h(y) = b (since h is coz-onto). Now a ∧ b = h(x) ∧ h(y) = h(x ∧ y) = h(0L) = 0M (see

Proposition 1.3.2). Hence x ∧ y = 0L. But L is an F ′-frame, thus x∗ ∨ y∗ = 1L. Furthermore

1M = h(1L) = h(x∗ ∨ y∗) = h(x∗) ∨ h(y∗) ≤ h(x)∗ ∨ h(y)∗. Therefore M is an F ′-frame.

The following theorem is given in the context of classical topology, stated as each weakly

Lindelöf F ′-space is an F -space (see [29, Theorem 2.2]). In the context of point-free topology,

it goes as follows.

Theorem 5.2.3. Every weakly Lindelöf F ′-frame is an F -frame.

Proof. Suppose a, b ∈ CozL such that a ∧ b = 0. The frame L is an F ′-frame, so a∗ ∨ b∗ = 1.

So

(
∨
{x ∈ L | x ∧ a = 0}) ∨ (

∨
{y ∈ L | y ∧ b = 0}) = 1,

∨
{c = x ∨ y | x ∧ a = 0, y ∧ b = 0}

is a cover of L. The frame L is weakly Lindelöf, so there is a countable subset T = {ci}i∈I
which is dense. That is(∨

T
)∗

=

(∨
i∈I

{ci = xi ∨ yi | xi ∧ ai = 0, yi ∧ bi = 0}

)∗
= 0.
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Now (∨
T
)∗

=
∧
i∈I

{ci∗ = xi
∗ ∧ yi∗ | xi ∧ ai = 0, yi ∧ bi = 0}

=

(∧
i∈I

{xi∗ ∈ L | xi ∧ ai = 0}

)
∧

(∧
i∈I

{yi∗ ∈ L | yi ∧ bi = 0}

)
= a∗∗ ∧ b∗∗

= 0.

Thus L is an F -frame.

Proposition 5.2.5. [72] Every frame with ccc is weakly Lindelöf.

The following corollary is the extension of F ′-space with ccc is an F -space to point-free setting

(see [29]), and is a consequence of Theorem 5.2.3 and Proposition 5.2.5.

Corollary 5.2.4. Every F ′-frame with ccc is an F -frame.

Recall from [16], that a frame L is said to be zero-dimensional frame if every element is a

join of complemented elements. That is; if every element is a join of complemented elements

below it. In [29, Theorem 2.1], it is shown that a zero-dimensional weakly Lindelöf F ′-space

is a strongly zero-dimensional F -space. We give the result in the point-free version, we use

the characterisation of strongly zero-dimensional and recall that a frame L is strongly zero-

dimensional if and only if a ≺≺ b in L implies the existence of complemented element c in L

such that a ≤ c ≤ b.

Theorem 5.2.4. Every zero-dimensional weakly Lindelöf F ′-frame L is a strongly zero-dimensional

F -frame.

Proof. Let a, b ∈ CozL such that a ≺≺ b in a zero-dimensional weakly Lindelöf F ′-frame L.

Thus every element is a join of complemented elements. Let c ∈ CozL such that a ≺≺ c ≺≺ b.

If c is complemented, then we are done. Suppose c is not complemented. Let d ∈ CozL such

97



that a∧d = 0 and d∨b = 1. Since L is weakly Lindelöf F ′-frame, thus a∗∨d∗ = 1, a∗∗∧d∗∗ = 0

and c is not complemented. Thus d and d∗ are complemented. Now a ∧ d = 0 implies that

a ≤ d∗ and d ∨ c = 1; implies that d∗ ≤ c. Consequently a ≤ d∗ ≤ b, and so L is strongly

zero-dimensional F -frame.

5.2.1 Ring-theoretic characterisations of F ′-frames

In this subsection, we give characterisations of F ′-frames in terms of ideals ofRL. The following

useful proposition taken from [35] is needed in the sequel. We omit the proof.

Proposition 5.2.6. [35, Lemma 4.3] A z-ideal Q is prime if and only if whenever αβ = 0,

then α ∈ Q or β ∈ Q. Hence, a z-ideal is prime if and only if it contains a prime ideal.

Proposition 5.2.7. [35, Proposition 4.5] Let L be a completely regular frame. Consider the

following statements.

(1) L is an F ′-frame.

(2) OI is a prime ideal for each point I of βL with
∨
I 6= 1.

(3) The prime ideals of RL contained in any fixed maximal ideal form a chain.

(4) For any point I of βL with
∨
I 6= 1, the prime ideals of RL that contains OI form a

chain.

Then, (1) implies (2); (2), (3) and (4) are equivalent, and (4) implies (1) if L has enough points.

Proof. (1) ⇒ (2): For any J ∈ βL and ϕ ∈ RL, if ϕ /∈ OJ , then r((cozϕ)∗) ∨ J 6= 1βL, and

hence, r((cozϕ)∗) ≤ J . Now let α, β ∈ RL with αβ = 0. Suppose, by way of contradiction,

that α /∈ OI and β /∈ OI . Write a = cozα and b = cozβ. Then a ∧ b = 0, and so a∗ ∨ b∗ = 1

(by (1)). Our assumption implies r(a∗) ≤ I and r(b∗) ≤ I, therefore r(a∗) ∨ r(b∗) ≤ I. Taking
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joins yields 1 = a∗ ∨ b∗ ≤ I, which is a contradiction. Since OI is a z-ideal, quite clearly, it

follows from Proposition 5.2.6 that it is a prime ideal.

(2) ⇒ (3): The prime ideals that are contained in any fixed maximal ideal contain the ideal

OI for some point I of βL with
∨
I 6= 1. Furthermore, if (2) holds, they form a chain.

(3) ⇒ (4): The prime ideals that contain OI , where I is a point of βL with
∨
I 6= 1, are

contained in a fixed maximal ideal. Furthermore

(4) ⇒ (2): Since OI is clearly a radical ideal, it is the intersection of prime ideals containing

it. Since the intersection of a chain of prime ideals is a prime ideal, (4) implies (2).

(4) ⇒ (1): This is just one implication in the Mandelker result cited in [35].
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Chapter 6

PF -frames

In this chapter, we introduce PF -frames as another generalisation of P -frames. The reader

must not be surprised as this is considered in the last chapter and not in the earlier chapters

following the hierarchy of the generalisation of P -frames and we decided to consider PF -frames

at the end. The PF -spaces were introduced in 2021 by Azarpanah et al [14]. We observe in the

first section that the class of P -frames is contained in the class of PF -frames in turn is contained

in the class of F -frames, and PF -frames and basically disconnected frames are incomparable.

In the second section, we show that a frame L is a PF -frame if and only if βL is a PF -frame.

Lastly, we introduce some of the ring-theoretic characterisations of PF -frames.

6.1 Definition and examples

In this section, we introduce PF -frames and give some of frame-theoretic and ring-theoretic

characterisations. We observe that PF -frames and basically disconnected frames are incompa-

rable. Azarpanah et al [14] calls X a PF -space if of any two zero-sets in X whose union is all

of X at least one of them is open. Equivalently, of any two disjoint cozero-sets in X at least

one of them is closed. This is extended to frames as follows.

Definition 6.1.1. A frame L is said to be a PF -frame if whenever a, b ∈ CozL such that
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a ∧ b = 0, then at least one of them is complemented.

That is to say for a∗, b∗ ∈ L, either a∨ a∗ = 1 or b∨ b∗ = 1 (or both). We can see that at least

one of them is complemented (or both), thus either a∗ ∈ CozL or b∗ ∈ CozL (or both). Next,

we show that the open cozero quotient of a PF -frame is a PF -frame.

Proposition 6.1.1. If L is a PF -frame, then ↓a is a PF -frame for each a ∈ CozL.

Proof. Let c, d ∈ Coz(↓a) such that c ∧ d = 0↓a. Then c, d ∈ CozL such that c ∧ d = 0. The

frame L is a PF -frame, so at least one of them is complemented, say c, that is, c∗ ∧ c = 0 and

c∗ ∨ c = 1. Since c� = (c∗ ∧ a) ∈↓a, we want to show that c� ∈ Coz(↓a). Now,

(c ∨ c�) = c ∨ (c∗ ∧ a) = (c ∨ c∗) ∧ (c ∨ a) = 1 ∧ a = a = 1↓a,

and

c ∧ c� = c ∧ (c∗ ∧ a) = (c ∧ c∗) ∧ a = 0 ∧ a = 0↓a.

Thus c� ∈ Coz(↓a). Therefore c is complemented in Coz(↓a).

The authors in [14] gave an example of a PF -space which is not basically disconnected and

an example of a basically disconnected space which is not a PF -space. In the context of

classical topology, PF -space and basically disconnected spaces are incomparable. This will also

hold in the larger terrain of point-free topology. Since in a P -frame every cozero element is

complemented, the following is immediate.

Lemma 6.1.1. Every P -frame is a PF -frame.

We observe that the converse is not true, that every PF -frame is a P -frame.

Suppose L is a PF -frame. We want to show that L is not a P -frame. Let a, b ∈ CozL. Since

L is PF -frame. Thus a ∧ b = 0 and either a is complemented or b is complemented or both are
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complemented. Consider if only a is complemented, hence b is not complemented. Similarly, if

only b is complemented, then a is not complemented. Thus L is not a P -frame.

Recall that a frame L is basically disconnected if for any a ∈ CozL, a∗ ∨ a∗∗ = 1. PF -frames

and basically disconnected frames are incomparable, however, we have the following corollary

as a consequence of Corollary 4.1.2 and Lemma 6.1.1.

Corollary 6.1.1. Every basically disconnected (weakly cozero complemented) almost P -frame

is a PF -frame.

The following corollary follows immediately from Corollary 4.1.1 and Lemma 6.1.1. Recall that

a frame L is said to be an Oz-frame if every regular element is a cozero element. Because an

Oz-frame is weakly cozero complemented, the following corollary is apparent.

Corollary 6.1.2. Every frame that is both an Oz-frame and an almost P -frame is a PF -frame.

The following Corollary follows immediately as a consequence of Corollary 4.1.2 and Lemma

6.1.1. Recall that a frame L is said to satisfy ccc if every collection of pairwise disjoint elements

of L is countable. Because a frame with ccc is weakly cozero complemented the following

corollary is apparent.

Corollary 6.1.3. Every frame that is an almost P -frame with ccc is a PF -frame.

We show below that the class of PF -frames is contained in the class of F -frames. This contain-

ment is strict.

Proposition 6.1.2. Every PF -frame is an F -frame.

Proof. Let a, b ∈ CozL such that a∧b = 0. L is a PF -frame, so at least one is complemented, say

a. Then a ∨ a∗ = 1. Then a∗ as a complemented element is a cozero element. By normality of

CozL, there exist c, d ∈ CozL such that c∧d = 0 and c∨a = 1 = d∨a∗. Now c∨a = 1⇒ a∗ ≺ c.

Also c ∨ d ≥ a∗ ∨ d = 1, and also c ∧ d = 0 and c ∨ a = 1 ⇒ d ≺ a. Then d ∧ b ≤ a ∧ b = 0.

Also c ∧ d = 0 and d ∨ a∗ = 1⇒ c ≺ a∗, then c ∧ a ≤ a∗ ∧ a = 0. Therefore c ∧ a = 0 = d ∧ b.

Thus L is an F -frame.
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The following corollary follows immediately as a consequence of Lemma 5.2.1 and Proposition

6.1.2.

Corollary 6.1.4. Every PF -frame is an F ′-frame.

Recall from [16], that a frame L is said to be a quasi F -frame if for every dense a ∈ CozL, then

the open quotient map h : L→↓ a is a C∗-quotient map. We have the following characterisation

of quasi F -frame which states that a frame L is said to be a quasi F -frame if and only if whenever

a, b ∈ CozL such that a ∧ b = 0 and a ∨ b is dense, then there exist c, d ∈ CozL such that

c ∨ d = 1 and c ∨ a = 1 = d ∨ b (see [16, Proposition 8.4.10]). The following theorem is well

known.

Theorem 6.1.2. [16] Every F -frame is a quasi F -frame.

Proof. Let a, b ∈ CozL such that a ∧ b = 0 and a ∨ b is dense. Since L is an F -frame, there

exist c, d ∈ CozL such that c ∨ d = 1 and c ∧ a = 0 = d ∧ b. Thus L is a quasi F -frame.

The following corollary is immediate from Proposition 6.1.2 and Theorem 6.1.2.

Corollary 6.1.5. Every PF -frame is a quasi F -frame.

6.2 Transportations of PF -frames

In this section, we show that PF -frames are preserved under the transportation of coz-onto

dense frame homomorphisms. On the other hand, PF -frames are also reflected by nearly open

frame homomorphisms which are coz-codense.

Proposition 6.2.1. Let h : L → M be a coz-onto, dense frame homomorphism. If L is a

PF -frame, then so is M .

Proof. Let a, b ∈ CozM such that a ∧ b = 0. Since h is coz-onto, there exist x, y ∈ CozL

such that h(x) = a and h(y) = b. Now h(x ∧ y) = h(x) ∧ h(y) = a ∧ b = 0M . By density
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of h, x ∧ y = 0L (also by Proposition 1.3.2). But L is a PF -frame, so at least one of them

is complemented, say x. It is well known that frame homomorphisms preserve complemented

elements. Thus M is a PF -frame.

Proposition 6.2.2. Let h : L → M be a nearly open and coz-codense frame homomorphism.

If M is a PF -frame, then so is L.

Proof. Let a, b ∈ CozL such that a∧ b = 0. Then since frame homomorphisms preserves cozero

elements, it follows that h(a) and h(b) are cozero elements in M . Furthermore,

h(a) ∧ h(b) = h(a ∧ b) = h(0L) = 0M .

M is a PF -frame, so at least one of h(a) or h(b) is complemented, say h(a). That is,

h(a) ∧ h(a)∗ = 0M and h(a) ∨ h(a)∗ = 1M .

Now h(a ∧ a∗) = h(a) ∧ h(a∗) ≤ h(a) ∧ h(a)∗ = 0M . By nearly openness of h, we have

h(a ∨ a∗) = h(a) ∨ h(a∗) = h(a) ∨ h(a)∗ = 1M . By coz-codense of h, a ∨ a∗ = 1L. Hence a is a

complemented element in L. Thus L is a PF -frame.

Next, we show that a frame is a PF -frame precisely when its Stone-Čech compactification is

a PF -frame. We regard the Stone-Čech compactification βL of a frame L as a set of regular

ideals. The map h : βL→ L is given by join and its right adjoint is denoted by r.

Theorem 6.2.1. A frame L is a PF -frame if and only if βL is a PF -frame.

Proof. Assume that L is a PF -frame. Take I, J ∈ CozβL such that I ∧ J = 0βL. Put

a ≡
∨
I ∈ CozL and b ≡

∨
J ∈ CozL.

Now the map h : βL→ L is a frame homomorphism, so

a ∧ b =
∨
I ∧

∨
J =

∨
(I ∧ J) = h(I ∧ J) = 0L.

Now L is a PF -frame, so one of a or b is complemented, say a. That is, a ∨ a∗ = 1L. That is

1βL = r(a ∨ a∗) = r(a) ∨ r(a∗) ≤ r(a) ∨ r(a)∗ = I ∨ I∗.
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Thus I is complemented in βL and hence βL is a PF -frame.

Conversely, suppose that βL is a PF -frame. Take a, b ∈ CozL such that a ∧ b = 0L. Put

a ≡
∨
I ∈ CozL and b ≡

∨
J ∈ CozL.

Then by density of the join map it follows that

I ∧ J = 0βL.

Now βL is a PF -frame, so there exist I∗ ∈ CozβL such that I ∨ I∗ = 1βL. Thus

h(I ∨ I∗) =
∨
I ∨

∨
I∗ = (

∨
I) ∨ (

∨
I)∗ = a ∨ a∗ = 1L.

Hence a is complemented and thus L is a PF -frame.

6.3 Ring-theoretic characterisations of PF -frames.

In this section, we characterise PF -frames in terms of the ring RL. The following proposition

is motivated by Lemma 3.1.1.

Proposition 6.3.1. If L is a PF -frame, then RL is a V N-local ring.

Proof. Let a, b ∈ CozL and a∧ b = 0, thus a∧ b is complemented. There exists c ∈ CozL such

that (a∧ b)∨ c = (a∨ c)∧ (b∨ c) = 1, then a∨ c = 1 and b∨ c = 1. The frame L is a PF -frame,

say a is complemented. Therefore, RL is a V N -local ring.

The following lemma is well-known in lattice theory.

Lemma 6.3.1. If a and b are complemented, then the meet of a and b is complemented.
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Proof. If a and b are complemented, then a ∨ a∗ = 1 = b ∨ b∗. Now since a∗ ∨ b∗ ≤ (a ∧ b)∗, we

have

(a ∧ b) ∨ (a ∧ b)∗ ≥ (a ∧ b) ∨ (a∗ ∨ b∗)

= [(a ∧ b) ∨ a∗)] ∨ [(a ∧ b) ∨ b∗]

= (b ∨ a∗) ∨ (a ∨ b∗)

= (a∗ ∨ a) ∨ (b ∨ b∗)

= 1 ∨ 1 = 1.

Thus a ∧ b is complemented.

We have the following characterisation; an ideal I in RL is said to be a P -ideal if and only

if for each f ∈ I, then cozf is complemented (see [83, Theorem 1.5]). The following theorem

follows from the fact that C(X) is a von Neumann regular ring if and only if all of its pure

ideals are P -ideals (see [4, Theorem 2.2 and Theorem 2.3] and [7]).

Theorem 6.3.2. An ideal I is a P -ideal in RL if and only if for every f ∈ I, cozf is comple-

mented in L.

Proof. We want to prove that an ideal I of a distributive lattice L is a P -ideal if and only if

for every f ∈ I, cozf is complemented. If I is a P -ideal and f ∈ I, then there exists g ∈ I such

that fg = 0 and g = 1 on supp f . That is, f ∨ g = 1. Hence 0 = coz(fg) = cozf ∧ cozg and

1 = coz(f ∨ g) = cozf ∨ cozg. This shows that cozf is complemented.

Conversely, if for every f ∈ I, coz(f) is complemented in L, and f, g ∈ L such that f ∧ g ∈ I,

we need to show that f or g belongs to I. Let h = (cozf ∨ cozg)∗. Since cozf and cozg are

complements in L, we have:

cozf ∧ h = 0 and cozg ∧ h = 0.

Thus, cozf ≤ h∗ and cozg ≤ h∗. It follows that h∗ ∈ I since I is an ideal. We have:
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h ∧ (f ∧ g) = (cozf ∨ cozg)∗ ∧ (f ∧ g) = ((cozf)∗ ∧ (f ∧ g)) ∧ ((cozg)∗ ∧ (f ∧ g)) = 0.

This shows that h∗ is an upper bound for cozf and cozg. Since cozf and cozg are complements

in L, it follows that h is a lower bound for f and g. Thus, we have:

f ∨ g ≤ h∗ ∈ I

Therefore, I is a P -ideal.

From Proposition 3.1.8, we can say that we are ready to give some algebraic characterisations

of PF -frames, and the following proposition is an extension of [14, Theorem 2.4].

Proposition 6.3.2. For a frame L, the following statements are equivalent.

(1) A frame L is a PF -frame.

(2) If a, b ∈ CozL such that a∧b is complemented, then at least one of them is complemented.

(3) Of any two ideals of RL whose product is a P -ideal, at least one is a P -ideal.

(4) Of any two principal ideals of RL whose product (intersection) is zero, at least one is

semiprime.

(5) Of any two principal ideals of RL whose product (intersection) is semiprime, at least one

is semiprime.

(6) L is an essential P -frame which is also an F -frame.

Proof. (1) ⇒ (2): Let a, b ∈ CozL and a ∧ b be complemented. If a ∧ b = 0, then we are

done. Now assume without loss of generality that a ∧ b 6= 0. There exists c ∈ CozL such that
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(a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) = 1 implies a ∨ c = 1 and b ∨ c = 1. Now, if (a ∧ b) ∧ c = 0 then

c ≤ (a ∧ b)∗. Put c = a∗ ∨ b∗. Now

b∗ ∨ b = b∗ ∨ [(a∗ ∧ b) ∨ (a ∧ b)]

= [b∗ ∨ (a∗ ∧ b)] ∨ (a ∧ b)

= [(b∗ ∨ a∗) ∧ (b∗ ∨ b)] ∨ (a ∧ b)

= (b∗ ∨ a∗) ∨ (a ∧ b)

= c ∨ (a ∧ b)

= (c ∨ a) ∧ (c ∨ b)

= 1.

The fourth step holds because a ∧ b 6= 0. Hence b is complemented as required.

(2)⇒ (3): Let I and J be two ideals of RL whose product (intersection) is a P -ideal. Suppose

J is not a P -ideal, then there is j ∈ J such that coz(j) is not complemented. Since ij ∈ IJ for

each i ∈ I, coz(ij) = cozi ∧ cozj is complemented (IJ is a P -ideal). Now using (2), cozi must

be complemented for each i ∈ I, so I is a P -ideal and we are done.

For intersection of two two ideals I and J in RL, where I
⋂
J is a P -ideal. Then we have

I
⋂
J = IJ .

(3) ⇒ (4): If the product or intersection of two principal ideals 〈f〉 and 〈g〉 is zero, then

〈f〉〈g〉 = 〈f〉
⋂
〈g〉 = 〈fg〉 = 〈0〉 is a P -ideal. Now using (3), one of the principal ideals 〈f〉 and

〈g〉 is a P -ideal whence it must be semiprime.

(4) ⇒ (5): Let the product (intersection) of principal ideals 〈f〉 and 〈g〉 be semiprime. Then

〈f〉〈g〉 = 〈f〉
⋂
〈g〉 = 〈fg〉 and coz(fg) = cozf ∧ cozg is complemented. Take complemented

element cozt = coz(fg)∗ for some t ∈ RL. Now 〈tf〉〈tg〉 = 〈0〉 implies that either 〈tf〉 or

〈tg〉 is semiprime (by (4)), say 〈tf〉 is semiprime. This implies that coz(tf) = cozt ∧ cozf is

complemented. On the other hand cozt ∨ cozf = 1 implies that cozf is complemented and
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hence the principal ideal 〈f〉 will be semiprime.

(5) ⇒ (1): Let cozf ∧ cozg = 0. Then 〈f〉
⋂
〈g〉 = 〈0〉 is semiprime. Hence by (5), at least one

of the ideals 〈f〉 and 〈g〉 is semiprime. Hence either cozf or cozg is complemented. Therefore

L is a PF -frame.

(1) ⇒ (6): We only need to show that L is an essential P -frame. Suppose on contrary that

a, b ∈ CozL which are not complemented with a 6= b. If a ∧ b = 0, then we are done. We

assume without loss of generality that a ∧ b 6= 0. If a ∧ b is complemented, then at least

one of them is complemented, a contradiction. If a ∧ b ∈ CozL is not complemented, then

(a ∧ b) ∨ (a ∧ b)∗ 6= 1. The frame L is completely regular and hence CozL generates L. There

exist a cozero element u ≤ (a ∧ b)∗. We claim that u = b∗ ∨ a∗ is a non complemented cozero

element, then u∗ = (b∗ ∨ a∗)∗ = b∗∗ ∧ a∗∗. Now

u ∨ u∗ = (b∗ ∨ a∗) ∨ (b∗∗ ∧ a∗∗)

= (b∗ ∨ a∗ ∨ b∗∗) ∧ (b∗ ∨ a∗ ∨ a∗∗)

= (b∗ ∨ b∗∗) ∧ (a∗ ∨ a∗∗)

6= 1.

The third step holding because a∗ ≤ b∗ ∨ b∗∗ and b∗ ≤ a∗ ∨ a∗∗. Thus u and a ∧ b are disjoint

cozero elements of L which are not complemented. Hence a contradiction since L is a PF -frame.

Hence L has at most one cozero element which is not complemented and we are done.

(6) ⇒ (1): Suppose a, b ∈ CozL such that a ∧ b = 0. Since L is an F -frame, there exist

c, d ∈ CozL such that c ∨ d = 1 and c ∧ a = 0 = d ∧ b. Now c ∧ a = 0 implies c ≤ a∗ and

d ∧ b = 0 implies d = b∗. Now a ≺ d and b ≺ c implies a∗ ∨ d = 1 = b∗ ∨ c. Then a∗ ∨ b∗ = 1.

This shows that a∧ b is complemented. The frame L is an essential P -frame, so at least one of

them is complemented.

Although the following corollaries are weaker than Proposition 3.1.4 and Corollary 3.1.4, they

are worth to note.
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Corollary 6.3.1. A PF -frame is strongly zero-dimensional.

Corollary 6.3.2. A PF -space is strongly zero-dimensional.

Theorem 6.3.3. A normal frame L is a PF -frame if and only if RL is a V N-local ring.

The following proposition is an extension of [14, Proposition 2.5].

Proposition 6.3.3. Every compact PF -frame is finite. More generally, every pseudocompact

PF -frame is finite.

Proof. Let L be a compact PF -frame and suppose on contrary, that L is infinite. Then L is

a one-point compactification of an indiscrete frame which implies that L is an F -frame. On

the other hand L contains a copy of βN, because by hypothesis is an infinite F -frame which is

impossible. So L is finite and we are done. Whenever L is pseudocompact thus υL = βL (Hewitt

realcompactification is equals to Stone-Čech compactification), thus RL ∼= R(υL) = R(βL)

and implies that βL is a PF -frame which must be finite as a consequence of the first part of

the proof.

The following proposition is an extension of [14, Proposition 2.7 (1)].

Proposition 6.3.4. Every weakly cozero complemented PF -frame is basically disconnected.

Proof. We recall that a frame L is weakly cozero complemented if for each a ∈ CozL there is

b ∈ CozL such that a∧b = 0 and a∨b is dense. Suppose that L is a weakly cozero complemented

PF -frame, we want to show that it is basically disconnected. Let a ∈ CozL. The frame L is

weakly cozero complemented, so there is b ∈ CozL such that a∧b = 0 and a∨b is dense. Again

L is a PF -frame, at least one of them is complemented, say a. Since, again, a is complemented

hence, immediately, a∗ is the complement of a and a∗∗ = a.

Recall from [47, 85], that a space X is an almost P-space if every dense Gδ-set of X has a

non-empty interior. For the construction of the definition below, we first recall the definition

4.1.1. For the equivalence part, we recall from [72], that a point I of βL is an almost P -point
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if for any α ∈MI , cozα is not dense. This motivates us to note down the following definition

in terms of ideals.

Definition 6.3.1. A frame L is essential almost P -frame if there is at most one cozero element

which is not regular. Equivalently, if there is at most one I ∈ βL such that α ∈ MI , cozα is

not dense.

Proposition 6.3.5. [14] Every essential P -frame is an essential almost P -frame.

Proof. It is immediate from definitions.

The following proposition is an extension of [14, Proposition 2.7 (2)].

Proposition 6.3.6. Every basically disconnected essential almost P -frame is a PF -frame.

Proof. Let a, b ∈ CozL be such a ∧ b = 0. The frame L is basically disconnected, so

a∗ ∨ a∗∗ = 1 = b∗ ∨ b∗∗.

Furthermore, L is almost P -frame, so at least of a, b ∈ CozL is regular. Thus at least one of a

and or b is complemented. Hence L is a PF -frame.

We close the section, with the following corollaries. Since every basically disconnected frame

is weakly cozero complemented, by Lemma 2.1.1, Proposition 6.3.4 and Proposition 6.3.6, it

follows that the following corollary (which is an extension of [14, Corollary 2.8]) is immediate.

Corollary 6.3.3. A frame is a weakly cozero complemented PF -frame if and only if it is a

basically disconnected essential almost P -frame.

By using Theorem 5.1.7, the following corollary (which is an extension of [14, Corollary 2.9])

is now an immediate consequence of Proposition 3.1.8.

Corollary 6.3.4. A frame L is a PF -frame if and only if of any two comaximal principal ideals

of RL, one is semiprime and the other is convex.
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