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Abstract
Injury is a truly global health issue with massive societal and economic conse-

quences. In this study, Negative-Binomial integer-valued generalised autore-

gressive conditional heteroscedasticity (NB-INGARCH) and autoregressive in-

tegrated moving average (ARIMA) techniques have been compared and used to

build models for both Mpumalanga and Gauteng monthly injury mortality data.

The best model was chosen using the root mean square error (RMSE). The best

model is the one with the lowest RMSE value. The ARIMA(1, 1, 1) × (1, 1, 1)12

model had the lowest RMSE, making it the most suitable model for both MP

and GP monthly injury mortality data. The results identified ARIMA(1, 1, 1) ×

(1, 1, 1)12 as an appropriate model for predicting Mpumalanga and Gauteng

monthly injury mortality with the lowest root mean square error. ARIMA(1, 1, 1)×

(1, 1, 1)12 model is applied to forecast the injury mortality for the next two years.

Furthermore, the forecasted results of ARIMA(1, 1, 1) × (1, 1, 1)12 model show

a decrease of injury mortality in 2020 as compared to 2019. A multifaceted

approach to reduce injury mortality is needed. Regulating alcohol sales and

raising alcohol prices prevent all forms of violence, while improving drinking

environments prevent youth violence. A Graduated Driver Licensing system

could benefit the youth driver population to reduce transport accidents.
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Chapter 1

Introduction and background

1.1 Introduction

An injury, is defined as a bodily cut at the organic level resulting from acute

exposure to energy. This energy may be as a result of mechanical, thermal,

electrical and chemical, which could interact with the body in amounts or rates

that exceed the threshold of physiological tolerance (Robertson, 2015). Injuries

are the major causes of mortality, public health threats and disability at any age

worldwide, which may be avertable (James et al., 2020). Mortality is defined as

the state of being subject to death, which may be caused by the circumstances of

communicable diseases, non-communicable diseases and injuries (WHO, 2019).

Mortality caused by injury or injury mortality (IM) are classified as mortality

due to intentional injuries such as suicide and homicide, and also unintentional

injuries such as road traffic, falls, poisoning, burn and drowning.

IM contributes to almost 4.4 million deaths per year globally, which is about

12055 deaths per day (WHO, 2021). According to World Health Organisation



Introduction and background 2

(WHO) report of 2021, deaths caused by unintentional injuries and intentional

injuries accounts to 3.16 million and 1.25 million every year, respectively. The

report further indicated that over 30% of these deaths resulted from road traf-

fic, 17% from suicide, 10% from homicide and 7% from drowning.

Africa, just like any continent around the world, continue to witness a high bur-

den of IM. For instant Tyson et al. (2015), indicated that regardless of lack of

vital or quality data on the causes of death in sub-Saharan Africa, few studies

conducted found that there is a high proportions of deaths due to injuries. De-

spite Africa having just 2% of the world’s motor vehicles, it accounts for 16%

of worldwide road traffic deaths and has the highest road fatality rate of all

WHO regions (WHO, 2021). The road traffic IM has been increasing for the

three last decade and African region continues to have the highest road traffic

deaths (Schlottmann et al., 2017). For instance, Nigeria and South Africa have

the highest mortality rate on road traffic with 33.7 and 31.9 deaths per 100000

population per year, respectively.

South Africa has high mortality levels resulting from a unique quadruple dis-

ease burden, which is burdened with a diverse spectrum of diseases, includ-

ing infectious diseases, chronic and degenerative diseases, malnutrition and

childbirth-related conditions and a disproportionately large burden of injuries

(Goosen et al., 2003; Brysiewicz, 2001).

Injuries impose as a fourth major burden on the South African population,

which is driven in particular by the high incidence of homicide, while homicide

and road traffic collisions are the leading causes of IM in South Africa (Mat-

zopoulos et al., 2019). According to Statistics South Africa (StatsSA) report of

2021, more than a tenth of all deaths that occurred in South Africa in 2018 were

due to IM, (StatsSA, 2021). It was observed that the majority of injury causes
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of death resulting from unintentional injury were 82% in South Africa. South

Africa is one of the few places in the world where rates of intentional injury ex-

ceed the rates of unintentional injury (WHO, 2019). The 2012 national burden

of disease study found that homicide was the eighth leading cause of overall

premature death in South Africa, while being the second leading cause of pre-

mature deaths for males, after HIV/AIDS (Matzopoulos et al., 2015). The injury

burden was very high, particularly for homicide, which was approximately six

times the global average (Matzopoulos et al., 2015).

Within individual countries, the frequency and the patterns of IM vary between

rural and urban areas (Kmet and Macarthur, 2006). The rate of urbanisation

in South Africa has increased dramatically over the years. The provincial esti-

mates show that Gauteng has the largest of population, with 15.8 million and

Mpumalanga accounted to the fifth with 4.7 million, (StatsSA, 2021). Accord-

ing to Gantchev et al. (2015), Gauteng (urban) and Mpumalanga (rural) had

equally higher overall IM rate found among children from Gauteng being 31.7

per 100000 deaths and Mpumalanga with 29.2 per 100000 deaths. Further-

more, in particular passenger related motor vehicle deaths were more evident

among children in rural areas than urban areas, also burn was more common

in the urban than the rural areas. According to StatsSA (2021) the 13.7% of

IM was in Eastern Cape which was the leading province, while Gauteng and

Mpumalanga were fourth and fifth with 12% and 10.9%, respectively.

The United Nations General Assembly adopted a resolution on 25 September

2015, where a 2030 agenda for Sustainable Development called for action by all

countries to eradicate poverty, reduce mortality and to realise the human rights

of all. This consisted of 17 Sustainable Development Goals (SDGs) and 169 tar-

gets (Cf, 2015). The most important SDGs pertaining to reduction of injury and

violence include: “eliminate all forms of violence against all women and girls”,
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“significantly reducing all forms of violence and related rates everywhere”, “by

2020, halve the number of global deaths and injuries from road traffic”. The

2014-2019 strategic framework in South Africa has the 2030 National Devel-

opment Plan (NDP), which provides for an increase in South Africans life ex-

pectancy by 2030 of at least 70 years, and for a 50% decreasing in the levels of

violence, road traffic injury and other injuries compared to 2010, among others

(dNational Department of Health, 2015).

The aim of this study is to investigate mortality caused by injuries in South

Africa using various statistical techniques in the Gauteng and Mpumalanga

provinces. Whereas Gauteng is defined as predominantly urban, Mpumalanga

is mainly rural in nature. Although there are no agreed-upon universal cri-

teria delineating rural and urban areas, they may be distinguished by differ-

ence along several dimensions, including infrastructure, social service, non-

agricultural employment, income and population density (Bank, 2011).

1.2 Problem statement

Mortality is a major concern in South Africa and worldwide according to (WHO,

2019). Based on literature and South African National Development Plan (NDP),

which was adopted to minimise injuries, accidents and abuse by 50% in 2030,

a broad national or provincial study is needed to help address these issues in

South Africa. The current study will attempt to address these challenges at the

provincial level by identifying the factors that contribute to injury mortality.

1.3 Motivation

A reduction in the proportion of IM all over the world is important. The loss of

working group through injury is a big motivating factor to carry out this study
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as these negatively affect the economy of a country. An understanding of var-

ious factors that contribute to injury mortality could help the country and the

world to become a safer place to live in and by so doing, reducing mortality re-

sulting from injuries. This study will therefore employ statistical methods to

investigate and model IM in the two provinces of South Africa. The use of sta-

tistical techniques such as econometric and time series techniques would allow

more efficient use of the available injury mortality information. According to

the literature study, there has not been much statistical research in the field of

mortality caused by injuries in South Africa using these proposed count data

and time series models, which might result in limited information on poten-

tial risk factors contributing to IM. The motivation for selecting Gauteng and

Mpumalanga provinces in this study, is that there are nine provinces in South

Africa and of those nine, Mpumalanga, Limpopo, Eastern Cape are known as

rural provinces while the rest are urban provinces (Atkinson, 2014).

The proposed study will use the available IM dataset obtained from Statistics

South Africa on mortality and causes of death in Gauteng and Mpumalanga

provinces, as well as some statistical techniques, to identify various factors as-

sociated with IM in these two provinces, motivated by the projected increase

in IM. The identification of these contributing factors using various statistical

techniques, will among others, assist the government and various departments

in reducing mortality caused by injuries.

1.4 Aim

The study aims to investigate mortality caused by injuries using various statis-

tical techniques in the Gauteng and Mpumalanga provinces of South Africa.
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1.5 Objectives

The objectives of the study are to:

(i) Identify factors associated with mortality related injury.

(ii) Compare injury mortality of Gauteng and Mpumalanga provinces.

(iii) Model the pattern of injury mortality in these provinces.

(iv) Perform a comparative analysis of various statistical methods used.

(v) Forecast the injury mortality in these two provinces using the best time

series model.

1.6 Methodology

In this study, mortality and causes of death data from StatsSA for the years

2008-2018 will be utilised. The analysis of this data will be conducted using

various statistical models, namely, count data models such as Poisson and Neg-

ative Binomial models as well as time series models such as autoregressive

integrated moving average (ARIMA), Poisson integer-valued generalised au-

toregressive conditional heteroscedasticity (INGARCH) and Negative Binomial

integer-valued generalised autoregressive conditional heteroscedasticity (NB-

INGARCH). SAS, R and SPSS statistical packages will be used for both data

management and analysis purposes.

1.7 Significance of the study

The findings of this study are useful for intervention measures of the govern-

ment agencies such as StatsSA and WHO. This study will be useful in setting
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up appropriate plans regarding the incidence and trend of mortality from non-

natural injuries so that prevention measures can be put in place to reduce mor-

tality from injuries. The study will also provide the two provinces of South

Africa with information, such as warnings, awareness, among others. The find-

ings may also be useful in tracking and assessing the operations of the govern-

ment and different agencies involved. Furthermore, this study will also act as a

reference point for other researchers seeking to model mortality from injuries.

1.8 Structure of the dissertation

Chapter 1 has provided the introduction and background of the study, prob-

lem statement and motivation of the research study. The aim, objectives and

significance of the study are also provided in Chapter 1. Chapter 2 presents

the literature review, while Chapter 3 provides the methodology of the research

study. Chapter 4 presents the data analysis in the form of tables and figures.

Interpretations and discussions of the results are also provided in Chapter 4.

Chapter 5 provides the concluding remarks and recommendations of the study.



Chapter 2

Literature review

2.1 Introduction

This chapter addresses the global epidemiology of injuries, followed by South

Africa’s estimates for injury mortality (IM) then injury differences in urban and

rural areas and the overview of IM.

2.2 Global estimates of injury mortality

In 2019, global estimates for injuries reported almost 4.4 million deaths per

year, with 12055 deaths per day, while unintentional injuries (drowning, road

traffic, falls, burn, poisoning, natural disasters) claimed the lives of 3.16 million

people and intentional injuries (such as homicide, suicide, war) claimed the

lives of 1.25 million people, with road traffic accounting for 30% of these deaths,

suicide for 17%, and homicide 10% (WHO, 2021). Around three-quarters of

deaths worldwide were caused by road traffic, while four-fifths of homicide were
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committed by males. Furthermore, among those aged 5-29 years, three of the

top five causes of mortality were injury-related, including road traffic, homicide

and suicide.

2.2.1 Injury mortality statistics globally

Abio et al. (2020) conducted a study on the trends in mortality from external

causes in the Republic of Seychelles between 1989 and 2018. The data were ex-

tracted from the national vital statistics register and Negative Binomial models

were used for causes of deaths. Road traffic injuries, drowning, suicide, poison-

ing, homicide, and falls are examples of external causes of deaths that may be

characterized depending on the nature of the sources of injuries (Holder, 2001).

External causes accounted for 8.5% of all deaths from 1989 to 2018. Drowning

was the leading cause of IM, accounting for 22% of deaths, followed by road

traffic injuries, which accounted for 18% of deaths, and 9% suicide, 8% poison-

ing and 7% homicide. Males, on the other hand, accounted for 78% of all injury

mortality, while females accounted for 22%. Males had the highest mortality

rates from external causes, with 19% drowning, 14% road traffic, and 8% sui-

cide, whereas females had the highest mortality rates from external causes,

with 3% road traffic, 3% drowning, and 2% homicide. The majority of these

deaths occurred in people aged 20 to 39 and 40 to 59 which accounting 37% and

27%, respectively.

Roth et al. (2018) reported on Global, regional, and national age-sex-specific

mortality for 282 causes of death in 195 countries (one of the country was

Ethiopia) and territories from 1980–2017 and negative binomial models were

used for causes of deaths. In 2017, injuries were responsible for 12% of all

deaths. Road traffic injuries were the leading cause of death in 2017, account-

ing for 1.24 million deaths of all injury deaths in the year. In 2017, 794000

people died from suicide, 696000 died from falls, 405000 died from homicide,
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and 295000 died from drowning. Anteneh and Endris (2020) studied injury-

related adult mortality in Addis Ababa, Ethiopia, from 2007 to 2012 and 2015-

2016, using data from the Addis Ababa Mortality Surveillance program’s verbal

autopsy. They discovered that injury-related mortality accounted for 7% of all

deaths, whereas non-injury deaths accounted for 93%. Road traffic claimed the

most lives for both male and females, accounting for 40% of all injury deaths

and 27% of suicide deaths. Males accounted for 80% of IM, whereas suicide

accounted for 30% of males’ deaths and 15% of females. The age group 15-34

years accounted for 44% of homicide and suicide, followed by 35-54 years with

32%.

In a study in United States of America (USA), (Heron, 2019) reported on lead-

ing causes of death in 2017. Data of this report was based on information from

all deaths certificates files in the 50 states and District of Columbia. The ap-

plication of regression analysis was used on the mortality data of 50 states and

District of Columbia. In 2017, the top ten causes of deaths accounted for 74% of

all deaths in the USA, with road traffic and suicide placed third and tenth, with

6.0% and 1.7%, respectively. Males and females, accounting for 7.6%, and 4%

of all deaths, respectively. The relative burden of mortality from these causes

was significantly larger at aged 1 to 9, accounting for 31.8% of all deaths, 40.6%

of deaths among aged 10 to 24, and 34.6% among aged 25-44. Murphy et al.

(2018) found that unintentional injury was the main cause of IM in the USA,

with 40.4 per 100000 population.

Henley et al. (2019) reported the trends in IM in Australia, the data that was

presented in these report was a series of Australia Bureau of Statistics (ABS)

Cause of Death Unit Record Files (CODURF) for years 1999 to 2017. Age-

standardised mortality rates per 100000 population were calculated for unin-

tentional and intentional injuries. Injury was the cause of 13144 deaths in
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2016-2017, accounting for 8.2% of all deaths. Unintentional injury was the

leading cause of IM, accounting for 75% of all deaths, and intentional for 25%.

Falls involved in 38% of IM which was the leading cause of death, followed by

suicide with 23%. The majority of deaths occurred at ages 65 and over, account-

ing for 53%, while 43% of males and 68% of females.

In a study assessing deaths from 1999-2015 and visits to emergency depart-

ment in 2001-2015 for children and adolescents groups through web-based in-

jury statistics query and reporting system (WISQARS) in the USA, (Ballesteros

et al., 2018). The application of regression analysis was used on the WISQARS.

In 2015, unintentional injury accounted for 61% of IM, homicide accounted for

20% and suicide accounted for 19%. Males accounted for 69% of deaths due to

injury-related, while 31% accounted by females. There were 12977 IM among

people aged 0 to 19, for a mortality rate of 16.2 per 100000 population. More

than 58% of deaths were accounted on the age 15 to 19. These findings support

Curtin et al. (2018), who found an increase in injury among children and ado-

lescents aged 10-19 years between 1999 and 2016, with unintentional injury

leading as the cause, followed by suicide and homicide. Additionally, youth, 15-

19 years old accounted for 55% of all deaths from injury. Furthermore aged 15

to 19 years old suffered the most injuries as a results of motor vehicle traffic.

2.3 South African estimates of injury mortality

In 2018, IM accounted for 12% of all causes of mortality in South Africa. Un-

intentional injuries accounted for about 80% of IM deaths, whereas intentional

injuries accounted for only 20%. Homicide was the second leading cause of in-

jury, accounting for 14% of all injuries and 1.7% of all deaths. Road traffic were

the third most prevalent cause IM, accounting for 11.4% of IM and 1.4% of all

deaths, while suicide accounted for 1% of IM and 0.2% of all deaths. This shows
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how injuries contribute to the quadruple burden of illness, which encompasses

HIV/AIDS, Tuberculosis (TB), communicable diseases (i.e. maternal causes,

perinatal conditions, nutritional deficiencies), and non-communicable diseases

(i.e. cancer, diabetes, heart disease and asthma) (StatsSA, 2021).

2.3.1 South African injury mortality statistics

Meel (2017) conducted a study to check the pattern of non-natural deaths in

the Transkei Sub-region of South Africa. A record review was undertaken from

1996 to 2015 of 24693 medico-legal autopsies performed at Mthatha Forensic

Pathology Laboratory. The regression approaches were used to determine the

incidence. In that region, the total average of non-natural mortality was 205

per 100000 per population in 2015. The leading cause of IM was unintentional,

which accounted for 51% of all deaths, while intentional injury accounted for

49%. The major cause of death in IM was homicide, which accounted for 45%

of all deaths, followed by road traffic, which accounted for 24% of all deaths.

In males, homicide was the leading cause of death, accounting for 49% of all

deaths, followed by road traffic at 22%, while in females, road traffic injury

was the leading cause of death, accounting for 30% of all deaths, followed by

homicide at 27%. The majority of deaths occurred between the ages 11 and 44,

accounting for 64% of all deaths, with males accounting for 54% and females

for 10%. Males and females aged 21 to 30 accounted for 25% and 4% of IM,

respectively, which was the highest age group.

Pillay-van Wyk et al. (2016) conducted a study on mortality trends and differ-

entials in South Africa from 1997 to 2012. They analysed causes of death from

a data for 1997 -2012. These data was extracted from StatsSA. These data were

adjusted for completeness using indirect demographic techniques for adults and

comparison with survey and census estimates for child mortality. The multino-

mial logistic regression was applied to the data by age, sex, province and popu-
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lation group, to smooth out sampling fluctuations in the cause fractions. Injury-

related cause were responsible for 9.6% of all deaths. Homicide remained the

leading cause of IM in 1997 and 2012, with 7.3% in 1997 and 3.5% in 2012, mov-

ing from third to eighth in 1997 and 2012, respectively, while road traffic stayed

in ninth place with 3.6% in 1997 and 3.3% in 2012. In terms of provinces, West-

ern Cape had accounted for 9.5% of IM and was the second top cause of deaths

in 2012, followed by 5.8% in Gauteng. Road traffic injuries were the second

leading cause of deaths in Mpumalanga, accounted for 5.7% of all deaths, fol-

lowed by Limpopo with 5.4%. Using data from the Local mortality Surveillance

system (LMSS), the child Healthcare Problem Identification Programme (Child

PIP), and the Perinatal Problem Identification Programme (PPIP), Reid et al.

(2016) reviewed the deaths of children aged 5 and under in the Metro West ge-

ographical service area (GSA) of the Western Cape between 1 January and 31

December 2011 with particular reference to cause and location. IM causes ac-

counted for 9% of deaths.

In a study in Western Cape, Prinsloo et al. (2016) reported on validating homi-

cide rate in the Western Cape province from the 2009 IM survey. The mor-

tality data were sourced from Western Cape’s provincial IM Surveillance Sys-

tem to complete the national sample. Age-standardised mortality rates per

100000 population were calculated for homicide, suicide, unintentional injury,

and transport. In 2009, the Western Cape’s age-standardised mortality rate

was 40.1 per 100000 population, placing fourth among nine provinces and close

to the national average of 38.4 per 100000 population. In the Western Cape,

there was a little of variation between metro and non-metro regions. While the

Eastern Cape has the highest non-metro homicide rate (57.9 per 100000 popu-

lation), KwaZulu-Natal has the highest metro homicide rate (72.3 per 100000

population).
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2.4 Urban-rural injury mortality differences

A study conducted to investigate trends in urban-rural mortality disparity in

China from 2010 to 2016 (Li et al., 2020), they utilised data from disease surveil-

lance point system (DSPs) collected by the Chinese center for Disease Control

and Prevention (CDC). Chi-squared test were used to compare differences in

rates between urban and rural residents. IM accounted for 7.8% of all the

deaths, where urban injury deaths accounted for 6.2% of all the deaths in ur-

ban areas, whereas rural injury deaths accounted for 8.5% of all deaths in rural

areas. A study in China conducted by Leilei et al. (2019) provided an overview

of burden of injury in China in 2017 and the study was aimed to measure the

change in this burden between 1990 and 2017, and to explore the underlying

factors influencing these change. The Global Burden of Disease (GBD), injury,

and risk factors for non-fatal and fatal injury outcomes at the national and 31

subnational levels were used in 2017. Injuries accounted for 7% of total deaths.

The five leading causes of IM in urban and rural areas were road traffic, fall,

suicide, drowning and poisoning, which accounted to 80% of all injury-related

deaths. The mortality rate were significantly higher in rural areas (Li et al.,

2020).

Moy et al. (2017) reported on leading causes of death in non-metropolitan (ru-

ral) and metropolitan (urban) areas from 1999 to 2014. They utilised data from

National Vital Statistics System in USA to calculate age-adjusted rates and po-

tential excess deaths for rural and urban for the five leading causes of deaths.

Poisson regression was used on both the number and the excess deaths. Dur-

ing 1999-2014 the age-adjusted deaths rate on unintentional injury under IM

were higher in rural with 58% than urban with 38%. Rural IM of 50 per 100000

were higher than those in urban areas of 30 per 100000 population. The age-

adjusted deaths rate on unintentional injury were approximately 50% higher in

rural areas than urban areas for most of this period. 65% of unintentional in-
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jury deaths in rural areas were potentially excess deaths, compared with 29.2%

in urban areas.

In a study in northern Finland, (Raatiniemi et al., 2016) reported on IM dif-

ferences in urban and rural areas over a five-year period from 2007 to 2021.

Raatiniemi et al. (2016) utilised data coded according to ICD-10 from Finnish

cause-of-death registry. The Kruskal-Wallis test were used to compare differ-

ences in rates between urban and rural. Rural IM of 65 per 100000 were higher

than those in urban areas of 45 per 100000. General level falls classified as

low-energy trauma by the authors, suicide and road traffic incidents were the

leading causes of deaths. No significant differences were found in the rates of

low-energy trauma, suicide or homicide between urban and rural areas.

Swart et al. (2012) conducted a population based study to examine whether the

incidence and pattern of fatal injuries among children differ in rural and urban

areas of South Africa utilising National Injury Mortality Surveillance System

(NIMSS) for the period 2007. All deaths were among children below 15 years of

age in Gauteng (urban) and Mpumalanga (rural) who died in 2007. The cross-

sectional method was used to analyse all deaths among children below 15 years

of age in Gauteng and Mpumalanga who died in 2007. In Gauteng, the vast

majority of child injuries were unintentional (89%) followed by homicide (9%),

and suicide (2%). A similar trend was observed in Mpumalanga, where 87.5%

of child injury deaths were inadvertent, 10.5% were homicide, and 2% were sui-

cide. Pedestrian injuries were the leading cause of child injury in Gauteng, fol-

lowed by burns, drowning, passenger-related injuries, and fall, which accounted

for 69.8% of all child injury deaths in the province. In Mpumalanga, pedestrian

injuries, followed by passenger-related deaths, drowning, burns and poisoning

were the main causes of child injury deaths.
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Garrib et al. (2011) conducted a study on IM rates and associated factors in

rural South Africa from 2000-2007. In the study they used population-based

mortality data collected by a demographic surveillance system on all the resi-

dent and non-resident members of 11000 households. Deaths and person-years

of observation (pyo) were aggregated for individuals between 01 January 2000

and 31 December 2007. The regression analyses were used to analyse mortality

data. Injury-related causes accounted for 8.9% of all deaths, with a 142.4 per

100000 pyo IM rate. Homicide was the most prevalent cause of injury deaths

in both females and males, accounting for 50% of all injury deaths. Road traf-

fic deaths accounted for 26% of IM, and suicide was the third most common

cause, accounting for 8% of IM. Homicide mortality rates were leading in males

all ages, peaking at 289.5 deaths per 100000 pyo in the 30-39 year age group.

Homicide mortality rates in women peaked in the 70-79 year age group, with

96.8 mortality per 100000 person-years. In all age categories, males had con-

siderably higher road traffic mortality rates than female. All females’ suicides

happened between the age of 10-40, while 54% of male suicides occurred be-

tween the ages of 20 and 29, with a mortality rate of 54.3 deaths per 100000

population. In terms of areas, females in urban regions had approximately 50%

of the probability of dying from injury as females in rural areas. Males in urban

region had 60% higher risk of injury death than males in rural areas.

2.5 Overview of global and national estimates of

injury mortality

These studies reveal that unintentional injury is a leading contributor to IM

worldwide. Road traffic injuries seems to be a prominent source on IM in some

of these nations, with rural areas reporting more deaths than urban areas. Con-

trast too international studies, the literature about South Africa reveal that

intentional injury is a leading contributor to IM. Homicide seems to be a promi-
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nent source on IM in South Africa. According to a study of the literature, there

are few nationally representative urban-rural studied on IM in South Africa.

This study will fill up the gaps in the literature.

According to the literature study, there has not been much statistical research

in the field of mortality caused by injuries in South Africa using these proposed

count data and time series models, which might result in limited information on

potential risk factors contributing to injury mortality. This study will therefore

employ statistical methods to investigate and model IM in the two provinces of

South Africa. The use of statistical techniques such as econometric and time se-

ries techniques would allow more efficient use of the available IM information.
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Methodology

Introduction

This chapter deals with a detailed description of the data source and study

area and the methods used for this research. The chapter addressed the pos-

sible probability distributions of count data models such as Poisson and neg-

ative binomial distributions as well as time series models such as autoregres-

sive integrated moving average (ARIMA), Poisson integer-valued generalised

autoregressive conditional heteroscedasticity (INGARCH) and Negative Bino-

mial integer-valued generalised autoregressive conditional heteroscedasticity

(NB-INGARCH).

3.1 Data source and study area

The study uses secondary data obtained from Statistics South Africa (StatsSA)

database on mortality and causes of death from the year 2008-2018. StatsSA
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records 48 characteristics or factors for every deceased person, such as province,

manner of death by victim age and sex, day of death, month of death, year of

death, education of deceased and cause of death (homicide, suicide, transport

accidents (road traffic), falls, burn, drowning, poisoning and natural disasters),

among others. Accordingly, this current study will utilise StatsSA data of these

two provinces which are Gauteng and Mpumalanga. The selected provinces are

two of the nine provinces of South Africa. The motivation behind the choice

of these two provinces is that Gauteng is the economic hub of South Africa

and Africa, although it is the smallest of South Africa’s nine provinces by land-

size (StatsSA, 2019), Gauteng also is one of the provinces which comprises the

largest share (25.8%) of the South African population, while Mpumalanga is

one of the provinces with about (7.8%) of the South African population (StatsSA,

2019). SAS, R and SPSS statistical packages will be used for both data man-

agement and analysis purposes.

3.2 Analytical procedures

3.2.1 Overview of generalised linear models

Basic count data regression models can be represented and understood using

the generalised linear model (GLM) framework that emerged in the statistical

literature in the early1970s (Nelder and Wedderburn, 1972). The GLM, is an

extension of linear modelling process that follows probability distribution other

than normal and has residuals that are not normally distributed, it includes lin-

ear regression models, analysis of variance models, logistic regression models,

Poisson regression models, zero-inflated Poisson regression models, Negative-

Binomial models, log-linear models, as well as many other models. The depen-

dent variable (injury mortality) values are predicted from a linear combination

of predictor variables, which are connected to the variable via a link function

(Armitage et al., 2008).
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3.2.2 Overview of time series models

The time series modelling of injury mortality data in this study will be done us-

ing the Box-Jenkins autoregressive integrated moving average (ARIMA), Pois-

son integer-valued generalised autoregressive conditional heteroscedasticity (IN-

GARCH) and Negative Binomial integer-valued generalised autoregressive con-

ditional heteroscedasticity (NB-INGARCH) models. The advantage of these

proposed models over other models are that Poisson INGARCH and NB-INGARCH

have the ability to handle discreteness in count data whereas the ARIMA model

has the strength which results from its distributional assumption underlying

the estimation process. Furthermore, the comparison of these time series mod-

els will be performed using accuracy measures such as root mean square error

(RMSE). Finally, the forecasting of injury mortality will be done based on the

selected model between the ARIMA and Poisson INGARCH or NB-INGARCH.

3.3 Generalised linear models

As precedent, GLM count models under consideration in this study are Poisson

and Negative Binomial regression.

A generalised model consists of three components listed hereunder:

1. A random (exponential family) component, which specify the conditional dis-

tribution of the response variable, Yi , given the explanatory variables, xij.

2. A linear function of the regression variables, called the linear predictor

ηi = α + βiXi1 + ...+ βkXk1 = x
′

iβ, (3.1)

on which the expected value µi of Yi depends.

3. An invertible link function,

g(µi) = ηi, (3.2)
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which transforms the expectation of the response to the linear predictor. The

inverse of the link is sometimes called the mean function

g−1(ηi) = µi. (3.3)

For traditional linear models in which the random component consists of the as-

sumption that the response variable follows the normal distribution, canonical

link function is the identity link. The identity link specifies that the expected

mean of the response variable is identical to the linear predictor, rather than to

non-linear function of the linear predictor. That is, for the normal linear model,

the link function

g(µi) = µi. (3.4)

The GLM is an extension of the linear model to include response variables that

follow any probability distribution in the exponential family of distributions.

Many commonly used distributions in the exponential family are the normal,

binomial, Poisson, exponential, gamma and inverse Gaussian distributions. In

addition, several other distributions are in the exponential family and they in-

clude the Beta, multinomial, Dirichlet, and Pareto. There are other several dis-

tributions which are not in the exponential family but are used for statistical

modelling and they include the student’s t and uniform distributions.

The exponential family

GLMs may be used to model variables following distributions in the exponential

family with density functions

f(y; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y;φ)

}
(3.5)
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or,

log(y; θ, φ) =
yθ − b(θ)

a(φ)
+ c(y;φ), (3.6)

where φ is a dispersion parameter a(φ), b(θ) and c(y;φ) are known functions,for

distributions in the exponential families, the conditional variable of Y is a func-

tion of the mean, µ together with a dispersion parameter, φ, that is,

E(Yi) = µi = b
′
(θ) (3.7)

and

var(Yi) = σ2
i = b

′′
(θ)a(φ), (3.8)

where b
′
(θ) and b

′′
(θ) are the first and second derivatives of b(θ). The dispersion

parameter is usually fixed to one for some distributions.

The link function

In theory, link function ηi = g(µi) can be any monotonic, differentiable function.

In practice, only a small set of link functions are actually utilised. In particular,

links are chosen such that the inverse link µi = g−1(ηi) is easily computed, and

so that g−1 maps from Xiβ = ηi ∈ Θ into the set of admissible values for µi. A

log link is usually used for Poisson model, since while µi = g(µi) ∈ Θ, because Yi

is a count, we have µi ∈ 0, 1, .... For binomial data, the link function maps from

0 < µi < 1 to µi ∈ Θ.

3.4 Model components

The canonical treatment of GLMs is from McCullagh and Nelder (1989), and

this review closely follows their notation and approach we begin by considering
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the familiar linear regression model,

Yi = Xiβ + ϵi, (3.9)

where i = 1, 2, ...,n: Yi is a dependent variable, Xiβ is a vector of k independent

variables or predictors, β is a k-by-1 vector of unknown parameters and ϵi are

zero-mean stochastic disturbances. Typically, the ϵi are assumed to be indepen-

dent across observations with constant variance σ2
i , and distributed normally.

That is, the normal linear regression model is characterised by the following

features

1. Random component: the Yi are assumed to have independent normal

distribution with E(Yi) = µi, with constant variance σ2, or Yi
˜iidN(µ, σ2) if

it is not normally distributed then yi ∼ P (µi).

2. Systematic component: specifies the explanatory or independent vari-

ables for the model: β0 + β1x1 + β2x2 + ...+ βpxp. The covariates xi combine

linearly with the coefficients to form the linear predictor

ηi = Xiβ. (3.10)

3. Link between the random and systematic components: the linear

predictor ηi = Xiβ is a function of the mean parameter µi via a link func-

tion, g(µi). It should be noted that for normal linear model g is an identity.

3.4.1 Linear predictor

The log-linear model

Suppose that we have a sample of n observations, y1, y2, y3, ..., yn which can be

treated as realisations of independent Poisson random variables, with yi ∼

P (µi), and suppose that we want to let the µi (and therefore the variance) de-
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pend on a vector of explanatory variables xi. We could entertain a simple linear

model of the form

µi = x
′

iβ, (3.11)

but this model has the disadvantage that the linear predictor on the right hand

side can assume any real value, whereas the Poisson mean on the left hand side,

which represent an expected count, has to be non-negative. A straightforward

solution to this problem is to use the model of logarithm of the mean instead of

using a linear model. Thus, we take logs calculating

ηi = log(µi), (3.12)

and assume that the transformed mean follows a linear model

µi = x
′

iβ, (3.13)

thus, we consider a generalised linear model with link log. Combining these two

steps in one we can write the log-linear model as

log(µi) = x
′

iβ, (3.14)

in this model the regression coefficient βj represents the expected change in the

log of the mean per unit change in the predictor xj. In other words, increasing

xj by one unit is associated with an increase βj in the log of the mean.

Exponentiating equation, we obtain a multiplicative model for the mean:

µi = exp(x
′

iβ), (3.15)

in this model, an exponentiated regression coefficient exp(βj) represents a mul-

tiplicative effect of the jth predictor on the mean. Increasing xj by one unit

multiplies the mean by a factor exp(βj).
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A further advantage of using the log link stems from the empirical observa-

tion that with count data the effect of predictors are often multiplicative rather

than additive. That is, one typically observes small effects for small counts, and

large effects for large counts. If the effect is in fact proportional to the count,

working in the log scale leads to much simpler model.

3.4.2 Link function

Fisher scoring log-linear model

Fisher scoring algorithm is a form of Newton-Raphson method used in statistics

to solve maximum likelihood equations numerically. Nelder and Wedderburn

(1972) applied Fisher scoring algorithm to estimate β̂ in generalised linear mod-

els. The Fisher scoring algorithm for Poisson regression models with canonical

link would be considered, where it would be modelled as

ηi = g(µi) = log(µi), (3.16)

the derivative of the link is easily seen to be

g
′
=

1

µi

, (3.17)

specifically, given an initial estimate β, the algorithm update it to be βnew by

βnew = β +

{
E
(
− ∂L

∂β∂βT

)}−1
∂L

∂β
, (3.18)

where both derivatives are evaluated at β, and the expectation is evaluated as if

β were the true parameter values. β is then replaced by βnew and the updating

is repeated until convergence. It can be shown that for a GLM, the updating
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equation can be rewritten as

βnew = β +
(
XTWX

)−1XTWz, (3.19)

where, z is the n-vector with ith component

zi =
(
Yi − µi

)
y

′
µi (3.20)

and, W is the n× n diagonal matrix with

Wi =
{

g
′
(µi)

2b
′′}−1

, (3.21)

Wi =
{
(µi)

1

µ2
i

}−1 (3.22)

and this simplifies to

Wi = µi. (3.23)

3.4.3 Probability distributions

The Poisson regression model

The Poisson distribution is a discrete probability distribution that represents

the probability of a certain number of events occurring in a given amount of

time provided these events occur at a specified average rate and each count

occurs independently of the time since the previous event. The Poisson dis-

tribution may also be used to calculate the number of occurrences in various

intervals (Kutner et al., 2005).

Poisson regression is a technique for describing count data as a function of a

set of explanatory variables (Lee, 1986). It has been widely employed in human

and veterinary epidemiological research to explore the incidence and mortal-

ity of chronic illnesses throughout the previous two decades (Gardner et al.,
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1995). Poisson regression has also been used to estimate injury mortality in

many places of the world when analysing mortality data. Poisson regression

has been used to compare exposed and unexposed populations and to deter-

mine the causes of injury mortality, among other things.

Simeon-Denis Poisson (1781–1840) was the first to introduce the Poisson distri-

bution, which he described in his probability theory in 1838. The work focused

on a set of random variables N that count, 31 among other things, the number

of discrete occurrences (also known as ”arrivals”) that occur during a particular

time interval, (Haight, 1967). If the expected number of occurrences in this in-

terval is µi , then the probability that there are exactly yi occurrences (yi being

a non-negative integer, yi = 0, 1, 2, ...) is equal to

f(yi, µi) =
µyi
i e

−µi

yi!
, (3.24)

where

yi is the number of occurrences of an event- the probability of which is given by

the function f(yi, µi), µi is a positive real number, equal to the expected number

of occurrences that occur during the given interval.

The parameter µi is only the mean number of occurrences, yi but also its vari-

ance

σ2
yi
= E(y2i )− [E(yi)]

2 = µi, (3.25)

thus, the number of observed occurrences fluctuates about its mean, µi with a

standard deviation
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σyi =
√
µi, (3.26)

as a function of yi , this is the discrete probability mass function. The Poisson

distribution can be derived as a limiting case of the binomial distribution. The

Poisson distribution can be applied to system with a large number of possible

events, each of which is rare. The Poisson distribution is sometimes called a

Poissonian, analogous to the term Gaussian for Gauss or normal distribution.

Assumptions of Poisson distribution are:

• Observations are independent.

• Probability of occurrence in a short interval is proportional to the length

of the interval.

• Probability of another occurrence in such a short interval is zero.

Verification of Poisson distribution as a member of exponential family:

The Poisson distribution belongs to the exponential family as defined by Nelder

and Wedderburn, (Nelder and Wedderburn, 1972). Taking logarithm of the Pois-

son distribution function, we obtain

logfi(yi) = yilog(µi)− µi − log(yi!), (3.27)

where

yi is the number of occurrences of the count or event,the probability of which

is f(yi). µi is the expected number of occurrences that occur during the given

interval. Looking at the coefficient of yi we observe immediately that the link

function is log(µi) and the canonical parameter (θi) is given by

θi = log(µi), (3.28)



Methodology 29

therefore, the canonical link is the logarithm. Solving for µi we obtain the in-

verse link

µi = eθi (3.29)

and we see that we can write the second term in equation 3.27 as

b(θi) = eθi , (3.30)

the last term is a function of yi only, so we identify from equation 3.27 that

c(yi, φ) = log(yi), (3.31)

finally, it should be noted that we take the dispersion parameter (φ = 1), just as

it is in the binomial case and we verify that Poisson distribution belongs to the

exponential family.

Verification of equal mean and variance:

Differentiating the cumulation function b(θi) we have

µi = b
′
(θ) = eθi = µi (3.32)

and differentiating again we have

σ2
i = b

′′
(θ) = eθi = µi, (3.33)

hence, the mean is equal to the variance. In spite of its recent wide application,

Poisson regression model remains partly poorly known especially if compared

with other regression techniques, like linear, logistic and Cox regression models

(Kutner et al., 2005). The Poisson regression model assumes that the sample

of n observations, yi are observations on independent Poisson variables Yi with
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mean µi. If this model is correct, the equal variance assumption of classic linear

regression is violated, since the Yi have means equal to their variance. So we fit

the generalised linear model,

log(µi) = x
′

iβ, (3.34)

we say that the Poisson regression model is generalised linear model with Pois-

son error and a log link, so that

µi = exp(x
′

iβ), (3.35)

this implies that one unit increases in an xi are associated with multiplication

of µi by exp(βi).

Model identification

The primary equation of the model is

P (Yi = yi) =
e−µµyi

yi!
, yi = 1, 2, ..., (3.36)

the most common formulation of this model is the log-linear specification as in

equation

log(µi) = x
′

iβ, (3.37)

the expected number of events per period is given by

E(yi|xi) = µi = ex
′
iβ, (3.38)

thus

dE(yi|xi)

dxi

= βex
′
iβ = βiµi. (3.39)
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The major assumption of Poisson model is

E(yi|xi) = µi = ex
′
iβ = V ar(yi|xi). (3.40)

This assumption would be tested. According to Hilbe (2011), If, V ar(yi|xi) >

E(yi|xi) then there is overdispersion.If, V ar(yi|xi) < E(yi|xi) then there is under-

dispersion.

The Negative Binomial model

The Negative Binomial regression is more flexible than the Poisson and is fre-

quently used to study count data with overdispersion (Hilbe, 2011). In fact, the

Negative Binomial regression model is in many ways equivalent to the Poisson

regression model because the Negative Binomial model could be viewed as a

Poisson-gamma mixture model (Hilbe, 2011). However, the difference is that

the Negative Binomial regression model had a free dispersion parameter. In

other words, the Poisson regression model can be considered as a Negative Bi-

nomial regression with an ancillary or heterogeneity. In the Negative Binomial

regression model, a random parameter reflecting unexplained between subject

differences is included Gardner et al. (1995), that is, the negative binomial re-

gression adds an overdispersion parameter to estimate the possible deviation of

the variance from the expected value under Poisson regression.

The major assumption of the Poisson model in equation 3.40 is that the Poisson

model does not allow for over or underdispersion. A richer model is obtained

by using the Negative Binomial distribution instead of Poisson distribution.

Instead of equation

P (Yi = yi) =
e−µiµyi

i

yi!
, (3.41)

For mathematical convenience, the gamma distribution is usually assumed for

µi = ex
′
iβ (Berk and MacDonald, 2008). After normalising the gamma distribu-
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tion to have an expected value, one arrives at

g(µi) =
θθ

Γ(θ)
e−θµiµθ−1

i , (3.42)

where Γ denotes the gamma distribution, and θ is a parameter to be specified a

prior or estimated. Intergrating over µi, the density for yi, conditional only on

the predictors, is

f(yi|xi) =
Γ(θ + yi)

Γ(yi + 1)Γ(θ)

(
µi

µi + θ

)yi(
1− µi

µi + θ

)θ

, (3.43)

this Negative Binomial distribution can be shown to have conditional mean µi

and conditional variance µi

(
1 + η2µi

)
with η2 = 1

θ
. Note that the parameter η2

is not allowed to vary over the observations. As before, the conditional mean

function is modelled as

E(yi|xi) = µi = ex
′
iβ. (3.44)

The conditional variance function is the given by

V ar(yi|xi) = ex
′
iβ
(
1 + η2ex

′
iβ
)
. (3.45)

Using maximum likelihood, we can then estimate the regression parameter β,

and also the extra parameter η. The parameter η measures the degree of over

(or under) dispersion. The limit case η = 0 corresponds to the Poisson model.

3.5 Maximum likelihood estimation

Maximum likelihood estimation (MLE) involves estimating the regression pa-

rameters specifically using the maximum likelihood estimation (Myung, 2003).

The likelihood function for n independent Poisson observations is a product of



Methodology 33

probabilities given by

L(θ|X, Y ) =
b∏

i=a

eyiθ
′
xe−eθ

′
x

y!
, (3.46)

if prob(yi) =
e−µiµ

yi
i

yi!
is the probability function of Poisson distribution. Taking

logarithm of equation 3.45 and ignoring the constant involving log(yi!), we find

that the log-likelihood function as

log L(β) =
n∑

i=0

[−µi + yix
′

iβ] (3.47)

=
n∑

i=1

[−ex
′
iβ + yix

′

iβ], (3.48)

where µi = ex
′
iβ (Kane, 1948). The parameters of this equation can be estimated

using maximum likelihood method

∂L

∂β
=

n∑
i=1

(yi − ex
′
iβ)xi = 0 (3.49)

and
∂2L

∂β∂β ′ = −
n∑

i=1

(ex
′
iβx

′

ixi), (3.50)

which is the Hessian of the function and with typical element

∂2L

∂β∂β ′ = −
n∑

i=1

(ex
′
iβxijxil); j, l = 1, 2, ..., p, (3.51)

as
∂2L

∂βj∂βl

= −
n∑

i=1

(ex
′
iβxijxil), (3.52)

does not involve the y data

kjl = E

(
∂2L

∂βj∂βl

)
= −

n∑
i=1

(ex
′
iβxijxil); j, l = 1, 2, ..., p (3.53)
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and the information matrix is

K =
n∑

i=1

(ex
′
iβx

′

ixi), (3.54)

there is no closed form solution to,

∂L

∂β
=

n∑
i=1

(yi − ex
′
iβ)xi = 0, (3.55)

so the MLE for β must be obtained numerically, However, as the Hessian is

negative definite for all x and β, the MLE(β̂) is unique, if it exists.

From

∂2L

∂βj∂βl

= −
n∑

i=1

(ex
′
iβxijxil) and kjl = E

(
∂2L

∂βj∂βl

)
= −

n∑
i=1

(ex
′
iβxijxil), (3.56)

kjlr = E

(
∂3L

∂βj∂βl∂βr

)
= −

n∑
i=1

(ex
′
iβxijxilxir) (3.57)

and

k
(r)
jl = (

∂kjl

∂βr

)
= −

n∑
i=1

(ex
′
iβxijxilxir), j, l, r = 1, 2, 3, ..., p. (3.58)

To make matters more transparent, consider the case of a single covariate and

an intercept. Then xi is a scalar observation and

L =
n∑

i=1

[
− µi + yi(β1 + β2xi)− log(yi)

]
, (3.59)

where µi = exp(β1 + β2) , for i = 1, 2, 3, ..., n. The first order conditions, ∂L
∂β

= 0

yield a system of K equations (one for each β) of the form

∂L

∂β
=

n∑
i=1

(yi − ex
′
iβ)xi = 0, (3.60)
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where ŷi = ex
′
iβ̂ is the fitted value of yi. The predicted/fitted value has as usual

been taken as the estimated value
(
yi|xi

)
. This first order condition tells us that

the vector of residual is orthogonal to the vectors of explicative variables.

3.6 Test of hypotheses

Likelihood ratio tests for log-linear models can easily be constructed in terms

of deviances. In general, the differences in deviances between two nested mod-

els has approximately in large samples a chi-square distribution with degrees

of freedom equal to the difference in the number of parameters between the

models, under the assumption that the smaller model is correct. One can also

construct Wald tests, based on the fact that maximum likelihood estimator β̂

has approximately in large samples of a multivariate normal distribution with

mean equal to the true parameter value β and variance-covariance matrix,

var(β̂) = X
′
WX, (3.61)

where X is the model matrix and W is the diagonal matrix of estimation weights.

3.6.1 Likelihood ratio test

A likelihood test on the slopes serves as a sample test on the overall fit of the

model and is analogous to the F-test in the traditional regression model (Woolf,

1957). The model with only the intercept is nothing but the mean of the counts,

or

µ1 = ȳ, (3.62)

where

ȳ =
n∑

i=1

yi
n
, (3.63)
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the corresponding log-likelihood is

LR = nȳ + log(ȳ)
n∑

i=1

yi −
n∑

i=1

log(yi!), (3.64)

where R stands for the restricted mode, as opposed to the unrestricted model

with K − 1 slope parameters. the last term in
∑n

i=1 log(yi!) can be dropped, as

long as it is also dropped in the calculation of the maximum likelihood

Lu =
n∑

i=1

[
− ex

′
iβ + yix

′

iβ − log(yi!)

]
, (3.65)

for the unrestricted model Lu using

L = ex
′
iβ̂t , (3.66)

the likelihood ratio test is then

LR = 2
(
Lu − LR

)
, (3.67)

which follows a χ2 distribution with K − 1 degrees of freedom.

3.6.2 Goodness of fit test

In order to assess the adequacy of the Poisson regression model you should first

look at the basic descriptive statistics for the event count data. If the count

mean and variance are significantly different (equivalent in a Poisson distri-

bution) then the model is likely to be overdispersed or underdispersed. The

model analysis option gives a scale parameter (sp) as a measure of overdisper-

sion; this is equal to the Pearson chi-square statistic divided by the number of

observations minus the number of parameters (covariates and intercept). Un-

derdispersion is very uncommon to various forms of count data especially with
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accident data.

The variances of the coefficients can be adjusted by multiplying by sp. the good-

ness of fit test statistics and residuals can be adjusted by dividing by sp. Using a

quasi-likelihood approach sp could be integrated with regression, but this would

assume a known fixed value for sp, which is seldom the case. A better approach

to overdispersed Poisson models is to use a parametric alternative model, the

negative binomial.

The deviance (likelihood ratio) test statistic, G2, is the most useful summary

of the adequacy of the fitted model (Woolf, 1957). It represents the change in

deviance between the fitted model and model with a constant term and no co-

variates; therefore G2 is not calculated if no constant is specified. If this test is

significant then the covariates contribute significantly to the model.

The deviance goodness of fit test reflects the fit of the data to Poisson distribu-

tion in the regression. If this test is significant then a red asterisk is shown by

the p − value, and you should consider other covariates and other error distri-

butions such as Negative Binomial.

The deviance function is

deviance = 2
n∑

i=1

yiln

[
yi
µ̂i

]
−
(
yi − µ̂i

)
, (3.68)

where y is the number of events, n is the number of observations and µ̂i is the

fitted Poisson mean. The first term is identical to the binomial deviance, rep-

resenting twice a sum of observed times log of observed over fitted. The second

term, a sum of differences between observed and fitted values, is usually zero,

because MLE’s in Poisson models have the property of reproduction. The second

term, a sum of differences between observed and fitted values, is usually zero,
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because MLE’s in Poisson models have the property of reproducing marginal

totals, as noted above.

The log-likelihood function is

L =
n∑

i=1

yiln
(
µ̂i

)
− µ̂i − ln(yi!), (3.69)

the maximum likelihood regression proceeds by iteratively re-weighted least

squares, using singular value decomposition to solve the linear system at each

iteration, until the change in deviance is within the specified accuracy. The

Pearson Chi-square residual is

rp =
(yi − µ̂i)

2

µ̂i

, (3.70)

for large samples the distribution of the deviance is approximately a chi-squares

with n− p degrees of freedom, where n is the number of observations and p the

number of parameters. Thus, deviance can be used directly to test the goodness

of fit of the model. An alternative measure of goodness of fit is Pearson’s chi-

squared statistic, which is defined as the Pearson goodness of fit test statistic

is

χ2 =
n∑

i=1

yi − µi√
µ̂i

, (3.71)

the deviance residual is (Cook and Weisberg, 1982)

rd = sign(yi − µ̂i)
√

deviance(yi, µ̂i), (3.72)

the Freeman-Turkey, variance stabilized, residual is (Freeman and Tukey, 1950)

rft =
√
yi + sqrtyi + 1− sqrtyiµ̂i, (3.73)
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the standardized residual is

rs =
(yi − µ̂i)√
1− hi

, (3.74)

where h is the leverage (diagonal of the hat matrix).

3.7 Time series models

The time series modelling of IM data in this study will be done using the

Box-Jenkins autoregressive integrated moving average (ARIMA) and Poisson

integer-valued generalised autoregressive conditional heteroscedasticity (IN-

GARCH) or Negative Binomial integer-valued generalised autoregressive con-

ditional heteroscedasticity (NB-INGARCH) models. The advantage of these

models over other models are that Poisson INGARCH and NB-INGARCH has

the ability to handle discreteness in count data whereas the ARIMA model has

the strength which results from its distributional assumption underlying the

estimation process.

3.8 ARIMA model

ARIMA is one of the most traditional methods of non-stationary time series

analysis. In contrast to the regression models, the ARIMA model allows time

series to be explained by its past, or lagged values and stochastic error terms.

An ARIMA model can be understood by outlining each of its components as

provided in the succeeding subsections.



Methodology 40

3.8.1 Autoregressive model

The model xt(injury mortality) is autoregression (AR) of order p if there exists

constants ϕ1, ϕ2, ..., ϕp such that

xt = ϕ1xt−1 + ...+ ϕpxt−p + zt, (3.75)

where zt is a white noise with mean zero and constant σ2
z .

3.8.2 Moving average

The model xt is moving average (MA) of order q if there exists constants θ1, θ2, ..., θq

such that

xt = θ1zt−1 + ...+ θqzt−q + zt, (3.76)

where zt is a white noise with mean zero and constant σ2
z .

Autoregressive moving average

The autoregressive moving average (ARMA(p, q)) model containing AR and MA

is said to be an ARMA model of order p and q, respectively, such that

xt = ϕ1xt−1 + ...+ ϕpxt−p + θ1zt−1 + ...+ θqzt−q. (3.77)

The equation 3.76 can also be written using the backshift operator B, such that

ϕ(B)xt = θ(B)zt, (3.78)

where ϕ(B), θ(B) are polynomial of order p, q.



Methodology 41

3.8.3 Autoregressive integrated moving average

The ARMA model can be used only with stationary time series data. In the

case of non-stationarity, the autoregressive integrated moving average model

(ARIMA), which is a time-series forecasting approach that is used in predicting

the future value of a variable from its own past value, will be used for non-

stationary time series data (Pankratz, 2009). It uses autoregression (AR) and

moving average (MA), and incorporates a differencing d order to remove trend

and /or seasonality. The model is expressed with the following equation

ϕp(B)(1−B)dxt = θq(B)zt, (3.79)

selecting appropriate values for parameter p and q requires testing and opti-

misation. To choose the values, one must inspect visual observations for the

data to determine trend and/or seasonality. Visualisation in the form of auto-

correlation function (ACF) and partial auto-correlation function (PACF) chart

have proven to be useful in determining the values for parameters p and q.

However, in case large numbers need to be forecasted, manual visual inspec-

tion will not be possible. One solution for this problem is to incorporate the use

of software packages that facilitate automated selection of ARIMA’s parameters

and chooses the best suited one.

3.9 Poisson INGARCH model

3.9.1 ARCH model

Lets us start with the autoregressive conditional heteroskedasticity (ARCH)

models, which were developed by R.F Engle III (Engle, 1982). The ARCH mod-

els are motivated by a specific drawback of the AR models. If looking at the
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conditional mean and variance of an AR(p) process, then

E
[
Xt|Xt−1, Xt−2, · · ·

]
= α1Xt−1 + · · ·+ αpXt−p + µϵ, (3.80)

varies in time according to the last p observations, while

V
[
Xt|Xt−1, Xt−2, · · ·

]
= σ2

ϵ , (3.81)

is constant in time. But it is common to observe clusters of large or low volatility,

a phenomenon that cannot be reproduced by the AR models.

Let
(
ϵt
)
Z be square-integrable white noise E

[
ϵt
]
= 0 and V

[
ϵt
]
= 1. Then

(
Xt

)
Z

defined by

Xt = σt · ϵt, (3.82)

where σ2
t = β0 + α1X

2
t−1 + · · · + αpX

2
t−p with β0, αp > 0 and α1, · · · , αp−1 ≥ 0,

and where ϵt is required to be independent of
(
Xt

)
s<t

(causality), is said to be an

ARCH(p) process.

As a result, we obtain the time-varying condition variances

V
[
Xt|Xt−1, Xt−2, · · ·

]
= σ2

t = β0 + α1X
2
t−1 + · · ·+ αpX

2
t−p, (3.83)

so now, the AR(p)-like recursion is not applied to the observation but to their

conditional variance. In contrast, the conditional variance remains constant

in time provided that the requirement
∑p

j=1 αj < 1 is satisfied. In fact constant

condition again guarantees the existence of a unique causal (weakly) stationary

solution of the ARCH recursion. So although an ARCH(p) process is obviously

not serially independent by construction, it is serially uncorrelated. However,

looking at the process of squared observations, autocorrelation becomes visible.

If the weakly stationary and causal ARCH(p) process
(
Xt

)
Z has existing fourth-

order moments, there we can represent the squared process (X2
t−p)Z by an AR(p)-



Methodology 43

like recursion,

X2
t = α1X

2
t−1 + · · ·+ αpX

2
t−p + vt, (3.84)

with the
(
vt
)
Z being weak white noise having the mean E

[
vt
]
= β0. There-

fore the autocorrelated function of the squared process satisfies the Yule-Walker

given by

ρ(k) =

p∑
i=1

αiρ(|k − i|), (3.85)

for k = 1, 2, ...

3.9.2 GARCH model

A few years after the of ARCH model, Engle’s student T. Bollerslev proposed

the generalised autoregressive conditional heteroskedasticity (GARCH) model,

where the conditional variance not only depended on the past observations but

also on past conditional variances (Bollerslev, 1986). So for GARCH process of

order (p, q), abbreviated as GARCH(p, q) process, the recursion

σ2
t = β0 + α1X

2
t−1 + · · ·+ αpX

2
t−p + β1σ

2
t−1 + · · ·+ βqσ

2
t−q, (3.86)

is required to be satisfied. The condition for the existence of a weakly stationary

and causal solution now become α1 + · · ·+ αp + β1 + · · ·+ βq < 1.

3.9.3 INGARCH model

The ordinary ARMA models cannot be used for count process
(
Xt

)
Z, as they are

not able to preserve of the discrete range because of “multiplication problem”

(Fokianos, 2012). A way to circumventing this problem is to define a count

process model by linear regression of the conditional means

Mt := E
[
Xt|Xt−1, Xt−2...

]
(3.87)
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if the count at time t is generated using a count distribution having mean Mt,

it is guaranteed that the outcomes are integer values. Note that this approach

also shares analogies with an ARCH model, where the autoregression is defined

at the level of conditional variance. ARCH models are generalised beyond pure

autoregression by also including past conditional variances into the model re-

cusion to give GARCH.

In the abovementioned count context, one may hence include the previous con-

dition mean as a ”feedback” term. This leads to the definition of the integer-

valued generalised autoregressive conditional heteroscedasticity (INGARCH),

abbreviated as INGARCH(p, q) model with p ≥ 1 and q ≥ 0, which is based on

the assumption of the conditional mean Mt satisfying

Mt = β0 +

p∑
i=1

αiXt−i +

q∑
j=1

βjMt−j, (3.88)

with β0 > 0 and α1, · · · , αp, β1, · · · , βq ≥ 0 (if q = 0, we call it an INARCH(p)

model). Depending on the choice of the conditional distribution family, different

INGARCH models are obtained.

3.9.4 Poisson INGARCH model

Count time series x1, · · · , xT are discret-valued time series having a quantita-

tive range consisting of nonnegative intergers from N0 = 0, 1, · · · (Fokianos et al.,

2009). The set of all integers is denoted Z = · · · ,−1, 0, 1.

Let
(
Xt

)
Z be a process with range N0. The process

(
Xt

)
Z follows the Poisson

INGARCH(p, q) model with p ≥ 1 and q ≥ 0

• Xt, conditioned on Xt−1, Xt−2, · · · , is Poisson distributed according to Poi(Mt),

where

• the conditional mean Mt := E
[
Xt|Xt−1, Xt−2, · · ·

]
satisfies
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Mt = β0 +
∑p

i=1 αiXt−i +
∑q

j=1 βjMt−j,

with β0 > 0 and α1, · · · , αp, β1, · · · , βq ≥ 0.

The default choice is a conditional Poisson distribution, i.e., Xt, conditioned on

Xt−i, · · · , is Poisson distributed according to Poi(Mt), (Ferland et al., 2006). The

resulting Poisson INGARCH model is sometimes also referred to as a linear

Poisson autoregressive model (Fokianos et al., 2009). This model has been dis-

cussed by several authors including Ferland et al. (2006), Fokianos et al. (2009)

and Weiß (2009). The stochastic properties of Poisson INGARCH model have

been derived by Ferland et al. (2006) and Weiß (2009). For

α• + β• :=

p∑
i=1

αi +

q∑
j=1

βj < 1, (3.89)

the Poisson INGARCH process exists and is strictly stationary, with finite first-

and and second-order moments (Weiß, 2009). For p = q = 1, all moments exist

(Ferland et al., 2006) and mixing properties have been established by Neumann

(2011). Due to linear conditional mean, the unconditional mean equals

µ =
β0

1− α• − β•
, (3.90)

and the variance

V
[
Xt

]
= µ+ V

[
Mt

]
, (3.91)

and autocovariances can be computed by solving a set of Yule-Walker equations

(Weiß, 2009):

γ(k) =

p∑
i=1

αiγ(|k − i|) +
min(k−1,q)∑

j=1

βjγ(k − j) +

q∑
j=k

βjγM(j − k), (3.92)

γM(l) =
∑min(l,p)

i=1 αiγM(|l − i|) +
∑p

i=l+1 αiγ(i− l) +
∑q

j=1 βjγM(|l − j|),
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where γ(k) := Cov
[
Xt, Xt−k

]
and γM(l) := Cov

[
Mt,Mt−l

]
(Weiß, 2009).

Despite the fact that the conditional Poisson distribution is equidispersed (vari-

ance equal the mean), the unconditional distribution exhibits overdispersion,

i.e., the dispersion ratio σ2

µ
> 1. In the purely autoregressive case of an INARCH(p)

model (i.e., if q = 0), the Yule-Walker equations imply that ARMA-like autocor-

relation function (ACF) satisfies

ρ(k) =

p∑
i=1

αiρ(|k − i|), (3.93)

so except the restriction to non-negative coefficients αi, equation 3.91 is iden-

tical to the Yule-Walker equations of an ordinary AR(p) model. Consequently,

the model order of an INARCH model can be identified by using the ACF and

PACF.

3.9.5 Negative Binomial INGARCH model

As an alternative to the conditional Poisson distribution, Zhu (2011) and Chris-

tou and Fokianos (2014) considered the Negative Binomial distribution NB(r, pt)

with the parameters r > 0 and pt =
r

λt+r
where λt is, for instance, of the form

equation 3.89. We still have E(Xt|Xu, u < t) = λt, but the conditional variance
λt+λ2

t

r
is larger than the conditional variance of the Poisson case, which reflects

the conditional overdispersion that is suspected to be present on real series

(Christou and Fokianos, 2014). The condition on equation 3.88 entails the exis-

tence of an ergodic and strictly stationary Xt. In the case (p, q) = (1, 1), it can be

shown (Christou and Fokianos, 2014), that the stationary solution is such that

E(X2
t ) < ∞ if and only if (

α0 + β0

)2
+

α2
0

r
< 1, (3.94)
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writing α0 and β0 instead of α01 and β01. Always in the case (p, q) = (1, 1), it can

be shown that E(X4
t ) < ∞ if and only if

(
α0 + β0

)4
+

6α2
0

(
α0 + β0

)2
r

+
α3
0

(
11α0 + 8β0

)2
r2

+
6α4

0

r3
< 1. (3.95)

The conditions ensuring the existence of E(X2
t ) are much more complicated for

the general orders p and q , (Zhu, 2011).

3.9.6 Quasi maximum likelihood estimation

The estimation of the model’s parameter was determined by quasi-conditional

maximum likelihood estimation (QMLE) as explained by Ahmad and Francq

(2016). This is denoted by

θ = (β0, β1, · · · , βp, α1, · · · , αq, η1, η2, · · · , ηr)T , (3.96)

is the vector of regression parameter and the parameter space for the INGARCH

model regardless of the distributional assumption which is taken to be

Θ =

{
θ ∈ Rp+q+r+1 : β0 > 0, β1, · · · , βp, α1, · · · , αq, η1, · · · , ηr ≥ 0,

p∑
k=1

βk+

q∑
l=1

αl < 1

}
,

(3.97)

the intercept β0 is essential to be positive while all other parameter must be

nonnegative to ensure positivity of the conditional mean Mt. For the log-linear

model, the parameter space is taken to be

Θ =

{
θ ∈ Rp+q+r+1 : |β1|, · · · , |βp|, |α1|, · · · , |αq| < 1,

∣∣∣∣∣
p∑

k=1

βk +

q∑
l=1

αl

∣∣∣∣∣ < 1

}
. (3.98)

According to Mütze et al. (2019), the estimation to be negative binomial param-

eter does not rely on the additional dispersion parameter, ϕ. This allows util-

ising a quasi-maximum likelihood approach based on the Poisson Likelihood to
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estimate the regression parameter, θ. The QMLE approach is preferred for sim-

plicity and its practicality on deriving consistent estimators when the model for

Mt has been correctly specified. The conditional quasi log-likelihood function up

to a constant is as follow:

l(θ) =
n∑

t=1

logpt(yt; θ) =
n∑

t=1

(ytln(Mt(θ))−Mt(θ)), (3.99)

where pt(y; θ) is the probability density function of a Poisson distribution. In

case of the Poisson assumption it holds if σ2, where σ2 is the variance. The

QMLE of θ is the solution of non-linear constrained optimisation problem.

θ̂ = argmaxθ∈Θl(θ). (3.100)

3.10 Test for normality

Normality tests are used to deduce whether a set of data is adequately mod-

elled by the normal distribution and how probable it is for a random variable

underlying the data to be normally distributed (Subramoney et al., 2021). The

hypotheses tested are,

H0 : Data is normally distributed.

H1 : Data is not normally distributed.

The normal distribution’s most important properties are that it is symmetric (

zero skewness) and has a kurtosis of three.

3.10.1 Jarque-Bera test

The well-known test for normality of Jarque and Bera (JB) is a goodness-of-fit

test that compares the difference of the skewness and kurtosis of sample data

to those of the normal distribution (Thadewald and Büning, 2007). The JB test
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statistic is defined as,

JB =
N

6

[
s2 +

(K − 3)2

4

]
, (3.101)

with S, K and N denoting the sample skewness, sample kurtosis and sample

size, respectively. For large sample sizes, the test statistic is compared to a

chi-squared distribution with two degrees of freedom, i.e., χ2(2). Normality is

rejected if the test statistic is greater than chi-squared value. The chi-squared

approximation needs fairly large sample sizes in order for it to be accurate.

3.10.2 Shapiro-Wilk test

The Shapiro-Wilk (SW) test has been found to be the most powerful normality

test and is highly recommended by researchers as the best choice for testing the

normality of a set of data (Ghasemi and Zahediasl, 2012). The test statistic is

given by,

W =
(
∑n

i=1 aixi)
2∑n

i=1(xi − x̄)2
, (3.102)

where xi are the ordered random sample value and ai are constants generated

from the covariances, variance and means of the sample of size n. For small

values of W , it indicates that the sample is not normally distributed and thus

the null hypothesis is rejected. This test also has limitations in a sense that the

test has bias by sample sample size ( the larger the sample, the more accurate

the results).

3.10.3 Quantile-Quantile plot

The Quantile-Quantile (Q-Q ) plot is a graphical device used to assess the valid-

ity of the theoretical distributional assumption for a particular data set, for ex-

ample a normal distribution or an exponential distribution (Velez and Morales,

2015). Generally, the main idea is to calculate the theoretically expected values

for each data point based on the distribution in question. If the data points fall
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approximately on a straight line, the data will consequently follow the assumed

distribution. This approach is merely a visual check and thus subjective, but it

enables one to get an idea whether the assumed distribution is plausible.

3.11 Testing for unit root and stationarity

The statistical basis for estimation and forecasting depends on a time series be-

ing covariance stationary. However, a great amount of economic and financial

time series exhibit characteristics of time series that is non-stationary. Thus,

prior to further analysis, identifying the form of the trend and thereafter remov-

ing it from the time series is an essential task (Zivot and Wang, 2003). Trend

removal methods depend on whether a time series is trend stationary or differ-

ence stationary. Unit root tests can be used to distinguish whether a trending

time series should be differenced or regressed against deterministic functions

of time.

3.11.1 Unit root test

Unit root test is used to test whether a time series variable is a non-stationary

(Fuller, 2009). In time series analysis, a unit root arises when either autore-

gressive or moving average polynomials of an ARIMA model has a unit root is

in a unit circle. A unit root that has either of these polynomial has important

implications for modelling. Consider AR(1)

xt − xt−1 =
(
ρ− 1

)
xt−1 + zt, (3.103)

∇xt = ϕxt−1 + zt, (3.104)
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where, zt ∼ WN(0, σ2
z)

τnc =
ϕ

SE(ϕ)
, (3.105)

τnc is test statistic with no constant, n is number of observations. where SE(ϕ)

is the standard error of the coefficient

SE(ϕ) =

√
s2∑n

t=1

(
xt−1 − x̄

) , (3.106)

s2 =
n∑

t=1

(∇xt − ϕxt−1)
2

n− 3
, (3.107)

s2 is a sample variance,τnc is a test statistic with a no constant n is number

of observations and x̄ is the sample mean of x1, x2, · · · , xn−1. we reject the null

hypotheses if τnc > tα
2
,n−1 where tα

2
,n−1 is tabulated value with the degrees of

freedom n− 1.

3.11.2 Dickey-Fuller test

The Dickey-Fuller test is used to check whether a unit root is present in an au-

toregressive model and whether or not the data should be differenced (Phillips

and Perron, 1988). To test for unit root with drift, the AR(1) is considered and

is given by

∇xt = α0 + ϕxt−1 + zt, (3.108)

τcd =
ϕ

SE(ϕ)
, (3.109)

where SE(ϕ) is the standard error of the coefficient

SE(ϕ) =

√
s2∑n

i=1

(
xt−1 − x̄

) , (3.110)
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s2 =
n∑

i=1

(∇xt − α0 − ϕxt−1)
2

n− 3
, (3.111)

s2 is a sample variance,τcd is a test statistic with a constant, n is number of

observations and x̄ is the sample mean of x1, x2, · · · , xn−1. we reject the null

hypotheses if τcd > tα
2
,n−1 where tα

2
,n−1 is tabulated value with the degrees of

freedom n− 1.

3.11.3 Augmented Dickey-Fuller test

Augmented Dickey-Fuller (ADF) is used to test for a unit root with a drift and

deterministic time trend

∇xt = α0 + α1 + ϕxt−1 + zt, (3.112)

τct =
ϕ

SE(ϕ)
, (3.113)

where SE(ϕ) is the standard error of the coefficient

SE(ϕ) =

√
s2∑n

i=1

(
xt−1 − x̄

) , (3.114)

s2 =
n∑

t=1

(∇xt − α0 + α1 − ϕxt−1)
2

n− 3
, (3.115)

s2 is a sample variance,τct is a test statistic with a drift, n is number of observa-

tions and x̄ is the sample mean of x1, x2, · · · , xn−1. we reject the null hypotheses

if τct > tα
2
,n−1 where tα

2
,n−1 is tabulated value with the degrees of freedom n− 1.

3.11.4 Phillips-Perron test

Phillips and Perron (PP) proposed non-parametric test statistic that rectify au-

tocorrelation and heteroscedasticity in the errors (Phillips and Perron, 1988). It

is a modification of the ADF test in a sense that autocorrelation does not affect
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the asymptotic distribution of the test statistic. Using an AR(1) model to illus-

trate the non-parametric modified test statistic for the three cases are given as

follows,

Case I: Constant only (Models with drift)

Zp = T (ρ̂− 1)− (s2 − s2e)

2T−2
∑T

t=1(yt−1 − ȳ−1)2
, (3.116)

where ȳ−1 =
∑T−1

i=1 yt
T−1

Case II: Trend only (No drift)

Zp = T (ρ̂− 1)− (s2 − s2e)

2T−2
∑T

t=1 y
2
t−1

, (3.117)

Zt =
se
s
tp̂ −

1

2

(s2 − s2e)

s(T−2
∑T

t=1 y
2
t−1)

1
2

, (3.118)

where, DX = det(X
′
X) and the regression are X = (1, t, yt−1). The consistent

estimates of variance parameters are defined as follows,

s2e = T−1

T∑
t=1

e2t s2 = lim
T→+∞

T∑
i=1

E

(
1

T

T∑
t=1

e2t

)
. (3.119)

The PP test tends to be more powerful than the ADF test and is more robust

to general forms of heteroscedasticity found in the error terms. However, test

has been observed to have serious size distortion when autocorrelations of et are

negative and is more prone to model misspecification, in other words, order of

ARMA model.

3.11.5 Kwiatkowski-Phillips-Schmidt-Shin test

The Kwiatkowski, Phillips, Schmidts and Shin (KPSS) test, contrary to the two

unit root tests mentioned above, tests for stationarity as the null hypothesis.

The absence of unit root in KPSS test is not evidence of stationarity, but rather
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proof of stationarity around a trend. This is a distinguishing feature of the

test, since it depicts that it is possible for a time series to be non-stationary and

possess no unit root and yet be trend-stationary (Shin and Schmidt, 1992).

Consider the model,

yt = ∆t+ ζt + et, (3.120)

where et is a stationary process and ζt is a random walk given by,

ζt = ζt−1 + µt µt ∼ iid(0, σ2
µ), (3.121)

the test statistic is as follows,

KPSS =
1

T 2

∑T
t=1 S

2
t

σ̂2
∞

, (3.122)

where, St =
∑t

i=1 êi is a partial sum and σ̂2
∞ is an heteroscedasticity and auto-

correlation consistent (HAC) estimator of the variance of êt. This is Lagrange

multiplier (LM) test for constant parameters. As opposed to testing the null

hypothesis of stationarity to trend stationarity, the test is formulated similarly,

except that the error terms are obtained as residuals from the regression of yt

on an intercept only.

3.12 Model identification

Model identification helps to decide which model is most appropriate for a given

set of data. The following steps outline an approach to this problem.

• Plot the time series. Identify if there is any unusual observations. De-

cide if a transformation is necessary to stabilize the variance, if necessary,

transform the data to achieve stationarity in the variance.

• Consider if the (possibly transformed) data appear stationary from ACF

and PACF time plots. If the time plot shows the data scattered horizon-



Methodology 55

tally around a constant mean, or equivalently, the ACF and PACF drop

to or near zero quickly, which indicates that the data are stationary. If

the time plot is not horizontal, or the ACF and PACF do not drop to zero,

non-stationarity is implied.

• When the data appear non-stationary, it can be made stationary by differ-

encing. For non-seasonal data, take the first differences of the data. For

seasonal data, take seasonal differences of data. Check if these still ap-

pear stationary. If there are still non-stationary take first difference of the

differenced data.

• When stationary has been achieved, the autocorrelation is examined to

see if any pattern remains.

3.12.1 Autocorrelation function

Autocorrelation function (ACF) of a stationary process with mean µ and vari-

ance σ2 and covariance γk, then ACF is defined as

ρ(k) =
γk
γ0

=
γk
σ2

, (3.123)

where γ0 is the variance of the series and γk is the covariance of lag k.

3.12.2 Partial autocorrelation function

Partial autocorrelation function (PACF) is the difference between xt and xt+k

with their linear dependency on the intervening variable xt+k, · · · , xt+k−1. The

PACF is defined as

Φkk = corr(xt, xt+k|xt+1, · · · , xt+k−1), (3.124)

for k = 1, 2, 3.



Methodology 56

3.13 Parameter estimation

Parameter estimation deals with the problem of estimating the parameters of

an ARIMA model once has been specified. The commonly used method of es-

timating parameters are: method of moments estimates (MME), least square

estimates (LSE) and maximum likelihood estimates (MLE).

3.13.1 Method of moments estimates

The method of moments consists of equating sample moments to correspond-

ing theoretical moments and solving the results equations to obtain unknown

parameters. The estimates of γk and ρk are as follows

γk =
1

2

n−k∑
t=1

(
xt − x̄

)(
xt+k − x̄

)
, (3.125)

ρk =

∑n−k
t=1

(
xt − x̄

)(
xt+k − x̄

)∑n
t=1

(
xt − x̄

)2 . (3.126)

3.13.2 Least square estimates

The method of least square estimation is an estimation procedure developed for

standard regression models. The least square estimation for

yt = ϕ1xt−1 − xt, (3.127)

for t = 1, 2, 3, · · · , n is denoted by

ϕ̂ =
n
∑n

t=1 xtyt −
∑n

t=1 xt

∑n
t=1 yt

n
∑n

t=1 x
2
t −

(∑n
t=1 xt

)2 , (3.128)

where the estimate ϕ is best linear unbiased estimator of ϕ.
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3.13.3 Maximum likelihood estimates

The maximum likelihood is a function of unknown parameters in the model

with the observed data held fixed. For ARIMA models, likelihood function L

will be a function of the Φ’s, Θ’s and σ2
z given the observations y1, · · · , yn. The

advantage of maximum likelihood is that all of the information in the data is

most probable rather than just the first and second moments.

3.14 Model diagnostics

Model diagnosis is used to test the goodness of fit of a model. If the fit is poor,

suggests appropriate modifications. There are two complementary approaches

that can be used for analysis: analysis of residuals from the fitted model and

analysis of over parameterised models.

3.14.1 Residual analysis

Residual analysis can be used to check if the model is correctly specified and if

the parameter estimates are reasonably close to the true values. The assump-

tion that it should have the same properties of white noise. That is, it satisfies

the properties

• Independence

• Identically

• Normally distributed random variables with zero mean and common vari-

ance σ2
z

3.14.2 The Ljung-Box test

The Ljung-Box is a test that takes into account the magnitude of residuals au-

tocorrelations as a group to check for model adequacy (Ljung and Box, 1978).
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The test is given by

Q = N
k∑

k=1

γ2
z,k, (3.129)

alternative test is given by

Q = N(N + 2)
k∑

k=1

(
γ2
z,k

N −K

)
, (3.130)

where N is the number of terms in the differenced series and k is the number

of lags and (z, k) denote the autocorrelation at lag k of the residual ẑt

If Q > χ2
k,1−α we reject null hypothesis and conclude that the random term zt

from the estimates model are correlated and that the estimated model may be

adequate.

3.14.3 The Lagrange multiplier (LM) test

A time series that displays conditional heteroscedasticity and / or autocorre-

lation in the squared series is said to process autoregressive conditional het-

eroscedastic (ARCH) effects. Engle’s ARCH test is a Langrange multiplier test

to investigate the importance of these ARCH effects. consider a residual series

defined as,

ei = yt − µ̂t, (3.131)

where yt = µt + ϵt is a time series with µt being the conditional mean of the

process and ϵt is the innovation with zero mean and unit variance. If autocor-

relation in the original time series is accounted for, then the residuals will be

correlated with mean zero. However, there may still be a possibility that the

residuals are serially dependent. The null hypothesis for the test is that there

are no ARCH effects and it is tested as follows:

H0 : α1 = α2 = ... = αm = 0 ( No ARCH effects among the lags considered)

H1 : ϵ2t = α0 = α1ϵ
2
t−1 + ... + αmϵ

2
t−m + µt (at least one of the αi coefficients is
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significant ), where µt is a white noise error process.

In order to conduct the test, the lag m needs to be specified. This can be chosen

by comparing log-likelihood values for different choices of the lag length. The

log-likelihood ratio test or the Akaike information criterion/Bayesian informa-

tion criterion can be used to compare values.The test statistic for the ARCH test

is the general F statistic for the regression on the squared residuals. Under the

null hypothesis, the F statistic follows a chi-square distribution with m degrees

of freedom. A significantly large critical value indicates rejection of the null

hypothesis.

3.15 Model assessment

The main purpose of this section is finding model that is adequate represen-

tations of the observed data. However, there are models that all fits the ob-

served data to a similar degree, making it difficult to choose which model is

the best. There are many statistical methods developed to search for the best

model, namely; the stepwise regression, likelihood ratio tests, Alkaike informa-

tion criterion (AIC) and Bayesian information criterion (BIC). This study wishes

to only concentrate on the AIC and BIC because the first two methods has some

limitations when comparing more than one models.

3.15.1 Akaike information criterion

Akaike (1973) define Akaike information criterion (AIC) as a useful statistic

for statistical model selection and evaluation. The procedure was developed by

Akaike which is given by:

AIC = −2log(L) + 2K, (3.132)
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where K is the number of parameters in the model and L is the likelihood func-

tion. One important advantage of AIC is that, it is simple and easy to use.

Furthermore, another important aspect of AIC is that, the best model chosen

does not imply the true model but in fact it means the model is best among

competing models. The selection rule state that, the best model will be the one

with the lower value of AIC.

3.15.2 Bayesian information criterion

The development of Bayesian information criterion (BIC) use the idea of AIC, by

early 1978 Glideon Schwarz added a penalty term to the AIC equation in which

resulted in the procedure called the Bayesian information criterion (BIC), that

is:

BIC = −2log(L) + Klog(n), (3.133)

where L is the maximised value of the likelihood function, n is the number of

observations and K is the number of parameters in the model. The selection

rule state that, the best model will be the one with the lower value of BIC.

3.16 Forecasting

Forecasting is the prediction of the future values based on available data. The

objective of forecasting is to produce an optimum forecast that has no error

which leads to the concept of minimum square error forecast (Abraham and

Ledolter, 2009). This forecast will produce an optimum future value with the

minimum error of mean square error.

3.16.1 Mean square error

Mean square error (MSE) is a measure of average square deviation of forecasted

values. Like mean absolute percentage error (MAPE), the opposite signed er-
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rors do not offset one another, MSE gives an overall idea of the error occurred

during forecasting (Prasad and Rao, 1990). It penalised extreme errors occurred

while forecasting. The MSE does not provide any idea about the direction of

overall errors and sensitive to the change of scale and data transformations.

The mean square is given by

MSE =
1

n

n∑
t=1

|e2t |, (3.134)

where (et = yt − ŷt) is forecast error, yt is the vector of the observed value of the

variable being predicted and ŷt is the predicted value.

3.16.2 Mean absolute error

Mean absolute error (MAE) measures the average absolute deviation of fore-

casted values from the original ones also known as mean absolute deviation

(MAD). It shows the magnitute of the overall error, occurred due to forecasting

(Willmott and Matsuura, 2005). The MAE is defined by

MSE =
1

n

n∑
t=1

|et|, (3.135)

where (et = yt − ŷt) is forecast error, yt is the vector of the observed value of the

variable being predicted and ŷt is the predicted value.

3.16.3 Mean absolute percentage error

The Mean absolute percentage error (MAPE) represents the percentage of the

average absolute error occurred. It is independent of the scale measurement,

but affected by data transformations (De Myttenaere et al., 2016). It does not

show the direction of the error. It also does not penalise the extreme deviations.
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The mean absolute percentage error is given by

MAPE =

(
1

n

n∑
t=1

∣∣∣∣etyt
∣∣∣∣)× 100%, (3.136)

where (et = yt − ŷt) and yt are forecast error and data at time t respectively.

3.16.4 Root mean square error

Root mean square error (RMSE) is just the square root of MSE. All properties

of MSE holds also RMSE (Prasad and Rao, 1990). The root mean square error

is given by

RMSE =

√√√√ 1

n

n∑
t=1

|e2t |, (3.137)

where (et = yt − ŷt) is forecast error, yt is the vector of the observed value of the

variable being predicted and ŷt is the predicted value.



Chapter 4

Results and discussion

4.1 Introduction

This chapter focuses on the preliminary analysis of data on the number of peo-

ple on injury mortality in both Gauteng (GP) and Mpumalanga (MP) provinces;

and the detailed analysis of data using various statistical tools such as Poisson

integer-valued generalised autoregressive conditional heteroscedasticity (IN-

GARCH), Negative Binomial (NB) integer-valued generalised autoregressive

conditional heteroscedasticity (INGARCH) and Box-Jenkins autoregressive in-

tegrated moving average (ARIMA).

4.2 Data description

This dissertation was based on secondary data obtained from Statistics South

Africa (StatsSA). The study considered causes of death only on injury for the

period 2008-2018. The number of people died by injury was used as the response

variable in all the models. The time series data cover the whole of GP and MP

provinces on monthly injury mortality. SAS, R and SPSS programming software
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were used for data analysis.

4.3 Descriptive statistics

In this section, we present the distribution of injury mortality and summary

statistics. The total injury mortality for the year 2008 to 2018 (11 years) is

78627. Therefore, the comparison of injury mortality of GP and MP is presented

on Table 4.1.

Table 4.1: Injury mortality on provinces
Province Number of deaths Percentage
MP 15264 19.4
GP 63363 80.6

Table 4.1 reveals that GP has the highest proportion of 80.6% deaths due to in-

jury as compared to 19.4% of MP. In addition, Table 4.2 shows the total number

of deaths and percentages in years for which injury mortality occurred in MP

between 2008 and 2018.

Table 4.2: Injury mortality from year 2008-2018 for MP
Year Number of deaths Percentage
2008 1523 10
2009 990 6.5
2010 1031 6.8
2011 1235 8.1
2012 1313 8.6
2013 1488 9.7
2014 1723 11.3
2015 1533 10
2016 1523 10
2017 1454 9.5
2018 1451 9.5

Table 4.2 reveals that year 2008 recorded 1523 (10%) deaths due to injury. How-

ever, it can be observed that there is massive decrease from 1523 in 2008 to
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990 (6.5%) in 2009. In each year of 2010, 2011, 2012 , 2013 and 2014, there

was steady increase in the number of deaths due to injury, ranging from 1031

(6.8%), 1235 (8.1%), 1313 (8.6%), 1488 (9.7%) and 1723 (11.3%), respectively.

In contrast, in 2015, 2016, 2017 and 2018, there was gradual decrease in the

number of deaths due to injury, ranging from 1533 (10%), 1523 (10%), 1454

(9.5%) and 1451 (9.5%), respectively. Moreover, 2014 was a year with highest

number of deaths due to injury, 1723 (11.3%) while 2009 had the lowest, 990

(6.5%). Generally, the distribution of number of deaths due to injury since 2008

till 2018 shows an upward and downward trend over time. Subsequently, Table

4.3 shows the total number of deaths and percentages in years for the injury

mortality which occurred in GP between 2008 and 2018.

Table 4.3: Injury mortality from year 2008-2018 for GP
Year Number of deaths Percentage
2008 6312 10
2009 6021 9.5
2010 5757 9.1
2011 5393 8.5
2012 5610 8.9
2013 6352 10
2014 6726 10.6
2015 6057 9.6
2016 5371 8.5
2017 4929 7.8
2018 4835 7.6

The results in Table 4.3 reveal that year 2008 recorded 6312 (10%) deaths due

to injury. However, it can be observed that there is a steady decrease in the

year 2009, 2010 and 2011 in number of deaths due to injury, ranging from 6021

(9.5%), 5757 (9.1%) and 5393 (8.5%), respectively. In a year 2012, 2013 and

2014, there was another gradual increase in the number of deaths due to injury,

ranging from 5610 (8.9%), 6352 (10%) to 6726 (10.6%), respectively; but in 2015,

2016, 2017 and 2018, there is another steady decrease in the number of deaths

due to injury, ranging from 6057 (9.6%), 5371 (8.5%), 4929 (7.8%) and 4835
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(7.6%), respectively.

Table 4.4: Injury mortality from year 2008-2018 for MP and GP
Year *(GP) Percentage *(MP) Percentage *Total Percentage
2008 6312 8.03 1523 1.94 7835 9.97
2009 6021 7.66 990 1.26 7011 8.92
2010 5757 7.32 1031 1.31 6788 8.63
2011 5393 6.86 1235 1.57 6628 8.43
2012 5610 7.13 1313 1.67 6923 8.8
2013 6352 8.08 1488 1.89 7840 9.97
2014 6726 8.55 1723 2.19 8449 10.74
2015 6057 7.70 1533 1.95 7590 9.65
2016 5371 6.83 1523 1.94 6894 8.77
2017 4929 6.27 1454 1.85 6383 8.12
2018 4835 6.15 1451 1.85 6286 8

* Number of deaths.

Table 4.4 shows 7835 (9.97%) injury-related deaths in 2008. However, the num-

ber of injury-related deaths was 7011 (8.92%), 6788 (8.63%), and 6628 in 2009,

2010, and 2011, respectively (8.43%). The number of deaths from injuries had

steadily increased in 2012, 2013 and 2014 with 6923 (8.8%), 7840 (9.97%) and

8449 (10.74%), respectively; but in 2015, 2016, 2017 and 2018 there was an-

other steady decline in the number of deaths from injuries, from 7590 (9.65%),

6894 (8.77%), 6383 (8.12%) and 6286 (8%). In addition, 2014 was a year with a

high number of deaths from injuries: 8449 (10.74%) and 2018 was the lowest:

6286 (8%). Consequently, GP has the highest proportion of 8.55% deaths from

injuries compared to 2.19% in MP. In general, the distribution of the number of

injury-related deaths from 2008 to 2018 shows an upward and downward trend

over time. This result is not surprising since Matzopoulos et al. (2015) showed

that injury mortality decreased from 2004 to 2011. StatsSA (2021) showed that

2014 had the highest injury mortality and between 2010 and 2015 there was a

steady increase in the proportion of deaths from injury mortality among GP.
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Table 4.5: Injury mortality from January to December for MP
Month Number of deaths Percentage
January 1205 7.9
February 1215 8
March 1279 8.4
April 1171 7.7
May 1103 7.2
June 1158 7.6
July 1319 8.6
August 1372 9
September 1280 8.4
October 1371 9
November 1207 7.9
December 1584 10.4

Table 4.5 shows that 1205 (7.9%) persons died as a result of an injury in Jan-

uary. Conversely, the number of deaths from injuries increased in February and

March, ranging from 1215 (8%) to 1279 (8.4%), respectively. In April and May,

the number of deaths due to injury decreased steadily, from 1171 (7.7%) to 1103

(7.2%), respectively. However, the number of injury-related deaths increased

steadily in June, July, and August, with 1158 (7.6%), 1316 (8.6%) and 1372

(9%), respectively. Additionally, there was a decrease and increase in the num-

ber of deaths due to injury in September, October, November, and December,

ranging from 1280 (8.4%), 1371 (9%), 1207 (7.9%) and 1584 (10.4%), respec-

tively. Meanwhile, December had the highest number of deaths due to injury:

1584 (10.4%), while May had the lowest: 1103 (7.2%). In general, the distribu-

tion of injury-related deaths from January to December shows an upward and

downward tendency throughout time. In addition, Table 4.6 shows the number

of deaths and percentages for which injury mortality occurred in GP between

January and December.
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Table 4.6: Injury mortality from January to December for GP
Month Number of deaths Percentage
January 4565 7.2
February 4634 7.3
March 5240 8.3
April 4834 7.6
May 4976 7.9
June 5265 8.3
July 5602 8.8
August 5666 8.9
September 5500 8.7
October 5515 8.7
November 5568 8.8
December 5998 9.5

In January, there were 4565 (7.2%) injury-related deaths, according to Table

4.6. Consequently, the number of deaths due to injury increased in Febru-

ary and March, with 4634 (7.3%) and 5240 (8.3%), respectively. The number

of injuries that resulted in death decreased by 4834 (7.6%) in April. Mean-

while, there was another constant increase in the number of deaths due to in-

jury in May, June, July, and August, ranging from 4976 (7.9%), 5265 (8.3%),

5602 (8.8%), and 5666 (8.9%), respectively. Furthermore, the number of injury-

related deaths decreased by 5,500 (8.7%) in September. There was an increase

in the number of injury-related deaths in October, November, and December,

ranging from 5515 (8.7%) to from 5515 (8.7%), 5568 (8.8%), and 5998 (9.5%),

respectively. The month with the most injury deaths was December, with 5998

(9.5%), and January had the fewest, with 4565 (7.2%). In general, the distribu-

tion of the number of deaths due to injury from January to December shows an

increase and decreasing tendency throughout time.
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Table 4.7: Injury mortality from month January to December for MP and GP
Month *(GP) Percentage *(MP) Percentage *Total Percentage
January 4565 5.81 1205 1.53 5770 7.34
February 4634 5.89 1215 1.55 5849 7.44
March 5240 6.66 1279 1.63 6519 8.29
April 4834 6.15 1171 1.49 6005 7.64
May 4976 6.33 1103 1.40 6079 7.73
June 5265 6.70 1158 1.47 6423 8.17
July 5602 7.12 1319 1.68 6921 8.8
August 5666 7.21 1372 1.74 7038 8.95
September 5500 7.00 1280 1.63 6780 8.63
October 5515 7.01 1371 1.74 6886 8.75
November 5568 7.08 1207 1.54 6775 8.62
December 5998 7.63 1584 2.01 7582 9.64

* Number of deaths.

The total number of deaths and percentages by month for which injury mortal-

ity occurred in both MP and GP combined between January and December are

shown in Table 4.7. According to Table 4.7, there were 57770 (7.34%) deaths

due to injury in January. Conversely, there is an increase in the number of

deaths due to injury in the months of February and March, with 5849 (7.44%)

and 6519 (8.29%), respectively. In April, there was a decrease of 6005 (7.64%)

in the number of injuries deaths. Moreover, there was a steady increase in

the number of deaths due to injury in the months of May, June, July, and Au-

gust, ranging from 6079 (7.73%), 6423 (8.17%), 6921 (8.8%) and 7038 (8.95%),

respectively. Additionally, the number of deaths due to injury decreased and

increased in September, October, November, and December, with 6780 (8.63%),

6886 (8.75%), 6775 (8.62%), and 7582 (9.65%), respectively. As a result, GP has

the largest proportion of 7582 (7.63%) deaths due to injury, while MP has the

lowest rate of 2.01%. In general, the distribution of injury-related deaths ex-

hibits an increase and decrease tendency over time. This is consistent with the

fact that December has the highest injury mortality rate (StatsSA, 2021).
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Table 4.8: Injury mortality gender for MP
Gender Number of deaths Percentage
Males 11506 75.4
Females 3758 24.6

The results in Table 4.8 reveal that males recorded 11506 (75.4%) deaths due to

injury, while females recorded 3758 (24.6%) deaths due to injury. Furthermore,

Table 4.9 shows the number of deaths and percentages of injury mortality in

GP by gender.

Table 4.9: Injury mortality gender for GP
Gender Number of deaths Percentage
Males 49801 78.6
Females 13562 21.4

Table 4.9 reveals that males, recorded 49801 (78.6%) deaths due to injury, while

females recorded 13562 (21.4%) deaths due to injury.

Table 4.10: Injury mortality on gender for MP and GP
Gender *(GP) Percentage *(MP) Percentage *Total Percentage
Males 49801 63.39 11506 14.63 61307 78.02
Females 13562 17.25 3758 4.78 17320 22.03

* Number of deaths.

Table 4.10 shows the total number of deaths and gender percentages for injury

mortality in MP and GP. According to Table 4.10, males accounted for 61307

(78.02%) of all injuries, while females accounted for 17320 (22.03%). The pro-

portion of mortality attributable to injury in GP is 63.39%, compared to 14.63%

in MP. This is similar with the findings of Matzopoulos et al. (2015), who found

that males injury mortality was consistently and considerably greater than fe-

males. Males accounted for a higher percentage than females, according to Abio

et al. (2020) and (StatsSA, 2021).
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Table 4.11: Injury mortality on age-group for MP
Age-group Number of deaths Percentage
0-14 years old 1951 12.8
15-34 years old 7003 45.9
35-54 years old 4217 27.6
55-74 years old 1642 10.8
75+ years old 451 3

The distribution of the number of deaths due to injury in MP is shown in Table

4.11. According to the findings, the age group 0-14 years old had 1951 (12.8%)

deaths due to injury. The age group 15-34, on the other hand, had the highest

number of injury-related deaths, with 7003 (45.9%). Conversely, there was a

steady decrease in the number of deaths due to injury in the age groups 35-54,

55-74, and 75+, with 4217 (27.6%), 1642 (10.8%), and 451 (3%), respectively.

In addition, Table 4.12 shows the number of deaths and percentages for which

injury mortality occurred in GP for age-group.

Table 4.12: Injury mortality on age-group for GP
Age-group Number of deaths Percentage
0-14 years old 5480 8.6
15-34 years old 30186 47.6
35-54 years old 18928 29.9
55-74 years old 6688 10.6
75+ years old 2081 3.3

Table 4.12 reveals that the age group 0-14 years old had 5480 (8.6%) deaths due

to injury in GP. Meanwhile, the age group 15-34 recorded the highest number of

deaths due to injury, 30186 (47.6%). Furthermore, there was a steady decrease

in the number of injury mortality in the age-groups 35-54, 55-74, and 75+, with

18928 (29.9%), 6688 (10.6%), and 2081 (3.3%), respectively.
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Table 4.13: Injury mortality on age-group for MP and GP
Age-group *(GP) Percentage *(MP) Percentage *Total Percentage
0-14 years old 5480 6.97 1951 2.48 7431 9.45
15-34 years old 30186 38.39 7003 8.91 37189 47.3
35-54 years old 18928 24.07 4217 5.36 23145 29.43
55-74 years old 6688 8.51 1642 2.09 8330 10.6
75+ years old 2081 2.65 451 0.57 2532 3.22

* Number of deaths.

Table 4.13 presents the total number of deaths and gender percentages for in-

jury mortality in MP and GP. According to Table 4.13, the age group 0-14 years

old had 7431 (9.45%) deaths due to injury. Meanwhile, the age group 15-34 had

the highest number of deaths due to injury, with 37189 (47.3%) deaths. Further-

more, there was a steady decrease in the number of deaths due to injury in the

age-groups 35-54, 55-74, and 75+, ranging from 23145 (29.43%), 8330 (10.6%),

and 2532 (3.22%), respectively. The proportion of mortality due to injury in GP

is 38.39%, compared to 8.91% in MP. This is consistent with the WHO (2021)

2021 report, which states that people aged 5 to 29 had the highest injury rate.

This is consistent with the WHO (2021) 2021 report that those aged 5-29 have

the highest injury mortality rate, and Meel (2017) found that 64% of deaths

occurred between the ages of 11-44.
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Table 4.14: Causes of injury mortality for MP
Causes of death Number of deaths Percentage
Sequelae of external causes of mortality 22 0.1
Homicide 3279 21.5
Other external causes of accidental injury 1488 9.7
Complications of medical and surgical care 545 3.6
Drowning 681 4.5
Falls 52 0.3
Suffocation 412 2.7
Forces of nature 287 1.9
Fire/Burns 991 6.5
Transport accidents 4247 27.8
Poisoning 1497 9.8
Suicide 1758 11.5
Starvation 5 0

The distribution of the number of deaths due to injury in MP is shown in Ta-

ble 4.14. The findings show that transport accidents resulted in 4247 (27.8%)

deaths due to injury, the largest number of deaths. This was followed by 3279

(21.5%) homicides and suicides 1758 (11.5%) of the deaths that were caused by

injury. Starvation was the cause of injury death with the fewest injuries, 5 (less

than 1%).

Table 4.15: Causes of injury mortality for GP
Causes of death Number of deaths Percentage
Sequelae of external causes of mortality 149 0.2
Homicide 21850 34.5
Other external causes of accidental injury 3875 6.1
Complications of medical and surgical care 3228 5.1
Drowning 1607 2.5
Falls 241 0.4
Suffocation 1139 1.8
Forces of nature 1037 1.6
Fire/Burns 5045 8.0
Transport accidents 12741 20.1
Poisoning 4811 7.6
Suicide 7619 12.0
Starvation 21 0.0
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The number of deaths and percentages of injury mortality in GP for the main

causes of injury mortality are shown in Table 4.15. According to the find-

ings in Table 4.15, homicide recorded 21850 (34.5%) deaths due to injury in

MP, the highest number of deaths. Following that were 12741 (20.1%) trans-

port accidents and 7619 (12%) suicides. The cause of injury mortality with the

fewest deaths was starvation, which accounted for 21 (less than 1%) of all injury

deaths.

Table 4.16: Causes of injury mortality for MP and GP
Causes *GP Percentage *MP Percentage
Sequelae of external causes of mortality 149 0.19 22 0.03
Homicide 21850 27.79 3279 4.17
Other external causes of accidental injury 3875 4.93 1488 1.89
Complications of medical and surgical care 3228 4.11 545 0.69
Drowning 1607 2.04 681 0.87
Falls 241 0.31 52 0.07
Suffocation 1139 1.45 412 0.52
Forces of nature 1037 1.32 287 0.37
Fire/Burns 5045 6.42 991 1.26
Transport accidents 12741 16.20 4247 5.40
Poisoning 4811 6.12 1497 1.90
Suicide 7619 9.69 1758 2.24
Starvation 21 0.03 5 0.01

* Number of deaths.

Table 4.16 reveals that homicide claimed the lives of 25129 (31.96%) people.

The majority of deaths happened as a result of injuries. This was followed by

16988 (21.6%) deaths caused by transport accidents and 9377 (11.98%) deaths

caused by suicide. Starvation, 26 (less than 1% of injury mortality) is the cause

of injury mortality with the lowest number. GP has the highest proportion of

homicide deaths at 27.79%, while MP has 4.17%. Similarly, GP has the highest

proportion of deaths related to transport accidents (16.20%). This is consistent

with Pillay-van Wyk et al. (2016), who found that homicide was the most com-

mon cause of injury mortality. Similarly, Meel (2017) and StatsSA (2021) found
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that homicide was the most common cause of injury mortality.

Table 4.17: Summary statistics for MP
min max mean median Stdev skewness kurtosis
57 199 115.6 116 26.4 0.227530 -0.181914

The results in Table 4.17 reveal the range of deaths due to injury, starting from

57 as the minimum number of deaths that occurred in MP to 199 as the max-

imum number of deaths that occurred in MP due to injury. However, there

is an average and deviation of approximately 116 and 26, respectively, in the

number of deaths due to injury on a monthly basis. Furthermore, the monthly

injury mortality mirrors a normal distribution with a skewness of 0.23 and a

kurtosis value of -0.18, which suggests that the data will follow heavy-tailed

distributions.

Table 4.18: Summary statistics for GP
min max mean median Stdev skewness kurtosis
311 671 480 481.5 69.819229 0.135806 -0.492410

The results in Table 4.18 show the range of mortality due to injury, from 311

as the lowest number of deaths in GP to 671 as the highest number of deaths

in GP related to injury. On a monthly basis, there is an average and deviation

of 480 and approximately 70 deaths due to injury, respectively. However, the

monthly injury mortality follows a normal distribution with a skewness of 0.14

and a kurtosis of -0.49, indicating that the distribution is flat and has thin tails

when the excess value of kurtosis is negative (less than 3).
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4.4 Time series analysis in MP

In this section, we analyse the time series data for MP to identify the plausible

model and underlying pattern and make predictions.
 

Figure 4.1: Trend and correlation plots.

The results in Figure 4.1 reveal a time series plot that indicates the monthly in-

jury mortality cases, which have many trends and do not seem to be stationary

in either mean or variance, showing upward and downward movement, which

shows seasonality. The autocorrelation function (ACF) plot shows that the data

is not stationary, and the plot also indicates that there is a seasonal pattern.

The plot shows a non-seasonal significant peak at lag 1 until 10, and a seasonal

significant peak at lag 12. Furthermore, the partial autocorrelation function

(PACF) shows that the data is not stationary. The plot indicates that there is a

seasonal pattern. The plot also shows a non-seasonal significant peak at lags 1,
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2, 3, and 9 and a seasonal significant peak at lag 12.

Table 4.19: Tests for stationarity
Name t-Stat pvalue
ADF -3.469 0.048
PP -86.458 <0.010
KPSS 1.0007 <0.010

The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) test statistics

with p-values of 0.048 and less than 0.01, respectively, are shown in Table 4.19;

the null hypothesis of non-stationarity of injury mortality is consequently re-

jected at the 5% level of significance. At the 5% level of significance, we reject

the null hypothesis of stationarity using the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test statistic with a p-value less than 0.01. Finally, the ADF and

PP results confirm that the injury mortality cases are stationary, however the

KPSS tests confirm that the injury mortality cases are non-stationary, indicat-

ing that this data requires differencing.
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Table 4.20: Test for normality
Name t-Stat p-value
JB 1.271 0.530
SW 0.992 0.616

 

Figure 4.2: Normal Q-Q plot.

According to the findings in Table 4.20, there is evidence of platykurtic be-

haviour in injury mortality. Jarque Bera (JB) and Shapiro Wilk (SW) have

p-values of 0.530 and 0.616, respectively. Using JB and SW p-values from Table

4.20, we reject the null hypothesis of a Gaussian distribution at the 5% sig-

nificance level. This reveals that the injury mortality instances are normally

distributed. Additionally, the Q-Q plot in Figure 4.2 demonstrates that injury

mortality cases depart from the normal distribution at both tails. Table 4.20

shows that the statistics from the JB and SW tests do not support the claim of

non-normality.
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Figure 4.3: Trend and correlation for first differencing.

Figure 4.3 reveals that the time series plot is stationary after first differencing

and that seasonality exists. The ACF plot displays a seasonally significant peak

at lag 1 and a non-seasonally significant peak at lag 12. The PACF plot of

first difference monthly injury mortality data reveals a non-seasonal significant

peak at lags 1, 2 and 3.

Table 4.21: Tests for stationarity for first differencing
Name t-Stat pvalue
ADF -6.8699 <0.010
PP -171.57 <0.010
KPSS 0.043816 >0.100

Table 4.21 shows that the p-values for the ADF and PP test statistics are less

than 0.01; thus, the null hypothesis of non-stationarity of injury mortality is re-
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jected at the 5% level of significance. The results show that we fail to reject the

null hypothesis of stationarity at the 5% level of significance for the KPSS test

statistic with a p-value greater than 0.10. Finally, the ADF, PP, and KPSS tests

show that the injury mortality cases are stationary after the first differencing.

Table 4.22: Test for normality first differencing
Name t-Stat p-value
JB 3.1379 0.2083
SW 0.99026 0.4919

 

Figure 4.4: Normal Q-Q plot for first differencing.

Table 4.22 shows that there is evidence of platykurtic behaviour in injury mor-

tality. We reject the null hypothesis of a Gaussian distribution at the 5% level

of significance using the test statistics from Table 4.22, Jarque Bera (JB), and

Shapiro Wilk (SW). The Q-Q plot shows that injury mortality instances are nor-

mally distributed. This indicates that injury mortality cases stray from the

typical distribution on both ends. The JB and SW test statistics in Table 4.22

support the conclusion of normality.
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4.5 Poisson and NB-INGARCH models in MP

We present the research analysis on both the Poisson and the Negative Bino-

mial (NB) INGARCH models in this section. The analysis for MP is presented

first. The ACF plot in Figure 4.3 includes a few spikes after the first lag, and

two of them exceed the confidence interval, indicating a significant association

between the value itself and the values corresponding to its first lag. There is a

significant drop-off following the first lag. There are a couple of spikes after the

first lag on the PACF plot, and three spikes that exceed the confidence interval,

indicating a significant correlation between the value itself and the values cor-

responding to its first, second, and third lags. There is a notable decrease after

the third lag.

4.5.1 Model identification

In this section, we estimate the performance of various competing models with

the hope of choosing the best one. The one with the lowest BIC and AIC should

be our choice. We will follow the most commonly used of these approaches,

which is to start with the most complex model, and see which model can be

dropped. The following models are constructed using the ACF and PACF men-

tioned in Figure 4.3: INGARCH models that best fit the data based on observing

the ACF and PACF of the first differencing. The ACF and PACF were examined,

and the following three models were summarised.
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Table 4.23: Poisson and NB-INGARCH models
Model AR MA Link distribution AIC BIC

A 1 1 Ident Poisson 1384.829 1393.478
A 1 1 Ident Neg.Bin 1184.195 1195.727
A 1 1 log Poisson 1381.128 1389.776
A 1 1 log Neg.Bin 1183.355 1194.887
B 1 2 Ident Poisson 1638.99 1647.638
B 1 2 Ident Neg.Bin 1240.003 1251.535
B 1 2 log Poisson 1398.953 1407.601
B 1 2 log Neg.Bin 1187.681 1199.212
C 1 3 Ident Poisson 1425.192 1433.84
C 1 3 Ident Neg.Bin 1194.403 1205.934
C 1 3 log Poisson 1417.38 1426.028
C 1 3 log Neg.Bin 1192.66 1204.191

The results in Table 4.23 reveal that the logarithmic link function models present

better results across the table for the criterion. The logarithmic function is the

best link function since it minimises the loss of information and improves the

results in the criterion compared to the identity link function. Nevertheless, the

majority of the model variation shows a Negative Binomial distribution, which

presents better scores in the Akaike information criterion (AIC) and worse re-

sults in the Bayesian information criterion (BIC). Model A performs slightly

better across both criteria and is thus the preferred model.

Table 4.24: Parameter estimation on Poisson INGARCH
Parameters Estimate SE CI(lower) CI(upper)
(Intercept) 0.580 0.1519 0.282 0.877
beta(1) 0.2740 0.0686 0.140 0.408
alpha(1) 0.542 0.0598 0.425 0.659

AIC = 1381.128, BIC = 1387.776
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Table 4.25: Parameter estimation on NB-INGARCH
Parameters Estimate SE CI(lower) CI(upper)
(Intercept) 5.9144 4.3177 -2.548 14.377
beta(1) 0.2740 0.0686 0.140 0.408
alpha(1) 0.6775 0.0864 0.508 0.847
sigmasq 0.0258

AIC = 1184.195, BIC = 1195.727

Tables 4.24 and 4.25 reveal that the AIC is 1381.128 and the BIC is 1387.776 for

the Poisson INGARCH, while the NB-INGARCH has an AIC of 1184.195 and

BIC of 1195.727, as previously reported. Nonetheless, the majority of the model

parameters have a negative binomial distribution, which results in better AIC

scores but worse BIC values. The Negative Binomial distribution outperforms

both criteria and is consequently the better model.

4.5.2 Model diagnostics

Model diagnostics involve checking how well the model fits. The residual anal-

ysis will be used. 

Figure 4.5: ACF for Poisson INGARCH residual
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Figure 4.6: ACF for NB-INGARCH residual.

Figures 4.5 and 4.6 show ACF plots with adequate findings to indicate residual

independence, despite the presence of a spike in the ACF that exceeds the con-

fidence interval. Nonetheless, given that this isn’t a theoretically compromised

data set, the results are encouraging.
 

Figure 4.7: Histogram for Poisson INGARCH residual.
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Figure 4.8: Q-Q plot for Poisson INGARCH residual.

Figure 4.7 reveals histogram to be normally distributed, whereas the Q-Q plot

in Figure 4.8 appears to be normally distributed since the points sit on the line,

despite the fact that the points at the bottom of the line are distant from the

line. This does not imply that we should reject the normality of error terms in

this model.
 

Figure 4.9: Histogram for NB-INGARCH residual
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Figure 4.10: Q-Q plot for NB-INGARCH residual

Figure 4.9 shows that the histogram is normally distributed, whereas Figure

4.10 shows that the Q-Q plot is normally distributed since the points lie on the

line, despite the fact that the points at the bottom of the line are away from the

line. This does not imply that we should reject the normality of error terms in

this model.

Table 4.26: The Langrange multiplier (LM) test on model A
Model t-stats DF p-value
Poisson INGARCH (1,1) 0.67404 1 0.4116
NB-INGARCH (1,1) 1.26 1 0.2616

Table 4.26 reveals that there are no ARCH effects among the lags. The p-values

of Poisson INGARCH, 0.4116, and NB-INGARCH, 0.2616, are greater than the

significance level of 0.05, while the test statistics of Poisson INGARCH and

NB-INGARCH are 0.674 and 1.26, respectively. As a result, the best model is

the one with the highest test statistic value. Therefore, it indicates that the

NB-INGARCH is the better model.
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4.5.3 Model assessment

The model is assessed through evaluating the prediction error on new data.

The accuracy measure known as root mean square error (RMSE) will be used

to compare these time series models.

Table 4.27: Model assessment for model A
Link Normalised squared error score(NRMSE) Squared error score (MSE)
Log-NB 0.977 455.254
Log-Poisson 3.877 455.254

Table 4.27 presents the link function of both Poisson INGARCH and NB-INGARCH.

The normalised root mean squared error (NRMSE) of Poisson INGARCH is

3.877, while NB-INGARCH is 0.977. Additionally, the mean squared error

(MSE) for Poisson INGARCH is 455.24, while NB-INGARCH is 455.24, both of

which are equal. As a result, the better model employing the relationship is the

one with a lower MSE and NRMSE value, which gives us the better model. The

results suggest that a Negative Binomial distribution yields better outcomes.

As a result, NB-INGARCH is the better model.

4.6 ARIMA in MP

We present the research analysis of autoregressive integrated moving average

(ARIMA) models in this section. The analysis for MP is presented first. The

ACF plot in Figure 4.3 shows a few spikes after the first lag, and two of them

exceed the confidence interval, indicating a significant relationship between the

value itself and the values corresponding to its first lag. There is a significant

drop-off following the first lag. There are a couple of spikes after the first lag on

the PACF plot, and three spikes that exceed the confidence interval, indicating

a significant correlation between the value itself and the values corresponding

to its first, second, and third lags. There is a significant drop after the third lag.
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4.6.1 Model identification

In this section, we estimate the performance of various competing models with

the hope of choosing the best one. The one with the lowest BIC and AIC should

be our choice. We will follow the most commonly used of these approaches,

which is to start with the most complex model, and see which model can be

dropped. The specific goal here is to obtain some idea of the values of p, d, and

q needed in the general linear ARIMA model and to obtain initial estimates for

the parameters.

Table 4.28: Model summary
Model ARIMA(p,d,q)(P,D,Q)

A ARIMA (1, 1, 1)× (1, 1, 1)12
B ARIMA (1, 1, 2)× (1, 1, 1)12
C ARIMA(1, 1, 3)× (1, 1, 1)12

The ARIMA models that best fit the data based on observing the ACF and PACF

of the first differencing data are constructed using the ACF and PACF men-

tioned in Figure 4.3: The ACF and PACF were examined, and the three ARIMA

models presented in Table 4.28 were summarised.

Table 4.29: Fit statistics for model A
Fit statistics Mean
Stationary R-squared 0.538
R-squared 0.346
RMSE 21.871
MAPE 16.545
MAE 17.601
Normalised BIC 6.371

The results in Table 4.29 show that the value of R-squared is 0.345, which ac-

counts for approximately 35% of the variation in death due to injury in MP.

The mean absolute error (MAE) value is 17.601, showing a 17.601 average er-

ror between forecasts and actuals, while the root mean squared error (RMSE)
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is 21.871, suggesting a 21.871 weighted average error between forecasts and

actuals. The mean absolute percentage error (MAPE) value is 16.545, which

means that on average, the forecast is off by 16.5%.

Table 4.30: Parameter estimation for model A
Parameters Estimate SE t-stats p-value
Constant 0.126 0.190 0.663 0.509
AR(1) -0.031 0.136 -0.231 0.817
MA(1) 0.675 0.104 6.473 0.000
SAR(1) -0.026 0.134 -0.195 0.846
SMA(1) 0.855 0.174 4.922 0.000

Table 4.30 shows a parameter estimate for the ARIMA (1, 1, 1)×(1, 1, 1)12 model.

It also displays the estimate’s p-value. The model contains four parameters:

AR(1), MA(1), seasonal autoregressive (SAR)(1), and seasonal moving average

(SMA)(1). The constant estimate, with a p-value of 0.509, is a function of the

mean term and is not statistically significant at the 5% level. The MA(1), with

a reordered p-value of less than 0.05, and the SMA(1), with a recorded p-value

of less than 0.05, are both significant because their p-values are less than alpha

5%. The AR(1) had a p-value of 0.817 and the SAR(1) had a p-value of 0.846,

both of which are not significant at the 5% level of significance.

Table 4.31: Fit statistics for model B
Fit statistics Mean
Stationary R-squared 0.540
R-squared 0.349
RMSE 21.924
MAPE 16.477
MAE 17.549
Normalised BIC 6.416

Table 4.31 shows that the value of R-squared is 0.349, which accounts for ap-

proximately 35% of the variation in MP injury mortality. The mean absolute

error (MAE) value is 17.549, showing a 17.549 average error between forecasts
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and actuals, while the root mean squared error (RMSE) is 21.924, suggesting

a 21.924 weighted average error between forecasts and actuals. The mean ab-

solute percentage error (MAPE) value is 16.477, which means that on average,

the forecast is off by 16.5%.

Table 4.32: Parameter estimation for model B
Parameters Estimate SE t-stats p-value
Constant 0.126 0.190 0.665 0.507
AR(1) -0.964 0.113 -8.509 0.000
MA(1) -0.304 30.516 -0.010 0.992
MA(2) 0.696 21.238 0.033 0.974
SAR(1) -0.024 0.137 -0.175 0.862
SMA(1) 0.841 0.172 4.900 0.000

The parameter estimates for the ARIMA (1, 1, 2) × (1, 1, 1)12 models are shown

in Table 4.32. The table also presents the p-value for the estimates. The model

consists of five parameters: AR(1), MA(1), MA(2), SAR(1), and SMA(1). The

constant estimate, with a p-value of 0.507, is a function of the mean term and

is not statistically significant at the 5% level. The AR(1) had a p-value of less

than 0.05, and the SMA(1) had a p-value of less than 0.05, both of which are

significant because their p-values are less than alpha 5%. The p-values for the

MA(1), MA(2), and SAR(1) were 0.992, 0.974, and 0.862, respectively, which are

not significant at the 5% level of significance.

Table 4.33: Fit statistics for model C
Fit statistics Mean
Stationary R-squared 0.539
R-squared 0.347
RMSE 22.050
MAPE 16.501
MAE 17.549
Normalised BIC 6.468

Table 4.33 shows the value of R-squared is 0.347, which accounts for approx-

imately 35% of the variation in MP injury mortality. The mean absolute er-
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ror (MAE) value is 17.549, showing a 17.549 average error between forecasts

and actuals, while the root mean squared error (RMSE) is 22.050, suggesting

a 22.050 weighted average error between forecasts and actuals. The mean ab-

solute percentage error (MAPE) value is 16.501, which means that on average,

the forecast is off by 16.5%.

Table 4.34: Parameter estimation for ARIMA model C
Parameters Estimate SE t-stats p-value
Constant 0.167 0.186 0.898 0.371
AR(1) -0.967 0.142 -6.815 0.000
MA(1) -0.286 69.205 -0.004 0.997
MA(2) 0.698 49.400 0.014 0.989
MA(3) -0.016 1.113 -0.015 0.988
SAR(1) 0.018 0.140 0.128 0.898
SMA(1) 0.882 0.215 4.107 0.000

The results in Table 4.34 show parameter estimates for the ARIMA (1, 1, 3) ×

(1, 1, 1)12 model. It also presents the p-value for the estimates. The model con-

sists of six parameters: AR(1), MA(1), MA(2), MA(3), SAR(1), and SMA(1) (1).

The constant estimate, with a p-value of 0.371, is a function of the mean term

and is not statistically significant at the 5% level. The AR(1), with a p-value

less than 0.05, and the SMA(1), with a p-value less than 0.05, are both signifi-

cant because their p-values are less than alpha 5%. The p-values for the MA(1),

MA(2), MA(3), and SAR(1) were 0.997, 0.989, 0.988, and 0.898, respectively,

which are not significant at the 5% level of significance.
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4.6.2 Model diagnostics

Model diagnostics involve checking how well the model fits. The residual anal-

ysis will be used.

 

Figure 4.11: Residual ACF and PACF

Figure 4.11 shows residual ACF and PACF with a significant peak at lag 5,

non-significant peaks, and all values fall within the upper and lower confidence

ranges, indicating that the model is white noise, even though there is autocor-

relation in the residuals.
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Figure 4.12: Residual Histogram and Q-Q plot

The results in Figure 4.12 reveal the histogram data to be normally distributed,

while on the same Q-Q plot in Figure 4.12, the points appear to be normally

distributed because they lie on the line, even though at the bottom of the line,

points are away from the line.

Table 4.35: Ljung Box test for model A
Model t-stats Df p-value
ARIMA (1, 1, 1)× (1, 1, 1)12 11.632 14 0.636

The Ljung Box test Q∗ = 11.632 with a probability of 0.636 is shown in Table

4.35, showing that the estimated model is uncorrelated and may be adequate.

Since the p-value of 0.636 is greater than the 5% threshold of significance, the

model is not significant at the 5% level of significance.
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Figure 4.13: Residual ACF and PACF

Figure 4.13 shows residual ACF and PACF that have a significant peak at lag

5 and non-significant peaks, and all their values lie within the upper and lower

confidence intervals, indicating that the model is white noise, even though there

is autocorrelation in the residuals.
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Figure 4.14: Residual Histogram and Q-Q plot

The histogram data in Figure 4.14 shows to be normally distributed, and the

Q-Q plot in the same figure also appears to be normally distributed because the

points lie on the line even though the points at the bottom of the line are away

from the line.

Table 4.36: Ljung Box test for model B
Model t-stats Df p-value
ARIMA (1, 1, 2)× (1, 1, 1)12 11.113 13 0.601

Table 4.36 reveals that the Ljung Box test Q∗ = 11.113 with a probability of

0.601 indicates that the estimated model is uncorrelated and may be adequate.

The model is not significant at the 5% level of significance because the p-value

of 0.601 is greater than the 5% level of significance.
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Figure 4.15: Residual ACF and PACF

The results in Figure 4.15 show residual ACF and PACF that have a significant

peak at lag 5 and non-significant peaks, and all their values lie within the upper

and lower confidence intervals, indicating that the model is white noise, even

though there is autocorrelation in the residuals.
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Figure 4.16: Residual Histogram and Q-Q plot

The histogram data in Figure 4.16 appears to be normally distributed, and the

Q-Q plot in the same figure also appears to be normally distributed because the

points lie on the line even though the points at the bottom of the line are away

from the line.

Table 4.37: Ljung Box test for model C
Model t-stats Df p-value
ARIMA (1, 1, 3)× (1, 1, 1)12 11.350 12 0.499

The results in Table 4.37 reveal the Ljung Box test Q∗ = 11.350 with probabil-

ity of 0.499, indicating that the estimated model is uncorrelated, and it may be

adequate. Since the p-value of 0.499 is greater than the 5% threshold of signifi-

cance, the model is not significant at the 5% level of significance.
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4.6.3 Model assessment

The model is assessed through evaluating the prediction error on new data.

The accuracy measure known as root mean square error (RMSE) will be used

to compare these time series models.

Table 4.38: Model assessment
Model BIC RMSE
ARIMA (1, 1, 1)× (1, 1, 1)12 6.371 21.871
ARIMA (1, 1, 2)× (1, 1, 1)12 6.416 21.924
ARIMA (1, 1, 3)× (1, 1, 1)12 6.468 22.050

The results in Table 4.38 reveal a model assessment of MP monthly deaths due

to injury. The best model selection is based on normalised Bayesian information

criteria (BIC) and root mean square error (RMSE). The lowest of BIC and RMSE

is used for model selection. ARIMA (1, 1, 1)× (1, 1, 1)12 is the best model and has

a minimum value of 6.371 and 21.871 for BIC and RMSE, respectively.

4.7 Model assessment in MP

The model is assessed through evaluating the prediction error on new data.

The accuracy measure known as root mean square error (RMSE) will be used

to compare these time series models.

4.7.1 Comparing the NB-INGARCH and ARIMA models

Table 4.39: Model assessment
Model RMSE
ARIMA (1, 1, 1)× (1, 1, 1)12 21.871
NB-INGARCH(1, 1) 112.976

Table 4.39 displays the findings of two models based on MP monthly injury mor-

tality data. The best model is chosen using the root mean square error (RMSE).
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The best model is the one with the lowest RMSE value. The NB-INGARCH (1,1)

model has an RMSE of 112.976, but the ARIMA (1, 1, 1) × (1, 1, 1)12 model has

an RMSE of 21.871, making it the most suitable model for MP monthly injury

mortality data.

4.8 Injury mortality model in MP

The equation of ARIMA (1, 1, 1)× (1, 1, 1)12 model is given by

ϕ1(B)(1−B)Φ1(B
12)(1−B12)xt = θ1(B)Θ1B

12zt (4.1)

(1− ϕ1B)(1−B)(1− Φ1B
12)(1−B12)xt = (1− θ1B)(1−Θ1B

12)zt

(1 + 0.031B)(1−B)(1 + 0.026B12)(1−B12)xt = (1− 0.675B)(1− 0.855B12)zt

∴ xt = 0.969xt−1 + 0.031xt−2 + 0.974xt−12 − 0.944xt−13 − 0.030xt−14 + 0.026xt−24 − 0.0252xt−25

− 0.0008xt−26 + zt − 0.675zt−1 − 0.855zt−12 + 0.5771zt−13
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4.9 Forecasting MP injury mortality

Once we have the final ARIMA model, we are now ready to make predictions on

the future time points. We also visualise the trends.

4.9.1 MP monthly injury mortality forecast

Table 4.40: Forecast with 95% confidence limits
Date Time Forecast Lower Limit Upper Limit
Jan-19 133 108.9254 70.1173 147.7336
Feb-19 134 112.1336 71.6923 152.5749
Mar-19 135 117.697 75.4429 159.9511
Apr-19 136 107.5042 63.5196 151.4887
May-19 137 104.4013 58.7516 150.0511
Jun-19 138 110.4783 63.2221 157.7346
Jul-19 139 126.3687 77.5588 175.1786
Aug-19 140 132.1524 81.8367 182.468
Sep-19 141 125.3733 73.5957 177.1509
Oct-19 142 130.4094 77.2100 183.6088
Nov-19 143 115.7680 61.1838 170.3522
Dec-19 144 153.8829 97.9483 209.8176
Jan-20 145 114.8414 56.4284 173.2544
Feb-20 146 118.3944 58.4257 178.3631
Mar-20 147 123.9526 62.4448 185.4605
Apr-20 148 113.9446 50.9360 176.9533
May-20 149 110.9213 46.4466 175.3959
Jun-20 150 117.4350 51.5270 183.343
Jul-20 151 132.4485 65.1376 199.7593
Aug-20 152 139.1159 70.4309 207.801
Sep-20 153 132.4855 62.4532 202.5178
Oct-20 154 136.6668 65.3127 208.0209
Nov-20 155 122.3256 49.6738 194.9774
Dec-20 156 161.2123 87.2855 235.1391
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Figure 4.17: Time series plot for forecast

The forecasted results for injury mortality from January 2019 to December 2020

are shown in Table 4.40 and Figure 4.17, along with monthly injury mortality

estimates with 95% confidence intervals over two years. On a monthly basis,

the MP forecasts show a decreasing trend from year to year. Furthermore, the

ARIMA(1, 1, 1)× (1, 1, 1)12 model suggests a decrease in injury mortality in 2020

compared to 2019.
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4.10 Time series analysis in GP

In this section, we analyse the time series data for GP to identify the plausible

model and underlying pattern and make predictions.

 

Figure 4.18: Trend and correlation plots.

The results in Figure 4.18 reveal a time series plot that indicates the monthly

injury mortality cases, which have many trends and do not seem to be station-

ary. There is an upward and downward movement, which shows seasonality.

The autocorrelation function (ACF) plot shows that the data is not stationary,

and the plot also indicates that there is a seasonal pattern. The plot shows a

non-seasonal significant peak at lag 1 until lags 4, 9, and 11, and a seasonal

significant peak at lag 12. Furthermore, the partial autocorrelation function

(PACF) shows that the data is not stationary. The plot indicates that there is a

seasonal pattern. The plot also shows a non-seasonal significant peak at lags 1,

3, 8, 9, and 13, and a seasonal significant peak at lag 12.
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Table 4.41: Tests for stationarity
Name t-Stat p-value
ADF -3.477 0.047
PP -59.727 <0.010
KPSS 0.55993 0.028

The ADF and PP tests statistics with p-values of 0.047 and less than 0.01, re-

spectively, are shown in Table 4.41; the null hypothesis of non-stationarity of

injury mortality is then rejected at the 5% level of significance. With a p-value

of 0.028 for the KPSS test statistic, the results show that we reject the null hy-

pothesis of stationarity at a 5% level of significance. Finally, the ADF and PP

results show that the injury mortality cases are stationary; however, the KPSS

test showed that the injury mortality cases are non-stationary, indicating that

this data requires differencing.

Table 4.42: Test for normality
Name t-Stat p-value
JB 1.5487 0.461
SW 0.99127 0.583 

Figure 4.19: Normal Q-Q plot.

The findings in Table 4.42 show that there is evidence of platykurtic behaviour

in injury mortality. The p-values were 0.461 and 0.583 for JB and SW, respec-
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tively. Using the JB and SW p-values from Table 4.42, we clearly fail to re-

ject the null hypothesis of Gaussian distribution at the 5% level of significance.

This demonstrates that injury mortality cases are distributed normally. Fur-

thermore, the Q-Q plot in Figure 4.19 demonstrates that injury mortality cases

depart from the normal distribution at both ends. The JB and SW test statistics

presented in Table 4.42 do not support the suggestion of non-normality.

 

Figure 4.20: Trend and correlation for first differencing.

Figure 4.20 reveals that the time series plot is stationary after first-order dif-

ferencing, and because the data is monthly, there is seasonality. The ACF plot

shows a non-seasonal significant peak at lag 1, an annual significant peak at

lag 8, and a peak at lag 12. The PACF plot of first-order differencing monthly

injury mortality data shows a non-seasonal significant peak at lags 1, 2, 3, and

11 and a seasonal significant peak at lags 12 and 24.
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Table 4.43: Tests for stationarity for first differencing
Name t-Stat p-value
ADF -6.2075 <0.010
PP -146.51 <0.010
KPSS 0.038289 >0.100

The results in Table 4.43 show that the p-values for the ADF and PP test statis-

tics are less than 0.01; thus, the null hypothesis of non-stationarity of injury

mortality is rejected as significant at the 5% level. The results show that we

fail to reject the null hypothesis of stationarity at the 5% level of significance

for KPSS test statistics with a p-value greater than 0.10. Finally, the ADF, PP,

and KPSS tests show that the injury mortality cases are stationary after the

first difference.

Table 4.44: Test for normality first differencing
Name t-Stat p-value
JB 25.929 <0.010
SW 0.93967 <0.010

 

Figure 4.21: Normal Q-Q plot.
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The results in Table 4.44 reveal that there is an indication of platykurtic be-

haviour in the injury mortality. The JB and SW p-values are less than 0.01. We

reject the null hypothesis of a Gaussian distribution at the 5% level of signifi-

cance using JB and SW p-values from Table 4.44. This confirms that the injury

mortality cases are not normally distributed. Furthermore, the Q-Q plot in Fig-

ure 4.21 shows that injury mortality cases deviate from the normal distribution

at both ends of the distribution. The indication of normality is not supported by

the JB and SW test statistics reported in Table 4.44.

4.11 Poisson and NB-INGARCH models in GP

In this section, we present the research analysis on both Poisson and NB-

INGARCH models. We present an analysis for GP. In Figure 4.20, the ACF

plot shows a few peaks after the first lag, and there are three peaks that exceed

the confidence interval, indicating a significant correlation between the value

itself and the values corresponding to its first lag. After the first delay there is a

noticeable drop. In the PACF plot, there are a few peaks after the first lag, and

there are five peaks that exceed the confidence interval, indicating a significant

correlation between the value itself and the values corresponding to its first,

second, and third lags. After the third lag there is a significant drop.

4.11.1 Model identification

In this section, we estimate the performance of various competing models with

the hope of choosing the best one. The one with the lowest BIC and AIC should

be our choice. We will follow the most commonly used of these approaches,

which is to start with the most complex model, and see which model can be

dropped. The following models are constructed using the ACF and PACF men-

tioned in Figure 4.20: INGARCH models that best fit the data based on the first

difference. The ACF and PACF were examined, and the following three models



Results and discussion 107

were summarised.

Table 4.45: Poisson and NB-INGARCH models
Model AR MA Link distribution AIC BIC

A 1 1 Ident Poisson 1923.939 1932.587
A 1 1 Ident Neg.Bin 1444.431 1455.962
A 1 1 log Poisson 1844.367 1853.015
A 1 1 log Neg.Bin 1431.971 1443.502
B 1 2 Ident Poisson 2355.884 2364.533
B 1 2 Ident Neg.Bin 1498.021 1509.552
B 1 2 log Poisson 1830.350 1838.999
B 1 2 log Neg.Bin 1429.042 1440.573
C 2 1 Ident Poisson 2377.047 2385.696
C 2 1 Ident Neg.Bin 1500.125 1511.656
C 2 1 log Poisson 2037.426 2046.074
C 2 1 log Neg.Bin 1460.925 1472.456

The results in Table 4.45 reveal that the logarithmic link function models present

better results across the table for the criterion. The logarithmic function is the

best link function since it minimises the loss of information and improves the re-

sults in the criterion compared to the identity link function. Nevertheless, the

majority of the model variation shows a Negative Binomial distribution that

presents better scores in the AIC and worse results in the BIC of 1429.042 and

1440.573, respectively, compared to Poisson scores in the AIC and worse results

in the BIC of 1830.350 and 1838.999, respectively. Model B performs slightly

better across both criteria and is thus the preferred model.

Table 4.46: Parameter estimation on Poisson INGARCH
Parameters Estimate SE CI(lower) CI(upper)
(Intercept) 0.951 0.5680 0.1956 1.335
beta(1) 0.512 0.0311 0.4510 0.573
alpha(2) 0.334 0.0453 0.2450 0.422

AIC = 1830.350, BIC = 1838.999
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Table 4.47: Parameter estimation on NB-INGARCH
Parameters Estimate SE CI(lower) CI(upper)
(Intercept) 0.95148 0.4672 0.0357 1.867
beta(1) 0.51235 0.0736 0.3681 0.657
alpha(2) 0.33362 0.1073 0.1232 0.544
sigmasq 0.00975

AIC = 1429.042, BIC = 1440.573

The results in Tables 4.46 and 4.47 show an AIC of 1830.350 and a BIC of

1838.999 under Poisson INGARCH and an AIC of 1429.042 and a BIC of 1440.573

under NB-INGARCH. Nonetheless, the majority of the model parameters ex-

hibit a Negative Binomial distribution, showing better scores on the AIC crite-

rion and worse scores on the BIC. The negative binomial distribution performs

slightly better on both criteria and is therefore the model of choice.

4.11.2 Model diagnostics

Model diagnostics involve checking how well the model fits. The residual anal-

ysis will be used.

 

Figure 4.22: ACF for Poisson INGARCH residual.
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Figure 4.23: ACF for NB-INGARCH residual

Figures 4.22 and 4.23 show ACF plots with decent results to support residual

independence despite the presence of a peak that exceeds the confidence in-

terval in the ACF. However, given that this is not a theoretically compromised

dataset, the results are encouraging.
 

Figure 4.24: Histogram for Poisson INGARCH residual
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Figure 4.25: Q-Q plot for Poisson INGARCH residual

Figure 4.24 reveals that the histogram data is skewed to the left, while the Q-Q

plot in Figure 4.25 appears to be normally distributed because the points are on

the line, even though the points at the bottom of the line are off the line. This

does not imply that we should reject the normality of error terms in this model.
 

Figure 4.26: Histogram for NB-INGARCH residual.
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Figure 4.27: Q-Q plot for NB-INGARCH residual.

The histogram data in Figure 4.26 is skewed to the left, while the Q-Q plot in

Figure 4.27 appears to be normally distributed because the points fall on the

line, even though the points at the bottom of the line are off the line. This does

not imply that we should reject the normality of error terms in this model.

Table 4.48: The Langrange multiplier (LM) test on model B
Model t-stats DF p-value
Poisson INGARCH(1,2) 3.1688 2 0.2051
NB-INGARCH (1,2) 3.1688 2 0.2051

Table 4.48 shows that there are no ARCH effects among the lags. Since the

Poisson p-values of INGARCH, which is 0.2051; and NB-INGARCH, which is

0.2051, are larger than the significance level of 0.05, we also observe the test

statistics of Poisson INGARCH of 3.1688 and NB-INGARCH of 3.1688. As a

result, the model with the highest test statistics value is the best. Consequently,

both models appear to be better.
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4.11.3 Model assessment

The model is assessed through evaluating the prediction error on new data.

The accuracy measure known as root mean square error (RMSE) will be used

to compare these time series models.

Table 4.49: Model assessment
Link Normalised squared Squared error

error score (NRMSE) score (MSE)
Log-NB 0.978 2796.065
Log-Poisson 5.658 2796.065

Table 4.49 presents the link function of both Poisson INGARCH and NB-INGARCH.

The normalised root mean squared error (NRMSE) of Poisson INGARCH is

5.658, while that of NB-INGARCH is 0.978. Moreover, the mean squared error

(MSE) for Poisson INGARCH is 2796.065, while NB-INGARCH was 2796.065.

As a result, the better model using the link is the one with a lower MSE and

NRMSE values, which gives us the better model. The results suggest that a

Negative Binomial distribution yields better results. As a result, NB-INGARCH

is the better model.

4.12 ARIMA in GP

The research analysis of autoregressive integrated moving average (ARIMA)

models is presented in this section. We present a GP analysis. The ACF plot

in Figure 4.20 includes a few of spikes following the first lag, and three of them

exceed the confidence interval, indicating a significant correlation between the

value itself and the values corresponding to its first lag. There is a significant

drop-off after the first lag. There are a few of spikes after the first lag, and five

spikes that exceed the confidence interval, indicating a significant correlation

between the value itself and the values corresponding to its first, second, and

third lags. There is a significant drop-off after the third lag.
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4.12.1 Model identification

In this section, we estimate the performance of various competing models with

the hope of choosing the best one. The same approach that was used in the

section on MP previously is being applied here.

Table 4.50: Model summary
Model ARIMA(p,d,q)(P,D,Q)

A ARIMA (1, 1, 1)× (1, 1, 1)12
B ARIMA (1, 1, 2)× (1, 1, 1)12
C ARIMA(1, 1, 3)× (1, 1, 1)12

The following models are constructed using the ACF and PACF mentioned in

Figure 4.20. ARIMA models that best fit the data based on observing the ACF

and PACF of the first differencing data. The ACF and PACF were examined,

and the following three ARIMA models were summarised in Table 4.50.

Table 4.51: Fit statistics for model A
Fit statistics Mean
Stationary R-squared 0.448
R-squared 0.685
RMSE 40.025
MAPE 6.471
MAE 30.243
Normalised BIC 7.580

The results in Table 4.51 show that the value of R-squared is 0.685, which

explains about 69% of the variability in deaths from injuries among GP. The

RMSE value is 40.025, suggesting a 40.025 weighted average error between

forecasts and actuals, while the MAE is 30.243, showing a 30.243 average error

between forecasts and actuals. The MAPE value is 6.471, which means that on

average, the forecast is off by 6.5%.
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Table 4.52: Parameter estimation for model A
Parameters estimate SE t-stats p-value
Constant -0.142 0.476 -0.297 0.767
AR(1) 0.090 0.152 0.592 0.555
MA(1) 0.672 0.116 5.805 0.000
SAR(1) 0.128 0.152 0.839 0.403
SMA(1) 0.833 0.166 5.009 0.000

Table 4.52 shows a parameter estimate for the ARIMA (1, 1, 1)×(1, 1, 1)12 model.

The p-value for the estimate is also shown. The model contains four parameters:

AR(1), MA(1), SAR(1) and SMA(1). The constant estimate, with a p-value of

0.767, is a function of the mean and not significant at the 5% significance level.

The MA(1) with a p-value less than 0.05 and the SMA(1) recorded p-values less

than 0.05, both of which are significant because their p-values are less than

alpha 5%. The AR(1) recorded a p-value of 0.555 and the SAR(1) recorded a

p-value of 0.403, which are not significant at the 5% significance level.

Table 4.53: Fit statistics for model B
Fit statistics Mean
Stationary R-squared 0.448
R-squared 0.685
RMSE 40.194
MAPE 6.470
MAE 30.230
Normalised BIC 7.628

The results in Table 4.53 reveal that the value of R-squared is recorded at 0.685,

which explains about 69% of the variation in death due to injury in GP. The

RMSE value is 40.194, suggesting a 40.194 weighted average error between

forecasts and actuals, while the MAE is 30.230, showing a 30.230 average error

between forecasts and actuals. The MAPE value is 6.470, which means that on

average, the forecast is off by 6.5%.
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Table 4.54: Parameter estimation for model B
Parameters Estimate SE t-stats p-value
Constant -0.139 0.481 -0.289 0.773
AR(1) -0.065 1.625 -0.040 0.968
MA(1) 0.516 1.621 0.319 0.751
MA(2) 0.099 0.997 0.099 0.921
SAR(1) 0.129 0.154 0.841 0.402
SMA(1) 0.832 0.167 4.987 0.000

The parameter estimates for the ARIMA (1, 1, 2) × (1, 1, 1)12 model models are

shown in Table 4.54. It also shows the p-value for the estimates. The model

contains five parameters: AR(1), MA(1), MA(2), SAR(1), and SMA(1). The con-

stant estimate, with a p-value of 0.773, is a function of the mean term and is not

statistically significant at the 5% significance level. SMA(1) had a p-value less

than 0.05, which is significant because their p-values were less than alpha 5%.

The p-values for the AR(1), MA(1), MA(2), and SAR(1) were 0.968, 0.751, 0.921,

and 0.402, respectively, which are not significant at the 5% level of significance.

Table 4.55: Fit statistics for model C
Fit statistics Mean
Stationary R-squared 0.452
R-squared 0.688
RMSE 40.237
MAPE 6.378
MAE 29.778
Normalized BIC 7.671

Table 4.55 reveals that the value of R-squared is recorded at 0.688, which ex-

plains about 69% of the variation in death due to injury in GP. The RMSE value

is 40.237, suggesting a 40.237 weighted average error between forecasts and

actuals, while the MAE is 29.778, showing a 29.778 average error between fore-

casts and actuals. The MAPE value is 6.378, which means that on average, the

forecast is off by 6.4%.
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Table 4.56: Parameter estimation for model C
Parameters Estimate SE t-stats p-value
Constant -0.100 0.605 -0.166 0.869
AR(1) 0.856 0.305 2.804 0.006
MA(1) 1.447 0.310 4.668 0.000
MA(2) -0.416 0.257 -1.617 0.109
MA(3) -0.099 0.097 -1.017 0.312
SAR(1) 0.109 0.156 0.693 0.490
SMA(1) 0.813 0.156 5.220 0.000

Table 4.56 shows the parameter estimates for the ARIMA (1, 1, 3) × (1, 1, 1)12

model. It also shows the p-value for estimates. There are six parameters in

the model: AR(1), MA(1), MA(2), MA(3), SAR(1), and SMA(1). The constant

estimate with a p-value of 0.869 is the function of the mean term and is not

significant at the 5% significance level. The AR(1), MA(1), and SMA(1) recorded

p-values of 0.006, less than 0.05, which are significant since their p-values are

smaller than alpha 5%. The MA(2), MA(3), and SAR(1) recorded p-values of

0.109, 0.312, and 0.490, respectively, which are not significant at the 5% level

of significance.
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4.12.2 Model diagnostics

Model diagnostics involve checking how well the model fits. The residual anal-

ysis will be used.

 

Figure 4.28: Residual ACF and PACF

The results in Figure 4.28 show ACF and PACF residuals that have non-significant

peaks, all of whose values lie within the upper and lower confidence interval and

therefore the model is white noise. There is no autocorrelation in the residuals.
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Figure 4.29: Residual Histogram and Q-Q plot

The results in Figure 4.29 show that the histogram data is normally distributed.

In the same Figure 4.29, the Q-Q plot appears to be normally distributed be-

cause the points lie on the line, although there are points off the line at the

bottom of the line. This does not imply that we should reject the normality of

error terms in this model.

Table 4.57: Ljung Box test for model A
Model t-stats Df p-value
ARIMA (1, 1, 1)× (1, 1, 1)12 10.823 14 0.700

Table 4.57 reveal the Ljung Box test Q∗ = 10.823 with a probability of 0.700,

indicating that the estimated model is uncorrelated and may be adequate. The

model is not significant at 5% level of significance since the p-value of 0.700 is

greater than the level of significance of 5%.
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Figure 4.30: Residual ACF and PACF

The results in Figure 4.30 show ACF and PACF residuals that have non-significant

peaks, all of whose values lie within the upper and lower confidence intervals,

and therefore the model is white noise. There is no autocorrelation in the resid-

uals.



Results and discussion 120

 

Figure 4.31: Residual Histogram and Q-Q plot

Figure 4.31 shows that the histogram data is normally distributed. The Q-Q

plot in Figure 4.31appears to be normally distributed since the points are on

the line, even though there are points away from the line near the bottom of the

line.

Table 4.58: Ljung Box test for model B
Model t-stats Df p-value
ARIMA (1, 1, 2)× (1, 1, 1)12 10.765 13 0.630

The results in Table 4.58 show the Ljung Box test Q∗ = 10.765 with a proba-

bility of 0.630, indicating that the estimated model is uncorrelated and may be

appropriate. The model is not significant at the 5% significance level because

the p-value of 0.700 is greater than the 5% significance level. This does not

mean that we should reject the normality of error terms in this model.
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Figure 4.32: Residual ACF and PACF

The Figure 4.32 shows ACF and PACF residual which have non-significant

peaks and all its values lie within the upper and lower confidence interval and

therefore the model is a white noise.
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Figure 4.33: Residual Histogram and Q-Q plot

The results in Figure 4.33 show that the histogram data is normally distributed,

while in the same Figure 4.33 the Q-Q plot appears to be normally distributed

because the points are on the line, even though the points at the bottom of the

line are off the line.

Table 4.59: Ljung Box test for model C
Model t-stats Df p-value
ARIMA (1, 1, 3)× (1, 1, 1)12 9.903 12 0.624

The results in Table 4.59 show the Ljung Box test Q∗ = 9.903 with a probability

of 0.624, indicating that the estimated model is uncorrelated and may be ap-

propriate. The model is not significant at the 5% significance level because the

p-value of 0.624 is greater than a 5% significance level.

4.12.3 Model assessment

The model is assessed through evaluating the prediction error on new data. The

accuracy measure RMSE will be used to compare these time series models.
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Table 4.60: Model assessment
Model BIC RMSE
ARIMA (1, 1, 1)× (1, 1, 1)12 7.580 40.025
ARIMA (1, 1, 2)× (1, 1, 1)12 7.628 40.194
ARIMA (1, 1, 3)× (1, 1, 1)12 7.671 40.237

Table 4.60 shows the results of a model assessment of GP monthly deaths from

injuries. The best model selection is based on the normalised BIC and the

RMSE. The lowest of BIC and RMSE is used for model selection. The ARIMA

(1, 1, 1) × (1, 1, 1)12 model is the best model and has a minimum score of 7.580

and 40.025 for BIC and RMSE, respectively.

4.13 Model assessment in GP

The model is assessed through evaluating the prediction error on new data. The

accuracy measure RMSE will be used to compare these time series models.

4.13.1 Comparing the NB-INGARCH and ARIMA Models

Table 4.61: Model assessment
Model RMSE
ARIMA (1, 1, 1)× (1, 1, 1)12 40.025
NB-INGARCH(1, 2) 469.44

Table 4.61 shows the findings of two models based on GP monthly injury mor-

tality data. The best model is chosen using the RMSE. The best model is the

one with the lowest RMSE value. The RMSE for the NB-INGARCH (1,1) model

was 469.44, whereas the RMSE for the ARIMA (1, 1, 1) × (1, 1, 1)12 model was

40.025, making it the best model for GP monthly injury mortality data.
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4.14 Injury mortality model in GP

The equation of ARIMA (1, 1, 1)× (1, 1, 1)12 model is given by

ϕ1(B)(1−B)Φ1(B
12)(1−B12)xt = θ1(B)Θ1B

12zt (4.2)

(1− ϕ1B)(1−B)(Φ1B
12)(1−B12)xt = (1− θ1B)(1−Θ1B

12)zt

(1 + 0.090B)(1−B)(1 + 0.128B12)(1−B12)xt = (1− 0.672B)(1− 0.833B12)zt

∴ xt = 1.090xt−1 − 0.090xt−2 + 1.128xt−12 − 1.230xt−13 + 0.102xt−14 − 0.128xt−24 + 0.140xt−25

− 0.012xt−26 + zt − 0.672zt−1 − 0.833zt−12 + 0.560zt−13

4.15 Forecasting GP injury mortality

Once we have the final ARIMA model, we are now ready to make predictions on

the future time points. We also visualise the trends.
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4.15.1 GP monthly injury mortality forecast

Table 4.62: Forecast with 95% confidence limits
Date Time Forecast Lower Limit Upper Limit
Jan-19 133 326.6962 252.0641 401.3283
Feb-19 134 317.5735 236.6963 398.4507
Mar-19 135 375.9863 290.6337 461.339
Apr-19 136 340.8089 251.3093 430.3086
May-19 137 340.8284 247.3746 434.2823
Jun-19 138 368.4878 271.2412 465.7344
Jul-19 139 407.7643 306.8674 508.6612
Aug-19 140 412.4477 308.0281 516.8673
Sep-19 141 394.1221 286.2948 501.9494
Oct-19 142 379.6706 268.5400 490.8011
Nov-19 143 402.1555 287.8171 516.4939
Dec-19 144 434.1733 316.7146 551.632
Jan-20 145 299.4376 172.2082 426.6669
Feb-20 146 291.8360 159.5895 424.0825
Mar-20 147 349.5045 212.7216 486.2875
Apr-20 148 312.7717 171.6234 453.92
May-20 149 316.633 171.2526 462.0135
Jun-20 150 342.3356 192.843 491.8283
Jul-20 151 381.3962 227.9014 534.891
Aug-20 152 382.0806 224.6855 539.4757
Sep-20 153 367.1694 205.9683 528.3705
Oct-20 154 356.3719 191.4527 521.2912
Nov-20 155 373.9375 205.382 542.4929
Dec-20 156 408.0074 235.8926 580.1223
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Figure 4.34: Time series plot for forecast

The results in Table 4.62 and Figure 4.34 show the forecasted data for injury

mortality from January 2019 to December 2020. The GP forecasts show a de-

creasing trend from year to year on monthly basics. Furthermore, the fore-

casted results of the ARIMA(1, 1, 1)× (1, 1, 1)12 model show a decrease in injury

mortality in 2020 as compared to 2019.

4.16 Discussion

The first thing we did in chapter four was to check the factors that contribute to

injury mortality in MP and found that transport accidents followed by homicide

were the highest, while in GP province, homicide followed by transport acci-

dents were the highest. This is consistent with Matzopoulos et al. (2015) and

WHO (2021) on MP regarding transport accidents and homicide as contribut-

ing factors to injury mortality. This result of MP could be because people are

travelling from rural places to urban places. While the GP Pillay-van Wyk et al.

(2016) study found that homicide was the leading cause of injury mortality,

followed by transport accidents, these results could be because more people are
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moving into urban areas. Moreover, as MP is a rural province while GP is an ur-

ban province according to Swart et al. (2012), there is a little variation between

urban and rural regions in terms of age-group, month, and gender, but no differ-

ence in injury mortality. The only difference is in the causes of injury mortality.

This observation is in line with Prinsloo et al. (2016). We also checked whether

the series is stationary or not. The ADF, KPSS, and PP tests revealed that the

series is stationary at the 5% level of significance after first differencing. The fit-

ting of candidate distributions revealed that NB-INGARCH (1, 1) and ARIMA

(1, 1, 1) × (1, 1, 1)12 had appropriate distributions in MP, while NB-INGARCH

(1, 2) and ARIMA (1, 1, 1) × (1, 1, 1)12 had appropriate distributions in GP. The

best model was chosen using the RMSE. The best model was the one with the

lowest RMSE value. The RMSE revealed that ARIMA (1, 1, 1) × (1, 1, 1)12 were

the appropriate distributions to model the series in both MP and GP. There is a

trend of decreasing injury mortality from year to year, although there also ap-

pears to be a seasonal pattern with a cycle of less than two years. In addition,

the variance of the data decreases over time. The reason why ARIMA models

perform better could be that they represent stationary as well as non-stationary

time series, while NB-INGARCH models are better at mainly capturing volatil-

ity in time series data (Bhardwaj et al., 2014).



Chapter 5

Conclusion

5.1 Introduction

The chapter presents the conclusions and recommendations based on the find-

ings about monthly injury mortality. The chapter is focused on drawing conclu-

sions from previous chapters. The chapter ends with some recommendations

and future research directions.

5.2 Conclusions

The objectives of this study were stated in the first chapter. In terms of the

first objective, descriptive statistics was used and the results revealed higher

rates of injury mortality in Mpumalanga are driven by the high transport ac-

cidents followed by homicide, while in Gauteng the high injury mortality rates

are driven by the high homicide in injury mortality followed by transport ac-
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cidents. The second objective revealed that there are indeed differences for

the injury mortality in both Mpumalanga and Gauteng. The findings high-

light a significant higher likelihood for homicide in Gauteng which is an ur-

ban place compared to Mpumalanga which is rural. Transport accidents were

also found to be lower in Gauteng. After transforming the data into station-

ary form, the third objective was assessed through modelling the data pat-

tern. The findings highlight the fitted models NB-INGARCH (1,1), Poisson IN-

GARCH (1,1) and ARIMA (1, 1, 1) × (1, 1, 1)12 in Mpumalanga, while in Gaut-

eng the models fitted were NB-INGARCH(1,2), Poisson INGARCH(1,2) and

ARIMA (1, 1, 1) × (1, 1, 1)12. In the fourth objective, the better model between

Poisson INGARCH (1,1) and NB-INGARCH (1,1) was NB-INGARCH(1,1) based

on the AIC and BIC criteria. However, comparing it to the ARIMA model

by using RMSE, the ARIMA (1, 1, 1) × (1, 1, 1)12 was found to be the best to

forecast Mpumalanga, while in Gauteng the better model between Poisson IN-

GARCH(1,2) and NB-INGARCH(1,2) was NB-INGARCH(1,2) based on the val-

ues of the AIC and BIC. Furthermore, comparing it to the ARIMA model using

RMSE, the ARIMA (1, 1, 1) × (1, 1, 1)12 was found to be the best for forecasting.

Therefore, Mpumalanga and Gauteng monthly injury mortality model is the

ARIMA (1, 1, 1) × (1, 1, 1)12. The forecast results of 24 months show that there

will be a decrease in injury mortality in the last objective, but also that there

are months like December, October and August where December has higher

injury than the other two months.

5.3 Further discussions and recommendations

Injury is a truly global health issue with massive societal and economic conse-

quences. The study has revealed some evidence demonstrating the importance

of keeping track of South Africa’s injury mortality rates in order to inform the

2030 Sustainable Development Goals (SDGs) for reducing injuries (Assembly,
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2015). The World Health Organization (WHO) expressed the need for country-

specific statistics broken down by age, gender, race, ethnicity, and other charac-

teristics in order to track socioeconomically disadvantaged people within coun-

tries and enhancing international comparisons on injury statistics (Organiza-

tion, 2016). In South Africa, reliable injury mortality rates are difficult to ob-

tain, therefore these findings add value and inform South Africa’s contribution

to monitoring SDGs for injuries; and inform government and public health ac-

tors about the magnitude and public health relevance of specific factors related

to injuries.

The high homicide and transport accidents mortality for both Mpumalanga and

Gauteng indicate a need for urgent intervation in order to achieve the SDGs by

2030. In particular, the SDGs related to:

• “eliminate all forms of violence against all women and girls in public and

private spheres, including trafficking and sexual and other types of ex-

ploitations”

• “To significantly reduce all forms of violence and related death rates ev-

erywhere”.

In Mpumalanga, the rate of transport accidents was high, followed by homicide.

The current strategies appear to be ineffective in reducing large-scale transport

accidents. Policymakers should be concerned about the increased relative risk

of transport accidents among people aged 15 to 34. This could be due to an

increase in the number of motor vehicle and motorcycle drivers, as well as in-

creased automobile ownership and the presence of youth driver communities. A

Graduated Driver Licensing (GDL) system could benefit the youth driver pop-

ulation in both Mpumalanga and Gauteng. Evidence from the GDL system in

New Zealand, the United States, and Australia suggests that it reduces the risk

of death (Bates et al., 2014).
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This system gradually exposes a new driver to complex driving situations while

keeping them safe. The first phase of the GDL system consists of a learner

phase, which provides new drivers with practical driving experience under su-

pervision in a lower risk situation. The provisional license phase limits ex-

posure to potentially dangerous situations, such as restrictions on driving at

night, driving with passengers, driving after consuming alcohol, using a mobile

phone, and vehicle power restrictions. Before a new driver can be issued a full,

open phase license, he or she must pass an exit test. South Africa’s current

licensing system consists of a leaner phase and a full, open license phase, and

the restrictions noted in the provisional phase of a GDL system could benefit if

applied. Existing intervention such as drink driving campaigns should be en-

forced, in both Mpumalanga rural region and Gauteng urban region.

When compared to Mpumalanga, Gauteng has a higher homicide risk. Homi-

cide prevention can only be addressed through interventions that have a broader

social impact on violence prevention. This will necessitate an increase in gov-

ernment funding for social protection in both Gauteng and Mpumalanga. Se-

curity for old age, disability, housing, and unemployment, in particular (Rogers

and Pridemore, 2013), will aid in mitigating the effects of societal inequality.

According to Organization et al. (2010), regulating alcohol sales and raising

alcohol prices may prevent all forms of violence, while improving drinking en-

vironments prevent youth violence. Attempts to reform South African policies

on the sale, use, and advertising of alcohol have been met with stiff opposition

from the liquor industry (Parry et al., 2014).

According to Krisch et al. (2015), violence can be reduced by investing in urban

planning and focusing on hotspots through urban upgrading in fast-growing

cities that are most prone to violence. Violence Prevention through Urban

Upgrading (VPUU) was implemented in communities in the Western Cape of
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South Africa, and it involved the modification and upgrading of public space as

well as the monitoring of liquor outlets (Matzopoulos and Myers, 2014).

To monitor trends, more studies on injury mortality data are needed on a reg-

ular basis. This will necessitate the integration of data sources from foren-

sic pathology, police, and forensic chemistry laboratories. A nationally repre-

sentative survey of this scope can be expensive, necessitating support and re-

sources from government or private funding sources. Also, the implementation

of surveillance systems will present similar difficulties. While surveys can be

completed in a specific time frame, maintaining ongoing surveillance systems

will be more difficult. Surveys are thus more likely to be accurate and complete

than surveillance systems in a South African setting.

Improved data quality is required for optimal resource allocation to high-risk

groups. StatsSA data will need to be strengthened, which will necessitate a

change in the death notification form. Medical certification training for doctors

is also important, as well as complete death registration. This will reduce the

proportion of misclassified deaths within vital registration data.

Studies on seasonal autoregressive integrated moving average (SARIMA) model

to predict extreme seasonal injury mortality are proposed for future research

directions.
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