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Abstract

Numerous studies have applied Extreme Value Theory (EVT) to model environ-

mental variables like wind speed, rainfall and temperature. Recently, academic

focus has shifted to machine learning algorithms for the same variables. This

research study demonstrates the practical use of EVT and machine learning

techniques for modelling wind speed in the Limpopo Province, with the primary

goal of assessing wind power generation reliability. The data used in this re-

search study is obtained from National Aeronautics and Space Administration

(NASA), spanning the time period from 2016 to 2022. The Vanilla Long Short-

Term Memory (LSTM) network exhibited remarkable accuracy, achieving 86%

training and 89% testing accuracy. Additionally, Generalised Extreme Value

Distribution (GEVD) for block sizes (1 to 5) revealed GEVDm=2 as the most

suitable model based on low Akaike information criteria (AIC) and Bayesian

information criteria (BIC) values. The model highlighted a rare event with a

300-year return period, indicating a wind speed of 22.893 meters. This study

provides valuable insights for careful power planning, economic strategy and

advancement in civilisation in South Africa, with implications for future en-

ergy planning and policy decisions in the region.

Keywords: Akaike information criteria, Bayesian information criteria, Ex-

treme Value Theory, Generalised Extreme Value Distribution, Long Short-Term

Memory, National Aeronautics and Space Administration, and Wind Power

Generation
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Chapter 1

Introduction and background

1.1 Introduction

An outstanding advancement in technology revolution carried by the wind

power generation is happening within Asian and European countries (Zhang

et al., 2022). This approach can help South Africa deal with its ongoing elec-

tricity problems, opening the way for a better and more successful future for

its people, businesses and economy. However, to maintain wind power stability,

wind power generation requires careful planning and execution, as well as ac-

curate wind speed prediction in the implementation region. This implies that

the core component of putting this idea into practice is wind speed forecasting.

The complexity of atmospheric processes that affect wind speed is one of the

obstacles in forecasting wind speed. Factors including humidity, surface rough-

ness, temperature (◦C) and atmospheric pressure gradients all have an impact

on wind speed prediction (Ahmed et al., 2022; Antonini and Caldeira, 2021).
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In order to provide reliable forecasts, forecasting models must take into consid-

eration these factors and their interactions. Additionally, warm air is preferred

by wind turbines in order to pull more kinetic energy from the environment

(Fischereit et al., 2022; Jensen and Skelton, 2018). Due to scarcity of the liter-

ature pertaining to semi-developed provinces, the study aims to showcase the

potential to produce electricity through wind in the province of Limpopo.

In recent decades, Wang et al. (2020) stated that the modern machine learning

algorithms have significantly improved the prediction precision of meteorolog-

ical features. More accurate predictions have been made achievable by the

use of high-resolution weather models in machine learning, deep learning and

Extreme Value Theory (EVT), together with enhanced data integration tech-

niques. In this research study, a classical statistical model called Generalized

Extreme Value Distribution (GEVD) is explored, which combines the heavy

tailed Fréchet distribution, light tailed of a Weibull distribution and Gumbel

distribution, yielding a unified distribution (Coles et al., 2001). This research

study also discusses the Vanilla Long Short-Term Memory (LSTM) network

which is an advanced form of Recurrent Neural Network (RNN). The advan-

tages of these models include their great adaptability and ability to adapt to

variety of datasets, including time series and speech translation.

Wind power generation can significantly boost local economic development,

provide a cost-effective source of energy and lower the unemployment rate

since wind turbines need qualified employees to construct and maintain them.

This research study asserts the importance of continued financial support from

government authorities towards the development and enhancement of wind

power infrastructure and technologies, to raise awareness among government

officials and the Electricity Supply Commission of South Africa (Eskom) to un-

derstand the efficiency and advantages of wind power generation.
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1.2 Background

This research study employs both machine learning algorithms and Extreme

Value Theory (EVT) methods. However, the primary focus is on a robust ma-

chine learning technique and comprehensive EVT statistical approaches. The

Vanilla Long Short-Term Memory (LSTM) network, a modification of Recurrent

Neural Networks (RNN), is chosen due to its ability to address the vanishing

information problem in distant history. Hochreiter and Schmidhuber (1997)

developed this technique. The capacity of this algorithm is to recall or forget

certain information at each time step. This is accomplished by using input

gate, forget gate and output gate which regulate the information flow into and

out of the LSTM cell (Geng et al., 2020). This selection is justified to enhance

the depth of our modelling approach.

On the one hand, numerous researchers exploited the (GEVD), which combines

the Fréchet, Weibull and Gumbel parametric distributions, for applying EVT

to analyze wind, temperature and rainfall (Beirlant et al., 2006; Coles et al.,

2001). This motivated us to employ the classical approach, specifically the

GEVD, for the examination of wind speed data. Maposa et al. (2021) estimated

the temperature return levels for 10, 20, 50 and 100 years. Both the GEVD and

Generalized Pareto Distribution (GPD) appeared to suit the data of maximum

temperature returns well, supported by the diagnostic plots. The best model,

however, was selected based on the lowest Akaike Information Criteria (AIC)

and Bayesian Information Criteria (BIC) values. In neural networks, the opti-

mality of the model is examined by measuring the model accuracy on testing

data after the model has been trained.
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1.3 Problem statement

According to the Council for Scientific and Industrial Research (CSIR), South

Africa experienced the worst load shedding during the years: 2019–2022 (CSIR,

2023). This condition appears to be growing worse and worse with time (Mban-

dlwa, 2023; Banderker, 2022). However, wind energy generation can provide a

solution to this obstacle (Madiba et al., 2022; Daniel et al., 2020). The combus-

tion of fossil fuels is one of Africa’s traditional methods of energy generation,

which causes one of the most catastrophic events known as global warming

(Al-Ghussain, 2019; Sivaramanan, 2015). This results in unfavourable mete-

orological conditions, such as elevated earth temperature, air pollution and

flooding (Perera and Nadeau, 2022). The aforementioned conditions are signif-

icant threat to the economic sector, agricultural sector and health sector.

In the economic sector, extreme weather conditions and natural catastrophes

can lead to supply chain disruptions, infrastructure damage and business in-

terruptions (Botzen et al., 2019). In the agricultural sector, high temperatures

and flooding may harm crops, diminish yields and raise the danger of pests

and diseases (Diffenbaugh and Burke, 2019; Dottori et al., 2018; Haines et al.,

2006). In the area of health, production of energy from the burning of fossil fu-

els has detrimental effects on human health, increasing the risk of respiratory

and cardiovascular conditions (Donaghy et al., 2023). Wind power generation

can mitigate these challenges, ensuring a more reliable food supply in the coun-

try and reducing death rates from cardiovascular diseases.

World Health Organization (2019) highlighted how the increased frequency of

traffic accidents is a result of the extreme weather brought on by the use of fos-

sil fuels for electricity generation. Fossil fuel combustion is a significant source

of airborne fine particulate matter denoted by a scientific name, PM2.5 and a

significant factor in the burden of disease and mortality experienced worldwide
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(Deng et al., 2014). According to Cohen et al. (2017), about 4.2 million people

worldwide died as a result of exposure to PM2.5. This research study highlights

wind power as a crucial solution in the face of the climate crisis. This not only

provides renewable energy solution, but also offers environmental benefits and

economic growth. Embracing wind power can create a cleaner, prosperous and

harmonious sustainable future for South Africa.

1.4 Rationale

In the fields of EVT and machine learning, limited studies have been conducted

on forecasting wind speed for energy generation. Renewable energy produc-

tion is one crucial factor for the economic progress of each nation (Saulat et al.,

2021). This actively contributes to economic progress by optimizing energy pro-

duction strategies, reducing dependency on traditional energy sources, foster-

ing job creation, encouraging investments in renewable energy infrastructure,

driving economic growth and environmental sustainability simultaneously. In

recent decades, several scholars suggested time series prediction techniques,

such as the Autoregressive Integrated Moving Average (ARIMA) model and the

Seasonal Autoregressive Integrated Moving Average (SARIMA) on forecasting

wind speed (Elsaraiti and Merabet, 2021; Al Dhaheri et al., 2017). These meth-

ods require a lot of data and are less precise compared to Artificial Neural

Network (ANN) and Support Vector Regression (SVR) with superior predicting

performance (Shao et al., 2021; Bokde et al., 2019; Wang et al., 2016). In a

related study, Mutavhatsindi et al. (2020) explored multiple machine learning

algorithms, including Vanilla LSTM network, SVR and Feed Forward Neural

Network (FFNN), to estimate solar irradiance in South Africa. Among these

techniques, FFNN emerged as the best forecasting model, displaying the low-

est Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
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In South Africa, a quick transition to a cleaner and more sustainable energy

source, like as wind is required. A coordinated effort from governments, cor-

porations and individuals is needed to promote and invest in renewable alter-

natives, particularly wind power generation. Furthermore, in order to prop-

erly develop advanced wind power turbines, predicting extreme wind events is

crucial. Through the application of EVT using the GEVD we can match the

wind speed distribution that allows for a more accurate estimation of the fre-

quency of high wind occurrences (Morgan et al., 2009). In the previous studies,

similar and comparable EVT techniques have been employed in wind speed

modelling (Oktaviarina and Sofro, 2019; Morgan et al., 2009; Brabson and Pa-

lutikof, 2000).

Castillo et al. (2005) described the blended GEVD (bGEVD) as a versatile

and effective technique for simulating distribution tail behaviour. The idea

of blending was described in Castillo et al. (2005), along with how it might help

with severe event modelling. Also, they provided a breakdown explanation of

the bGEVD model parameters. Several literature indicated that it is not suffi-

cient to only fit a particular technique, test for goodness-of-fit is important to

evaluate how well a particular probability distribution fits a collection of ob-

served data (Rolke and Gongora, 2021; Zeng et al., 2015).

South Africa is experiencing large-scale power outages (load shedding of stages

5 and 6 for which in a day electricity goes off three times a day for 1 to 4

hours each time). Hence, this research study investigates the possibility to

enhance economic and social well-being of South Africa by providing statistical

methodologies demonstrating the potential of wind energy as a source of power

using statistical EVT and machine learning techniques.
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1.5 Aim and objectives

1.5.1 Aim

The research aims to forecast short-term wind speed using the Vanilla Long

Short-Term Memory (LSTM) algorithm and long-term wind speed using the

Generalized Extreme Value Distribution (GEVD).

1.5.2 Objectives

The objectives of the study are to:

1. Fit the Vanilla LSTM algorithm and GEVD to the wind speed dataset.

2. Assess the predictive performance of the Vanilla LSTM and forecast short-

term wind speed using the machine learning algorithm.

3. Assess the goodness-of-fit of the GEVD in long-term modelling of extreme

wind speed.

4. Conclude on the optimal block size for modelling extreme events using

GEVD, highlighting the most effective size based on the study findings.

5. Estimate the return levels of extreme wind speed and their corresponding

return periods using GEVD.
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1.6 Contribution of the study

It is becoming more and more common and practical to produce power using re-

newable resources to meet global energy demands. Yet, the focus of this study

is on the role that wind energy plays in producing electricity. Many and contin-

uous scientific advancements have been made in the field of producing power

from the wind. The fact that it is free and causes less damage to the envi-

ronment is one of its biggest advantages to the economic development of any

nation. Specifically, wind power offers benefits such as reduced greenhouse gas

emissions and minimal air pollution, making it a sustainable and environmen-

tally friendly solution for powering our energy needs.

This research study will advance the field of renewable energies research and

assist in reducing the damage done by the combustion of fossil fuels. Wind

power generation can significantly boost local economic development, provide

a cost-effective source of energy, and lower the unemployment rate since wind

turbines need qualified employees to construct and maintain them. This re-

search study asserts the importance of continued financial support from gov-

ernment authorities towards the development and enhancement of wind power

infrastructure and technologies.

1.7 Structure of the dissertation

The outline of this research study is divided into, five chapters. Chapter 2 ex-

plores the relevant literature reviews, their findings on the subject matter and

research gap identification. Chapter 3 provides the analytical techniques em-

ployed for forecasting wind speed, area of study, data sources and assessment

metrics. Chapter 4 discusses the findings from the data analysis for each tech-

nique, interpretation and discussion of the overall results. Finally, Chapter 5

summarise the major findings, conclusion and recommendations.



Chapter 2

Literature review

2.1 Introduction

This chapter provides a comprehensive review of existing research conducted

in South Africa, focusing on renewable energy resources, expanding to differ-

ent countries and regions on renewable energy power generation. It highlights

the importance of renewable resources in addressing global warming and eco-

nomic development. Additionally, the chapter evaluates the current body of

literature, identifies gaps and constraints in the existing literature.

2.2 Overview of literature in South Africa

In recent studies, Daniel et al. (2020) explored different forecasting methods

for wind speed, with a focus on point and interval forecasting in Vredandale,

South Africa. They used three methods for point forecasting and two meth-

ods for combining forecasts, using a dataset from Vredendal in South Africa.
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One notable aspect of their study is the use of Generalized Additive Models

(GAMs) for wind speed forecasting, which has not been extensively studied in

prior literature. The GAMs are known for their interpretability and flexibility

in modelling relationships between variables. The researchers evaluated the

accuracy of these models using various metrics, such as coverage width-based

criteria and prediction interval normalised average width. The results indi-

cated that certain methods perform better than others in terms of accuracy

and performance. This study contributed to the field of wind speed forecasting

by evaluating different methods and demonstrating their effectiveness in vari-

ous scenarios.

In the same vein, Mutavhatsindi et al. (2020) explored different machine learn-

ing algorithms, including FFNN, Vanilla LSTM network, SVR and PCA as a

benchmark model. A benchmark model is a baseline model that serves as a

benchmark for evaluating the effectiveness of other models or methodologies.

These models were trained and tested using historical weather and solar ir-

radiance data from various locations in South Africa. The study identified the

FFNN model as the most suitable forecasting model, which resulted in the best

forecast accuracy when measured by MAE and RMSE. Their findings offered

valuable insights for the development of efficient and effective solar energy

systems in South Africa. Furthermore, this serves as a foundation for future

research on utilising machine learning techniques for wind speed prediction in

electricity generation.

Diriba et al. (2015) examined the peaks of the yearly and daily maximum wind

speeds in Port Elizabeth, South Africa, using the dependence impact to extreme

value distributions. The maximum likelihood and Markov chain Monte Carlo

approach with the Metropolis-Hastings algorithm were used to estimate the

parameters of EVT models (Coles et al., 2001). The outcomes of the Bayesian
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study demonstrate that the priors selected to create the informative priors may

have an impact on posterior inference. In contrast to the frequentest method,

the Bayesian approach offered a suitable estimating procedure that accounted

for parameter and return level uncertainty. Sigauke and Bere (2017) also stud-

ied the impact of choosing the best technique for parameter estimation.

In a separate study, a modelling framework was developed by Sikhwari et al.

(2022) using the data on the maximum measures of rainfall that were recorded

in the province of Limpopo from 1960 to 2020. A Generalized Pareto Distribu-

tion (GPD) and the GEVDr modelling technique were both applied. Since se-

lecting a substantial r is important in the r-largest order statistics technique,

the focus was only on r < 9. After the selected appropriate model for the data,

GEVDr=8, the 50-year return level was predicted to be 368 mm, which indi-

cates a chance of 0.02 surpassing 368 mm in 50 years in the Limpopo Province.

Bhagwandin (2017) compared the univariate and multivariate extreme value

theory models to analyse climatic data in Western Cape province, South Africa.

Data obtained from five weather stations, Cape Town International Airport,

Langebaanweg, George Airport, Vredendal and Plettenberg Bay worth of data

were gathered for the analysis beginning in 1965. The study modelled sev-

eral weather variables including maximum rainfall, maximum wind speed and

maximum temperature using block maxima, threshold excess and point pro-

cess techniques. The results indicated that the block maxima technique was

inferior in modelling the weather variables, due to ignoring important obser-

vations. The threshold excess and point process techniques, on the other hand,

performed better when modelling weather extremes. However, there was slight

correlation observed between wind speed, rainfall and temperature, suggesting

that future research may need to apply machine learning algorithms.
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2.3 Worldwide overview of literature

Bhaskaran et al. (2023) investigated the estimation of extreme wind and waves,

demonstrating their relevance to offshore wind energy. The statistical tech-

niques used include the block-maxima and peaks-over-threshold (POT) method,

using distribution models such as Gumbel, GEVD and GPD. The mean resid-

ual life approach was used to determine a threshold of 4.31 m. The findings

revealed variability in extreme values among different sites, highlighting the

accuracy of the block-maxima approach. In terms of future research recom-

mendations, the emphasis was on critically exploring alternative threshold de-

termination methods, especially in optimising the POT approach.

The accurate estimation of parameters is essential to ensure dependable values

for the prediction of future extreme events (Coles et al., 2001). Abdulali et al.

(2022) examined three estimate techniques for estimating parameter values

based on simulated observations from the GEVD, namely the method of mo-

ments (MOMs), maximum likelihood estimator (MLE) and maximum product

of spacing (MPS). The results indicated that MLE outperformed the other tech-

niques in terms of mean square errors, while maintaining similar goodness-of-

fit statistics. In particular, for both the location and scale parameters, MLE

exhibited the lowest mean square error, followed by MPS, with MOMs per-

forming the least effectively. In summary, both MLE and MPS showed nearly

identical performance, while MOMs lagged behind in terms of accuracy.

Arora et al. (2018) presented a comparison of statistical and machine learning

approaches, including ARIMA, SVR, and LSTM for two agricultural zones in

India. The performance of the proposed models were assessed on the basis of

several error measures, such as MAE, MSE and RMSE. According to their find-

ings, each method effectiveness differed across various wind farm zones. Fore-

casting accuracy was significantly impacted by the choice of model parameters
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and the selection of suitable kernels. In addition, the study recommended in-

vestigating hybrid strategies combining statistical and machine learning tech-

niques for greater prediction accuracy.

The present study focuses on the application of the Vanilla LSTM networks for

short-term wind speed forecasting. This choice is based on the Vanilla LSTM

network ability to handle long-term dependencies and adapt to dynamic sit-

uations. By using this technique, the machine learning model developed will

be able to generalise well to any relevant dataset. In a related study, Geng

et al. (2020) simulated hourly wind speed data in Xinjiang province, China.

They used various meteorological variables such as temperature, humidity, air

pressure and wind speed. Principal component analysis was employed to se-

lect significant features for short-term wind speed forecasting. These selected

features were then inputted into the LSTM network, which demonstrated its

effectiveness in modelling wind speed.

In a recent study, Malakouti et al. (2022) proposed a new approach that com-

bines the power of Convolutional Neural Network-Long Short-Term Memory

(CNN-LSTM) with other machine learning algorithms to improve wind power

generation forecasts, based on Texas wind turbine data collected hourly. This

approach outperformed SVR, Random Forest (RF) and Gradient Boosting (GB)

in terms of accuracy. The experimental results demonstrated that the CNN-

LSTM hybrid approach surpassed all other machine learning-based techniques

and existing forecasting methods. As a result, this hybrid approach showed a

great promise for practical applications in wind speed prediction.
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2.4 Importance of renewable resources

Renewable energies are becoming increasingly popular as sources of clean,

abundant, and competitive energy. Unlike fossil fuels, they have the advantage

of being diverse and available anywhere on the planet. One of the key bene-

fits of renewable energies is that they do not produce greenhouse gases, which

are responsible for climate change. Another advantage is that renewable ener-

gies are cost-free, while the cost of fossil fuels continues to rise (Panwar et al.,

2011). The growth of clean energies is evident in the latest statistics from the

International Energy Agency (IEA). According to their forecasts, the share of

renewable energy generation supply is expected to increase from 28.7% in 2021

to 43% in 2030 (IEA, 2020). Furthermore, renewables will also contribute to

two-thirds of the increase in electricity demand during this period. This growth

will primarily be driven by wind energy, solar energy and geothermal energy.

Overall, renewable energies offer a promising solution to our energy needs in

South Africa. They provide a sustainable alternative to fossil fuels, offering a

cleaner and more abundant source of power. As we continue to invest in and

develop renewable technologies, we can expect to see a significant shift towards

cleaner energy production in the coming years.

Renewable energy offers numerous economic benefits, particularly in terms of

job creation (Arent et al., 2011). Unlike fossil fuels, the renewable energy gen-

eration industry is more labour intensive. For example, solar panels require

humans to install them, while wind farms need technicians for maintenance.

As a result, renewable energy generates more jobs per unit of electricity gen-

erated compared to fossil fuels. In the United States alone, renewable energy

already supports thousands of jobs (Carley et al., 2021). In 2016, the wind en-

ergy industry directly employed over 100,000 full-time equivalent employees

in various roles such as manufacturing, project development, construction and
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turbine installation, operations and maintenance, transportation and logistics,

and financial, legal, and consulting services (AWEA, 2017). The use of renew-

able energies not only contributes to a cleaner environment, but also stimu-

lates economic growth by providing employment opportunities across different

sectors.

2.5 Identification of existing research gaps

Research gap identification is crucial to ensure that researchers are not dupli-

cating existing studies and are focusing on areas that require further explo-

ration. In the field of EVT and machine learning, there exists a considerable

body of literature. However, there is a significant methodological gap in util-

ising modern machine learning and deep learning algorithms to model hydro-

logical features and capture complex patterns due to their complex implemen-

tation. For instance, Sikhwari et al. (2022); Mashishi et al. (2020); Agilan and

Umamahesh (2017) conducted a study on rainfall modelling in selected regions

using EVT methods. In other words, more than 70% of studies applied EVT

and time series techniques in modelling rainfall, wind speed and temperature.

As we find ourselves in a fast-paced technological environment of the 21st cen-

tury, this research study aims to address this gap by employing a robust ma-

chine learning algorithm called Vanilla LSTM network, renowned for its supe-

rior predictive accuracy. Furthermore, there is a geographic gap as many re-

searchers predominantly focus on developed countries and financial hub cities

worldwide. Soman et al. (2010) examined wind power and wind speed fore-

casting techniques for wind power generation in North America across various

time periods. This present study stands out by focusing on the semi-developed

province of Limpopo in South Africa. The major goal is to aid rural areas in

South Africa to generate electricity through renewable resources.
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Moreover, it is worth noting that while prior research has focused on specific ge-

ographic regions, our study intends to contribute to the broader understanding

of hydrological modelling by evaluating the effectiveness of the Vanilla LSTM

network in a different regional context. By doing so, we aim to provide valuable

insights and methodologies that can be adapted to various geographical areas,

thereby promoting the scalability and applicability of our findings in diverse

settings.

This research study also adds to the limited number of literature sources in

South Africa and globally by integrating the modelling of long-term extreme

wind events and short-term events within a single study. Lastly, by combining

the essential concepts of machine learning and extreme value theory, this re-

search contributes to various fields such as meteorology, finance, engineering

and beyond.

2.6 Summary of the chapter

This chapter reviewed the literature undertaken worldwide by other researchers

in the fields of EVT and machine learning, as well as the literature undertaken

in South Africa on wind speed and other climatic and meteorological features.

This chapter also examined the gaps in the body of literature that need to be

filled and highlights them for future investigation. In previous decades liter-

ature, GEVD and GPD were used to predict climate data. Similar techniques

were used by Chapman et al. (2023); Mashishi et al. (2020) to model maximum

rainfall for selected regions. The current study will combine advanced EVT and

machine learning methods in a single study to predict both short and long-term

wind speed for electricity generation development in South Africa.



Chapter 3

Methodology

3.1 Introduction

This chapter describes the analytical techniques employed in this research

study which involves the use of supervised machine learning model, specifically

the Vanilla Long Short-Term Memory (LSTM) algorithm and the traditional

Extreme Value Theory (EVT) method Generalised Extreme Value Distribution

(GEVD), to forecast wind speed in Limpopo Province. The parameters for the

GEVD will be estimated using the maximum likelihood estimation (MLE) tech-

nique. We deployed the three forecasting evaluation metric methods, namely

Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Ab-

solute Percentage Error (MAPE) to evaluate the accuracy of the Vanilla LSTM

algorithm. The Akaike information criteria (AIC) and Bayesian information

criteria (BIC) goodness of fit method will be used to estimate the prediction

error of the GEVD. Testing for stationarity and trend analysis using Theil-Sen

estimator. Finally, the study estimate return levels corresponding to their re-

turn periods for long-term wind speed future events outcomes.
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3.2 Research methodology

3.2.1 Data source and study area

The study will make use of secondary data from the National Aeronautics and

Space Administration (NASA) government. Polokwane, our focus station, is

situated at latitude 2354′16.16′S and longitude 2928′7.86′E. The dataset in-

cludes a variety of meteorological characteristics, including surface pressure,

wind direction and earth surface temperature. Beginning on 1 January 2016

and continuing until 31 December 2022, all features are recorded daily during

midnight. Below is the wind heatmap representing the wind patterns in the

northern and eastern provinces of South Africa.

Figure 3.1: Northern and Eastern provinces of South Africa on the Wind Atlas
Map. Source: http://wasadata.csir.co.za/wasa1/WASAData
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3.2.2 Tests for stationarity

Augmented Dickey-Fuller test

In this section, we explain the formal assessment of stationarity using the

Augmented Dickey-Fuller (ADF) test. The ADF test is a statistical method em-

ployed to determine whether a time series dataset exhibits stationarity (Dickey

and Fuller, 1979). Stationarity is a crucial concept in time series analysis as it

assumes that the statistical properties of the data remain constant over time.

In our research study, we applied the ADF test to assess the stationarity of the

daily wind speed data in Polokwane. The formal representation of the ADF

hypothesis testing is as follows:

H0 : Daily wind speed data of Polokwane is non-stationary,

H1 : Daily wind speed data of Polokwane is stationary,

Decision rule: reject the null hypothesis if Pvalue < level of significance (α)

If the calculated Pvalue is less than the chosen level of significance, we reject the

null hypothesis and conclude that the time series data exhibits stationarity.

Conversely, if the Pvalue exceeds the significance level, we fail to reject the null

hypothesis and conclude that the time series data is non-stationary. The ADF

test offers several advantages compared to other stationarity tests. Firstly, it

allows for the inclusion of multiple lags of differencing, enabling the detection

of more intricate patterns within the data. Secondly, it accommodates a trend

term, enabling the consideration of long-term trends in the data.
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3.2.3 Trend analysis

Theil-Sen estimator

In many time series literature, researchers often apply the Mann-Kendall test

to analyse trends and determine if there is a consistent upward or downward

pattern over time. This test assesses the presence of a monotonic trend, indi-

cating a continuous increase or decrease. However, in this research study, we

employ a different approach known as the Theil-Sen estimator. This technique,

developed by Sen (1968) and Theil (1950) respectively, is a median-based slope

estimation method. It offers several advantages over the traditional linear re-

gression as it is non-parametric and more robust. Commonly referred to as the

Theil-Sen slope technique or Sen’s approach, it provides a reliable means of

estimating trends in time series data. Theil-Sen slope is given by the formula:

β = Median(
xj − xi

j − i
), 1 < i < n, (3.1)

where a positive β value, indicates the existence of a rising trend, while a neg-

ative β value signifies a declining trend.

3.2.4 Fundamental distributions

In this section, we explore the mathematical foundation of the parent distribu-

tions that have been explored in this study and their significance to our study

by examining the fundamental principles behind them.

Normal distribution

The normal distribution, often called the Gaussian distribution, is a contin-

uous probability distribution (Marsaglia, 2004), associated with central limit
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theorem and is given by:

N(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (3.2)

where µ represent the central value around which the distribution is symmetric

and σ measures the spread or dispersion of the distribution.

Gumbel distribution

The probability density function (PDF) of the Gumbel distribution is given by

the formula (Coles et al., 2001):

G(x) =
1

β
e−(

x−µ
β )−e

−(x−µ
β )

, (3.3)

where β is a scale parameter which controls the spread or width of the distri-

bution.

Fréchet distribution

The PDF of the Fréchet distribution is given by the formula (Singh et al., 1990):

F (x) =
α

β

(
x− µ

β

)−1−α

e−(
x−µ
β )

−α

, (3.4)

where α is a shape parameter which controls the shape of the distribution.

Weibull distribution

The PDF of the Weibull distribution is given by the formula (Bowden et al.,

1983):

W (x) =
α

β

(
x

β

)α−1

e−(x/β)α . (3.5)
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3.2.5 Feature scaling

In several machine learning techniques, feature scaling is a significant step in

the preparation of the data. Min-Max normalisation is a method that is fre-

quently employed for feature scaling. This approach scales all observations to

a particular range, typically between [0,1], based on the minimum and maxi-

mum values of the variable.

Min-Max normalisation

Min-Max normalisation is a valuable technique for scaling features to a con-

sistent range, promoting fair and unbiased analysis in machine learning al-

gorithms. By ensuring that all features contribute equally and avoiding dom-

inance based on original ranges, feature scaling enhances the accuracy and

efficiency of the models.

Suppose we have n observations in wind speed feature, denoted by an array:


x1

x2

.

xn

 (3.6)

Let max represent the highest value in (x1, x2, , ..., xn) and min represent the

lowest value in (x1, x2, , ..., xn), then the Min-Max normalisation is given by:

f(x) =
x−min

max−min
(3.7)

Original values can be recovered using the function: f−1(x) = (max −min)x +

min
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3.3 Vanilla LSTM network

The Vanilla LSTM network is a form of recurrent neural network that was

introduced by Hochreiter and Schmidhuber (1997) to solve the difficulty of pro-

cessing long-term memory in traditional RNN models. This neural network

has numerous gates that enable it to recall information for a long period, in

contrast to the traditional RNN models that lose significant previous informa-

tion.

The capacity of the Vanilla LSTM network to comprehend long-term dependen-

cies is greatly enhanced by the forget gate, which allows it to selectively store

or discard information. The Vanilla LSTM network has been demonstrated to

give superior memory than many machine learning models, making it particu-

larly suitable for time series forecasting. In order to define the Vanilla LSTM

network we let (x1, x2, x3, x4..., xv) be input values and (y1, y2, y3, y4..., yv) be out-

put values of the existing historical data to be forecasted, then we fit the input

values to the five fundamental steps of the LSTM network in a unit, i.e.

ft = g(Wt.[xv, yv − 1 + bf ]), (3.8)

it = g(Wi.[xv, yv − 1 + bi]), (3.9)

Ot = g(Wo.[xv, yv − 1 + bo]), (3.10)

Ct = ftct−1 + it tanh(g(Wo.[xv, yv − 1 + bc])), (3.11)

ht = Ot tanh(ct). (3.12)
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In equations (3.8) to (3.12), xv is the vector of the input values, yv is the vector of

the output values, tanh() is the hyperbolic tangent function, b is the bias term

and W are weights, Ct is a cell state vector, ft and Ot are gates of the network.

Figure 3.2: The basic structure of the Vanilla LSTM network (Yu et al., 2019).

3.4 Extreme Value Theory model

3.4.1 Generalised Extreme Value Contribution (GEVD)

The GEVD model is an approach for analysing extreme value behaviours in

statistics. It focuses on the behaviour of Bm = Max(X1, ..., Xm), which rep-

resents the maximum value in a sequence of independent random variables

(X1, X2, ..., Xm) with a common distribution F (x). This model is essential for

understanding the statistical behaviour of extreme values, and it can be used

to make informed decisions based on data analysis (Britten, 2022).
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The distribution of Bm can be calculated precisely for all the values of m:

Pr(Bm ≤ z) = Pr(X1 ≤ z, . . . , Xm ≤ z)

= Pr(X1 ≤ z)× . . .× Pr(Xm ≤ z)

= (F (z))m .

(3.13)

The behaviour of F (z)m as m approaches infinity is examined. However, this

analysis is insufficient, as the distribution of Bm will degenerate to a point

mass on the upper limit of F (z) for each value of z less than zmin. To resolve

this issue, a linear re-normalisation of the variable Bm is introduced.

B∗
m =

Bm − bm
am

. (3.14)

The Gumbel, Fréchet and Weibull distributions are three popular distribution

functions in EVT. Each of these distributions has location and scale parame-

ters, while Fréchet and Weibull have an additional shape parameter. Combin-

ing these three distributions creates a family of distribution functions with a

probability density function (pdf) form:

G(z) =

exp
[
−
(
1 + ξ

(
z−µ
σ

))− 1
ξ

]
if ξ ̸= 0

exp
[
− exp

(
z−µ
σ

)]
if ξ = 0,

(3.15)

based on the set z : 1+ ε(z−µ)
σ

> 0, with the parameters −∞ < ε < ∞, −∞ < µ <

∞, and σ > 0. This distribution family is referred to as the GEVD.
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3.4.2 Parameter estimation

In this research study, we investigate the estimation of GEVD parameters,

specifically focusing on parameter estimation through the MLE (Coles et al.,

2001) for ξ ̸= 0 the likelihood function is:

L(µ, σ, ξ) =
m∏
i=1

(
exp −

[
1 + ξ

(
zi,ri − µ

σ

)]−1
ξ

ri∏
k=1

[
1 + ξ

(
zi,k − µ

σ

)] −1
ξ−1

)
(3.16)

and for ξ = 0

L(µ, σ, ξ) =
m∏
i=1

(
exp

{
− exp

[
−zi,ri − µ

σ

]} ri∏
k=1

[
σ−1 exp

(
−zi,k − µ

σ

)])
. (3.17)

In the context of this study, the optimisation of log-likelihoods yields parame-

ter estimates. These estimated parameters align with those characterising the

GEVD for block maxima but encompass a broader range of extreme observa-

tions.

3.4.3 Return levels

For the GEVD in equation (3.15), we can determine the return level, denoted

as Zp, associated with a specific return period for each set of p observations

(Beirlant et al., 2006). This relationship can be expressed through the follow-

ing formula:

Zp =

µ− σ
ξ

(
1− (− log(1− p))−ξ

)
if ξ ̸= 0

µ− σ log(− log(1− p)) if ξ = 0

(3.18)



Methodology 27

3.4.4 Evaluations metrics for the Vanilla LSTM

In evaluating the accuracy of the Vanilla LSTM network, this study employs

various metrics to measure this precision. The selected evaluation measures

include the well-established Mean Absolute Error (MAE), Root Mean Square

Error (RMSE), and Mean Absolute Percentage Error (MAPE). Each metric is

pivotal in unveiling distinct aspects of Vanilla LSTM accuracy. The MAE pro-

vides insights into the average magnitude of errors between predicted and ac-

tual values, while the RMSE underscores precision by capturing the square

root of the mean of squared errors. Additionally, the MAPE offers a percentage-

wise assessment of the average difference between predicted and actual values.

The mathematical expressions for these metrics are as follows:

MAE =
1

n

n∑
t=1

|yt − ŷt|, (3.19)

RMSE =

√∑n
i=1 (yt − ŷt)

2

n
, (3.20)

MAPE =
1

n

n∑
i=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣× 100%, (3.21)

where yt signifies the actual values at time t, ŷt represents the predicted model

values, ȳ denotes the mean of the actual observations, and n is the sample

size of the total observations. These metrics offer comprehensive insights into

the accuracy and reliability of our predictive models (Naser and Alavi, 2020;

Herrera et al., 2010)
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3.4.5 Evaluations metrics for the GEVD

A statistical model adequacy for a particular set of data is evaluated using the

AIC. This measure was developed by Akaike (1973). The AIC has gained in

popularity in areas like EVT, machine learning and econometrics. It has been

demonstrated to be successful in preventing overfitting.

The following is a mathematical formula that defines the AIC:

AIC = −2(log(L)) + 2K, (3.22)

where log(L) is the likelihood of the model and k represents the total count of

the model parameters. The second component of the equation indicates that

the AIC penalises models with more parameters. A better fit is indicated by

lower AIC value.

The BIC and AIC are interrelated, as they serve the common purpose of assess-

ing model performance. The BIC imposes a harsher penalty on models with

several parameters than the AIC. According to Kulkarni and Desai (2017), the

BIC is a near approximation of the Bayes factor between two models.

The following is a mathematical formula that defines the BIC:

BIC = −2(log(L)) +K log(N), (3.23)

where the sample size is N . Additionally, the BIC penalises models with more

parameters, but more severely than the AIC. As a result, compared to the AIC,

the BIC favours more straightforward models.
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Results and discussion

4.1 Introduction

This chapter focuses on the analysis and discussion of the results obtained from

this research study. This chapter is structured into distinct sections, including

descriptive statistics, stationarity test, Nonparametric trend analysis, machine

learning and EVT results.

4.2 Data wrangling

The dataset appeared to be devoid of any missing or null values, with a collect-

ing period spanning from 2016 to 2022. Additionally, feature engineering was

conducted to divide the months into distinct seasons, namely Summer, Winter,

Autumn and Spring. This approach was undertaken to enhance our compre-

hension of the trends and patterns prevalent within our designated research

area.
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4.3 Descriptive statistics

In this study, various descriptive statistics were used to evaluate wind pat-

terns in Polokwane. These statistics include the minimum, maximum, mean,

standard deviation, median, kurtosis and skewness.

Table 4.1: Wind speed summary statistics of Polokwane.

min median mean max skewness kurtosis Std Deviation
Wind Speed 0.20 7.96 8.15 22.86 0.683 4.01 2.858

In the Table 4.1, the minimum wind speed recorded in Polokwane stands at

0.20 metres per second, representing the lowest observed wind speed during

the data collection period. Conversely, the maximum wind speed recorded is

22.86 metres per second, indicating the highest observed wind speed. The me-

dian, at 7.96 metres per second, which signifies the middle point in the distri-

bution, dividing the data into two halves. The mean wind speed, obtained as

8.15 metres per second, provides an average representation of wind conditions

in Polokwane.

Furthermore, the skewness value of 0.683 suggests a positively skewed distri-

bution, indicating occasional high wind speed events in the region. The kur-

tosis value of 4.01 reveals that the distribution is leptokurtic, meaning it has

heavier tails and is more peaked around the mean compared to a normal dis-

tribution. Lastly, the standard deviation, which is 2.858 metres per second,

quantifies the spread or variability of wind speed values around the mean.
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4.3.1 Seasons summary statistics

In our research study, we conducted a detailed analysis of descriptive statistics

for each season within our focus area. The results, which are presented in the

accompanying Table 4.2, offering valuable insights relevant to energy genera-

tion and management, recreation and outdoor activities, emergency prepared-

ness and urban planning.

Table 4.2: Seasons summary statistics.

Summer
min median mean Std Dev max skewness kurtosis
2.38 7.34 7.36 2.20 13.55 0.245 -0.088

Winter
min median mean Std Dev max skewness kurtosis
0.2 7.96 8.35 3.45 22.87 0.913 1.321

Autumn
min median mean Std Dev max skewness kurtosis
2.06 8.90 8.78 2.91 18.21 0.312 -0.149

Spring
min median mean Std Dev max skewness kurtosis
2.38 7.34 7.36 2.20 13.55 0.245 -0.088

The analysis of seasonal wind speed statistics in Table 4.2 reveals distinctive

patterns in each season. Summer exhibits moderate wind conditions, with a

median wind speed of 7.34 metres per second, indicating a reasonably efficient

period for wind power generation. Winter stands out as the most wind efficient

season with a higher median wind speed of 7.96 metres per second, although it

also presents the potential for extreme wind events, as indicated by a positively

skewed distribution and higher kurtosis. Autumn showcased a favourable me-

dian wind speed of 8.90 metres per second, offering another promising season

for wind power generation, while its distribution remains relatively stable. In

addition to this, spring and summer display moderate wind speeds, further

contributing to a balanced seasonal profile.
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4.4 Diagnostic plots

Figure 4.1 illustrates diagnostic plots for our response feature, to check statis-

tical underlying assumptions of the data, including normality and homoscedas-

ticity.
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(b) Density plot
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Figure 4.1: Diagnostic plots.

The top left quadrant in Figure 4.1 is a time series plot depicting the wind

pattern from 2016 to 2022. Top right quadrant is a density plot displaying that

the data is positively skewed. This means that, most of the time, the wind

tends to blow at lower average speed, with occasional burst. The bottom left

quadrant normal Q-Q plot shows that the upper points depart from a straight

line, proving that the data is right-skewed. The bottom right quadrant, the box

plot reveals that there are outliers, indicating few low wind occurrence events

in Polokwane.
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4.5 Test for stationarity

The ADF test is deployed to determine whether the wind speed in Polokwane

is stationary or non-stationary. The ADF test results are as follows:

Step 1: Hypothesis

H0: Time series data exhibit a unit root or stochastic trend, indicating it is

non-stationary.

H1: Time series data is stationary.

Step 2: Level of significance

α = 5% = 0.05

Step 3: Computation of p-value

Pvalue ≤ 0.01.

Step 4: Decision

Since Pvalue < α we reject the null hypothesis and conclude that the data does

not exhibit a unit root or stochastic trend, meaning that the data is stationary.

4.6 Nonparametric trend estimation

Table 4.3: Theil-Sen estimator results.

Estimator Value
Theil-Sen estimator -0.0002

Test Statistics -3.4644
Degree of freedom 2555

Table 4.3 presents the outcomes of the Theil-Sen estimator within the frame-

work of our wind speed research study. The Theil-Sen estimator value of -

0.0002 indicates the potential linear relationship between the two variables,

wind speed and date time. The negative test statistic of -3.4644 suggests that



Results and discussion 34

the estimated slope differs from zero, indicating a potential negative associa-

tion between the two variables. With a degree of freedom (n − 2) = 2555, this

statistical analysis captures the variability in the data. In the context of wind

power generation, this slightly negative slope could imply a slight reduction in

wind power output or efficiency as wind speed increases, though the magnitude

of this effect is minimal (-0.0002).
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Figure 4.2: Trend slope plot.

Consequently, this minimal Theil-Sen value estimate from Table 4.3 implies

a lower frequency of maintenance and repair requirements for wind turbines,

aligning with the stability and reliability of wind energy generation systems.

This relationship described is supported by the fitted Theil-Sen red dotted slope

depicted in Figure 4.2, where a subtle downward slope is observed. Notably,

this unclear relationship may not be easily identifiable by visual inspection

alone, emphasising the importance of employing the slope estimator as a criti-

cal tool in uncovering and quantifying this relationship within the data.
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4.7 Machine learning results

4.7.1 Model parameter setting

Table 4.4: Parameter setting for LSTM network.

Parameters Values
Number of units 4

Activation function tanh
Optimizer Adam

Epochs 200
Splitting ratio 7:3
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Figure 4.3: Splitting data.

Table 4.4, presents the key parameter settings employed in the configuration

of the Vanilla LSTM network, a critical component in our research findings.

These parameters play a pivotal role in the model performance and effective-

ness in capturing intricate temporal patterns within our dataset. Table 4.4 in-

dicates how the Vanilla LSTM network was structured with a relatively modest
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number of units, specifically four. This choice reflects a balance between model

complexity and computational efficiency, allowing for the extraction of mean-

ingful features from the data while avoiding overfitting. The activation func-

tion employed was the hyperbolic tangent (tanh), which facilitates the model

capability to capture both positive and negative correlations in the wind speed

data. We employed the Adam optimizer, a widely adopted optimisation algo-

rithm, to fine-tune the model weights during training. Furthermore, the train-

ing process was carried out over 200 epochs, indicating the number of iterations

through the dataset to optimise the model performance.

Finally, the data was divided into a training set and a testing set using a

splitting ratio of 7:3, ensuring that the model had sufficient data for learn-

ing while maintaining a robust validation process to assess its generalisation

performance. In Figure 4.3, the grey line represents 70% of the training data,

while the blue line represents 30% of the testing observations. This indicates a

division between the data used for training and the data used for testing. This

separation is important in machine learning and statistical analysis to eval-

uate the performance and accuracy of a model, facilitating the assessment of

how well the model generalises to unseen data. These parameter settings are

instrumental in achieving reliable and informative results within our research

of study.
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4.7.2 Vanilla LSTM network

The Vanilla LSTM network stands out as a powerful algorithm for wind speed,

rainfall and temperature prediction, boasting wide-ranging applications from

renewable energy administration to environmental development planning. As

we reveal the results stemming from our research study, it is essential to em-

phasise that these forecasts extend beyond mere numerical data points. They

possess the capacity to instigate significant shifts in decision-making proce-

dures across diverse industries. The results are presented in Figure 4.4.
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Figure 4.4: LSTM network predictions.

Figure 4.4 presents the Vanilla LSTM network predictions for the training and

testing sets, illustrating the proximity of the predicted values to the actual

values. The blue line represents the model predictions for the training set,

while the orange line represents the predictions for the testing set. This plot

illustrates the model capacity to generalise effectively to dataset with similar

characteristics. These predictions highlight the model proficiency in providing

reliable wind speed forecasts, a significant objective within our research study.



Results and discussion 38

4.7.3 Evaluation metrics

Table 4.5: Vanilla LSTM evaluation metrics.

Training Evaluation metrics
MAE RMSE MAPE Accuracy

LSTM network 0.168 0.235 0.101 0.86
Testing Evaluation metrics
MAE RMSE MAPE Accuracy

LSTM network 0.147 0.207 0.090 0.89

Table 4.5 displays a comprehensive assessment of the performance of the Vanilla

LSTM network through various evaluation metrics for both training and test-

ing phases. In the training phase, we observe that the MAE stands at 0.168,

indicating the average magnitude of prediction errors. The RMSE, a measure

of the model precision, is 0.235. Additionally, the MAPE reflects a low value

of 0.101, underscoring the model accuracy in forecasting. The overall accuracy

of the Vanilla LSTM network on the testing data is recorded at 89% with an

increase of 3% from the training data, denoting a high level of correctness in

predictions. This robust performance reinforces confidence in the model relia-

bility for real-world scenarios.

The MAE for testing is 0.147, indicative of the model ability to guarantee good

generalization to unseen data. Similarly, the RMSE remains low at 0.207, em-

phasising precision in forecasting. Moreover, the MAPE margin decreased to

0.090, representing a good level of accuracy. It is crucial to note that, when

dealing with sequential data or time series, accuracy alone may not be suffi-

cient. Metrics such as MAE, RMSE and MAPE are more important to consider

for regression tasks. These evaluation metrics are essential to demonstrate

the robustness and effectiveness of the Vanilla LSTM network in wind speed

forecasting, affirming its suitability for real-world applications.
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4.8 Extreme value analysis results

4.8.1 modelling GEVD

Table 4.6: GEVD parameter estimation.

m µ̂ SE(µ̂) σ̂ SE(σ̂) ξ̂ SE(ξ̂) 95% CI (ξ̂)
1 8.910 0.382 1.387 3.964 -0.453 0.633 (-0.374,0.129)
2 9.285 0.219 2.566 0.154 -0.037 0.048 (-0.131,0.057)
3 9.152 0.176 2.526 0.124 -0.045 0.039 (-0.122,0.031)
4 9.025 0.151 2.509 0.107 -0.055 0.034 (-0.121,0.011)
5 8.918 0.134 2.496 0.094 -0.062 0.029 (-0.120,-0.004)

Table 4.6 presents the parameter estimation results for a GEVD model for dif-

ferent block sizes represented by m values, ranging from 1 to 5. The results un-

veiled valuable insights into the statistical characteristics of extreme events,

which are of significant importance for understanding and modelling rare and

extreme occurrences. The estimated location parameter µ̂ exhibited a decreas-

ing trend as m increased, indicating a shift towards lower central tendencies in

the extreme event data. This suggests that larger blocks tend to have extreme

events with lower average values. Moreover, the standard errors SE(µ̂), asso-

ciated with µ̂ decreased as m increased, reflecting a higher level of confidence

in the location parameter estimate for larger block sizes.

The scale parameter σ̂ remained relatively stable across different block sizes,

suggesting that the spread or variability of extreme events did not vary sig-

nificantly with block sizes. The shape parameter ξ̂ plays a significant role,

which dictates the tail behaviour of the distribution. As m increased, ξ̂ became

more negative, indicating a transition towards a heavier-tailed distribution for

larger blocks. These findings contribute valuable insights into characterising

extreme events and tail behaviour, aiding in selecting the optimal block size for

extreme event prediction and risk assessment.
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4.8.2 Goodness of fit GEVD

Table 4.7: Goodness of fit evaluation metrics.

m − log(Likelihood) AIC BIC
1 1184.656 2375.312 2382.605
2 419.271 844.542 853.914
3 623.655 1253.311 1263.899
4 827.407 1660.813 1672.264
5 1030.059 2066.118 2078.239

Table 4.7 presents a comprehensive evaluation of the goodness of fit metrics

for different block sizes. The metrics include the negative log-likelihood, AIC

and BIC. These metrics are crucial in assessing how well each block size can

represent the original data while considering the trade-off between model com-

plexity and goodness of fit. In this assessment, we aim to identify the most

suitable block size to represent our data.

The results in Table 4.7 reveal that as m increases, both the negative log-

likelihood and the associated AIC and BIC values increases from block size

two to five. This trend indicates that larger values for block size result in pro-

gressively poorer fits to the observed data. However, the AIC and BIC metrics

take into account model complexity, penalising models with more parameters.

While higher m values may capture more complexity, they may also introduce

overfitting issues. In the quest for the best model, it is essential to strike a

good balance between model goodness of fit and complexity.

In this context, GEVDm=2 stands out as the best fit as it offers a substantially

lower AIC and BIC compared to other models, while maintaining a reasonably

low negative log-likelihood. Thus m = 2 block strikes an effective balance

between explaining the data and avoiding excessive complexity, making it the

most favourable choice among the options presented.
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4.9 GEVDm=2 results

4.9.1 Diagnostic plots for GEVD

One other method for determining the best block size involves a comprehen-

sive approach that combines visual inspection of the data using graphical diag-

nostic plots with the insights derived from the results presented in Table 4.7,

particularly emphasising the model with the smallest AIC and BIC values.

Figure 4.5: GEVDm=2 diagnostic plots.

Figure 4.5 offers compelling evidence for the GEVDm=2 suitability for describ-

ing wind speed behaviour. This is evident through strong alignment in the P-P

and Q-Q plots, a clear increasing trend in the return level plot, and a close

match between the fitted and empirical density in the density plot. This robust

agreement between the model and empirical data underscores the model relia-

bility. Furthermore, it underscores its potential to enhance our understanding

in prediction of extreme wind events, a critical factor in wind power generation.
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4.9.2 Return levels for GEVD

Table 4.8: Return levels.

5 years 20 years 50 years 100 years 200 years 250 years 300 years
13.030 16.505 18.612 20.144 21.631 22.102 22.893

Table 4.8 provides essential information regarding return levels for different

return periods, ranging from 5 years to 300 years. These return levels repre-

sent critical values within a distribution, delineating the expected magnitude

of extreme events over specified time intervals.

The return level for a 5-year period is determined to be 13.030 metres per sec-

ond. This implies that, on average, an event of this magnitude is anticipated to

occur approximately once every 5 years. As we extend the return period to 20

years, the return level increased to 16.505 metres per second, indicating that

such an event is expected less frequently within a 20-years time period.

The 250-year return level denotes an exceedingly uncommon occurrence, antic-

ipated to transpire approximately once every 250 years and it has been found to

be 22.102 metres. Going beyond this rarity, the 300 year return level signifies

an event of even greater infrequency, projected to manifest approximately once

every three centuries. In light of the maximum recorded wind speed of 22.86

meters per second, as detailed in Table 4.1, the 300 year return level serves as

a pivotal benchmark for evaluating the potential risk associated with the most

exceptional wind events that may be encountered in the Polokwane region. No-

tably, this event is expected to occur during the winter season, as indicated by

the findings in Table 4.2, which presents seasonal summary statistics.
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4.10 Summary of the chapter

In conclusion, this chapter effectively addressed the objectives of this research

study by applying the Vanilla LSTM algorithm and GEVD to model wind speed

data. The successful application of these methodologies demonstrated their

adaptability to the complexities of the dataset. The assessment of the Vanilla

LSTM predictive performance revealed its efficiency in short-term wind speed

forecasting, providing valuable insights for real-time applications. The GEVD

analysis affirmed its suitability for long-term modelling of extreme wind speeds,

contributing a robust framework for understanding extreme events.

The determination of the optimal block size for modelling extreme events us-

ing GEVD emerged as a critical contribution, offering practical guidance for

future applications. The optimal block size was selected based on low AIC and

BIC value. Additionally, GEVDm=2 was employed to estimate return levels

of extreme wind speeds and corresponding return periods, providing essential

information for risk assessment and infrastructure planning. Combining find-

ings from both methodologies, this study uncovered overarching trends, val-

idating the effectiveness of the Vanilla LSTM in short-term forecasting and

emphasising the GEVDm=2 robustness in capturing long-term extreme events.

These findings stand out from existing literature as we have employed both

the Vanilla LSTM and GEVD within a single study, enabling a comprehensive

examination of both short and long-term predictions for robust data modelling.

This enhances and enriches our research study, making it stand out in the field

of forecasting and environmental science.



Chapter 5

Conclusion

5.1 Introduction

This chapter covers the conclusion and recommendations of this research study.

It is divided into four subsections, namely, conclusion, recommendations, limi-

tations and future studies.

5.2 Conclusion

This subsection provides a comprehensive and in-depth analysis of wind speed

forecasting in Polokwane, shedding light on the various statistical properties

and seasonal variations within the region. The findings revealed a wide range

of wind speeds, with the lowest recorded speed at 0.20 metres per second and

the highest at 22.86 metres per second. The descriptive statistics, skewness,

kurtosis and standard deviation, revealed the presence of occasional high wind

speed events and the distribution was found to be of leptokurtic nature.
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Seasonal analysis has highlighted the efficiency of wind power generation dur-

ing certain periods, such as winter and autumn, while also indicating the po-

tential for extreme wind events. Moreover, the examination of time series data

has shown that it is stationary using ADF test, a crucial aspect for accurate

modelling and prediction.

The evaluation of GEVDm=2, identified as the optimal EVT model in compari-

son to GEVDm=1,3,4,5, which provided valuable insights into the statistical char-

acteristics of extreme events. This is especially notable in terms of the location,

scale and shape parameters. Furthermore, the Vanilla LSTM network perfor-

mance has demonstrated its ability to provide accurate wind speed forecasts

with low MAE, RMSE, MAPE and a predictive accuracy of 89% for testing

data , offering promising prospects for practical applications.

The assessment of a GEVDm=2, which was found to be the best EVT model has

contributed significant insights into the statistical characteristics of extreme

events, particularly regarding to location, scale and shape parameters. These

findings are invaluable for developing accurate models for extreme event pre-

diction and risk assessment. In addition, the determination of return levels for

return periods of 5, 15, 25, 50, and 100 years has revealed a progressive escala-

tion with longer return periods. This information is of paramount importance

for conducting risk assessments and facilitating decision-making processes, al-

lowing stakeholders to assess both the relative infrequency and magnitude of

extreme wind events over a designated time intervals.

Overall, these research study findings offers a solid foundation for wind power

generation. Ultimately, they serve as a valuable insight for stakeholders in

the renewable energy sector and environmental planning, contributing to more

sustainable and informed decision-making in Polokwane.
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5.3 Recommendations

The research study offers a set of recommendations in the domain of energy

management and sustainability. The following recommendations were made:

1. Employ advanced machine learning techniques, such as Convolutional

Neural Networks (CNN). This method application in wind forecasting is

considered beneficial due to its capability to automatically extract hierar-

chical features from geographical data. Unlike traditional methods, CNN

can capture complex relationships within meteorological variables and

geographical features, thereby enhancing the accuracy and efficiency of

wind forecasting.

2. Investigate modern EVT techniques, such as bGEVD, present a refined

approach to analysing extreme events in wind speed data. The applica-

tion of bGEVD allows for a more clear examination of extreme events, pro-

viding insights into tail behaviour and facilitating a better understanding

of rare, high-impact occurrences. This method can extends the toolkit

for extreme event analysis, enabling researchers to capture and interpret

extreme wind events more accurately. By incorporating bGEVD, future

research can gain a deeper understanding of the tail behaviour of wind

speed distributions, thereby improving the assessment of potential risks

associated with extreme wind events.

3. Expand the geographical scope to encompass all nine provinces of South

Africa for a clear understanding of regional wind patterns. Each province

has unique geographical features, climate conditions, and wind charac-

teristics that significantly influence wind power potential. A broader geo-

graphical scope will enable the research to capture diverse wind patterns,

ensuring a more robust and representative analysis.
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4. Encourage collaboration and knowledge sharing among research institu-

tions, government entities and industry stakeholders. By encouraging

collaboration among research institutions, government entities and in-

dustry stakeholders, the research outcomes and data can be leveraged

collectively. The exchange of knowledge and data facilitates can offer a

more comprehensive understanding of the challenges and opportunities

in wind power generation.

5.4 Limitations of the study

Wind is a magnificent, boundless and cost-free clean source of renewable en-

ergy for electricity generation. In light of this, it is essential to recognise spe-

cific constraints within wind power generation. This research study is con-

ducted in the capital city of Limpopo, which is a semi-developed urban area.

This geographical focus presents a limitation, as addressing the issue of load

shedding requires a broader perspective encompassing all cities across South

Africa.

Moreover, there is scarcity of comprehensive literature globally, specifically

within South Africa, that integrates both machine learning and Extreme Value

Theory (EVT) in a single research study for the purpose of wind speed forecast-

ing. This lack of literature in this specific domain poses a challenge in terms

of comparing and contextualising the findings of this research study. However,

these limitations emphasise the urgency of further research and collaboration

to tackle the multifaceted challenges associated with wind power generation

and load shedding mitigation in a more holistic manner.
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5.5 Future studies

For future investigations, we recommend that fellow researchers replicate this

experiment employing modern EVT techniques and machine learning. Incor-

porate techniques such as bGEVD or the time-varying threshold Generalized

Pareto Distribution (GPD) methodologies. Researchers should also apply a va-

riety of machine learning techniques and deep learning algorithms within the

field of artificial intelligence to develop a robust algorithm suitable for their

specific area of study.

Additionally, it is advisable to redirect other researchers to focus on all the

provinces of South Africa namely, Western Cape, Eastern Cape, Northern Cape,

Free State, KwaZulu-Natal, Gauteng, North West, Mpumalanga, and Limpopo.

This strategy is aimed at achieving an accurate equilibrium between electricity

demand and supply, thereby fostering a future marked by economic prosperity

and environmental sustainability.
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