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Abstract: The application of bioflocculants has become an alternative to that of chemical flocculants
in wastewater treatment due to their environmental friendliness and non-toxic effects. This study
aimed at isolating a bioflocculant-producing bacterium from marine water, optimisation of its culture
conditions, and investigation of the removal efficiency of its bioflocculant on pollutants in wastewater.
The bacterium was identified by 16S rRNA gene analysis. Optimal carbon and nitrogen sources,
inoculum size, temperature, pH, and time were determined by the one-factor-at-a-time assay. The
cytotoxicity of the bioflocculant was assessed on African green monkey kidney and bovine dermis
cells using a tetrazolium-based columetric (MTT) method. Its removal efficiencies on chemical
oxygen demand (COD), biological oxygen demand (BOD) and sulphur were determined using the
Jar test method. The bacterial isolate was identified as Ochrobactrum oryzae AB84113. A maximum
flocculating activity of 92% and a yield of 3.768 g/L were obtained when a 1% (v/v) inoculum size
was used in the presence of starch and yeast extract at pH 7, 30 ◦C, and after 72 h of cultivation. The
bioflocculant demonstrated non-cytotoxic effects on bovine dermis and African green monkey kidney
cells. The bioflocculant removed 98% COD, 91% BOD and 86% of Sulphur. The bioflocculant has
potential for pollutant removal from industrial wastewater.

Keywords: Ochrobactrum oryzae AB84113; bioflocculant; flocculating activity; removal efficient; wastewater

1. Introduction

Water is an essential resource for life. However, water quality is constantly deteriorat-
ing due to increased contamination from industrial activities and urbanisation [1]. Globally,
approximately 80% of wastewater is not properly treated prior to its discharge into various
water bodies [2]. Water pollution affects more than 1.2 billion people globally, leading to poor
economic growth and food insecurity [3]. Moreover, this leads to a challenge in achieving
environmental sustainability as addressed by the Millennium Development goal No.7 [4]. Thus,
it is it imperative to effectively treat wastewater and water to appraise its quality.

Flocculation is a process employed in solid-liquid separation in several industrial
processes such as wastewater treatment, drinking water purification, food and fermen-
tation processes [5]. Flocculants are agents that reduce or eliminate the stability of col-
loids in suspensions, enabling the dispersed particles to aggregate. Generally, flocculants
are grouped into inorganic (i.e., aluminium sulfate, aluminium chloride, ferric chloride
and ferrous sulphate), organic synthetic flocculants (i.e., polyacrylamide derivatives and
polyethyleneimine) and naturally occurring flocculants (i.e., plant based and microbial
flocculants) [6]. Among the three types of flocculants, inorganic and organic synthetic
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flocculants are mainly used in wastewater treatment because of their availability at low cost
and their high flocculating abilities [7,8]. However, these types of flocculants are harmful to
the environment and pose health problems [9]. For instance, ferric salts tend to be corrosive
due to their hydrolysis, which leads to acidic conditions in water [10]. Aluminium salts are
also linked to Alzheimer’s disease in humans [11]. Moreover, polyacrylamide derivatives
are often non-degradable in nature and exhibit a resilient biological toxicity [12]. Therefore,
alternative eco-friendly and innocuous flocculants are needed.

Natural occurring flocculants such as plant-based and microbial flocculants are the pre-
ferred alternatives to inorganic and organic synthetic flocculants [13,14]. Plant-based and
microbial flocculants are environmentally friendly and have low or non-toxic effects [15].
Although plant-based flocculants exhibit strong activities in wastewater treatment [14,16],
generally their biosynthesis is not convenient in terms of quality and productivity due
to ecological conditions and climatic change. Thus, microbial flocculants are gaining
more attention because they are quickly reproducible within a short time and are weather-
independent [17]. Microbial flocculants are produced by bacteria and fungi and are mainly
composed of carbohydrates, proteins, and lipids [18]. Although bioflocculants are promis-
ing alternatives, the high costs of their production and the generally low yields are major
bottlenecks for their industrial utilisation [15]. Thus efforts to reduce the cost of pro-
duction and application include screening of high-yield producing microorganisms and
optimization of their culture conditions [8].

Several bioflocculant-producing bacterial species have been reported for their signifi-
cant flocculating activities (>70–90%), yield, and various additional functions in wastewater
treatment [19,20]. Much research has been done on bioflocculant-producing bacteria in
activated sludge and soil [21,22], but not on those from marine environments [23].

This study aimed at isolating and identifying a marine bioflocculant-producing bac-
terium from Mtuzini Beach in Kwa-Zulu Natal, South Africa. To maximize bioflocculant
yield by the isolate, the medium composition (carbon and nitrogen sources) and culture
conditions (inoculum size, temperature, initial pH of the medium and cultivation time)
were optimised using the one-factor-at-a-time method. The surface morphology, functional
groups, and degradation property of the bioflocculant were identified using scanning
electron microscope (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermo-
gravimetric analysis (TGA), respectively. The biosafety of the bioflocculant was assessed
by evaluating its cytotoxicity on the African green monkey kidney and Bovine dermis
using a tetrazolium-based columetric (MTT) method. Lastly, its ability to remove materials
expressed by biological oxygen demand and chemical oxygen demand, as well as sulphur
from wastewater, were determined using the Jar test method.

2. Materials and Methods
2.1. Chemicals and Production Medium

All chemicals, reagents and media used were of analytical grade and were procured
from Merck Pty Limited and Sigma-Aldrich, Johannesburg, South Africa. The selective
media used for isolation were marine agar (MA) and reasoner’s 2A agar (R2A). The
enrichment medium was composed of 3 g beef extract, 10 g tryptone and 5 g sodium
chloride. The production medium by Zhang et al. (2007) was used for evaluation of
bioflocculant production. The medium was composed of glucose (20.0 g), KH2PO4 (2.0 g),
K2HPO4 (5.0 g), (NH4)2SO4 (0.2 g), NaCl (0.1 g), CH4N2O (0.5 g), MgSO4 (0.2 g) and yeast
extract (0.5 g). All media were prepared in filtered marine water before been sterilised by
autoclaving at 121 ◦C for 15 min.

2.2. Sample Collection

Water samples were collected from Mtunzini Beach in KwaZulu Natal, South Africa
(28◦57′ S 31◦45′ E). Sterile Scott bottles were used to collect water samples on three different
sites and on each site water samples were collected in triplicate. The physiochemical
parameters, temperature, pH, total dissolved solid, dissolved oxygen, salinity and pressure
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were determined in-situ using HI 98194 PH/E/DO multi-parameters. Thereafter, the water
samples were put in an ice box and transported to the laboratory at the Department of
Water and Sanitation at the University of Limpopo, South Africa.

2.3. Isolation of the Bioflocculant-Producing Bacteria

Two millilitres of the marine water samples were transferred into 8 mL of sterile saline
water (0.85% (w/v)) and agitated for 30 s. Thereafter, serial dilutions were performed and
100 µL of the diluted and undiluted samples were spread on the surface of marine and
Reasoner’s 2A (R2A) agar plates. The agars were previously prepared using filtered marine
water from Mtunzini Beach and were adjusted to pH 6.8 prior to autoclaving at 115 ◦C for
15 min. The R2A plates were incubated for 4 days at 27 ◦C and the marine agar plates were
incubated for 8 days at the same temperature. Colonies from both media were selected
according to their appearance and morphology. The selected colonies were subculture
twice on their isolated agar media.

2.4. Activation of the Isolates

Enrichment medium (see Section 2.1) was used to activate bacteria. About 50 mL of
the medium was poured into different test tubes and autoclaved at 121 ◦C for 15 min. A
loopful of the isolates was inoculated into the activation broth and incubated in a rotary
shaker at 160 rpm, 37 ◦C for 24 h [24].

2.5. Cultivation Medium for Bioflocculant Production

Activated isolates (1 mL) were inoculated into the sterile production medium (see
Section 2.1) at 27 ◦C for 72 h at pH 6.8 and a shaking speed of 160 rpm. After the incubation
period, 2 mL of the broth cultures were withdrawn and centrifuged at 10,000 rpm for
15 min. The supernatants were used for the evaluation of flocculating activity.

2.6. Determination of Flocculating Activity of Isolates

Cell-free supernatants were used to determine flocculating activity according to
Kurane et al. [25]. Briefly, 2 mL of the supernatants and 3 mL of 1% (w/v) CaCl2 were
added to 100 mL of kaolin suspension (4.0 g/L, pH 7.0) in a conical flask. The mixture was
shaken for a minute, poured into a measuring cylinder and allowed to stand for 5 min.
Afterwards, 2 mL of the clarifying upper phase layers were carefully withdrawn and their
optical densities (OD) were measured at 550 nm with a spectrophotometer (Spectro-quant,
Pharo 300 Merck, Boston, MA, USA). Sterile distilled water (2 mL) was used as the control.
The percentage flocculation activity (%FA) of all the supernatants was calculated according
to the equation:

%FA = (Ao − A)/Ao × 100, (1)

where Ao and A are the optical densities of the control and the test samples at 550 nm. The
bacterial isolate with the highest flocculating activity was selected for identification.

2.7. Identification of the Bacterium

The selected bacterial isolate was identified using 16S rRNA gene sequence analysis.
Genomic DNA extraction, PCR-mediated amplification of the 16S rRNA gene fragments
and sequencing of PCR products were carried out as described by Shida et al. [26]. The
obtained sequences were analysed by comparing them with those retrieved from the
National Center for Biotechnology Information (NCBI) databases to identify the closest
bacterial species.

2.8. Optimization of the Culture Conditions

Different inoculum sizes were used to determine their effect on bioflocculant produc-
tion. Flasks (100 mL) containing 50 mL of the sterile production medium were inoculated
with 0.5, 1.0, 1.5 and 2 mL of the cultured broth to give 1, 2, 3 and 4% (v/v) inoculum
sizes, respectively. The inoculums were then incubated for 72 h at 30 ◦C at a shaking speed
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of 160 rpm. The broth cultures were then centrifuged at 10,000 rpm for 15 min and the
supernatants were analysed for flocculating activity as described previously [27]. The effect
of carbon and nitrogen substrates was determined using the method of Luo et al. [28]. Glu-
cose in the original medium was substituted with 20 g/L of the following carbon sources:
fructose, sucrose, maltose, lactose, xylose, starch and molasses. Thereafter, the flocculating
activity was assessed as previously stated [29]. Mixed nitrogen sources (urea, yeast extract
and (NH4)2SO4) in the original production medium were also replaced with 1.2 g/L of
organic (casein, peptone, urea and yeast extract) and inorganic (ammonia) nitrogen sources
to determine their effect on bioflocculant production [30]. The flocculating activity was then
measured as described previously. The effect of pH of the growth medium was determined
according to the method of He et al. [31]. The pH of the medium was adjusted in the range
of 3 to 12 using 0.1 M HCl and 0.1 M NaOH and autoclaved. Thereafter, the isolate was
inoculated and incubated for 72 h in a rotary shaker at 30 ◦C and 160 rpm. Flocculating
activity was determined thereafter. To assess the effect of temperature, sample of inoculum
was pipetted into the medium and incubated at various temperatures (20, 25, 30, 35 and
40 ◦C). Flocculating activity was then measured [32]. The culture medium was prepared
based on previously obtained optimal growth conditions. The isolate was cultured at
different shaking speeds in the range of 0–220 rpm for 72 h. Thereafter, the flocculating
activity was determined as previously described [33]. The effect of incubation time on
bioflocculant production was evaluated. The medium was composed based on previously
obtained optimal growth conditions. The broth culture (2 mL) was withdrawn, centrifuged
and evaluated for flocculating activity after every 12 h over a period of 120 h. The optical
density (OD) of the broth was measured at 550 nm, representing bacterial biomass, and the
pH was also recorded [34].

2.9. Extraction and Purification of the Bioflocculant

Extraction and purification of bioflocculant was done using the method of Dlamini
et al. [35]. The bacterium was cultured under optimum culture conditions in 1 L of the
medium and the broth culture was centrifuged (8000 rpm, at 4 ◦C for 30 min) to obtain the
cell free supernatant. One volume of sterile distilled water was poured into the supernatant
and re-centrifuged to remove insoluble materials. Thereafter, two volumes of alcohol were
added to the supernatant; the mixture was agitated and then allowed to precipitate for 12 h
at 4 ◦C. Then, the precipitate was vacuum dried, and the crude product was re-dissolved in
the sterile distilled water to give a solution of 1% w/v. A mixture of chloroform and n-butyl
alcohol (5:2 v/v) was added to the bioflocculant solution in a ratio of 2:1 (v/v). The mixture
was agitated and was allowed to stand at room temperature for 12 h. The supernatant was
collected; centrifuged (8000 rpm for 30 min at 4 ◦C) and dialyzed for 12 h against distilled
water. The dialysate was vacuum-dried to obtain the purified bioflocculant.

2.10. Characterizations of the Bioflocculant

The elemental composition, functional groups and pyrolysis profile of the bioflocculant
was investigated. Surface structure of bioflocculant was investigated using a scanning elec-
tron microscope (SEM) (SIGMA VP-03-67, ZEISS Microscopy, Cambridge, UK). Elemental
analysis was carried out by an elemental detector (X-Max EDS System, Oxford Instruments
Inc, Oxford, UK). The functional groups of the bioflocculant were evaluated using a Fourier
transform infrared spectrophotometer (PerkinElmer UATR TWO, 2000, PerkinElmer LAS,
Rodgau, Germany), with a spectral range of 500–4000 cm−1 [36]. The pyrolysis property of
the bioflocculant was determined using of thermo-gravimetric analyser (Model: DTG-60,
Shimadzu Corporation, Tokyo, Japan). The bioflocculant was heated in the range of 22 to
800 ◦C at a constant rate of 10 ◦C per minute under a constant flow of nitrogen gas [37].

2.11. Biosafety of the Bioflocculant

Biosafety of the bioflocculant was evaluated by determining its cytotoxicity on African
green monkey kidney (Vero) and Bovine dermis using the 3-(4,5-dimethylthiazol-2-yl)-2,5-
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diphenyl tetrazolium bromide (MTT) assay. The cells were grown to a confluency of 80% in
25 cm3 flasks using complete culture medium (CCM: minimum essential medium (MEM)
supplemented with 5% foetal calf serum and 0.1% gentamicin) and harvested. They were
re-suspended in growth medium at a concentration of 5 × 104 cells mL−1 and incubated
for 24 h at 37 ◦C in 5% CO2 using a 96 well plate. Thereafter, the CCM was removed, and
the cells were treated with the bioflocculant at different concentrations (50–200 µg/µL).
Cells treated with 0.1% dimethyl sulfoxide (DMSO) served as the negative control and
doxorubicin as the positive control. The cells were re-incubated at 37 ◦C in 5% CO2 for
24 h. After incubation, the medium was removed and supplemented with fresh CCM
(100 µL). Thereafter, 30 µL of MTT reagent (5 mg/mL in phosphate buffered saline (PBS)
was poured into the wells and incubated at 37 ◦C in 5% CO2 for 4 h. The MTT solution
was aspirated from the wells and the formazan particles were dissolved in 50 µL of DMSO.
MTT reduction was measured by reading the optical density (OD) of the samples at 540 nm
using a micro plate reader (Varioskan Flash 3001, Thermo Fisher Scientific, Vantaa, Finland).
Percentage cell inhibition (%CI) was assessed using the formula:

%CI = (Ao − A)/Ao × 100, (2)

where Ao and A represent the OD readings of untreated samples and treated samples,
respectively, at 540 nm. The inhibitory concentration of 50% (IC50) values was calculated
from the GraphPad Prism (V6.1) using linear regression method [38].

2.12. Effect Dosages, Cations and pH on the Flocculating Activity

The effect of bioflocculant concentrations of flocculating activity was determined
according to Maliehe et al. [39]. Two milliliters of the different concentrations in the range
of 0.2–1.0 mg/mL (w/v) were used. Thereafter, the flocculating activity was evaluated as
previously stated. The method of Tsilo et al. [40] was used to determine the influence of
cations on flocculation. Metal ions included 1% of NaCl, LiCl, KCl, MnCl2, MgCl2 and
FeCl3. The metal ions replaced the CaCl2 solution (3 mL, 1%) that was previously used in
the flocculation assay and flocculating activity was measured. The pH of the kaolin clay
solution (4 g/L) was varied between 3–12 using 0.1 M HCl and 0.1 M NaCl. Thereafter,
the obtained optimum concentration was poured into a mixture of kaolin solution and
1% of the cation. Afterwards, the flocculating activity was determined at each pH level as
described previously [41].

2.13. Application of the Bioflocculant in Wastewater Treatment

In the application process, the pure bioflocculant was used to treat wastewater from
the Erwat Wastewater Treatment Plant from East Rand, Gauteng, South Africa. The pH of
the wastewater was adjusted to 7 using 0.1 M HCl and 0.1 M NaCl. The wastewater was
then treated with the bioflocculant. Inorganic flocculants, such as aluminium sulphate and
ferric chloride, served as controls. The removal efficiencies of the flocculants on chemical
oxygen demand (COD), biological oxygen demand (BOD) and sulphur were measured
using appropriate test kits following the manufacturers’ instructions. Removal efficiency
(RE) was expressed in percentage as:

%RE = (Co − C)/Co × 100, (3)

whereby Co and C represent the values obtained before and after treatment, respectively, of
the wastewater by the flocculants [7].

2.14. Statistical Analysis

All experiments were performed in triplicate and data expressed as mean values.
Standard deviations were calculated. A one-way analysis of variance (ANOVA) was
conducted using Graph Pad Prism™ version 6, GraphPad Software, San Diego, CA, USA.
A significance difference level of p < 0.05 was considered statistically significant.
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3. Results and Discussion
3.1. Physiochemical Parameters of Water

Geographic location and environmental conditions are important factors that influence
the distribution and activity of marine bioflocculant-producing bacteria. Thus, measurement of
physiochemical parameters is important when isolating microorganisms. The physiochemical
parameters of seawater were measured using the HI 98194 PH/E/DO multi-parameter. The
temperature was 23.24± 0.49 ◦C, pH 7.13± 0.05, TDS 23.55± 5.0 mg/L, DO 42.41± 5.5 mg/L,
salinity (30.81 ± 7.14 ppt), pressure (759.56 ± 0.5 mmHg), and specific conductivity was
47.09 ± 10.1 mS/cm.

3.2. Isolation and Identification of the Bioflocculant-Producing Bacterium

A total of 31 isolates were isolated on two media with 15 isolates obtained on marine
agar medium and 16 isolates on R2A medium. Among the 31 isolates, nine demon-
strated flocculating activities higher than 50%, with Isolate MTZ08 revealing the highest
flocculating activity of 68% against kaolin particles in solution. MTZ08 appeared non-
pigmented, shiny to milky white, with a convex shape, circular and smooth. The bacterium
was selected and identified using 16S rRNA gene analysis. The bacterium revealed 99%
homology to Ochrobactrum oryzae AB84113. The genus Ochrobactrum is comprised of
Gram-negative bacteria belonging to alpha-proteobacteria and Brucellaceae family [42].
The literature shows its application in the bioremediation of polychlorinated biphenyls
and petroleum hydrocarbon [43,44]. Ochrobactrum sp. DGVK1 has been effectively used
to remove N,Ndimethylformamide from wastewater and hexadecane from soils [45,46].
Ochrobactrum oryzae has been used to degrade wheat straw for production of biofuel [47]
and has also been utilised in the removal of nitrogen [48].

3.3. Optimisation of Medium Composition and Culture Conditions

The literature has previously highlighted the effects of medium composition and
culture conditions on bioflocculant production [49]. To maximize bioflocculant yield by
the isolate, the medium composition (carbon and nitrogen sources) and culture conditions
(inoculum size, temperature, initial pH of the medium and cultivation time) were optimised.
The volume of the bacterial inoculum inoculated into the medium has an important role in
bioflocculant production. The maximum flocculating activity of 86% was obtained at an
inoculum size of 3% (v/v). However, there was no significant difference (p > 0.05) between
the activity of 86% by the inoculum size of 3% and the activity of 83% achieved by 2% (v/v)
inoculum size (Figure 1). Hence, an inoculum size of 2% was preferred for the following
experiments. The flocculating activity was low at 1% inoculum size due to the fact that the
isolate might have had an extended lag phase, consequently delaying production of the
bioflocculant. Moreover, an inoculum size of 4% might have caused excess overlapping of
the bacterial niche, leading to inhibition of bioflocculant production. The literature shows
that high flocculating activities are often obtained at low inoculum size ranging from 1
to 5%. Makapela et al. [50] recorded high bioflocculant yield at an inoculum size of 4%,
whereas Luo et al. [28] reported optimum bioflocculant production at 1% inoculum.

Carbon source plays a vital role in the production of bioflocculants [51]. The effect of
carbon sources on the bioflocculant by O. oryzae AB841138 was assessed, and the maximum
flocculating activity of 92% was obtained when starch was used as the carbon source, followed
by glucose (86%) and fructose (81 ± 9.1%). Sucrose yielded the least flocculating activity (43%)
(Table 1). It was concluded that O. oryzae AB841138 was able to effectively assimilate starch for
its growth energy and bioflocculant production. Likewise, Klebsiella sp. and Sorangium cellulosum
had preference for starch for optimal bioflocculant production [27,52]. Therefore, in this study,
starch was utilised for subsequent investigations.
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Table 1. Effect carbon and nitrogen sources and temperature on bioflocculant production.

Carbon Sources FA(%) ± SD Nitrogen Sources FA(%) ± SD Temperature (◦C) FA(%) ± SD

Sucrose 81 ± 2.1 a Casein 89 ± 0.5 a 20 77 ± 0.1 a

Molasses 70 ± 2.2 a Peptone 88 ± 2.2 a 25 84 ± 0.2 b

Lactose 66 ± 4.6 b Ammonia 91 ± 4.7 a 30 93 ± 0.4 c

Xylose 76 ± 1.2 a Urea 85 ± 3.2 a 35 82 ± 0.6 b

Sucrose 43 ± 0.6 c Yeast extract 92 ± 3.8 a 40 80 ± 0.1 b

Glucose 86 ± 7.1 a

Starch 92 ± 1.7 a

Flocculating activity, SD—Standard deviation FA with different letters (a, b, c) are significantly different (p < 0.05).

Table 1 illustrates the effect of nitrogen sources on bioflocculant production by O. oryzae
AB841138. All nitrogen sources enhanced bioflocculant production, yielding flocculating
activities of 85% and above. The peak flocculating activity of 92% was obtained when
yeast extract was used. This indicates that O. oryzae can use yeast extract to produce
bioflocculant efficiently. Similar results were found by Deng et al. [53], who reported that
Bacillus mucilaginosus is capable of utilising yeast extract to produce bioflocculant with
good flocculating activity. Yeast extract was used as the nitrogen source in the following
experiments in this study.

The effect of temperature on bioflocculant production by the selected isolate was
determined. There was a significant increase in flocculating activity with an increase in
the cultivation temperature from 20 to 30 ◦C. The highest flocculating activity of 93% was
observed when the bacterium was grown at 30 ◦C, and the least activity of 77% obtained
when the bacteria was cultured at 20 ◦C (Table 1). Profound flocculating activity implied
that O. oryzae is a mesophile whose enzymatic reactions function effectively at 30 ◦C for
biosynthesis of the bioflocculant. The significant (p < 0.05) decrease in flocculating activity
observed at temperatures above 30 ◦C may be due to a decrease in enzyme activity resulting
from denaturation. The low flocculating activities at low temperatures (<30 ◦C) might be
due to slow bacterial growth rate, leading to poor production of the bioflocculant. Similar
trends were noticed for Klebsiella mobilis by Wang et al. [54]. However, our observations are
contrary to the findings of Giri et al. [55], who reported high yields when Bacillus subtilis F9
was cultivated at 40 ◦C. The results confirm that different bacterial strains prefer different
temperatures for optimum bioflocculant production.
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The relationship between initial pH of the culture medium and bioflocculant produc-
tion by O. oryzae AB841138 was evaluated. The optimum initial pH of the medium was in
the range of 5–7 with flocculating activities above 70%. The peak flocculating activity of 93%
was observed at a pH of 7, while the lowest flocculating activity was obtained at a pH of 3.
(Figure 2). The initial pH of the medium influences the electrical charges on bacteria strains
and their oxidation–reduction potential, which, in turn, can affect nutrient absorption and
enzyme activities within the bacterial cells, thus affecting bioflocculant production [56].
Therefore, it was concluded that O. oryzae AB841138 is a neutrophilic bacterium with the
ability to produce bioflocculant effectively in the pH range of 5–7. Nocardiopsis aegyptia sp.
nov and Arthrobacter sp. Raats are examples of netrophilics that revealed high flocculating
activity when the initial pH of the media was adjusted to 7 [57,58].
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Different microorganisms prefer different incubation times for effective production
of bioflocculants [58]. In this study, the flocculating activity increased with an increase in
the incubation period up to 72 h. The flocculating activity was at a peak (94%) with an
incubation time of 72 h (Figure 3). This meant that maximum bioflocculant production
occurred during the late exponential stage or early stationary phase of growth. Similar
findings have been obtained in other studies [59,60].
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3.4. Extraction and Purification of Bioflocculant

The bioflocculant was obtained as a white powder after vacuum drying, and weighed
3.768 g. The bioflocculant yield was much higher than the 1.15 g/L recovered from Bacillus
firmus [56] and the 1.36 g/L yield from Proteus mirabilis [22]. However, the yield was
much lower than those reported by Natarajan [61], in which Bacillus firmus and Bacillus
licheniformis produced 10 and 16.55 g/L. Therefore, there is a need to improve this strain to
produce a higher yield.

3.5. Characterization of the Purified Bioflocculant

Figure 4 shows the surface structure of the bioflocculant. The bioflocculant had a
hexagonal shape.
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The elemental composition of the bioflocculant was investigated and the results
are displayed in Table 2. The main elemental constituents were carbon (45.6%), oxygen
(43.3%) and nitrogen (2.5%). Potassium and sulphur were present in the least amounts
at 0.2%. The elemental composition of the bioflocculant was perceived to provide it with
structural flexibility and stability [51]. The results show some similarities with the elemental
composition of bioflocculant MBF-UFH from Halomonas sp. Okoh, i.e., carbon (17.21%),
oxygen (40.04%) and nitrogen (6.66%) [62].

Table 2. Percentage elemental composition of the bioflocculant.

Element % (w/w)

Potassium 0.2
Oxygen 43.3

Magnesium 1.7
Sodium 2.3
Sulphur 0.2
Nitrogen 2.5
Chlorine 1.3
Calcium 0.8
Carbon 45.6

Phosphorus 1.9

FTIR analysis was undertaken to ascertain and characterise the functional groups of
the purified bioflocculant; the results are displayed in Figure 5. The FTIR spectrum showed
a weak peak at 3491 cm−1 for an amino group (NH2), and a broad absorption peak at
3262 cm−1 representative of a hydroxyl group [63]. The absorption peak at 1645 cm−1

is due to the vibration of a carbonyl group in amide functionality [64]. The peaks be-
tween 1000–1200 cm−1 are due to the vibrations of an ester linkage and are generally
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characteristics of sugar derivatives [54]. The efficacy of bioflocculants strongly depends on
their functional groups that serve as binding sites for colloidal particles in solutions [65].
Therefore, the observed functional groups enhance flocculation by serving as binding sites
for kaolin particles. Moreover, the FTIR spectrum suggested the bioflocculant to possess
polysaccharides and proteins. The observed results are comparable with findings from
other studies [64,66,67].
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Thermogravimetric analysis (TGA) was used to determine the pyrolysis property of
the bioflocculant. Figure 6 shows different profiles the bioflocculant. The bioflocculant lost
2% of its weight within the temperature range of 50 and 100 ◦C due to loss of moisture
content [7]. When it was heated at 200 ◦C, the bioflocculant lost 22% of its total weight,
and 35% at 450 ◦C. The weight loss at 200 and 460 ◦C could be related to degradation of
the bioflocculant [60]. The bioflocculant maintained approximately 62.8% of its weight
after being heated at 800 ◦C. The high yield obtained after being heated at 800 ◦C showed
the thermal stability of the bioflocculant. The results in this study were similar to those of
Maliehe et al. [39] in which the bioflocculant was found to be it thermally stable.
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3.6. Biosafety of the Bioflocculant from O. oryzae AB841138

A tetrazolium-based calorimetric method was used to determine the cytotoxic effect
of the bioflocculant on bovine dermis and African green monkey kidney (Vero) cells. The
bioflocculant had a mean inhibition concentration (IC50) of 180 µg/mL against bovine
dermis and > 500 µg/mL on African green monkey kidney cells. The toxicity threshold
level for bioflocculants is considered significant when the IC50 < 30 µg/mL [68]. Therefore,
the results suggested the bioflocculant to be non-cytotoxic. Moreover, the results affirmed
the probable safe use of the bioflocculant in different applications. The results were in
accordance with those obtained by Sharma et al. [69] in which the exopolymer from
Acinetobacter haemolyticus showed no toxic effect on sheep blood cells.

3.7. Effect of Dosage, Cations and pH on Flocculating Activity

The effects of dosage size, cations and pH on the flocculating activity of the biofloc-
culant from O. oryzae AB841138 were evaluated. The bioflocculant achieved a maximum
flocculating activity of 95% at a dosage size of 6 mg/mL. However, there was no statis-
tical difference (p > 0.05) between the flocculating activity obtained at the dosage size of
0.6 mg/mL and that of 0.2 mg/mL, which achieved 92% activity (Figure 7). Therefore, the
preferred dosage size was 0.2 mg/mL and was used in the following experiments. Dosage
concentration is a crucial factor in the determination of the effective flocculation. Excess
dosage concentration results in inhibition of the interaction between bioflocculant and
kaolin clay in solution, leading to a decrease in flocculation [63]. Thus, the dosage size of
0.2 mg/mL was optimum in efficiently flocculating kaolin particles. These results are in
agreement with those reported by Maliehe et al. [33].
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tends to lower the pH of water during its application as a flocculant [70]. Although the 
pH was adjusted to 7 prior to the application of Fe3+, the pH might have been lowered 
when Fe3+ was added, affecting bioflocculation. It should be noted that a high flocculating 
activity of 93% was observed in the absence of cations, indicating that the bioflocculant is 
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flocculants from Klebsiella pneumoniae and Aspergillus flavus, resulting in high flocculating 
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The bioflocculant was capable of high flocculating activities of above 70% within a
wide pH range of 3 to 12. At pH 5, the bioflocculant showed the highest activity of 90%
(Table 3). The effectiveness of the bioflocculant under a wide pH range is economical
and suitable for industrial applications [7]. The findings agree with those obtained by
Zhang et al. [27], in which a bioflocculant from Ruditapes philippinarum, demonstrated high
flocculating efficiency over a wide range of pH (pH 3–11).
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Table 3. Effect of pH and cations on flocculating activity.

pH FA(%) ± SD Cations FA(%) ± SD

3 74 ± 0.2 a Control 93 ± 3.5 a

4 79 ± 0.9 a Li+ 88 ± 3.5 a

5 90 ± 4.5 b Na+ 97 ± 2.7 a

6 89 ± 0.2 a K+ 89 ± 3.8 a

7 85 ± 0.4 b Ba2+ 96 ± 4.4 a

8 85 ± 1.0 b Mn2+ 90±11.3 a

9 84 ± 1.3 b Mg2+ 97 ± 1.5 a

10 81 ± 1.7 a,b Ca2+ 96 ± 2.1 a

11 80 ± 1.3 a,b Fe3+ 47 ± 1.0 b

12 75 ± 0.4 a

FA denotes flocculating activity, SD denotes standard deviation and the letters (a, b) show statistical differences (p < 0.05).

The impact of metal ions on flocculating activity of the bioflocculant was evaluated.
Monovalent and divalent cations enhanced the flocculating efficiency of the bioflocculant,
producing flocculating activities greater than or equal to 88%. The peak activity of 97% was
observed when NaCl and MgCl were utilized. However, when a trivalent cation (Fe3+) was
used, the flocculating activity drastically decreased (p < 0.05) (Table 3). Ferric chloride tends
to lower the pH of water during its application as a flocculant [70]. Although the pH was
adjusted to 7 prior to the application of Fe3+, the pH might have been lowered when Fe3+

was added, affecting bioflocculation. It should be noted that a high flocculating activity
of 93% was observed in the absence of cations, indicating that the bioflocculant is cation
independent, thus making it cost-effective. Similar results were reported for bioflocculants
from Klebsiella pneumoniae and Aspergillus flavus, resulting in high flocculating activities in
the absence of cations [71,72].

3.8. Removal Efficiency of the Bioflocculant

The bioflocculant and other flocculants (aluminium sulphate and ferric chloride) were
compared in the treatment of wastewater from the Erwat Treatment Plant. The biofloc-
culant demonstrated 98% removal efficiency of COD, whereas aluminium sulphate and
FeCl3 showed 97% and 98% efficiency, respectively (Table 4). Moreover, the bioflocculant
effectively reduced BOD and sulphur concentrations by 91 and 86%, respectively. Alu-
minium sulphate had removal efficiencies of 82% and 90% for the removal of BOD and
sulphur, while FeCl3 had 86% removal efficiency for BOD and 90% for sulphur. In general,
the removal efficiencies of the bioflocculant were statistically similar to those observed
when aluminium sulphate and FeCl3 were utilised in all parameters. This implies that the
bioflocculant can be used as an alternative to chemical flocculants in wastewater treatment.
Kaur et al. [73] presented similar results in which the bioflocculant effectively removed
impurities from leachate.

Table 4. Removal efficiency of the bioflocculant from O. oryzae AB841138.

Flocculants COD (%) BOD (%) Sulphur

Bioflocculant 98 ± 2.0 a 91 ± 1.4 a 86 ± 0.5 a

Aluminium sulphate 97 ± 0.1 a 82 ± 3.1 a 90 ± 1.2 a

FeCl3 98 ± 1.8 a 86 ± 0.5 a 90 ± 0.1 a

The letter (a) illustrates statistical insignificance (p > 0.05).

4. Conclusions

The most promising bioflocculant-producing strain was identified as O. oryzae AB841138.
The bioflocculant from O. oryzae AB841138 exhibited a maximum flocculating activity of 92%
and a yield of 3.768 g/L when cultured optimally at pH 7, with an inoculum size of 1% (v/v)
and when fructose and yeast extract were used as carbon and nitrogen sources, after cultivation
at 30 ◦C for 72 h. The bioflocculant had a hexagonal structure with diverse functional groups
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such as hydroxyl, carboxyl, amine, and amide. The purified bioflocculant was found to be
thermally stable and effective at a low dosage rate of 0.6 mg/mL. Moreover, the biofloccu-
lant demonstrated negligible cytotoxicity on both bovine dermis and African green monkey
kidney cells, indicative of its biosafety. It also had excellent removal efficiencies for tested pollu-
tants in wastewater. These properties suggest potential applicability of the bioflocculant from
O. oryzae AB841138 in wastewater treatment. For further studies involving cheaper substrates,
the mode of action of the bioflocculant and its effectiveness in other wastewater effluents, should
be undertaken.
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