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ABSTRACT

Soil degradation is a serious environmental threat facing the humanity today. Soil
degradation in one or more of its forms has been labelled as a ‘global pandemic’.
This is because; soil degradation is a very serious world problem and affects all
countries or continents. Thus there is an acute need to devise a way of reducing its
vast advance. This is why, it is important to establish the magnitude and the extent
of soil degradations in order to mitigate its effect. The objectives of this study were
to: (i) Identify soils degraded by rill erosion with acceptable accuracy from remote
sensing images. (ii) Determine soil organic carbon status with acceptable accuracy
from remote sensing. (iii) Determine soil surface salt accumulation with acceptable
accuracy from remote sensing images. The soil degradation forms considered in
this study are soil salinity, rill soil erosion and soil organic carbon. Nutrient depletion
is another significant chemical process of soil degradation. Soil organic carbon
depletion is a chemical degradation and in most instances is influenced by human
and natural activities. The assessment of these soil degradation forms has been
done in three separate chapters and detailed abstract is given at the start of each
chapter. However, the general findings revealed that the prediction of those soil
degradation forms from remotely sensed images did not yield good results.
Nonetheless, promising performance has been recorded. Recommendations for

feature studies are also provided.

Keywords : Soil degradations, Remote sensing, Multispectral imagery ( sentinel 2) ,

Regression analysis, Syferkuil farm.
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CHAPTER ONE

1. THE GENERAL BACKGROUND
1.1 INTRODUCTION

Soil degradation is the most serious global environmental issue, which is why it is
considered as a global pandemic, it is world problem. Soil degradation processes
involves displacement of soil materials and internal soil physical and chemical
deteriotation. Soil degradation is influenced by natural and human activities.
However, soil degradation processes vary according to the land uses and
management (DeLong et al, 2015; Gopalakrishnan and Kumar, 2020). Soil
degradation, mainly occurs in three forms namely, physical, chemical, and biological
soil degradation. The physical degradation include (i.e. soil erosion, specifically rill
erosion) and chemical degradations (i.e. depletion of organic carbon and
salinization). In South Africa, soil degradations are predominant. Soil degradations
pose a threat on agricultural land particularly in arid and semi-arid regions (Ren et al,,
2019). The dominating factors that initiate the development of soil degradation are
accelerated by the soil type, topography, and climate (Lal, 2015).

In agriculture, soil degradation poses a threat to food security, food production and
environment conservation. This can then force farmers to look for new productive
land. Furthermore, monitoring soil quality degradation is a crucial step in practicing
precision agriculture and making informed decisions with regards to the future land
use and management for reclamation and rehabilitation of soils (Peng et al, 2019).
Therefore, it is of crucial importance to realise that soils are our most essential
resources meaning that they must be used, improved and restored. In this study,
remote sensing (RS) which is defined as the process of gathering information about
an object through the use of electromagnetic radiation, from distance, without
making physical contact with the object itself becomes a crucial tool for assessing,
monitoring, and determining soil degradation forms (Chauhan, 2015 and Paterson et
al, 2015). Thus, this study aims to establish if soil degradation forms could be
identified and quantified using remote sensing as an alternative method to the
conventional methods (i.e., field work or survey).



Remote sensing techniques are able to provide rapid analysis of soil information and
covering whole land surface at an acceptable level of details (Paterson et al, 2015).
In addition, remote sensing provides simultaneous collection of data systematically
and non-requirement of chemical reagents (Chauhan, 2015). Remote sensing has the
potential to reveal information about soils since the signals measured are in relation
to the physical measures, which can be linked to soil properties (Mirzabaev et al,
2016; Rossel et al,, 2011; and Zhou et al,, 2015).

1.2 PURPOSE OF THE STUDY

1.2.1 Aim

The realistic assessment of selected soil degradation forms in the Syferkuil farm.
1.2.2 Objectives

The objectives of this study are to:

i) Identify soils degraded by rill erosion with acceptable accuracy from remote

sensing images.

i) To determine soil organic carbon status with acceptable accuracy from

remote sensing.

iii) To determine soil surface salt accumulation with acceptable accuracy from

remote sensing images.
1.3 MOTIVATION OF THE STUDY

This study will be crucial in terms of increasing awareness on the importance of
managing and restoring soil quality to minimise the risk of soil degradation forms.
The results from this study will be crucial in land use management studies and soil
reclamation programmes for environmental protection. Moreover, this study will help
farmers to gain good understanding of the status of the soil which will help in
coming up with precise management strategies for reclamation and rehabilitation of
soils. The premise of maintaining and rehabilitating soil quality starts by establishing
or assessing the existing condition (Lal, 2015). Hillel et al. (2015) pointed out that we
cannot protect what we don't understand. Therefore, the results of this study will

provide a better understanding of assessing soil degradations using remote sensing.



Remote sensing techniques as an alternative tool to the conventional methods are
able to assess and monitor selected types of soil degradations with acceptable
accuracy (Paterson et al, 2015). This is due to rapid analysis of soil information and
covering whole land surface at an acceptable level of details for monitoring spatial
variability of soil degradation forms. Conventional methods tend to be ineffective
when dealing with the processing of large soil information due to their long

procedure that delays the analysis of soil parameters (Chauhan, 2015).

According to Paterson et al. (2015), there is a shortage of up to date soil information
about South African soils. Furthermore, there is little work done that utilizes remote
sensing for assessing soil degradation in South Africa particularly in the Limpopo
Province. However, majority of studies are undertaken in KwaZulu Natal and Eastern
Cape Province (Mararakanye, 2015). Factors that influence the development of soil
degradation tend to differ in regions and areas (Sonneveld et al, 2005; Nazari
Samani et al, 2009). Additionally, the performance of the Partial Least Square
Regression (PLSR) model varies with the location or study area and the soil
parameter being investigated or assessed. Moreover, the need to study the use of
remote sensing is important because the available literature mostly focused on the
main factors that accelerate soil degradation rather than developing models that will
assist in assessing soil degradation. This study will focus on accurate assessment
of soil degradation using remote sensing techniques.

1.4 THE GENERAL STRUCTURE OF THE THESIS

The upcoming three chapters address one objective each and a final chapter that
provides general summary at the end of the thesis (Figure 1.1). The content of each

chapter is described briefly as follows:

Chapter one deals with the general background of soil degradation. | outlined the aim
and objectives of the study. Furthermore, | explained the reasoning why this problem
needs to be addressed and what will be learnt from it. Chapter two, deals with the
assessment of soil surface salt accumulation (soil salinity). Chapter three, deals with
the assessment of soils degraded by rill erosion. Chapter four, deals with the
assessment of soil organic carbon depletion. Chapter five, deals with the summary

and possible recommendations.
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CHAPTER TWO

ASSESSING SOIL SURFACE SALT ACCUMULATION USING MULTISPECTRAL
IMAGES IN SYFERKUIL

ABSTRACT

Monitoring soil quality is an essential practice for agriculture and environmental
protection. Soil salinization is one of the most globally significant environmental soil
hazards, which results in severe land degradation and desertification. This is actually
caused by both natural and human activities. The excess accumulation of soluble
salts in the soil surface which basically referred to as salinization has severe impact
on agricultural production, biodiversity and sustainable development. The objective
of this study was to determine soil surface salt accumulation with acceptable
accuracy from remote sensing images. The study was conducted in Syferkuil,
experimental farm of the University of Limpopo. Fifty five soil samples were
collected and a grid sampling of 50 m by 50 m was followed. Global positioning
system (GPS) was used to record the exact location of each sampled point in each
grid. The electrical conductivity (EC) of the soil samples was determined
conventionally in the laboratory using Mettler Toledo EC meter. The standard
laboratory (conventional) methods for determining soil texture and, pH were used. A
multispectral image (Sentinel 2) with more than 10 bands ranging from the visible to
shortwave infrared was used to predict the soil EC. The coordinates of the sampling
points were used to extract spectral value from the image. The spectral values and
the conventionally determined soil EC were modelled using partial least square
regression (PLSR).

The PLSR model yielded a coefficient of determination (R%) = 0.468 and the Root
Mean Square Error (RMSE) = 0.44 ds/m. The result shows that approximately half of
the EC variation could be explained by the reflectance values as recorded in the
image. The deviation of the predicted values from the PLSR analysis was minimal as
indicated by the low RMSE value. The low R® value indicates that there are
confounding factors. The confounding factors might come in the form of noise and
errors due to variations in soil surface roughness, geometric and atmospheric
effects. Furthermore, the performance of models might be because of low spectral

resolution of the image as compared to hyperspectral data, which have bands with



narrow wavelengths. Despite low prediction accuracy in this study, remote sensing
techniques are efficient tools to monitor and detect soil salinity unlike in the old days,
when conventionally laboratory methods were the only means of assessing soil
salinity problems. Sentinel 2 could be used to make preliminary study of EC before
detailed in situ assessment could be done. This is because; Sentinel 2 is able to
provide excellent spatial coverage of a large area, and making it easy to obtain soil
information (Gorji et al, 2017). Thus, it is recommended that satellite image with
better spectral resolution (hyperspectral) be investigated to see if there be an

improvement in the model performance.

Keywords : Soil degradation, Soil salinity, Multispectral imagery ( sentinel 2) ,

Regression analysis,



2.1 BACKGROUND

Soil salinity is defined as the build-up of salts mainly chloride, sulfates and
carbonates of sodium, calcium, and magnesium in the soil surface (Smith and Doran,
1996). It is determined by measuring soil electrical conductivity (EC) due to its high
correlation with soil salinity. Monitoring soil salinity or soil quality degradation in
general, is an essential practice for precise management strategies for reclamation
and rehabilitation of soils. It is determined by measuring soil electrical conductivity
(EC) due to its high correlation with soil salinity. Monitoring soil salinity or soil quality
degradation in general, is an essential practice for precise management strategies

for reclamation and rehabilitation of soils.

In this study, one form of soil quality degradation - soil salinization is the centre of
focus. It is considered as one of the leading causes of land degradation and has
been found to be directly linked to the different natural processes and human
activities (Gopalakrishnan and Kumar, 2020). Additionally, it has become one of the
most serious global environmental issues, and as a result influencing agricultural
production and food security since it leads to reduced soil and water quality
especially in arid and semi-arid regions (Ren et al,, 2019). It predominates in these
regions with the fact that evaporation rates are extremely high and water evaporates

rapidly as a result leaving dissolved mineral salts in the topsoil (Pennock et al., 2015).

Despite the abundant evidence, regarding the damages that arise from salt affected
soils, the problem is ever increasing rather than decreasing all over the world
(Metternicht and Zinck, 2003). It should, however, be noted that assessing,
monitoring and identifying areas that are mostly affected by soil degradation forms
with acceptable accuracy from remote sensing is indeed a crucial step. Over the past
decades, the conventional methods have been used by many soil scientists to
characterise spatial and temporal variabilities of soil properties. The main difficulties
of such methods lie on meeting high demands of detailed soil information in short
period of time with reasonable cost (Steinberg et al, 2016). Furthermore,
conventional methods are time consuming and labour intensive particularly for

regional level whereby data is required for large scale applications.

The complexity and cost of conventional methods in monitoring soil degradation

forms has motivated the use of remote sensing techniques as an alternative method



to the conventional methods. Remote sensing (RS) is defined as the process of
gathering information about an object through the use of electromagnetic radiation,
from distance, without making physical contact with the object itself (Chauhan,
2015). RS images can provide valuable information that might not be able to obtain
using other methods since our visual perception is limited to some portions of

electromagnet spectrum (EMS).

Remote sensing has the capability to cover different areas which might be difficult to
cover using some other terrestrial means. In addition, remote sensing can help to
observe change that might be occurring over time and to understand the spatial
extent and rate of this problem. Lastly, remote sensing can provides records of soil
degradation forms at those specific times the images were captured. The objective
of this study was to determine soil surface salt accumulation with acceptable
accuracy from remote sensing images. It is hypothesised that remote sensing

images will enable accurate determination of soil surface salt accumulation.
2.2 PROBLEM STATEMENT

Soil salinity is considered as an environmental degradation and one of the leading
causes of land degradation (Aldabaa et al, 2015). It is a serious problem around the
world due to the devastating impacts on agricultural farmlands. Thus, it is
considered as a global pandemic since it affects the whole world and the problem is
ever increasing rather than decreasing. Worldwide, productive and fertile soils are
scarce resources and many farmers are looking at short term benefits and ignoring
the long term consequences that arise from salt affected soils. In previous studies
around the world, many soil scientists use conventional methods (i.e., laboratory
methods or field surveys) for assessments of soil degradations. Conventional
methods have drawbacks as they are time consuming and expensive. The main
difficulties of conventional methods lie on meeting high demands of detailed soil
information in short period of time with reasonable cost (Steinberg et al, 2016).
Furthermore, it is time consuming and labour intensive particularly for regional level
whereby data is required for large scale applications. For instance, with the current
demand for up to date soil information particularly for regional level whereby data is
required for large scale applications, these methods delay the process of acquiring

necessary soil information of high accuracy in a short period of time, due to their



long procedure (Rossel et al,, 2011).

Conventional methods tend to be ineffective when dealing with the large soil
information due to their long procedure that delays the analysis of soil parameters.
This long procedure method, however, could be addressed by the use of remote
sensing techniques. This is because soil scientists have identified remote sensing as
an alternative method for assessment and monitoring of soil degradation forms due
to their advantages over conventional methods. These includes, simultaneous
collection of data systematically and non-requirement of chemical reagents
(Chauhan, 2015). Moreover, it can provide rapid analysis of soil information and

covering large land surface at an acceptable level of details.

Remote sensing images can provide valuable information that might not be able to
obtain using other methods since human visual perception is limited to the visible
range of the of EMS (Chauhan, 2015).This means that it can provide information
beyond our human visual perception. Remote sensing images can provide the
records of soil degradation forms at those specific times the images were captured
(Forkuor et al., 2017). This can help to observe change that might be occurring over
time and to understand the spatial extent and rate of this problem. Moreover, it can
cover different areas which might be difficult to cover using some other terrestrial
means (Chauhan, 2015).

Advantages of using remote sensing technology include saving time, wide coverage
(satellite remote sensing provides the only source when data is required over large
areas or regions), are faster than ground methods, and facilitate long term
monitoring. These techniques provide multispectral image with resolutions that can
range from medium to high, as well as hyperspectral image. These remotely sensed
data have been successfully used for monitoring and mapping soil salinity for
decades with mixed results (Aldabaa et al, 2015; Asfaw et al, 2016). Many
researchers have used different techniques to monitor and map soil salinity using
remote sensing data, as discussed below. A multispectral imagery is able to provide
excellent spatial coverage of a large area, and making it easy to obtain soil

information (Gorji et al., 2017).



2.3 LITERATURE REVIEW
2.3.1 Work done on the problem statement
2.3.1.1 The importance of assessing soil surface salt accumulation.

The accumulation of salts in the soil surface tend to affect the interaction between
plants and soils which in turn influence the nutrient and water availability and thus
affecting crop growth and productivity (Asfaw et al, 2016; Gorji et al, 2017). This
can then force famers to abandon their farmlands due to the incidence of high
accumulation of salts in the soil surface. Therefore, assessing, monitoring, and
mapping salt affected areas will enable better understanding of the threat posed by
soil salinization in different locations. Aldabaa et al. (2015) found that soil salinity
leads to reduced crop productivity and in this case, it was inherent from parent
materials (i.e. where the soil is formed from). These findings were supported by Clay
et al. (2001) who found that salt surface accumulation tend to have devastating
impacts on plant growth and production. Despite the awareness regarding the
damages that arise from surface salt accumulation on agricultural soils, the problem
is ever increasing rather than declining (Metternicht and Zinck, 2003). For example,
Gao et al. (2021) monitored temporal and spatial dynamics of soil salinization
changes using remote sensing and Geographic information system (GIS) in China.
They found an increase in salt affected areas. Fey and Mashimbye et al. (2012) also

found proof of increasing soil salinity in Western Cape Province.

2.3.1.2 The use of remote sensing in assessing, monitoring, and mapping soil
salinity.

Al-Gaadi et al. (2021) mapped soil salinity in agricultural fields in Saudi Arabia using
Sentinel 2 images. They found that the relationship between EC and Sentinel 2 data
showed moderate to highly significant correlations (R* = 0.43 - 0.83). In a study by
Goriji et al. (2019), the remote sensing techniques and methods were used to assess
and map soil salinity. The results of which showed that RS data provides high
precision salinity maps to monitor salt affected areas. Qu et al. (2008) used the
Partial Least Square Regression (PLSR) method to assess the salinity using
hyperspectral data. The results showed that the calibrated PLSR method could
predict soil salinity with precise or accurate results. In a study by Zarei et al. (2021),

they investigated soil salinity monitoring and EC mapping using sentinel 2 satellite

10



images. The results of this study demonstrated that the remote sensing data could
provide high-precision salinity maps to monitor soil salinity as an environmental

problem.

A study by Leon et al. (2012) aimed at predicting soil properties using Partial least
square regression (PLSR) and Visible Near-Infrared (NIR) spectroscopy in the
Mediterranean soils from Southern Italy have been done. The results of this study
showed that PLSR is very good in predicting soil properties. In addition, the results of
the PLSR were in good agreement with the correlations between soil properties and
reflectance at various wavelengths. These findings are in line with those of Wenjun
et al. (2014) which reported that partial least square regression (PLSR) is a fast
analytical tool to predict soil parameters such as soil salinity, total carbon, soil
moisture, and cation exchange capacity (CEC) with high accuracy. Therefore,
Stenberg et al. (2010) suggested that remote sensing techniques are effective tools
in terms of providing rapid assessment, having up to date soil information and

covering large area of land at an acceptable level of detail.

A study by Goossens et al. (1993) aimed at examining and comparing the accuracy
of multispectral sensors (Landsat TM, MSS, and SPOT) for soil salinity mapping has
been done in India. They found that Landsat TM was an effective tool for soil salinity
mapping. Ahmed and Andrianasolo (1997) compared the performance of the
Landsat TM and SPOT XS in Pakistan. Their results were opposite to that of
Goossens et al. (1993). They found that the SPOT XS data were more helpful than
Landsat TM as it provided finer details of various thematic variables. In a study by
Huang et al. (2005) aimed at identifying saline areas dominated by sodium chlorides
and sodium sulfates using ASTER imagery. The results of this study therefore
showed a good correlation between surface salt concentrations and band 1 of the
ASTER sensor, followed by bands 2 and 3.

A study by Mohammad et al. (2019) in the Kuh Sefid village, Qom Province, Iran has
been done in assessing soil salinity using Sentinel-2 multispectral imagery. They
have found that the Green, Red Edge 1, SI2, SWIR2, and BI, had the best performance
in model development. Moreover, they emphasized that these features could be
used as optimal salinity indicators for monitoring soil salinity through satellite

imagery in future studies.

11



2.3.1.3 Factors affecting the prediction accuracy of multispectral satellite data.

Soil moisture content tends to influence the prediction accuracy of different sensors.
This is because as soil moisture increases, the reflectance of soil decreases. This
actively demonstrates that soil moisture is inversely proportional to the reflectance.
For instance, if there is high amount of water in the soil, the reflectance will go down.
However, drier soil such as sandy textured soil reflects more than wet soils (i.e. clay
textured soils after same exposure of wetness) (Kumar and Sharma, 2020). The
surface roughness is also considered as one of the main factors that influence the
prediction accuracy. For instance, the smaller the local surface roughness, the
greater the spectral reflectance. Therefore, Gorji et al. (2017) and Shahabi et al.
(2017) pointed out that the performance of the models varies with the study site and
the regression techniques used. Lastly, Allbed and Kumar (2013) stated that
multispectral data has limitations because of the coarse spatial and spectral

resolutions.
2.3.1.4 Human and environmental parameters related to soil salinity.

Aldabaa et al. (2015) reported that parent materials, soil types, and topography
influence soil surface salt accumulation and constrain the growth of many crops.
These natural factors tend to vary with location and farm management. The
application of irrigation systems that contains high amount of magnesium and
calcium results in high accumulation of salts in the soil surface. This can then
compromise plant productivity and soil fertility since it affects soil properties.
Furthermore, application of high amount of fertilizers can lead to high accumulation
of salts in the soil surface and results in land abandonment and high economic costs

for soil reclamation and rehabilitation (Aldabaa et al,, 2015).

2.3.1.5 How soil properties are related with spectral reflectance obtained from

remote sensing images.

Shrestha (2006) reported that humus, gypsum and water soluble salts are negatively
correlated with spectral reflectance while carbonates are positively correlated with
spectral reflectance. Visible, short wave, and near infrared bands have the ability to
estimate chemical, physical, and biological soil properties (Stenberg et al, 2010).
Moreover, spectral analysis illustrated the high potential of short-wave infrared

(SWIR) bands to identify saline soils. The results from the study conducted by

12



Shrestha (2006) shows very weak correlation between soil salinity and V/NIR spectra.
2.3.2 Work not done on the problem statement

Over the past decades, majority of the studies have used multispectral sensors such
as Landsat, SPOT, and Advanced Space borne Thermal Emission and Reflection
Radiometer (ASTER) and IKONOS in assessing soil degradation forms (Dwivedi et al,,
2008). These broad-band sensors provide high spatial and spectral resolution
imagery. Although various studies have been conducted under different regions to
assess the ability of multispectral sensor (i.e. sentinel 2) not much work has been
done on the Semi-arid area of Limpopo, particularly the Mankweng area. Most of the
studies have focused on the main factors that influence soil degradation rather than
developing models that will help in land management studies and soil reclamation
programmes since soil degradation changes with space and time. This study will
establish if soil salinity could be identified and quantified using remote sensing as an
alternative method to the conventional or traditional methods (i.e., laboratory
methods).
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2.4. RESEARCH METHODOLOGY
2.4.1 Description of the study area

The study was conducted in Syferkuil, experimental farm of the University of
Limpopo (Figure 2.1). The farm is about 1,650 ha in size in general. The study was
conducted on the fields reserved for student experiments. The portion of the farm
that was used for this study has an area of 61 ha. For the past years the study site
has been cultivated coupled with occasional resting. The soils from Syferkuil farm
are identified as sandy loam texture and the dominant soil forms on the site are
Shortlands and Clovelly (Soil Classification Working Group, 1991). The research site

is located in semi-arid region with average rainfall of 450-630 mm per annum.
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Figure 2.1: Study area and sampling points for extraction of spectral measurements
2.4.2 Data collection

2.4.2.1 Conventional methods

a) Field sampling

A grid sampling of 50 m by 50 m was followed to collect 55 soil samples. A shovel
was used to take soil samples from the top 5 cm of soil surface. The soil samples
are taken only in the top 5 cm soil layer for which the reflectance is thought to
represent. Then samples were placed in plastic bags and were taken to soil

laboratory. Global positioning system (GPS) was used to record the exact location of

14



each sampled point in each grid.
b) Soil physiochemical properties

Soil samples were air-dried before analyzing for soil physiochemical properties. The
electrical conductivity (EC) of the soil samples was determined conventionally in the
laboratory using Mettler Toledo EC meter following a method from Jones (2001).
Based on the classes determined by (Durand, 1983), five salinity classes were

considered as shown in Table 2.1.

Table 2.1: Classification of soil based on the electrical conductivity (EC)

classification supplied by Duran (1983).

EC (ds/m) Salinity classes
EC<0.6 Non-saline soil
0.6 <EC>1.0 Slightly saline soil
1.0<EC>2.0 Moderately saline
2.0<EC>4.0 Very saline soil
EC>4.0 Extremely saline

Note. EC = Soil electrical conductivity, (ds/m) = DeciSiemens per metre

Particle size distribution was determined using the hydrometer method (Bouyoucos,
1962). Soil pH was first measured in deionized water (1:2 soil, water) followed by
0.01 M calcium chloride (CaCl2) using a calibrated glass electrode pH meter (Rhodes,
1982).

2.4.2.2 Remote sensing
a) Image acquisition

A multispectral image called sentinel 2 was downloaded from the European Space
Agency (ESA). The image had more than 10 bands ranging from the visible to
shortwave infrared and with 10 m spatial resolution. A multispectral satellite image
of the study area was collected on 09 March 2021.

b) Image processing

15



Before the multispectral satellite image was used, it went through pre-processing in
order to remove the effects of the atmosphere where radiance values received at the
sensors where converted into reflectance or spectral values using Quantum

Geographic Information System (QGIS). Before the multispectral satellite image was
used, it went through pre-processing. This was done in order to correct any distortion
inherent in the images due to the characteristics of the imaging system and
conditions. The imagery was atmospherically corrected using QGIS. The coordinates
of the sampling points were used in QGIS to extract spectral or reflectance values
from the image using vector point extraction. The methodology for estimating soil
salinity includes; the collection of soil samples from the study area and laboratory
analysis to determine the soil physiochemical properties; determining the reflectance
values of sentinel 2 bands ;and determining the relationship between the spectral
values extracted from the Sentinel 2 imagery and the conventionally determined soil

physiochemical properties(Figure 2.2).
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Figure 2.2: Flowchart indicating methodology for estimating the soil salinity in the

Syferkuil farm, Limpopo, South Africa.
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2.4.3 Data analysis

The soil samples were divided into calibration and validation group. Therefore, 70%
was used for training or model development and 30% for testing or model validation.
This study used one regression model which is Partial Least Square Regression
(PLSR) model to estimate the relationship or correlation between the corresponding
pixels or spectral values extracted from multispectral satellite imagery (Sentinel 2)
and conventionally determined soil EC. The software used for PLSR is XLSTAT 2014.
PLSR was chosen due to its capability to analyse large data, and it is more
interpretable (Asfaw et al, 2016). It is an effective tool for assessment of soil

surface salt accumulation (Gorji et al,, 2016).
2.4.3.1 Calibration

Conventional laboratory measurement and their corresponding reflectance were
used for calibrating a partial least square regression (PLSR) model. More than two
thirds of the data were used in this exercise to select the spectral bands that provide
best prediction of soil EC.

2.4.3.2 Validation

Validation of the developed models was done with independent set of data that was
not used for calibration. The extracted spectral values from sentinel 2 and the
conventionally determined soil EC were modelled using partial least square
regression (PLSR), a method which reduces the variables, used to predict, to a
smaller set of predictors. Soil EC is the dependent variables whereas the spectral or
reflectance values from multispectral images are the independent variables. The
Root Mean Square Error (RMSE), coefficient of determination (R and relative
percentage deviation (RPD) were used to test the predictive ability of the model.
RMSE provides the absolute average error between the measured and the estimated
values for samples (Leone et al, 2012). The R* measures the proportion of the total
variation accounted for and Table 2.2 shows the prediction of goodness of the
model based on this parameter. RPD refers to the ratio of standard deviation (SD) to
the RMSE prediction and predictive ability of the model was also based on the

relative percentage deviation (Table 2.3).
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Table 2.2: Prediction of goodness of the model based on the coefficient of
determination (R%) supplied by Mouazen et al. (2010)

R Model performance
0.5t0 0.65 Poor prediction model
0.5t00.79 Good
0.80to 1.00 Excellent

Note. R = coefficient of determination

Table 2.3: Prediction of goodness of the model based on the relative percentage
deviation (RPD) supplied by Duran (1983)

RPD Model performance
RPD <1.0 Very poor model/ prediction
1.0 <RPD >1.4 Poor prediction model
1.4<RPD>1.8 Fair model/ Prediction
1.8<RPD>2.0 Good model
2.0<RPD>2.5 Very good model
RPD > 2.5 Excellent model

Note. RPD = relative percentage deviation;
2.5. RESULTS
2.5.1 Conventional laboratory analysis results for selected soil parameters.

The results obtained reveal that there is a great spatial variation of soil
physiochemical properties in the study site. This is crucial especially when
developing models and it ensures that the model is not biased. The results obtained
shows that the soils at the portion where the soil samples are collected falls under
slightly saline soils since it was found to be 1.03 ds/m ( Table 2.4). The results show
that soil surface salt concentration range from 0.003 to 2.36 ds/m. Therefore, the

lower the soil surface salt accumulation, the lower the exchangeable and soluble
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Calcium(Ca), the poorer the drainage conditions hence the lower the microbial
activity, water holding capacity and soil fertility that results in reduced plant
productivity (Sharma et al,, 2000). The results show that clay content range from -
3.71 to 20.16, sand percentage range from 0.064 to 90,72 and silt percentage range
from 0,064 to 20,92. Based on the results obtained regarding soil particles
distributions it shows that there is high variation across the field (Table 2.4).

Table 2.4: Statistical description of soil parameters analysed by conventional
laboratory methods (n= 55) in Syferkuil farm, Limpopo, South Africa

Soil parameter Max Min Mean Median SD CV (%)

Soil salinity( EC) 2.36 0.003 1.03 0.35 0.54 52.43

Clay 20.16 3.71 8.18 836 5.77 70.54
Silt 20.92 0.06 10.34 11.05 4.42 4275
Sand 90.72 0.06 80.77 81.28 6.08 7.53
pH(KCI) 8.02 523 7.07 714 0.53 7.49
pH(H20) 873 59 873 832 0.51 584

Note. SD = standard deviation; max = maximum; min = minimum; CV = coefficient of

variation.

2.5.2 Prediction of soil salinity using models developed from multispectral satellite
data.

The PLSR model yielded a coefficient of determination (R”) of 0.468, the Root Mean
Square Error (RMSE) of 0.44 ds/m and the RPD of 0.56 ds/m (Table 2.5). It also
shows that the coefficient of determination is low. This actively demonstrates that

the model performance was unsatisfactory.
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Table 2.5: PLSR model performance for predicting soil EC using multispectral
satellite in Syferkuil farm, Limpopo, South Africa

Soil parameter R° RMSE RPD Model performance

Soil salinity( EC) 0.468 0.44 0.56 Poor prediction model

Note. R* = Coefficient of determination; RMSE = The Root Mean Square Error; RPD =

Relative Percentage Deviation.
2.6. DISCUSSION
2.6.1 Conventional laboratory analysis results for soil surface salt accumulation.

The results obtained demonstrate that there is high spatial variation at the research
site because of statistical variables of soil parameters determined. The low soil EC
in some portion of study area may possible be result of human activities (i.e., land
use management, farm practices). This is because the portion of the farm that was
used for this study has been cultivated for the past years and coupled with
occasional resting. Conventional methods breakdown soil aggregates hence leading
to soil being easily removed or eroded thus affecting soil quality. Furthermore, the
natural factors such as the soil type and characteristics of terrain are the main
drivers of the spatial variation of soil physiochemical properties. Taking into
considerations that at the farm soils are identified as sandy loam texture and the
dominant soil forms on the site are Shortlands and Clovelly (Soil Classification
Working Group, 1991). Soils that have a higher content of clay conduct more
concentration of soil EC than soils that have a higher content of silt and sand
particles. Therefore, Shortlands soils do not present acidity issues and are
productive. Irrigation and drainage is needed to reduce soil salinity because when
irrigating, applying water can help to leach excess salts below the root zone and
maintain the desired EC level for the crop growth. However, the application of
irrigation systems that contains high amount of magnesium, aluminium and calcium
can results in high accumulation of salts in the soil surface (Aldabaa et al, 2015). In
addition, at the farm soils are identified as sandy loam texture. Shortlands soils are
typically associated with sweet grazing (Fey, 2010). Sandy loam texture is

characterized by good drainage, low water holding capacity and high infiltration rate
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because of large macro pores.

Another possible reason may be due to climatic conditions (semi-arid for Limpopo,
Mankweng area). Taking into consideration that the rainfall ranges from 450 to 630
mm per annum at the study sites.This actively demonstrate that there is high rainfall.
In addition, rainfall is more effective in leaching salts or reducing salinity. However, in
areas where there is little rainfall, evaporation rates are extremely high and water
evaporates rapidly leaving dissolved mineral salts in the upper soil profile, which
then build up progressively with space and time. A high concentration of salts at the
surface can result in poor soil structure, low fertility and microbial activity and

decrease the ability of the soil to support some plants (Sharma et al., 2000).

2.6.2 The performance of model developed from multispectral satellite image
(sentinel 2)

The PLSR model yielded a coefficient of determination (R”) value ranging from 0.19
to 0.48; the relative percentage deviation (RPD) ranging from 0. 67 to 1.29; and the
root mean square error ranging from 0.19 to 6.71 of all selected soil properties. The
performance of the model was not excellent. Nonetheless, the result shows that
approximately half of the soil properties variation could be explained by the
reflectance values as recorded in the image. The average deviation of the predicted
values from the multispectral images using the PLSR analysis is given by the
magnitude of the RMSE value. The low R*value indicates that there are confounding
factors. The confounding factors might come in the form of noise and errors due to
variations in soil surface roughness, geometric and atmospheric effects (Casa et al,
2013). Image noise is any unwanted disturbance in image data that is due to
limitations in the sensing, signal digitization, or data recording process. Furthermore,
the performance of models might be because of low spectral resolution of the image
as compared to hyperspectral data, which have bands with narrower wavelengths (Qi
et al, 2017). The results showed low content of soil EC, this has influence on the
reflectance spectra, and since soil which has low content of salt normally have high

reflectance spectra (Lacerda et al,, 2016).

The results obtained in this study, are in line with Mohammad et al. (2019) who
compared the estimated EC values with ground-truth measurements to evaluate

model consistency in Kuh Sefid (Iran). The performance of the PLSR model was
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unsatisfactory. Furthermore, the results were supported by Allbed and Kumar (2013)
who highlighted that multispectral data has limitations because of the coarse spatial
and spectral resolutions, which influences the quality and quantity of the information
they provide. The results agree with those obtained by Liao et al (2013) using
spectral reflectance of Landsat ETM image to predict soil texture. The coefficient of
determination reported for silt, sand and clay was found to be 0.32, 0.21 and 0.3,
respectively. Soil texture and soil EC are related even though soil texture is a physical
property and soil EC is a chemical property. This is because soils that have a higher
content of clay have higher EC than soils that have a higher content of silt and sand
particles. Clay textured soils which have high compaction can increase salinity and
decrease the ability of soils to support some plants. Furthermore, Clay textured soils
have low reflectance as compared to sandy loam textured soils because of high
water holding capacity. This actively demonstrates that as soil moisture increases,
spectral reflectance of soil decreases. This means that if there is high amount of
water in the soil, the reflectance will go down. Therefore, drier soil such as sandy
textured soil reflects more than wet soils (i.e., clay textured soils) (Kumar and
Sharma, 2020).

Casa et al. (2013) also found that the PLSR model for CHRIS satellite image showed
that the model prediction performance for clay, silt and sand estimations was
unsatisfactory. Forkuor et al. (2017) observed poor estimation accuracy for model
performance of the following soil constituents namely sand, silt, clay and CEC when
using multispectral satellite image (R2 of 0.35, 0.54, 0.21 and 0.36; RMSE of 7.57,
5.94, 6.95 and 4.79, respectively). Franceschini et al. (2015) also reported poor
prediction of K, Ca and Mg using PLSR models developed with spectra data derived
from airborne sensor (R” of 0.44, 0.52, 0.51; RMSE of 1.28, 7.6, 2.4; RPD of 1.28, 1.47,
1.45, respectively).

The results obtained in this study are however in contrasts with Al-Gaadi et al. (2021)
who estimated soil salinity using Sentinel 2 satellite images and related conventional
laboratory results of soil EC and spectral values using multiple regressions
modelling. They found that the generated models show satisfactory results in
predicting soil EC. Conforti et al. (2015) have reported that the sand percentage was
successfully predicted by visible and near infrared spectroscopy with the R* of 0.81
and RMSE of 4.8% for validation dataset. De Santana et al. (2018), Curcio et al.
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(2013), Xu et al. (2018), also obtained good R* in their studies (0.70, 0.74, and 0.67
respectively) for predicting the sand percentage of soil from visible and near infrared
reflectance spectroscopy using partial least square regression. The difference in the
results of these studies may possibly be due to the performance of the models
which varies with the study site and the regression techniques used (Gorji et al., 2017;
Shahabi et al, 2017).The performance of the models varies with study site because
models are calibrated differently based on the soil parameters investigated. For
instance, the model that is used in South Africa might not be adopted in some other

countries. This is because of different climatic conditions and soil types.
2.7. CONCLUSIONS AND RECOMMENDATIONS

The study revealed the potential of using remote sensing techniques and
understanding of soil surface salt accumulation. The results obtained showed that
the performance of the model was not excellent or produced low prediction accuracy
using multispectral imagery. The use of Sentinel 2 imagery did not give good
prediction of all selected soil properties. To improve model performance, future
studies should consider an image with better spectral resolution and narrower bands
(hyperspectral) to see if there is an improvement in the model performance. The
hyperspectral image covers spectral bands narrower than multispectral imagery and
image data from several bands are recorded at the same time. Furthermore,
hyperspectral image offer much greater spectral resolution than multispectral
imagery (i.e., cover two or more spectral bands simultaneously typically from 0.3 m
to 14m
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CHAPTER THREE

ASSESSMENT OF RILL DEGRADED SOILS IN SYFERKUIL FARM USING REMOTE
SENSING TECHNIQUES

ABSTRACT

Assessment and identification of soils degraded by rill erosion is essential for future
land use management and planning. Rill erosion is one of the most globally
significant environmental soil hazards, which results in severe threat on crop
productivity and biodiversity since it can lead to loss of soil quality. The causes of rill
erosion can either be natural or human factors. The objective of this study was to
identify soils degraded by rill erosion with acceptable accuracy from remote sensing
images. The study was conducted at the Syferkuil farm, Limpopo, South Africa. In
this study, rill identification and dimensioning was done on a multispectral imagery
(Worldview 2 satellite image) using supervised image classification. Quantum
Geographic Information System (QGIS) software was used for the visual
vectorization of individual rills. The Semi-Automatic Classification Plugin (SCP) in
QGIS was used to identify soils degraded by rill erosion in Syferkuil. The
classification was done using the spectral angle algorithm. The area was classified
into two categories which is rill and no-rill. Raster object was converted to vector
object using polygon trace tool for further object-based processing. For the purpose
of assessing the accuracy of the supervised image classification, reference data
was created, and the error matrix was calculated, and the results indicated the user’s

accuracy and producer’s accuracy for no rill erosion and rill class were obtained.

The results of the study were not satisfactory using the supervised classification of
the Worldview 2 satellite image. The possibility therefore exists that some soil
erosion features may have been classified as non-erosion features. In addition, the
low separability of classes limits the applicability of the supervised classification
methods, particularly in spectrally complex erosion areas. The overall classification
performance or accuracy of 47.91% with a Kappa coefficient of 0.41 was obtainable.
Therefore, these remote sensing techniques, although there is much room for
improvement, can contribute into identifying and quantifying soils degraded by rill
erosion especially in data scarce environment and resources constrained province

(i.e., Limpopo, Mankweng Area).
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3.1 BACKGROUND

Monitoring soil quality degradation is essential towards land use management
studies and reclamation programmes or rehabilitation strategies. The first step
towards rehabilitation and reclamation of different soils is by providing accurate soil
information and having an understanding of soil degradation forms. This will help in
identifying high risk areas for future land use management and planning. This study
will only focus on soils degraded by rill erosion. Rill erosion is a process of soil
degradation that removes soil materials from one point on the earth to be deposited
elsewhere through processes such as detachment, suspension, transportation and,
mass movement (Vanmaercke et al, 2021; Li et al,, 2016) .1t is an important form of
soil erosion that contributes greatly to soil degradation and loss in South Africa.
Monitoring soil quality degradation can be precisely achieved through the usage of
remote sensing as an alternative approach due to its advantages over conventional
methods (i.e., Field surveys). Field surveys delay the process of acquiring necessary
soil information of high accuracy in a short period of time and are limited to small
areas (Rossel et al, 2011; Odindi et al.,, 2017).

In remote sensing (RS), data is collected using either passive or active remote
sensing techniques, without making physical contact with the object itself (Chauhan,
2015). Active remote sensing, capture EM radiation in the visible spectrum and has
its own source of light or emits its own energy. However, in passive remote sensing
the source of signal is the sun, which emits EM at its highest intensity between the
ultraviolet and infrared. Remote sensing has the capability to identify soils degraded
by rill erosion with acceptable level of details (Kumar, 2013; Morshed et al., 2016;
Taghadosi et al, 2018). Remote sensing is able to cover a large area of land
especially when data is required for large areas. Moreover, remote sensing is faster,
inexpensive, non-destructive, facilitate long term monitoring, and accurate
monitoring tool. In addition, remote sensing allows for past, present, and near real

time monitoring of objects of interests (Chauhan, 2015).
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The multispectral satellite imagery has been widely studied in previous research and
has been found to be a very promising tool for assessment rill degraded soils
(Karydas et al., 2020; Desprats et al, 2013). The multispectral satellite imagery has
the capability to provide improved spatial resolution and image acquisition is not
costly which makes it effective in terms of classifying, analysing, monitoring and
mapping soil degradation forms at different locations. RS images can provide
detailed but much reduced version of reality or 3D view of object of interests. This
can cover different areas which might be difficult to cover using some other

terrestrial means (Karydas et al., 2020; Desprats et al.,, 2013).

To contribute to the valuable information and better understanding on the effects of
soil degradation caused by rill erosion with the use of remote sensing, our study was
focused on the Mankweng area (Syferkuil farm) in Limpopo province. This study will
establish if rill degraded soils could be identified and quantified using remote
sensing. The objective of this study was to identify soils degraded by rill erosion with

acceptable accuracy from remote sensing images.
3.2 PROBLEM STATEMENT

Rill identification and assessment of intensity using field work can provide accurate
results and have been preferred by most researchers, but they are only applicable to
small areas. The main difficulties lie on meeting high demands of detailed soil
information in short period of time with reasonable cost (Steinberg et al, 2016).
Field surveys are time consuming and labour intensive particularly for regional level
in which data is required for large scale applications. Moreover, these traditional
methods (i.e., field work or field surveys) are difficult to replicate and limited to small
areas (Odindi et al, 2017). Therefore, with the current demand for up to date and
accurate soil information on soil degradation, these methods are ineffective.
Moreover, they delay the process of acquiring necessary soil information of high
accuracy in a short period of time (Rossel et al., 2011).

The challenges of conventional methods, however, could be addressed by the use of
remote sensing techniques. Many researchers have identified remote sensing as an
alternative method for assessment and identification of soils degraded by rill erosion
due to its advantages. This is because remote sensing techniques can provide rapid

analysis of soil information, cover large land surface and facilitate long term
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monitoring at an acceptable level of detail (Chauhan, 2015). A multispectral imagery
is able to provide excellent spatial coverage of a large area and making it easy to
identify soils degraded by rill erosion (Gorji et al, 2017). Remote sensing (RS)
images can provide detailed, but much reduced version of reality or 3D view of object
of interests. These imageries can provide valuable information that might not be
able to obtain using other methods since our visual perception is limited to some
portions of electromagnetic spectrum (EMS). This means that it can provide
information beyond our human visual perception. Furthermore, it can provide the
records of soil degradation forms at those specific times the images were captured
and cover different areas which might be difficult to cover using field surveys. This
can help to observe change that might be occurring over time and to understand the

spatial extent and rate of this problem.

3.3 LITERATURE REVIEW

3.3.1 Work done on the problem statement

3.3.1.1 The importance of identifying soils degraded by rill erosion using

remote sensing.

Soil erosion globally is an intense, poorly controlled process and there is lack of up-
to-date soil information. Soil erosion is a serious problem in the entire world and a
major threat of land degradation in South Africa particularly in Limpopo (Rahmati et
al, 2016; Le Roux and Sumner, 2012). It is also considered as one of the most critical
environmental issues due to the devastating impacts on agricultural lands. Therefore,
soil erosion is a dynamic process requiring constant monitoring while keeping up-to-
date information on its spatial distribution. Soil conservation and rehabilitation
measures and understanding the dynamics of soil degradation and driving factors is
a crucial step (Nwilo et al, 2021; Le roux and Sumner, 2012). It is important for
modelling erosion hazard of the area or high-risk area for future land uses

management and planning (Ogbonna, 2012).

Rill erosion can lead to land abandonment and threaten food security since soil
fertility or nutrient status of the soil might be compromised. In turn, many farmers
abandoning their farmlands due to the threats posed by rill erosion and then cause
economic effects on farming communities. In addition, rill erosion can results in

decline soil fertility, poor soil structure, poor drainage conditions. This is because
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during heavy rainfall essential nutrients are leached away, and as a results leading to
decreased soil quality and capability to sustain crops (Dewitte et al,, 2015).

3. 3.1.2 Rill degraded soils monitoring, identification and assessment using

remote sensing.

Various studies have been done for rill identification and assessment of intensity
using remote sensing. Saadat et al. (2014) conducted a study of mapping rill erosion
using Landsat in Iran. The results obtained showed that the proposed method is able
to produce a rill erosion intensity map with an accuracy of 96% at this study location.

Desprats et al. (2013) conducted a study of mapping rill erosion using Quick Bird and
SPOT satellite imagery in Tunisia. They found that the high-resolution imagery (Quick
Bird) is a valuable tool from which one can extract the consequences of soil
degraded by rill erosion whereas it remained fairly insignificant with the SPOT type.
However, this methodology used demonstrates the potential for extracting rill
erosion features from the imagery, but more importantly it discusses a GIS analysis
that can identify elements with soil erosion traits from among all the linear features.

Fiorucci et al. (2015) conducted a study of mapping and measuring rill erosion using
GeoEye -1 panchromatic stereo images in Italy. In this study, they found that the
proposed method is faster than field work, improves the ability to map these
features over large areas, which are applicable to detailed scales and analyses, and
other more traditional method. Karydas et al. (2020) conducted a study of mapping
rill erosion in which data from sentinel 2 images was used. They have found that the
multispectral imagery (sentinel 2) is suitable for future erosion assessments with G2
model. Basically, G2 is quantitative algorithm for mapping soil loss and sediment
yield rates on month-time intervals. G2 model proved to work as a rapid and at the

same time flexible mapping tool.

Gafurov (2022) conducted a study using the trained rill erosion convolutional neural
network (RECNN) for automated rill erosion detection from remote sensing data in
Russia. The results of this study showed accuracy level of 0.62, F1-measure was
0.76, and loss-function was 0.27. Furthermore, it was found that not a single case of
detection of gullies or ground roads, which are abundant in the study area, instead of

rills, was recorded.
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3.3.1.3 The use of supervised image classification for identification and
assessment of rill degraded soils.

In supervised image classification, there is no limited control over identity of classes.
Training area is referred as an area of known identity delineated on the digital image
within its coordinate system. The key characteristics of training areas are number of
pixels, size of the training area, shape of the training area, location of the training
area, and number of training area (Eastman, 2003). However, the training data not
often defined spectrally, and the training areas must be selected carefully to
minimize errors. Moreover, not all spectral classes may be known to the users. In
most instances, the decision to utilize this image classification depends on the study
area, the skills of individual processing the image, and the spectral distinctness of
the classes. The spectral class are inherent in the multispectral imagery or remotely
sensed data whereas the information class are defined by human beings (Eastman,
2003).

3.3.1.4 Factors affecting the spectral signatures of rill degraded soils.

According to Taruvinga, (2008), the spectral signature of soil erosion forms differs.
In addition, the spectral signature of soils depends on the moisture content, organic
matter content, texture, structure and iron oxide content (Aggarwal, 2004). Spectral
characteristics of vegetation differ with wavelength and the pigment leaves of plant
reflect green wavelengths and strongly absorb red and blue wavelengths. Bare soil
and vegetation have different spectral characteristics and are completely different
and need to be dealt with separately when selecting training areas. The
heterogeneous nature of soil degraded by rill erosion makes it complex to
differentiate with the surroundings, thereby posing a challenge to the classification

technique (Aggarwal, 2004).

3.3.1.5 The possible human and environmental factors that influence rill erosion

initiation and development.

According to Chaplot et al. (2013) and Mararakanye and Summer, (2017), Soil
erosion forms are influenced by soil type, bedrock lithology and structure,
precipitation, slope angle, vegetation and land use. Although, rill erosion is a natural
process, it is accelerated by human activities and rainfall or climatic conditions
(Vanmaercke et al,, 2021; Li et al., 2016).
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Clay textured soil is more compacted and has higher structural stability that resists
soil erosion whereas sandy or silty textured soils are less susceptible to soil erosion
because of larger pores and high infiltration rate which results in high leaching of soil
materials (Gandariasbeitia et al, 2017). Overgrazing can reduce ground cover and
enable erosion by wind and rain. Therefore, vegetation plays a crucial role in reducing
rill erosion because plants roots bind soil particles together and increase structural
stability of soils that are not easily leached out or eroded by soil erosion agents (i.e.,
water or wind). Therefore, the more water flowing over the surface or land, the more
soil particles are leached out or transported from one place to another. Meaning that
farmland that has no vegetation is vulnerable to rill erosion as compared to the one
having vegetation cover. Land use practices can influence rill erosion. For instance,
the conversion of natural ecosystem to pasture land can lead to high rates of rill
erosion and loss of top soil and nutrients. The slope can have a major influence on
rill erosion. Meaning that when the slope is longer (length), surface area of water
collection increases and therefore increase the water surface runoff (Le Roux and
Sumner, 2012).

3.3.2 Work not done on the problem statement.

The study is done at a farm level requiring much detail with a potential to apply on a
large scale. The remote sensing technique used can vary with the location or study
area and the feature being observed. Most of the studies have focused on the soil
erosion origin and contributing factors. Moreover, there is little work done that
utilizes remote sensing for assessing soil degradation on South African soils and
particularly in Limpopo. Therefore, this study will establish if soils degraded by rill
erosion could be identified and quantified using remote sensing as an alternative

method to the traditional methods (field work or surveys).
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3.4 RESEARCH METHODOLOGY
3.4.1 Description of the study area

The study was conducted in Syferkuil, experimental farm of the University of
Limpopo (Figure 3.1). The farm is about 1,650 ha in size and 13 km from the main
campus of the University. The climate is semi-arid with rainfall of relatively 450-630
mm per annum, experiencing about 400 mm of summer rainfall. The farm is exposed
to temperatures ranging between 14°C during winter periods and 35°C in summer.
The soil forms are Hutton and Glenrosa and composed of seven minerals which
include plagioclase, K-feldspar, amphibole, quartz, interstratified illite or smectite,
talc and kaolinite dominated by quartz and interstratified illite or smectite (Molepo et
al, 2017). The soils from Syferkuil farm is moderately shallow to deep and consists
of the following texture classes; sandy loam, loamy sand and sandy clay loam
(Phefadu and Kutu, 2016).

M

il B som Syferkuil Cultivated land

Figure 3.1: Study site in the Syferkuil farm, Limpopo
3.4.2 Data collection
3.4.2.1 Remote sensing

a) ldentification of soils degraded by rill erosion using supervised image

classification
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In this study, the Quantum Geographic Information Science (QGIS) software was
used for the visual vectorization of individual rill erosion forms. The Semi-Automatic
Classification Plugin (SCP) in QGIS was used for identification or assessment of
soils degraded by rill erosion. Supervised image classification was done using QGIS
to identify soils degraded by rill erosion in Syferkuil. The classification was done
using the spectral angle algorithm. The portion of the farm that was used for this
study has an area of 61 ha. The area was classified into two categories which is rill
and no rill. Raster object was converted to vector object using polygon trace tool for
further object-based processing. The SCP is defined as a free open source plugin for
QGIS (Congedo, 2016) that allows for the semi-automatic classification of remote
sensing images for the visual vectorization of individual rills. Supervised image
classification involves collecting data from the training area followed by a
classification step or stage then output stage (Figure 3.2). Rill identification and
assessment was done on multispectral satellite imagery [Worldview 2 satellite
image] as a form of feature extraction. This image multispectral imagery had one
panchromatic band with 46 cm spatial resolution and eight bands with 1.85 m
spatial resolution. This satellite image had wavelengths covering from 400 nm to
1040 nm. The supervised remote sensing image classification approach was used
based on only two categories which are rill and no rill. It is the digital image
processing that commonly group pixels to represent land cover attributes. The
sample size was selected in an image that represents the specific classes and then
directed the image processing software to use these training sites as references for
the classification of all other pixels in the image. It used the spectral information
represented by the digital numbers in many spectral bands and attempt to classify
each individual pixel based on this information. The computer used an algorithm in
order to determine spectral signatures for each training class and then compares
each pixel in the image to these signatures and labels it as the class it most closely
resembles digitally. The training areas were selected based on what it is known on
the ground then digitizes a polygon within that particular area. The spectral signature
of each pixel was matched with the training signatures and the image was classified
accordingly. Pixels which have the same spectral characteristics were identified as
belonging to the same class and assigned or given unique number or colour. Pixels

are defined as the small representation of reality or objects of interest.
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(i.e., Image acquisition)

v

Specifying training areas to be used for
classification

!

Computer assigns pixels closest class
based on training data

Y’

Evaluating of the results

(Overall classification accuracy)

Figure 3.2: Flow charts showing supervised image classification.
3.4.3 Data analysis

The multispectral imagery (Worldview 2 imagery) was used to discriminate rill and
no rill erosion in Syferkuil farm. The SCP in QGIS was used to classify the image or
for the visual vectorization of individual rills to generate statistical results of the map
accuracy. SCP has the ability to discriminate land cover feature and offers a
potential for mapping individual rills.

3.4.3.1 Accuracy assessment

Accuracy assessment and check was done by generating validation points. The error
matrix is the method used for assessing the degree of accuracy (Mather, 2004) and
has been widely used in classification accuracy assessment. Error matrix is a square
which contains rows and columns that are equal to the number of categories whose
classification accuracy is being assessed (Lillesand et al, 2008). The results of the
error matrix were interpreted using the producer’s accuracy, user’s accuracy, overall
classification accuracy and the Kappa classification. The overall classification
accuracy summarises the producer's accuracy as well as the user's accuracy. The
user's accuracy measures the errors of commission while the producer's accuracy
measures the errors of omission. The Kappa coefficient is the difference between
the actual agreement in the error matrix and the agreement occurring by chance

(Persello and Bruzzone, 2010).
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RESULTS AND DISCUSSION

3.5 RESULTS

The results of the digital image processing (supervised image classification) of the
area classified into two categories which is rill and no rill erosion showed a low
overall accuracy of up to 47.91%. The accuracy results produced is very low and the

kappa statistic of 0.41 indicates none to slight agreement.
3.5.1 Supervised image classification results

The map shown in Figure 3.3 illustrates the cultivated area with the selected training

areas created by using Region of interest (ROI) polygon.

0 250 500 m The cultivated area with the selected training areas

Figure 3.3: The cultivated area with the selected training areas

Figure 3.4 below illustrates the validation points selected randomly to provide
information and evidence that the classification produced the expected results. The
random selection was done automatically by SCP and this map shows that it covers

the entire study area.
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0 250 500m Randomly selected validation points

Figure 3.4: Randomly selected validation points

Figure 3.5 below shows the classification done with spectral angle algorithm. The
classification is showing the rill and no-rill regions. It shows that areas affected by rill
are identified positively. Areas like inter-plot paths are also identified as rill regions.
Furthermore, some whole plots are also depicted as representing rills. The veracity
of the model prediction is clearly conveyed by the accuracy results. This means that
the predictive ability of the model depends on the accuracy of the results. The higher

accuracy means better performance.

Legend
Black colour
represents —
Unclassified
Red colour —

No rill
Green colour
- Rill
erosion.

Figure 3.5: Classification done with spectral angle algorithm.
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3.5.2 Accuracy results

The supervised image classification was used for classification of soils degraded by
rill erosion. The Kappa statistic of 0.41 indicates moderate agreement (Table 3.1).
The overall classification accuracy calculated of 47.91% indicates that only 47.91%
accuracy was classified correctly (Table 3.2). The user’s and producer’s accuracy
indicate the performance of supervised image classification for rill erosion and no rill
erosion identification. However, a 47.23% of producer's accuracy in rill class
indicates more errors of omission while 45.80% of producer’s accuracy in no rill
erosion class. Kappa is the most used indicator of classification accuracy and is
used to assess the agreement between the dependent variable and independent
variable. In addition, Kappa coefficient can also be used to assess the performance
of a classification model (Persello and Bruzzone, 2010). A Kappa value of 0.41 in rill
class is problematic because the classification accuracy indicates moderate
agreement rill and no rill erosion. The accuracy results produced is very low as
indicated in Table 3.3.

Table 3.1: Showing the classification to interpret the strength of agreement based on
the Cohen’s Kappa value (Altman, 1997; Landis, 1977)

Kappa coefficient Strength of agreement

<0 No agreement
0.01-0.20 None to slight agreement
0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement
0.61-0.80 Substantial agreement
0.81-1.00 Almost perfect agreement
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Table 3.2: Showing area-based error matrix, reference, standard error, confidence
interval, producers’ accuracy, users’ accuracy and kappa classification values.

>AREA BASED ERROR MATRIX
> REFERENCES

V_classified 0 1(rill) 2(norill) Area Wi

0 0.00 0.00 0.00 2529015.50 0.69
1 0.00 0.012 0.11 440931.25 0.12
2 0.00 0.019 0.17 712232.00 0.19
Total 0.00 0.031 0.28 3682178.75

Area (metre”) 0.00 0.0 0.28 3682178.75
SE 0.00 0.02 0.02

SE area 0 83767 83769

95% Clarea 0 164184 164184

PA[%] nan 4724 4576

UA [%] nan 49.40 50.03

Kappa coefficient 0.41 0.41

Note. PA = producer’s accuracy, UA = user’s accuracy, SE= standard error and, CL =

confidence interval.
Overall accuracy [%] = 47.91

Kappa coefficient = 0.41
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Table 3.3: Worldview 2 satellite image accuracies (%) for rill erosion and no rill

erosion.

Two categories Producer’s accuracy (%) User's accuracy (UA) Overall Accuracy (%)

Rill erosion 47.24 49.40 48.31

No rill erosion 45.76 50.03 47.52

Overall Accuracy (%) 47.91

3.6 DISCUSSION

The results obtained reveal that the digital image processing (supervised image
classification) of the area classified into two categories which is rill and no rill
erosion showed a low overall accuracy of 47.91% and the total Kappa coefficient of
0.41. The accuracy results produced is very low and the Kappa statistic of 0.41
indicates moderate agreement between rill and no rill erosion. Therefore, the results
were not satisfactory using multispectral satellite image [Worldview 2 satellite
image]. This may be due to limited spectral bands, atmospheric conditions and soil
properties (Shruthi et al, 2011; Taruringa, 2008). The heterogeneous nature of soil
degraded by rill erosion makes it complex to differentiate between soil erosion
feature and non-erosion features, thereby posing a challenge to the classification
technique. The error matrix (pixel count values), Reference, Classified and Pixel Sum
values are in Appendixes 1 and 2.

In a previous study by Torkashvand and Alipour (2009) using supervised image
classification for assessment of rills using remote sensing techniques in plain
physiography of Iran, the researchers found out that the accuracy decreases where
there are other land uses such as cultivation due to similarity in spectral
characteristics. Thus, it is important to classify where there is bare soil in order to

increase the accuracy. Furthermore, within the study area, the spectral reflectivity of
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soil erosion varies considerably, and in some cases tends to be similar to non-
erosion features (for example bare soil). The possibility therefore exists that some
soil erosion features may have been classified as non-erosion features. Similarly,
Sepuru and Dube (2017) emphasised that the low separability of classes limits the
applicability of the supervised classification methods, particularly in spectrally

complex erosion areas.

Another possible reason is that the supervised image classification depends on the
training sites, the skill of the person processing or classifying an image and the
spectral distinctness of the classes. This method of classification requires close
attention to the development of training data and if the data is poor and not
representative, the classification results will also be poor decreasing the accuracy of
results. However, the training data not often defined spectrally, and the training areas
must be selected carefully to minimize errors. Moreover, not all spectral classes
may be known to the users. The spectral class are inherent in the multispectral
imagery or remotely sensed data whereas the information class are defined by

human beings.

These results are however in contrast with those obtained by Floras and Sgouras.
(1999) who found high overall accuracy of 83.94% using supervised image
classification method (The Gaussian maximum likelihood classifier). This is because
their classification was assisted by Digital Elevation Model (DEM). Moreover, they
used the Landsat 5 images while we used the worldview imagery. Landsat 5 image is
easy to obtain and has a wide coverage and, is suitable for the large-scale land cover
studies (Wang et al., 2019)

This is supported by various studies (Phinzi and Ngetar (2017); Munyati and
Ratshibvumo (2011); Singh et al. (2015) using Landsat 5 in assessing rills erosion.
The results of these studies indicated that an overall classification performance or
accuracy of above 81% was obtainable. The results are in line with those obtained by
Sepuru and Dube (2018) in mapping spatial distribution of three eroded area using
Sentinel 2, achieving an overall classification accuracy of 81,90%. In another study by
Azad (2019), the author found a high overall accuracy of surface erosion
classification of 69% using the supervised image classification. Therefore, higher

spatial resolution allows finer grain details to be discerned in the imagery. Satellite
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imagery with relatively higher spatial resolution allows the classification technique to
detect the smaller rills which were omitted from low spatial resolution imagery. The
image acquisition is costly and limited due to their small swath width (Seutloali et al,
2016, Shruthi et al,, 2011; Ranga et al,, 2015; Le Roux and Marakanye, 2012).

3.7 CONCLUSION AND RECOMMENDATIIONS

This study focused on identifying soils degraded by rill erosion using remote sensing
techniques. In this study, the results were not satisfactory from multispectral
satellite image [Worldview 2 satellite image] using digital image processing called
supervised image classification. Despite low prediction accuracy in this study,
remote sensing is a promising tool since it can provide information beyond our
human visual perception. Furthermore, remote sensing can provide the record of soil
degradation form at those specific times the images were captured and cover

different areas which might be difficult to cover using field based methods.

Even though the results were not satisfactory, remote sensing can serve an
alternative method to field based methods because the results of this study can be
greatly improved through the use of much higher spatial resolution imagery and
narrow bands (hyperspectral satellite image) to see if there is an improvement in the
accuracy level. This is because satellite imagery with relatively higher spatial and
spectral resolution (i.e., hyperspectral imagery) allows the classification technique to
detect the smaller rill erosion features which were omitted from low spatial

resolution imagery.
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CHAPTER FOUR

ASSESSING SOIL ORGANIC CARBON STATUS USING MULTISPECTRAL IMAGES IN
SYFERKUIL FARM

ABSTRACT

Soil organic carbon (SOC) depletion which is directly linked to human and natural
activities poses a major threat to agricultural productivity since it can lead to
reduced soil and water quality, soil fertility and nutrient status. Assessing and
monitoring soil quality degradation is vital in terms of practicing precision agriculture
and future land use management and planning. The main objective of this study was
to determine SOC status with acceptable accuracy from a remotely sensed image.
The size field area of the plot sampled is 61 ha. Ninety seven soil samples were
collected and a regular sampling grid strategy of 50 m by 100 m was followed in
Syferkuil Farm, South Africa, Limpopo. Global positioning system (GPS) was used to
record the exact location of each sampled point in each grid. In this study, the SOC
of the soil samples was determined conventionally in the laboratory using a Walkley
Black method. The coordinates of the sampling points were used to extract spectral
value from the multispectral image (Sentinel 2) using QGIS. The spectral values and
the conventionally determined SOC were modelled using partial least square
regression (PLSR). The results showed low prediction accuracy of SOC with R* of
0.41, Root Mean Square Error (RMSE) of 0.53%, and the relative percentage deviation
(RPD) of 1.21 using the PLSR model developed from the multispectral image
(Sentinel 2). The result shows that approximately half of the SOC variation could be
explained by the reflectance values as recorded in the image. Despite low prediction
accuracy, remote sensing techniques are potential tools to monitor and detect SOC
unlike in the old days, when conventionally laboratory methods were the only means
of assessing soil organic carbon depletion or status. Sentinel 2 could be used to
make preliminary study of SOC before detailed in situ assessment could be done.
Thus, it is recommended that an image with better spectral resolution (hyperspectral)

be investigated to see if there be an improvement in the model performance.

Keywords: Soil degradation, Soil organic carbon, Remote sensing, Multispectral
image (Sentinel 2 imagery), PLSR, Syferkuil farm
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4.1 BACKGROUND

Soil degradation has become the most serious global environmental issue that
needs a serious attention due to its devastating impacts on agricultural productivity.
This can lead to reduced water quality, soil fertility and nutrient status especially in
arid and semi-arid regions (Shi et al, 2019). Thus, it is of crucial importance to
monitor and assess soil quality degradation for sustainable and precision agriculture.
This can help with reclamation and rehabilitation of soils and minimizing the risks of
soil degradation forms in different regions. In this study, one form of soil quality
degradation to monitor or assess is soil organic carbon (SOC) depletion. Assessing
SOC status is vital in terms of soil health monitoring and environmental
management. SOC depletion is directly linked to human and natural factors (FAO of
United Nations, 2012). In agricultural land, SOC is a key indicator of soil fertility due
to its beneficial effects on soil properties. This is because SOC has potential to
increase soil fertility, quality, and cation exchange capacity and enhances the water
holding capacity (Mccauley et al, 2017; Zhu et al, 2018; Bangroo et al, 2020).
Moreover, SOC can contribute to high stable aggregate structures, that are resistant
to soil degradation forms hence binds soil particles together. Soil carbon contains a
major proportion of carbon that is considered to be three times larger than in the

atmosphere and terrestrial vegetation (Houghton, 2007).

Over the past decades, conventional laboratory methods were the only means of
assessing SOC depletion. These methods delay the process of acquiring necessary
soil information of high accuracy in a short period of time, due to their long
procedure (Rossel et al, 2011). Moreover, they are difficult to replicate, time
consuming, labour intensive, and are limited to small localized scales (Odindi et al,
2016, Angelopoulou et al,, 2019). Remote sensing techniques have the potential to
serve as an alternative approach due to its advantages over conventional laboratory
methods (Kumar et al,, 2016). In previous research, remote sensing have been widely
used and found to be a promising tool for assessment of soil degradation forms.
These include simultaneous collection of data systematically, inexpensive, non-
destructive, facilitate long term monitoring and non-requirement of chemical
reagents (Chauhan, 2015; Angelopoulou et al, 2019). In addition, it can provide rapid
analysis of soil information and covering large land surface at an acceptable level of
detail. In this study, the multispectral imagery (i.e. Sentinel 2 satellite imagery) was
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used to extract spectral values using the coordinates of the sampling points in QGIS.
The multispectral image has the capability to provide improved spatial resolution
and excellent perspectives on land related studies and have the capability to produce
significant results in SOC estimation and soil health monitoring (Wang et al, 2018;
Odindi et al, 2016; and Zhou et al.,, 2020). Therefore, the purpose of this study is to
determine SOC status with acceptable accuracy from remote sensing. The study

was focused on the Syferkuil farm in the Limpopo province.
4.2 PROBLEM STATEMENT

Soil carbon is a key indicator of soil fertility or quality since it can influence the three
categories of properties (physical, chemical and biological) (Houghton, 2007). For
instance, water holding capacity, microbial activity and cation exchange capacity of
soils (Mccauley et al., 2017; Zhu et al.,, 2018; Bangroo et al,, 2020). In addition, it can
contribute to high stable aggregate structures, that are resistant to soil degradation

forms. This is because SOC has the capability to bind soil particles together.

Since there is higher demand of detailed soil carbon information, remote sensing
techniques have the ability to provide soil carbon information in short period of time
with reasonable cost. Remote sensing (RS) could be used as an alternative method
to the conventional laboratory methods due to its advantages. It can provide rapid
analysis of soil information and covering large land surface at an acceptable level of
details (Chauhan, 2015). It has the potential to provide valuable information that
might not be able to obtain using other methods since our visual perception is
limited to some portions of EMS (Electromagnetic spectrum). This means that it can
provide information beyond our human visual perception. Furthermore, it can provide
the records of soil degradation forms at those specific times the images were
captured and cover different areas which might be difficult to cover using some
other terrestrial means. This can help to observe change that might be occurring
over time and to understand the spatial extent and rate of this problem. RS images
can provide detailed but much reduced version of reality or 3D view of object of
interests (Goriji et al,, 2017).

Multispectral imagery is able to provide excellent spatial coverage of a large area,
and making it easy to obtain soil carbon information (Gorji et al, 2017). Despite the

wide use of conventional laboratory methods, these methods are time consuming,
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expensive, and labour intensive especially when data is required for large farmlands
(Rossel et al, 2011). Therefore, with the current demand for up to date soil carbon

information, conventional methods are ineffective.

4.3 LITERATURE REVIEW

4.3.1 Work done on the problem statement
4.3.1.1 The importance of assessing soil organic carbon status.

Soil organic carbon depletion as a result of natural and human activities can lead to
reduced crop productivity due to lower moisture retention and nutrient status (FAO
of United Nations, 2012). This is because, high level of SOC depletion influences
water retention properties and cation exchange capacity (Franzluebbers, 2002). Soil
organic matter (SOM) plays a crucial role in physical, chemical and biological
functions of agricultural soils (Houghton, 2007). SOC is a key indicator of soil fertility
due to its beneficial effects on soil properties and contributes to high stable
aggregate structures, that are resistant to soil degradation forms (i.e. soil erosion)
because SOM binds soil particles together. In addition, aggregates stability tends to
determine soil erodibility and influence water infiltration since it gives the best
prediction of erosion.

4.3.1.2 The use of remote sensing in assessing, monitoring, and mapping soil

organic carbon depletion.

A study was conducted by Mallik et al. (2022) in India to map and predict soil organic
carbon (SOC) using remote sensing and terrain data. The results showed that the
mean value of SOC status was 0.77% with value ranging from 0.043% to 2.87%. The
results indicated that the EBKR (Empirical Bayesian Kriging Regression) model is
unbiased and accurate. In this work, the root mean square error (RMSE) and the
coefficient of determination (R?) which were used for validation of model outputs
was found to be 0.094 and 0.936 respectively. In addition, they found that the
composite, band 6 (vegetation red edge) of sentinel 2, slope and elevation gives the
best prediction for SOC.

This was supported by Suleymanov et al. (2021) who estimated and mapped the
spatial distribution of organic carbon using remote sensing. In this work, they used

the Sentinel-2A satellite data and the linear regression method. The results show
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that the coefficient of determination (R?), RMSE, and the RPD was found to be 0.58,
0.56, and 1.61 respectively. The linear regression model performance for SOC
prediction was found to be satisfactory. This was supported by various studies using
Sentinel 2 (e.g. a study by Vaudour et al. 2019 in France with the RPD of 1.51 and a
study by Castaldi et al. (2019) in Germany, Belgium, and Luxembourg in evaluating
the capability of the Sentinel 2 data for SOC prediction based on PLSR and RF
models. The ratio of performance to deviation (RPD) was higher than 2 in
Luxembourg (2.6) and German (2.2) site, while it was 1.1 in the Belgian area.
According to Castaldi et al. (2019) the prediction accuracy obtained by Sentinel 2
data is generally slightly lower than that retrieved by airborne hyperspectral data.
According to Shen et al. (2015) the PLSR model achieves better accuracy within the

laboratory spectral data than in the field data.

Nabiollah et al. (2019) conducted a study in Iran in assessing SOC under land-use
change using random forest models. In this study, spectral data was derived from
Landsat imagery. In their findings, Nabiollah et al. (2019) found that the accuracy
was good with RMSE of 3.53 and coefficient of determination of 0.67.

4.3.1.3 The spectral bands to predict soil organic carbon

Wang et al. (2010) reported 440, 560, 625, 740, and 1336 nm as the principal spectral
bands to predict SOC. Nocita et al. (2014) suggested that the spectral region
between 580 and 680 nm was sufficient to predict SOC. Bangelesa et al. (2020)
found that that important wavelengths at around 2000-2200 and 1400-1500 nm are
key to predict SOC and The best model results were obtained with transformed
spectral data, with the key wavelengths to predict SOC values mostly localised

around the visible range (400-700 nm).

4.3.1.4 The limitations of remote sensing techniques in soil organic carbon

assessment

The main drawbacks of remote sensing techniques include low signal to noise ratio
due to a short integration time over target area and the atmospheric absorptions
interfering with the spectral measurements. Furthermore, mixed pixels contains
more than bare soil surface and there is a need for geometric and atmospheric
corrections (Minu et al, 2017). Remote sensing techniques are mainly affected by

external factors such as moisture, surface roughness, vegetation cover, structure,
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and change in atmospheric conditions. Soil moisture content tends to influence the
prediction accuracy of different sensors. This is because as soil moisture increases,
the reflectance of soil decreases. This actively demonstrates that soil moisture is
inversely proportional to the reflectance. For instance, if there is high amount of
water in the soil, the reflectance will go down. However, drier soil such as sandy
textured soils reflects more than wet soils .The surface roughness is also
considered as one of the main factors that influence the prediction accuracy. For
instance, the smaller local surface roughness, the greater the spectral reflectance
(Ben-Dor, 2002; Guerschman et al., 2009).

4.3.1.5 Human and environmental parameters related to soil organic carbon

depletion.

The natural factors (i.e., slope, rainfall and soil type) and human factors ( i.e., tillage
practices) leads to the development and initiation of soil degradation forms and
results in decline in SOC status (Phinzi et al, 2020 ; Mohammed et al,, 2020). This
means that the upper portions of the topsoil which composed of high concentration
of organic materials can be easily removed and results in decline in SOC status.
Furthermore, low areas have high SOC status due to high concentration of clay
content as compared to high areas with low clay content and high erosion rates. The
above mentioned natural factors can limit the soil ability to provide essential
nutrients that play a crucial role in plant productivity and growth. These natural
factors tend to vary with location and farm management. Furthermore, soil organic
carbon depletion can result in land abandonment and high economic costs for soil
reclamation and rehabilitation (Phinzi et al., 2020; Mohammed et al., 2020).

4.3.2 Work not done on the problem statement.

In the available literature, many researchers have used remote sensing in monitoring
soil degradation in different regions that differ with climate, soil, and land use
management. It is used as an alternative method to the conventional laboratory
methods due to its advantages. Despite various studies conducted for assessing
SOC status with the use of remote sensing techniques. There is little work done that
utilizes remote sensing and models for assessing soil degradation forms on South
African soils and particularly in Limpopo. Most of the studies have focused on the

main factors that influence soil degradation rather than developing models that will
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assist in soil health monitoring and land use management studies. However, the
performance of the models varies with the location or study area and the feature
being observed. The objective of this study is to determine SOC status with

acceptable accuracy from remote sensing.

4.4 RESEARCH METHODOLOGY
4.4.1 Description of the study area

The study was conducted in Syferkuil, experimental farm of the University of
Limpopo (23°51'0" S and 29°42'0" E) with an elevation of 1.325 meters (Figure 4.1).
The farm is about 1.650 ha in size and 13 km from the main campus of the
University. The research site on which this study focused on had an area of 62 ha, a
part of the farm leased to ZZ2. The study site falls under semi-arid climate
consisting of annual rainfall varying from 450 mm to 630 mm most of which is
received from November to March (Molepo et al, 2017). The soil at the farm is
identified as sandy loam texture and the dominant soil forms on the site are
Shortlands and Clovelly (Soil Classification Working Group, 1991). The portion of the
farm that was used for this study has an area of 61 ha, a part of the farm leased to
ZZ2. The research site has been cultivated since from 2011 coupled with occasional

resting.

Limpopo, South Africa.

0 100 200 km

Figure 4.1: A map of Syferkuil farm, Limpopo, South Africa.
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4.4.2 Data collection
4.4.2.1 Conventional methods
a) Field sampling

A grid sampling of 50 m by 100 m was followed to collect 98 soil samples. A shovel
was used to take soil samples from the top 5 cm of soil surface. Then samples were
placed in plastic bags and were taken to soil laboratory. Global positioning system
(GPS) was used to record the exact location of each sampled point in each grid. This

was done to be able to locate each sample point.
b) Soil organic carbon (SOC) analysis

Upon the arrival at the soil science laboratory of the university of Limpopo, the gravel
fraction was removed, and the samples were left to dry for about a week. After
drying, the soil samples were sieved using a 2 mm sieve for soil organic carbon
determination. The soil organic carbon of the soil samples was determined
conventionally in the laboratory using the Walkley-Black method (Walkley and Black,
1934). This method provides precise and accurate results for soil organic carbon
(SOC) determination. Table 4.1 below shows the classification of soil based on the
soil organic carbon levels. Low SOC level indicates lower moisture retention and
nutrient status (FAO of United Nations, 2012) whereas high level of SOC influences
soil properties which results high soil quality or fertility.

Table 4.1: Classification of soil based on the SOC (Feller and Beare, 1997)

SOC (%) SOC levels
0.00 - 0.5 Extreme low
0.5-1.0 Low

1.0-25 Moderately low
25-6.0 Moderate

>6.0 Very high

Note. SOC= Soil organic carbon

SOM is usually estimated through a measure of SOC and the different soils can be

classified based on SOM matter content (Table 4.2). It is determined by multiplying
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the value of organic carbon with 1.72 (Walkley, 1935).
The soil organic matter (SOM) equation is:
SOM=Cx1.72
Whereby: C is the soil organic carbon, expressed in percentage (%).
1.72 is the Bemmelen factor

Table 4.2: Classification of soil based on the SOM content (Feller and Beare, 1997).

SOM level (%) Description

0.00 - 0.5 Extreme low; soil is deprived of residues

0.5-1.0 Low ; soil needs more organic residues

1.0-25 Moderately low ; soil has been cropped very heavy

25-6.0 Moderate; soil is being maintained in optimal desired
range.

6.0 Soil is accumulating organic matter in high addition rate;

rich organic soil.

Particle size distribution was determined using the hydrometer method (Bouyoucos,
1962). Soil pH was first measured in deionized water (1:2 soil, water) followed by
0.07 M calcium chloride (CaCl2) using a calibrated glass electrode pH meter (Rhodes,
1982).

4.4.2.2 Remote sensing data
Multispectral imagery (sentinel 2)

In this study, the Sentinel-2 multispectral imagery was used in assessing SOC. This
imagery is able to provide excellent spatial coverage of a large area, and making it
easy to obtain soil information (Goriji et al, 2017). The multispectral image is a type
of raster data in which raster files are grid of pixels (cells) and each pixel contains a
single value (references) that provide valuable information. The multispectral

imagery is able to provide valuable information that might not be able to obtain using
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conventional methods since our visual perception is limited to some portions of EMS
(Electromagnetic spectrum).

a) Image acquisition

A multispectral satellite image of the study area was collected on 09 March 2021.
This imagery (Sentinel 2) was downloaded from the European Space Agency (ESA);
the image had more than 10 bands ranging from the visible to shortwave infrared

and with 10 m spatial resolution.
b) Image processing

Before the multispectral satellite image was used, it went through pre-processing.
Then images went through the stages of atmospheric and radiometric correction
using Quantum Geographic Information System (QGIS). This was done in order to
extract specific or valuable information. The imagery was atmospherically corrected
using QGIS.

4.4.3 Data analysis

This study used one regression model (PLSR model) to estimate the relationship or
correlation between the corresponding pixels or spectral values extracted from
multispectral satellite imagery (Sentinel 2) and conventionally determined SOC. The
coordinates of the sampling points were used in QGIS to extract spectral or
reflectance values from the image using vector point extraction. PLSR is a method
that specifies a linear relationship between a set of dependent variables, Y, and a set
of predictor variables, X (Farifteh et al, 2007). It reduces the variables, used to
predict, to a smaller set of predictors. The general idea of the PLSR is to extract the
orthogonal or latent predictor variables, accounting for as much of the variation of
the dependent variables as possible. PLSR was chosen due to its capability to
analyse large data, and it is more interpretable (Asfaw et al, 2018). It is an effective

tool for assessment of soil degradation forms (Gorji et al., 2017).

Soil organic carbon (SOC) is the dependent variable whereas the spectral or
reflectance values from multispectral images are the independent variable. The
prediction performance of this model was evaluated based on the coefficient of
determination (R?), root mean square error of prediction (RMSE) and ratio of
prediction deviation (RPD). The soil samples were divided into calibration and
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validation group. Therefore, 70% was used for training or model development and
30% for testing or model validation.

a) Calibration

Conventional laboratory measurement and their corresponding reflectance were
used for calibrating models using partial least square regression (PLSR) to verify the
results and test the goodness of the model or performance. Conventional laboratory
measurement of SOC for validation was used to test the goodness of the model or
performance. PLSR model was developed for estimation of the SOC based on the

reflectance or spectral variation.

b) Validation

The Root Mean Square Error (RMSE), coefficient of determination (R%) and relative
percentage deviation (RPD) were used to test the predictive ability or accuracy of the
model. RMSE provides the absolute average error between the predicted values and
the measured results of conventional laboratory analysis (Leone et al, 2012). The
coefficient of determination (R”) measures the proportion of the total variation
accounted for and it has the capability to test the goodness of the model (Table 4.3).
RPD refers to the ratio of standard deviation (SD) to the RMSE prediction. It was
obtained by dividing the standard deviation of analysed data by the value of RMSE
and it was used to test Prediction of ability of the model (Table 4.4). RMSE is used to
measure the difference between the values predicted and the values observed.
Chang et al. (2001) and Mouazen et al. (2010) developed a method to classify
models based on their estimation accuracy, looking at their RPD value and R* value

respectively.

Table 4.3: Prediction of goodness of the model based on the coefficient of

determination (Rz) supplied by Mouazen et al. (2010)

R Model performance
0.5t0 0.65 Poor prediction model
0.5t00.79 Good
0.80to 1.00 Excellent

Note. R” = coefficient of determination
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Table 4.4: Prediction of goodness of the model based on the relative percentage
deviation (RPD) supplied by Duran (1983)

RPD Model performance
RPD <1.0 Very poor model/ prediction
1.0 <RPD >1.4 Poor prediction model
1.4<RPD>1.8 Fair model/ Prediction
1.8<RPD>2.0 Good model
2.0<RPD>2.5 Very good model
RPD > 2.5 Excellent model

Note. RPD = relative percentage deviation;
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Figure 4.2: Flowchart of methodology used in this study
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4.5 RESULTS

4.5.1 Conventional laboratory analysis results for soil physical and chemical

properties.

Based on the results obtained there is a great spatial variation of SOC in the study
site (Table 4.5). The mean SOC and SOM were found to be 1.66% and 2.86%
respectively. The highest SOC was found to be 3.56% while the lowest to be 0.76%.
The highest SOM content was found to be 6.12 and the lowest to be 1.30. The low
SOM content will results in poor water and nutrient retention. The high SOM content
inhibits soil erosion because SOM binds soil particles together. The standard
deviation of SOC and SOM is 0.48 and 0.82 respectively. The coefficient of variation
was found to be 28.92 and 28.67 percentages for SOC and SOM respectively. The
results show that clay content range from 0.18 to 30.31, sand percentage range from
49.86 to 79.40 and silt percentage range from 0.21 to 37.86. This shows that there is
variation across the field and may possibly be as a result of human and natural

factors.

Table 4.5: Statistical description of soil information analysed (n =98) in Syferkuil

farm, Limpopo, South Africa

Soil parameter Max Min Mean Median SD CV (%)

SOC (%) 356 076 1.66 1.62  0.48 2892
SOM (%) 6.12 130 286 277 082 2867
Clay (%) 30.31 0.18 1838 1230 7.05 38.36
Sand (%) 79.40 49.86 6232 6945 6.89 11,06
Silt (%) 3786 021 2060 16.38 834 40.49
pH(KCI) 7.06 6.06 631 630 027 428
pH(H20) 749 67 671 672 031 4619

Note. SD = standard deviation; max = maximum; min = minimum; CV = coefficient of

variation.
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4.5.2 Prediction of soil organic carbon using PLSR model

The results obtained showed the poor estimation accuracy for model performance
of SOC when using multispectral satellite image (R* of 0.41, RMSE of 0.53 and; RPD
of 1.21(Table 4.6). The PLSR model performance for SOC prediction was found to be
unsatisfactory. The bands which were used in SOC prediction fall within the visible,

shortwave infrared and near-infrared regions of the electromagnetic spectrum.

Table 4.6: PLSR model performance for soil organic carbon prediction

Soil parameter R RMSE RPD Model performance

SOC 0.41 053 1.21 Not excellent

4.6 DISCUSSION
4.6.1 Soil organic carbon and soil degradation forms

The results obtained show that soil organic carbon (SOC) status was lower and
higher in some other parts in the study area. The areas of low SOC status (1.5% and
less) observed in the study area may have influenced by low elevation, slope and
agricultural land use (Phinzi et al, 2020; Mohammed et al,, 2020). Therefore, the low
SOC status may possibly be a result of frequent deep ploughing which disturb the
soils extensively. Taking into considerations that the conventional method (i.e. tillage
practice) was practiced in the portion were soil samples collected. Conventional
practices breakdown soil aggregates hence leading to depletion of SOM, thus
reducing carbon inputs into the soil. However, no tilled soils tend to store more
carbon than the one found on similar conventional soils because of the formation of
strong structure that limit soil erosion hence increases crop productivity and
development. For instance, Bayer et al. (2006) have pointed out that those soils
under no till method store more carbon due to increased dead matter accumulation
and amount of undisturbed biomass. The conventional laboratory analysis results

for soil organic carbon and soil organic matter are in Appendix 3.
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Conventional methods can also influence SOC status since it will results in soils left
exposed and the upper profile be easily removed (Phinzi and Ngetar 2017; and
Sepuru and Dube, 2018). This is why vegetation cover is considered as one of the
most important factors controlling soil erosion and can considerably decrease soil
loss, due to its ability to bind soil particles, thereby protecting the soil (Jain and Goel,
2002). The results of this study can differ with other studies possibly due to the
differences in the climatic conditions or rainfall patterns and the period at which
tillage system has been in practice. Conventional methods are currently threatened
by population growth, agriculture and increased demand for food production. This
means that when the ever growing population increases, there is higher demand for
food production to feed the human population hence limited time to practice
sustainable agriculture. This is supported by Pacione (2013), who pointed out that an
increase in the number of human population results in higher demand for food to

feed the ever-growing global population and thus accelerate land degradation.

Poor agricultural and land management practices without taking into considerations
sustainable conservation practices lead to accelerated soil erosion (Le Roux et al,
2007). This means that the upper portions of the top soil can be easily removed and
results in decline in soil organic carbon content. Another possible reason may be due
to natural factors (i.e. slope, rainfall and soil type) which lead to the development and
initiation of soil degradation forms and results in decline in soil organic carbon
status (Suleymanov et al, 2021 ; Mallik et al,, 2022). This is because at the research
site the soils are prone to erosion due to permeability or infiltration rate which
results in increased surface runoff then remove the upper top layer that is composed

of high concentration of organic materials.

The lack of knowledge and resources may also possibly result in decline in SOC
status. This is supported by Seutloali et al/ (2017) who emphasized that poor
decisions and mismanagement of soils can be able to accelerate soil degradation
forms. This will then lead to inefficient land use planning and management.
Population growth is also driving force for changes in land use management. This is
supported by Pacione. (2013), who pointed out that an increase in the number of
human population results in higher demand for food to feed the ever growing global

population and thus accelerate soil degradation forms.
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The high SOC status in some portion of study area observed can also be caused by
high concentration of clay content as compared to high areas with low clay content
and high erosion rates. This is supported by various studies by Ben-Dor, 2002 and
Guerschman et al. (2009). They found that the high concentration of clay content
plays a crucial role in plant productivity and growth. This is because high SOC is
associated with high concentration of clay content which then influences water
holding capacity, infiltration and nutrients availability. Clay textured soils are more
compacted and essential nutrients are not easily leached out during heavy rainfall.
Furthermore, high SOC can increase soil fertility and improve yields and food security
(Ben-Dor, 2002; Guerschman et al., 2009).

4.6.2 The performance of model developed from multispectral satellite image.

The performance of the model was not excellent. The result shows that
approximately half of the SOC variation could be explained by the reflectance values
as recorded in the image. The deviation of the predicted values from the PLSR
analysis was minimal as indicated by the low RMSE value. The low R*value indicates
that there are confounding factors. The confounding factors might come in the form
of noise and errors due to variations in soil surface roughness, geometric and
atmospheric conditions (Casa et al, 2013). Furthermore, the performance of models
might be because of low spectral resolution of the image as compared to
hyperspectral data, which have bands with narrow wavelengths (Qi et al,, 2020). The
results of this study are supported by Allbed and Kumar (2013) who highlighted that
multispectral data has limitations because of the coarse spatial and spectral
resolutions, which influences the quality and quantity of the information they provide.
This may be due to low swath width when using multispectral imagery which does
not permits large area coverage and frequent mapping as compared to Land sat
imagery (Odindi et al, 2015). However, the performance of the models varies with
the study site and the regression techniques used (Gorji et al, 2017; Shahabi et al,
2021).

56



4.7 CONCLUSION AND RECOMMENDATIONS

This study focused on the use of remote sensing techniques in assessing soil
organic carbon status. The extracted reflectance values from Sentinel 2 were used
together with results of conventional laboratory analysis results for prediction
performance of PLSR models. In this study a multispectral satellite image was used
and it did not give satisfactory results. Despite that the performance of the model
was unsatisfactory, remote sensing techniques are considered as efficient tools to
monitor and detect SOC unlike in the old days, when conventionally laboratory
methods were the only means of assessing SOC status even though it produced low
prediction accuracy. Thus, it is recommended that an image with better spectral
resolution and narrower bands (hyperspectral) be investigated to see if there is an
improvement in the model performance. This study can be helpful for land use
management and planning and increases awareness on the importance of managing

and restoring soil quality to minimise the risk of soil degradation forms.
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CHAPTER FIVE
SUMMARY AND RECOMMENDATIONS

The study revealed the potential of using remote sensing as an alternative method to
the conventional methods in assessing soil degradation forms. PLSR models
developed using spectral reflectance extracted from Sentinel 2 imagery and the
conventional laboratory results (i.e., soil organic carbon and soil salinity analysis) did
not give satisfactory results in chapter two and four. Based on the results, this might
be due to noise and errors due to variations in soil surface roughness, geometric and
atmospheric effects. Image noise is any unwanted disturbance in image data that is
due to limitations in the sensing, signal digitization, or data recording process. In
addition, the performance of PLSR models might be influenced by the spatial and
spectral resolution of the image. This is because the multispectral imagery used in
this study has low spectral and spatial resolution as compared to higher spatial
resolution imagery and narrow bands (hyperspectral satellite image). The satellites
imagery with relatively higher spatial and spectral resolution allows the classification
technique to detect the smaller rill erosion features which were omitted from low
spatial resolution imagery (Qi et al, 2017). In chapter three, the results were not
satisfactory from multispectral satellite image [Worldview 2 satellite image] using
digital image processing called supervised image classification. Despite low
prediction accuracy, the potential of remote sensing techniques are evident. Remote
sensing has the potential to serve as an alternative tool in monitoring and identifying
soils degraded by rill erosion and could reduce the field based work.

Based on the results obtained and with the current demand for valuable or precise
up to date soil degradation forms, remote sensing is a crucial or effective tool. It can
be utilized with the upcoming studies and it has the potential to identify and monitor
soil degradation form. Thus, it is recommended that an image with a better spatial
and spectral resolution (i.e. hyperspectral remote sensing data) be investigated to
see if there is improvement in the model performance. This is because in remote
sensing application there is much room for improvement, and can be valuable
particularly in data scarce environment like Limpopo. Lastly, it is also recommended
that the entire area should be put under careful monitoring, and emphasis should be

given to sustainable land management measures.
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APPENDICES

APPENDIX 1: Showing Error Matrix Code, Reference, Classified and Pixel Sum values

Error Matrix Code | Reference Classified | Pixel Sum
4 1 1 1
5 1 2 1
4 2 1 9
7 2 2 9

APPENDIX 2: Showing Error matrix (pixel count values)

> ERROR MATRIX (pixel count)

> Reference
V_Classified 0 2 Total
0 0 0 0
1 0 9 10
2 0 9 10
Total 0 18 20

APPENDIX 3: Conventional laboratory analysis results for soil organic

soil organic matter.

Soil Organic | Organic
samples | C% matter %
A1l 1.87 322
A2 1.57 270
A3 229 394
A4 1.25 214
A5 1.56 2.68
B1 1.26 216
B2 225 388
B3 1.95 3.36
B4 1.64 282
B5 1.23 212
C1 247 425
Cc2 1.63 2.80
C3 1.27 219
C4 2.23 3.83
C5 1.65 2.85
D1 1.51 2.60
D2 1.61 276
D3 1.50 2.58
D4 217 373

carbon and



Soil Organic | Organic
samples | C% matter %
D5 1.59 274
F1 1.63 2.80
F2 2.00 344
F3 1.52 2.62
F4 1.09 1.88
F5 1.63 2.80
G1 1.83 3.15
G2 1.34 2.31
G3 1.62 2.78
G4 1.51 2.60
Gh 1.44 247
H1 1.69 2.91
H2 1.87 3.22
H3 1.95 3.36
H4 1.62 278
H5 1.82 313
11 210 3.61
12 1.55 2.66
13 1.40 2.41
14 2.31 3.98
15 2.59 445
J1 2358 4.04
J2 1.75 3.01
J3 1.50 2.58
K1 1.14 1.96
k2 1.99 342
K3 2.31 3.98
L1 2.39 410
12 1.58 272
L3 1.51 2.60
M1 1.63 2.80
M2 1.53 2.64
M3 2.25 3.88
N1 1.16 2.00
N2 1.51 2.60
N3 1.75 3.01
01 0.91 1.57
02 1.32 227
03 1.77 3.05
P1 0.98 1.69
P2 1.69 2.91
P3 1.71 295
P4 1.02 1.75
01 1.57 270
Q2 1.51 2.60
03 1.93 3.32
04 1.79 3.07
R1 1.03 1.77
R2 1.39 2.39
R3 1.38 2.37
R4 2.86 493
S1 1.51 2.60
S2 1.65 2.85
S3 1.99 342
S4 1.39 2.39
T1 1.27 219
T2 3.56 6.12
T3 219 377




Soil Organic | Organic
samples | C% matter %
T4 1.88 3.24
U1 1.27 219
u2 1.17 2.02
us3 0.99 1.71
U4 1.15 1.98
J-1 0.92 1.59
J-2 1.15 1.98
K-1 223 3.83
K-2 1.73 297
L-1 0.90 1.55
-2 1.44 247
M-1 2.35 404
M-2 2.54 437
N-1 2.06 3.55
N-2 1.94 334
0-1 0.76 1.30
0-2 1.59 274
F-1 0.96 1.65
G-1 1.88 3.24
H-1 0.91 1.57
I-1 1.46 252
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