
Error-correcting codes from 2-representations of the

unitary group U(3,3)

by

TAPIWANASHE GIFT NYIKADZINO

Dissertation

Submitted in fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

MATHEMATICS

in the

FACULTY OF SCIENCE AND AGRICULTURE

School of Mathematics and Computer Sciences

at the

UNIVERSITY OF LIMPOPO

Supervisor: Dr. A. Saeidi

Co-Supervisor: Prof. T.T. Seretlo

2024.

Declaration

I declare that the dissertion hereby submitted to the University of Limpopo, for the degree

of Master of Science in mathematics has not previously been submitted by me for a degree

at this or any other university; that it is my work in design and in execution, and that all

material contained herein has duly acknowledged.

Signed: Date: August 21, 2023

i

Acknowledgments

This good work was accomplished with the contribution of many people in different ways.

To all, I appreciate their assistance and support in times of hardship and distress. I am

most grateful to my supervisors Dr A. Saeidi and Prof T.T. Seretlo, for their guidance and

patience for this work to be completed successfully and the effort they put for me to attend

the 7th Biennial International Group Theory Conference in which I met the experts and

learnt a lot of new things.

I acknowledge the support I got from my family, especially my mother Monica Mokoting

and my father Thomas Mokoting for their endless support throughout my studies and life

as a whole, not forgetting my special friend Tebogo Ramphele for the support she gave

me throughout my postgraduate studies since 2018. My classmates David Ngoako and Jan

Kekana for the academic support I got from them, I did not know that I can accomplish this

much until I had you to run to whenever I got lost. My academic brother Thabo Ramalatso

I appreciate you for always being by my side throughout this journey. Last but not least,

special thanks to ETDP SETA for the financial support and University of Limpopo and

its staff more special School of Mathematical and Computer Science staff for giving me the

chance to pursue my dream with their institution.

The man above all of us, Lord We do not count you among men, you are above them all and

thank you lord for the endless knowledge and wisdom. Glory, honor and dominion be unto

you forever.

ii

Abstract

In this dissertation, we use modular representation theory to find error-correcting codes ad-

mitting finite simple group as a primitive permutation group and show that every binary

linear code admitting group G as a primitive permutation group is a submodule of the per-

mutation module of the primitive action of the group. If the Schur multiplier of the group G

is trivial and P is a permutation module of degree n, then every binary linear code of length

n invariant under G is a submodule of P . As an illustrative example, we select the finite

simple group G = U(3, 3) which is referred to by other authors as PSU(3, 3) and identify

the complete set of linear codes derived from its 2-representations. We will find the maxi-

mal subgroups of the simple group G = U(3, 3). After finding the maximal subgroups we

find the permutation representation, each permutation representation has a corresponding

permutation module which we will find. Our computations are based on MAGMA.

We then classify these codes and determine their properties such as the minimum distance,

minimum weight and the support and other properties. Then we will discuss whether a

certain code has good error-correcting or error-detecting abilities based on their properties.

In addition, we use the supports of the codes to construct certain designs that remain in-

variant under the action of U(3, 3) and establish connections between these designs and the

corresponding linear codes.

iii

Symbols and abbreviations

N Set of natural numbers

Z Set of Integers

R Set of real numbers

Ω Finite set

V Vector space

F Finite field

F∗ F− {0}

Fq Galois’ field of q elements

C Linear code

H ≤ G H is a subgroup of G

|Ω| cardinality/order of a set

G:H Split extension of G by H

G.H General extension

G,H,K Groups

1G Identity element of group G

Id Identity transformation.

orb(x) Orbit of x

Gx Stabilizer of x

Z(G) Centre of a group G

CG(g) Centralizer of g

Cl(a) Equivalence class

iv

NG(H) Normalizer of H

⟨X⟩ Group generated by set X

ker(τ) Kernel of τ

im(τ) Image of τ

Aut(C) Automorphism group of a code C

[n, k, d]q q- ary code of length n, dimension k and minimum distance d

v

Contents

1 Basic concepts 4

1.1 Groups . 4

1.2 Group action and permutation groups . 7

1.3 Group extension and Schur multiplier . 10

1.4 Vector space and modules . 11

2 Representation theory 13

2.1 Permutation representations . 13

2.2 FG-modules . 15

2.3 Ordinary representation theory . 18

2.4 Modular representation theory . 19

3 Codes and designs 22

3.1 Codes . 22

3.2 Binary linear codes . 23

3.3 Decoding Schemes . 28

3.4 Designs . 30

3.4.1 The construction of t-designs from linear codes 32

4 Constructions of combinatorial structures 35

4.1 FG-modules and G-invariant codes . 35

4.1.1 Codes from quotient modules . 35

vi

4.1.2 Codes from maximal submodules . 36

4.1.3 Permutation codes . 37

4.2 Construction of G-invariant codes. 38

5 Codes invariant under U(3,3) 42

5.1 The structure of the unitary group U(3,3) 42

5.2 Permutation representations and permutation modules of U(3,3) 44

5.2.1 Representation of degree 28 . 44

5.2.2 Representation of degree 36 . 48

5.2.3 Representations of degree 63 . 57

vii

Introduction

Coding theory is a vital study that tries to reduce data loss caused by errors occurred in

transmission caused by noise, interference, or other forces. Coding theory is a field of mathe-

matics concerned with transmitting data across noisy channels and recovering the messages.

Messages are transferred in form of binary bits [37]. We have to transmit these bits along a

noisy channel in which errors occur at random, but at a predictable overall rate. The first

step in the transmission across a communication channel is the process of encoding the in-

formation to be transmitted using a suitable code. The end user can receive the transmitted

information after it has been decoded using the decoding capabilities of the code used. The

noise in the channel can distort the message and hence the user can receive a wrong message,

then the necessity of error-correcting codes begins.

Single error-correcting and double error-detecting codes were introduced by R. Hamming in

1950 [13]. R. Hamming introduced some codes, the concepts of some windows, numbers,

and distance. These are known as Hamming codes, Hamming windows, Hamming numbers

and Hamming distances. Hamming codes are binary linear codes that were developed by R.

Hamming. They are easy to encode and decode and are [n, k, d] codes, where n is the length,

k the dimension and d the minimum distance. Hamming codes are useful in detecting and

correcting errors. We can also use codes to construct designs [13].

Codes acquired from 2-representations of groups of finite order have been given particular

attention recently.2-representations play a crucial role in constructing codes, especially in the

context of coding theory in mathematics and computer science. 2-representations are impor-

1

tant in constructing codes because they provide a more advanced and flexible framework for

capturing algebraic structures. This, in turn, allows for the construction of error-correcting

codes with enhanced capabilities and applicability in various domains, including quantum

computing, topological codes, and non-abelian group-based codes.

The link between code and designs open on to the construction of support designs. The

knowledge of codes and the existence of designs in codes is useful for decoding purposes [39].

The coding theory we will discuss is of great mathematical interest and relies largely on

ideas from group theory. The subject of accuracy is introduced by detection and correction

of errors that occur during transmission.

In [19], [14], [33] and [26] similar research was done but in different groups, where it was

shown that weight distributions of codes can be used to find designs and other structures.

For each of the primitive representations. A permutation group was contructed to form the

orbits of the stabilizer of a point. Further investigations of alternatives ways to constructing

those codes. Some of these methods will be used in this dissertation but on different group,

and see the results they yield.

It is well-known that if the code admits a transitive group as a permutation group, then

the code has good error-correcting properties [26, 27]. In this case we use the unitary group

which is a transitive permutation group. In this dissertation, we use a method based on the

modular representation theory to construct codes from finite groups. The codes we construct

are the submodules of some permutation modules of the group. The method is based on the

results of [28] and enables us to prove that in some cases (for example, if the group is simple

and its Schur multiplier is trivial), we can find the of all binary linear codes admitting the

chosen group as a primitive permutation automorphism group. We have chosen the unitary

group U(3, 3), a simple group with trivial Schur multiplier. This group is of order 6048,

having 4 maximal subgroups up to conjugation [15]. However we can generalize the results

of this dissertation to any simple group with trivial Schur multiplier.

Chapter 1 and 2 of this study gives brief of basic results of group theory and representation

theory, mostly studied at undergraduate level but are need for later chapters. In Chapter 3

2

we define and give properties of codes and designs, we talked about properties such as even

and doubly even. This will help us on results when we classify the codes from our selected

group. Chapter describes methods that can be used to construct those structure there are

several methods that can be used and in this dissertation we chose one method to construct

codes and then find designs from supports of those codes other method such as Key-Moori

method 1 and Key-Moori method 2 (see [36]) can be used to construct designs and find codes

from those designs.

3

Chapter 1

Basic concepts

In this section, we delve into fundamental principles of group theory which form the bedrock

of our exploration into representation theory and coding theory.Group theory provides the

essential language and framework for understanding the complex relationships between per-

mutation representations and error-correcting codes. Both representation theory and coding

theory rely on basic knowledge of groups, such as group actions and maximal subgroups. So

it is important to know basics of group theory.

1.1 Groups

Definition 1.1.1 A group (G, ∗) is a set G together with the binary operation ∗ satisfying

the following conditions for g, h, k ∈ G.

i For all g, h ∈ G, g ∗ h ∈ G.

ii There exists 1 ∈ G (called the identity or neutral element[34]) such that g∗1 = 1∗g = g

for all g ∈ G.

iii For every g ∈ G there exist g−1 ∈ G (called the inverse of g) such that g−1 ∗ g =

g ∗ g−1 = 1.

iv For all g, h, k ∈ G, we have g ∗ (h ∗ k) = (g ∗ h) ∗ k (associativity).

4

The order of a group H symbolized by |H| is defined to be the number of elements in H. An

element h ∈ H is said to be of order n if n is the smallest positive integer such that hn = 1.

A finite group of order q where q = pn, with p being prime is called a p-group.

Definition 1.1.2 A group G is called an abelian group if gh = hg for all g, h ∈ G.

Definition 1.1.3 Let H be a set. Then H is called a subgroup of G if H ⊆ G and H is

itself a group with the same operation defined in G.

Lemma 1.1.1 (Subset lemma) A subset H of G is a subgroup of G if and only if

i. H ̸= ∅,

ii. for all a, b ∈ H,we have ab−1 ∈ H.

Definition 1.1.4 The centre of a group G is a subset

Z(G) = {g ∈ G|gx = xg for all x ∈ G}.

Remark 1.1.2 Since 1G ∈ Z(G), Z(G) ̸= ∅, now let a, b ∈ Z(G) we have b−1 ∈ Z(G) and

ab−1x = axb−1 = xab−1, so we have ab−1 ∈ Z(G). Therefore Z(G) is a subgroup of G.

A set X generates G if G = ⟨X⟩, i.e. if every element of G can be written as a finite

combination from X and their inverses.

Definition 1.1.5 A group G is cyclic if it is generated by a single element, i.e. G = ⟨g⟩,

for some g ∈ G.

Definition 1.1.6 N ≤ G is a normal subgroup G if gNg−1 = N ∀ g ∈ G and it is denoted

by N ⊴G.

Definition 1.1.7 A group G is said to be simple if it has no non-trivial normal subgroups.

Definition 1.1.8 Let G be a group. The commutator of two elements a, b ∈ G is the element

[a, b] = a−1b−1ab. The derived subgroup G′ is the subgroup of G generated by all commutators

i.e G′ = ⟨{[a, b] : a, b ∈ G}⟩ [6].

5

If G is abelian, then [a, b] = a−1b−1ab = a−1ab−1b = 1G.1G = 1G for all a, b ∈ G. It follows

that if G is abelian then G′ = {1G}.

Definition 1.1.9 A group G is called perfect if G = G′.

Definition 1.1.10 The centralizer of an element g ∈ G denoted by CG(g) is

CG(g) = {a ∈ G|ag = ga}.

The centralizer of any element g ∈ G defines a subgroup G [3].

Definition 1.1.11 A normalizer of a subgroup H of G is defined as

NG(H) = {g ∈ G|gHg−1 = H}.

This defines a subgroup of G containing H. Moreover, H is a normal subgroup of NG(H)

[3].

Definition 1.1.12 Let G be a group, then a, b ∈ G are said to be conjugate in G if there

exists g ∈ G such that gag−1 = b.

Definition 1.1.13 The equivalence class that contains the element a ∈ G denoted by ClG(a)

or Ca is defined by ClG(a) = {gag−1|g ∈ G} and is called the conjugacy class of G containing

G.

It can be easily seen that conjugacy is an equivalence relation and therefore partitions G into

equivalence classes [10]. If we let g be representative of conjugacy class Cg of a finite group

G, then using the following theorem we can see the relationship of conjugacy class and the

centralizer of g.

Definition 1.1.14 Let N be a normal subgroup of G, a quotient group of G is defined as

G/N = {Ng : g ∈ G}.

Theorem 1.1.3 Let G be a finite group. Then the function ϕ : G/CG(g) → Cg given by

ϕ(xCG(g)) = xgx−1 is bijective and so |Cg| = |G : CG(g)| = |G|
|CG(g)| .

6

Proof: See [39, Theorem 2.2.4]. □

Definition 1.1.15 A function ϕ : G → H is a homomorphism if ϕ(ab) = ϕ(a)ϕ(b). The

kernel of ϕ denoted by ker(ϕ) is a normal subgroup of G defined by ker(ϕ) = {g ∈ G|ϕ(g) =

1H} where 1H is the identity in H and the image of ϕ is defined by im(ϕ) = {ϕ(g|g ∈ G)}

and is a subgroup of H.

Definition 1.1.16 A homomorphism f defined in Definition 1.1.15 is called an isomor-

phism if f is one-to-one and onto. We say that groups G and H are isomorphic if there

is an isomorphism f : G → H. If G = H then the defined homomorphism is called an

automorphism.

1.2 Group action and permutation groups

Let Ω be a set, a permutation of Ω is a function f : Ω → Ω which is one-to-one and onto.

A permutation group defined on Ω is a set of permutations of Ω that forms a group under

composition of functions.

Definition 1.2.1 Let G define a group and Ω be a finite set. A group action G on Ω is a

mapping G × Ω → Ω relating α ∈ Ω and g ∈ G an element gα ∈ Ω with the condition that

∀α ∈ Ω and ∀g, h ∈ G, α1 = α, (hg)α = h(gα).

Definition 1.2.2 Given an action of G on a set Ω, the orbit of α ∈ Ω denoted by Orb(α) =

{gα|∀g ∈ G} and is a subset of Ω. A stabilizer Gα of α is a set Gα = {g ∈ G|gα = α}, i.e

the set of elements of G which leave α fixed and is a subset of G.

Example 1.2.1 For any two elements g, x ∈ G let g.x = gxg−1. This defines a group action

of G on G. The orbits of this action are conjugacy classes of G, and the stabilizer of a given

element is the centralizer of the element. Similarly, we can define a group action of G on

the set of all subsets of G, by g.S = gSg−1 or on the set of the conjugacy subgroups of G.

7

Definition 1.2.3 The symmetric group on a set Ω is the group SΩ of all permutation of set

Ω. A group AΩ is an alternating subgroup of SΩ containing all the even permutations in SΩ.

A permutation group G on a set Ω with |Ω| = n is a subgroup of symmetric group Sn,

and G is said to be transitive on Ω if, for all α, β ∈ Ω, there exists an element g ∈

G such that the image gα of α under g is equal to β [33]. In a natural way, an action

defines a permutation representation of G on set Ω which is homomorphism from G into Sn.

Conversely a permutation representation naturally defines an action of G on Ω.

Definition 1.2.4 A group action on a set Ω is transitive if the set is non-empty and there

is exactly one orbit.

Similarly a group action is said to be transitive on Ω if for all α, β ∈ Ω, there exist g ∈ G

such that gα = β.

Definition 1.2.5 Suppose G acts on a finite set Ω. Let |Ω| = n and k be a positive in-

teger. G is said to be k-transitive on Ω if every two ordered k-tuples, (α1, α2, α3...αk)

and (β1, β2, β3, ..βk) with αi ̸= αj for all i ̸= j there exist g ∈ G such that αg
i = βi for

i = 1, 2, 3, ..., k.

The symmetric group Sn acts n-transitively on Ω = {1, 2, 3, . . . , n}.

Definition 1.2.6 The general linear group of degree n over a field F denoted by GL(n,F)

is the set of n× n invertible matrices with entries from F, with matrix multiplication as the

group operation.

Definition 1.2.7 Suppose V is a finite vector space over a finite field F. The set of all

invertible transformations from V to V is denoted by GL(V) and has the group structure

under composition of transformation with the identity element being identity transformation

Id(x) = x for all x ∈ X.

More generally both GL(V) and GL(n,F) are both abstract automorphism groups, where

in GL(V) the elements are not necessarily written as matrices, but we have that, if V is a

vector over F then GL(V) ≡ GL(n,F).

8

Theorem 1.2.1 A transitive group action of G on a subgroup H is equivalent to the action

of G on a set of cosets G/H and is a quotient group if H ◁G.

Proof: See [14, Theorem 2.6]. □

Definition 1.2.8 The automorphism group Aut(G) of a group G, is the group of all auto-

morphisms of G.

Definition 1.2.9 A permutation group G is said to be primitive on Ω if G is transitive on

Ω and the only G-invariant partitions of Ω are the trivial partitions. Also G is imprimitive

on Ω if G preserves some non-trivial partition on Ω.

Theorem 1.2.2 (Characterization of primitive permutation groups) Suppose G is a transi-

tive permutation group on set Ω, then G is primitive if and only if for all ω ∈ Ω the stabilizer

Gω is a maximal subgroup.

Proof: See [7, Theorem 1.6.5]. □

Theorem 1.2.3 (Classification of finite simple groups) Every finite simple group is

isomorphic to one of the following groups:

i A group of prime order.

ii An alternating group of degree n ≥ 5.

iii One of the groups of Lie type.

iv One of the 26 sporadic groups.

Proof: See [40, Theorem 4.6]. □

The groups of prime order are the abelian simple groups. Finite groups of Lie type are the

finite analogues of the semisimple lie groups. Each group in the first three classes of groups

is a member of one or more infinite families of finite simple groups. There are however 26

finite simple groups which are not members of any finite family and they are called sporadic

groups.

9

1.3 Group extension and Schur multiplier

A sequence . . .
αn−2→ Gn−1

αn−1→ Gn
αn→ Gn+1

αn+1→ . . . of groups Gi with homomorphisms αi is

said to be an exact sequence at Gn if image(αn−1) = ker(αn). The sequence is said to be

exact if it is exact at each Gn.

Definition 1.3.1 A finite sequence of the type I → H
α→ G

β→ K → I with I meaning

the trivial group is called the short exact sequence. Thus to say that the above sequence is

exact is to say α is injective, β is onto and im(α) = ker(β). In particular α(H) is a normal

subgroup of G such that β induce an isomorphism from G/α(H) to K [29].

Definition 1.3.2 The short exact sequence in Definition 1.3.1 is called the extension of H

by K or we say that G is an extension of H by K.

Definition 1.3.3 A set Ext(H, k) is a set consisting of all isomorphism classes of groups

E that are extensions of H by K.

Definition 1.3.4 An extension E of H by K given by E ≡ I → H
α→ G

β→ K → I is called

a central extension if αH ≤ Z(G).

In Definition 1.3.5 we define the group [R,F] by

[R,F] = ⟨{[r, x] = rxr−1x−1|r ∈ R, x ∈ F}⟩.

Definition 1.3.5 Let 1 → R
α→ F

β→ K → 1 be a free presentation of a group K then

([R,F] ∩R)/(R,F) is called the Schur multiplier of K and it is denoted by M(K). [29]

Definition 1.3.6 A group is said to be Schur-trivial or a group with trivial Schur multiplier

if it satisfies the following equivalent conditions:

i. The Schur multiplier is the trivial group.

ii. The homomorphism from its exterior square to its derived subgroup defined by the

commutator map is an isomorphism of groups to the derived subgroup.

iii. It is isomorphic to its own Schur covering group with the covering map being the identity

map.

10

1.4 Vector space and modules

Definition 1.4.1 A ring R is an abelian group under addition that also has another opera-

tion (multiplication) satisfying the following conditions:

i. a · b ∈ R for all a, b ∈ R.

ii. a · (b · c) = (a · b) · c for all a, b, c ∈ R.

iii. a · (b+ c) = (a · b) + (a · c).

Definition 1.4.2 A field is a ring F having the following conditions:

i. x · y = y · x. for all y, x ∈ F

ii. There is an element 1 ∈ F, 1 ̸= 0 and x · 1 = x.

iii. If x ̸= 0 then there exist x−1 such that x · x−1 = 1.

In this dissertation we use Fq to denote the field with q elements {0, 1, 2, . . . , q − 1}.

Definition 1.4.3 Let R be an arbitrary ring with unity, then:

1. A left R-module is an abelian group M together with scalar multiplication R×M →M

(simply written as mr = rm) such that for all r, s ∈ R and m,n ∈M

i. r(m+ n) = rm+ rn,

ii. (r + s)m = rm+ sm,

iii. r(sm) = (rs)m.

If R has a unity we also require 1m = m for all m ∈M .

2. A right R-module i an abelian group M together with scalar multiplication M×R →M

such that

i. (m+ n)r = mr + nr,

11

ii. m(r + s) = mr +ms,

iii. m(rs) = (mr)s.

Also if R has unity we also require m1 = m for all m ∈M .

If the ring R is commutative, then left R-modules and right R-module have the same struc-

ture and we call it R-modules (see[18]).

Definition 1.4.4 If we let R in Definition 1.4.3 to be a field F, then an F-module V is

called a vector space over F.

The elements of a vector space V are called vectors. If a field F is of order q we denote a

vector with elements of order n space over Fq by Fn
q .

A subset S of vector space V over a field F is said to be linearly independent if given any

subset {x1, x2, x3, . . . , xn} of S, xi ̸= xj for i ̸= j

a1x1 + a2x2 + a3x3 + · · ·+ anxn = 0

implies ai = 0 for all i.

Definition 1.4.5 A subset S of a vector space V is called a basis of V if it contains lin-

early independent vectors and it generates V i.e any vector in V can be written as a linear

combination of finite elements of S. S is said to span V and is denoted Span(V).

Definition 1.4.6 If V is spanned by a finite set, then V is said to be finite dimensional,

and the dimension of V , written as dim(V), is the number of vectors in a basis for V . The

dimension of the zero vectors space {0} is defined to be zero. If V is not spanned by any

finite set, then V is said to be infinite dimensional.

12

Chapter 2

Representation theory

Representation theory is a fundamental branch of mathematics that focuses on the matrix

representation of groups. It allows us to represent abstract mathematical groups by invertible

matrices. By representing groups a matrix we gain insight onto structure, symmetry and

actions of the group. In this chapter, we brief on concepts of group representations and

explore relationship between groups and the general linear group, GL(n,F). Throughout

this chapter and all subsequent sections, it is important to note that we work with F as a

finite field, where our vector space V is finite over F.

2.1 Permutation representations

Definition 2.1.1 A matrix representation of a group G over a field F is a homomorphism

ρ : G→ GL(n,F).

Definition 2.1.2 A permutation representation of a group G is a homomorphism ϕ : G →

SG.

If G act on X, and |X| = n, then G → SX
∼= Sn → GL(V). This leads directly to the

permutation representation of G. Theorem 2.1.1 gives us a method of constructing such

representations.

13

Theorem 2.1.1 (Cayley) Every group G is isomorphic to a subgroup of SG. In particular

if |G| = n, then G is isomorphic to a subgroup of a symmetric group Sn.

Proof: For each x ∈ G, define Tx : G → G by Tx(g) = xg. Then Tx is one to one and onto;

so that Tx ∈ SG. Now if we define τ : G → SG by τ(x) = Tx, then τ is a monomorphism.

Hence G ∼= Image(τ) ≤ SG. □

Remark 2.1.2 The homomorphism τ defined in Definition 2.1.1 is called the left regular

representation of G.

Theorem 2.1.3 Let GL(n,F) denote the general linear group over a field F. If G is a finite

group of order n, then G is isomorphic to a subgroup of GL(n,F).

Proof: Let Tx be as in Cayley’s theorem (see Theorem 2.1.1). Assume thatG = {g1, g2, g3, . . . , gi}.

Let Px = (aij) denote the n× n matrix given by

aij =
{ 1F, if Tx(gi) = gj

0F, otherwise.

Then Px is a permutation matrix, that is a matrix obtained from the identity matrix by per-

muting its columns. Define π : G→ GL(n,F) by π(x) = Px. Then π is a monomorphism.□

A permutation matrix is a matrix in which every row and every column has a unique non-zero

entry and all non-zero entries are equal to 1 [35].

Example 2.1.1 Let τ : G→ GL(m,F) and ψ : G→ GL(n,F) be representations of G over

F. We say that τ is equivalent to ψ if n = m and there exists an invertible n× n matrix T

such that for all g ∈ G, τg = T−1(ψg)T .

Definition 2.1.3 A representation of G (over F) is a homomorphism G→ GL(V). Where

V is a vector space over F.

Suppose dim(V) is finite. Let (v1, v2, v3, . . . vn) be an ordered basis for V ∼= Fn, which means

GL(V) ∼= GL(n,F). This means ρ : G → GL(V) ∼= GL(n,F) gives a matrix representation.

14

Conversely, GL(n,F) ∼= GL(Fn), so matrix representations give representation on Fn. The

other way to define a representation in terms of F-linear invertible maps, is an action on by

linear maps gv = ρ(g)(v) for g ∈ G.

Definition 2.1.4 Suppose ϕ : G→ GL(n,F) is a representation of G on a vector space V =

Fn and suppose W is a subspace of V of dimension m such that ϕg(W) ⊆ W for all g ∈ G,

then the map ϕ : G→ GL(m,F) is a representation of G known as the subrepresentation.

The subspace W in the above definition is said to be G-invariant.

Definition 2.1.5 Let ψ : G → GL(n,F) be a representation of G over F. The function χ

defined by χ(g) = tr(ψ(g)) is called a character of ψ.

2.2 FG-modules

Definition 2.2.1 Let V be a vector over F and let G be a group. Then V is an FG-module

if a multiplication vg (v ∈ V and g ∈ G) is defined, satisfying the following conditions

∀u, v ∈ V, g, h ∈ G and λ ∈ F :

i. vg ∈ V .

ii. v(gh) = (vg)h.

iii. v1G = v.

iv. (λv)g = λ(vg).

v. (u+ v)g = ug + vg.

Let V be an FG-module and let B be a basis of V , for each g ∈ G let [g]B denote the matrix

of the endomorphism v → vg of v relative to basis B.

The connection between FG-modules and representations of G over F is given in the following

basic result.

15

Theorem 2.2.1 (1) If ψ : G → GL(n,F) is a representation of G over F, and V = Fn,

then V becomes an FG-module if we define the multiplication vg by

vg = v(gψ) (v ∈ V, g ∈ G).

Moreover, there is a basis B of V such that

gψ = [g]B(g ∈ G)

(2) Assume that V is an FG-module and let B be a basis of V then function

g → [g]B (g ∈ G) is a representation of G over F.

Proof: See [25, Theorem 4.12]. □

Example 2.2.1 Let V = R4

e1 =

1

0

0

0

, e2 =

0

1

0

0

, e3 =

0

0

0

1

, e4 =

0

0

1

0

Pa.e1 = e2, Pa.e2 = e1, Pa.e3 = e4,Pa.e4 = e3.

Definition 2.2.2 Let G be a subgroup of Sn. The F-module V with basis v1, v2, ..., vn such

that vig = vig for all i ∈ {1, 2, 3, . . . , n} and all g ∈ G is called permutation modules for G

over F. We call v1, v2, ..., vn natural basis of V . In particular if F = Fq is a finite field of

order q, where q is a power of prime p and G be a finite group acting primitively on a finite

set Ω. Define V = FΩ to be the vector space of F of all linear combinations of
∑
λix1, λi ∈ F

and x ∈ Ω i.e. the vector space with basis of set Ω. To define an FG-module on V it suffices

to stipulate the action of the elements of G on the basis element of V . So we can consider

the group ρ : G → GL(V) defined by ρ(g, x) ↣ xg = ρ(g)(x) g ∈ G, x ∈ V . Extending

16

linearly the induced G-action on V makes V into an FG-module known as FΩ-permutation

module.

Example 2.2.2 Let g = (12)(34) and v= a1e1 + a2e2 + a3e3 + a4e4=

a1

a2

a3

a4

g.v =

a2

a1

a4

a3

We notice that the results can be obtained by multiplying v by the matrix

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

.

Also

B =

g.e1 =

0

1

0

0

, g.e2 =

1

0

0

0

, g.e3 =

0

0

0

1

, g.e4 =

0

0

1

0

.

Theorem 2.2.2 Let F be a field and G be a finite group, then there is a bijective correspon-

dence between finitely generated FG-modules and representations of G on a finite dimensional

F-vector spaces (see [25, Summary of chapter 4].

Proof: Suppose ρ : G → GL(V) is a homomorphism, then it is clear that the action of

G on V defined by setting gv = ρ(g)(v) is linear. Conversely, if we have a linear action of

G on V , then without loss of generality we can define a homomorphism ρ : G → GL(V)

by ρ(g)(v) = gv. These processes are evidently mutually inverse, establishing the desired

correspondence. □

17

Definition 2.2.3 Let V be an FG-module, a subspace U of V which is also an FG-module

is called an FG-submodule of V .

Definition 2.2.4 A non-empty FG-module V is said to be simple or irreducible if it has

only the trivial submodules, and it is called reducible if otherwise.

A reducible G module is either completely reducible or indecomposable based on whether V

can or cannot be expressed as direct sum of its simple submodules.

Definition 2.2.5 A module M is said to be completely reducible or semisimple if it can be

written as a direct sum of irreducible submodules.

Remark 2.2.3 Every permutation module has a corresponding representation. We notice

that there is a one-to-one correspondence between representations of G and FG-modules. A

permutation representation is irreducible if and only if it corresponds with an irreducible

FG-module [25].

Proof: Given a representation ρ : G → GL(V), we define module action FG on V by∑
gv =

∑
ρ(g)v.

Conversely: Given an FG-module V , the linear map rho(g) : v → gv is an automorphism of

V and ρ(g1)ρ(g2) = ρ(g1g2) so ρ : G→ GL(V) is a representation.

2.3 Ordinary representation theory

In ordinary representation theory the classification of representations is based on description

of irreducible FG-modules of a given groups. Maschke’s theorem gives the conditions under

which FG-module is semisimple.

Theorem 2.3.1 (Maschke’s theorem) Let G be a finite group and F a field whose char-

acteristics is known to be 0 or a prime p such that p ∤ |G|. Then every FG-module V is

completely reducible i.e. if V is an FG-module and U any submodule of V , then there ex-

ists a submodule W of V such that V = U ⊕ W . In particular, the group algebra FG is

semisimple. □

18

Proof: See [41, Theorem 1.2.1].

2.4 Modular representation theory

Unfortunately Maschke’s theorem fails if the characteristic divides |G|. Therefore in modular

representation theory we may face indecomposable modules which are not irreducible. The

problem arises because not all finite dimensional FG-module are completely irreducible. Let

G be a finite group of order n, F a field with characteristics p > 0 where p is prime and

V be an F vector space. Then we define a linear G representation of V over a field F as a

homomorphism ρ : G → GL(V)[42]. The representation ρ is called modular if p | |G|. The

vector space V becomes a G-module if we define gv = ρ(g)(v) for g ∈ G and v ∈ V .

Definition 2.4.1 Let V ̸= ∅ be a permutation module. V is said to be simple or irreducible

if it has only trivial submodules and is reducible otherwise. It is decomposable if it can be

expressed as the direct sum of two non-trivial submodules and indecomposable otherwise.

The difference distinctness ordinary and modular representation theory is highlighted in

Theorem 2.4.1.

Theorem 2.4.1 Every finitely generated FG-module over group algebra FG is semisimple

if and only if the char(F) ∤ |G|.

Proof: See [3, Proposition 3.1]. □

It follows that if the characteristic p of the field F divides |G|, then Maschke’s theorem does

not apply.

Theorem 2.4.2 (Krull-Schmidt Theorem) If the module M can be written as

M = W1 ⊕W2 ⊕W3 ⊕ ...⊕Wl

and M = U1 ⊕ U2 ⊕ U3 ⊕ ... ⊕ Un where Wi and Uj are indecomposable, then l = n and

Wi
∼= Uj.

Proof: See [32, Theorem 5]. □

19

Theorem 2.4.3 If G is a p-group and F is a field of characteristic p. Then FG is indecom-

posable.

Proof: See [38, Lemma 3.3]. □

Theorem 2.4.4 If G is a finite group and F is a field whose characteristic does not divide

|G|, then every finitely generated FG-module is completely reducible (equivalently, every F-

representation of G of finite degree completely reducible).

Proof: See [21, (Chapter 18.1), Corollary 2]. □

Theorem 2.4.5 Let G be a group and |G| = q.pα such that gcd(p, q) = 1. Let F be a field

of characteristic p. Then G possesses finitely generated FG-module which are completely

reducible.

Proof: See [38, Theorem 3.4]. □

As Theorem 2.4.5 should make it clear, it is very much not a reasonable strategy to at-

tempt to get information about a modular representation just by trying to decompose it

into simple modules. This is a useful technique for determining the behavior of a semisimple

representation, as they decompose into a unique sum of simple modules.

Definition 2.4.2 Let G be a group and p any prime. Any element of g ∈ G can be written

as g = st so that p does not divide the order of s and the order of t is a power of p. Then s

is called p-regular and t is t-singular.

Theorem 2.4.6 (Brauer-Nesbitt) Let G be a group of order g = paq, p a prime and

(q, p) = 1. An irreducible representation Zi ≡ 0 mod pa remains irreducible as a modular

representation .

Proof: See [12, Theorem 1]. □

Definition 2.4.3 A composition series for an FG-module V is a series of submodules of the

form V = V0 ⊇ V1 ⊇ V2 ⊇ · · · ⊇ Vt = 0 such that each i ≥ 1 the factor Vi−1/Vi is irreducible.

The integer t is called the length of the module V . If t is infinite then we say V has no

composition series.

20

Theorem 2.4.7 (Jordan-Holder Theorem for FG-modules) If V is a finite dimensional

FG-module then, V possess a composition series and the composition factors are independent

of the choice of factor series.

Proof: See [12, Corollary 8.7]. □

The consequence of the Jordan-Holder Theorem is that any two composition series factors

Mi/Mi+1 of one of the series are simply a permutation of the composition factors of the

other.

Proposition 2.4.8 Let X be G-set and P be a primitive permutation module over a finite

field F with respect to the action of G on X. Then P contains submodules S1 and S2 of

degree 1 and |X| − 1, respectively.

Proof: See [19]. □

21

Chapter 3

Codes and designs

In this chapter, our primary focus is on the concepts of codes and designs, along with a

careful exploration of the inherent properties that define these mathematical structures.

Also q denotes a power of prime p and Fq denotes a field with q elements. For a positive

integer n, Fn
q is a vector space of dimension n, consisting of vectors made of elements in Fq.

3.1 Codes

Definition 3.1.1 Let Fq be a finite field or an alphabet of q-elements. A q-ary code C is

a set of finite sequence of symbols of Fq, called a codeword, and written x1x2x3 . . . xn or

(x1, x2, x3, . . . , xn), where xi ∈ Fq for i = 1, 2, 3, . . . , n. If all sequences have the same length

n, then C is called a block code of block length n. The number of elements in C, denoted by

|C|, is called the size of the code. A code of length n and size M is called an (n,M)-code. A

code over A = {0, 1} is called a binary code and a code over B = {0, 1, 2} is called a ternary

code[31].

In this dissertation we will mainly focus on binary linear codes.

22

3.2 Binary linear codes

Definition 3.2.1 A linear code with length n over Fq is a vector subspace of Fn
q .

Definition 3.2.2 A linear binary code C is a subspace of Fn
2 . We call it [n, k]-code where

n is the length of a code and k is its dimension. Codewords are vectors of C.

Theorem 3.2.1 Suppose G is a finite group and Ω a finite G set. Then the F2G submodules

of FΩ are precisely the G-invariant codes (i.e. G-invariant subspaces of FΩ) [14].

Proof: Suppose G is a finite permutation group acting on a set Ω. Let V = FΩ be the F

vector space with basis the elements of Ω . Let ρ : G → GL(V) be a representation of G

given by ρ(g)(x) = g(x) ∀g ∈ G and x ∈ Ω We can consider V as the F2G-module obtained

from ρ. Let S be an F2G-submodule of the permutation module V . Then by Definition

3.2.15 we have (
∑
g∈G

αgg) · S ∈ S, ∀
∑
g∈G

αgg ∈ F2G and S ∈ S. In particular, g · S ∈ S for all

g ∈ G and S ∈ S. Thus, for all g ∈ G. and S ∈ S we obtain ρ(g)(S) ∈ S or g(s) ∈ S and

so S is G-Invariant. Conversely. If S is G-invariant, then for all g ∈ G and S ∈ S we have

ρ(g)(S) ∈ S. Therefore for scalars αg ∈ F2 we have
∑
g∈G

αgρ(g)(S) ∈ S.

by linearity. This implies that (
∑
g∈G

αgg) · S ∈ S. □

Example 3.2.1 Suppose x ∈ V and X = {i1, i2, i3, . . . , ik} ⊆ {1, 2, 3, . . . , n} are the nonzero

coordinates of x, then x = (1010001) = e1 + e3 + e7 is represented as X = {1, 3, 7}.

Definition 3.2.3 The Hamming distance d(u, v) between vectors u, v ∈ C is the number of

coordinates in which they differ.

Lemma 3.2.2 The Hamming distance between any vectors is a metric on Fn, i.e.

i. d(v, w) = 0 if and only if v = w,

ii. d(v, w) = d(w, v), for all v, w ∈ Fn,

iii. d(u, v) ≤ d(u, v) + d(v, w), for all u, v, w ∈ Fn .

23

Proof: See [5, Proposition 2.1.1]. □

Definition 3.2.4 Let V = Fn for any vector v = (v1, v2, v3, . . . , vn), let S = {i|vi ̸= 0}.

Then the set S is called the support of v and the weight of v denoted by wt(v) is |S|. The

minimum weight of a code C, denoted by wt(C), is

wt(C) = min{wt(v)|v ∈ C, v ̸= 0}

i.e the minimum of the weights of the non-zero code-words.

Lemma 3.2.3 We have d(u, v) = wt(u− v) for all u, v ∈ Fn
2 .

Proof: Let u, v ∈ Fn
2 . By definition, d(u, v) is the number of places where u and v differ.

Then, the vector u− v will have 1 precisely in the places where u and v differ and 0 in the

places where they are the same. In other words, d(u, v) is equal to the number of places

where there is 1 in the vector u − v. But, the number of places with 1 is, by definition, is

the weight of that vector. So, d(u, v) = wt(u− v). □

Theorem 3.2.4 Let a linear code C be a vector space over F2. If dim(C) = k, then C has

2k codewords.

Proof: Suppose dim(C) = k and let {x1, x2, x3, . . . , xk} be a basis for C. Then, C =

λ1x1 + λ2x2 + λ3x3 + · · · + λkxk ∈ F2. Since |F2| = 2, there are exactly 2 choices for each

λ1, λ2, λ3, . . . , λk. Each choice gives a different word and so C has exactly 2k codewords. □

Definition 3.2.5 For any code C, the minimum distance of the code, denoted d(C), is

defined by d(C) = min{d(u, v)|u, v ∈ C, u ̸= v}. An [n,M]-code of minimum distance d is

called an [n,M, d]−code. The values n,M, d are called the parameters of the code, and if the

field is known to be Fq, then code can be presented as [n,M, d]q .

Remark 3.2.5 If the minimum distance of a code of length n is 0 or n, we consider the

code trivial. If the minimum distance is 1 we call it a repetition code.

Theorem 3.2.6 Let C be an [n, k, d] linear code. Then the minimum distance d = d(C) is

the minimum weight of C.

24

Proof: We note that in Fn, d(v, w) = wt(v − w). Since C is a subspace v − w ∈ C for any

v, w ∈ C and the results follow. □

Definition 3.2.6 Suppose C is a linear code, and Ak is the number of codewords of weight

k. Then the weight numerator of C is the polynomial
n∑

k=0

Akx
n−kyk, where x is the zero point

and y is a non-zero coordinates of the code.

Clearly the coefficient of Ak is the number of vectors with weight k. Therefore the weight

distribution classifies codewords according to the number of non-zero coordinates. A list of

non-zero Ak is usually called the weight distribution of the code.

Definition 3.2.7 Suppose C is a code in V , then C⊥ is the dual code or orthogonal code of

C defined as C⊥ = {y ∈ Fn
p |x · y = 0 ∀x ∈ C}.

Lemma 3.2.7 C⊥ is a linear code.

Proof: See [9]. □

Lemma 3.2.8 Let C be the repetition code of length n over finite field F2 and C⊥ the dual

of C then C = [n, 1, n] and C⊥ = [n, n− 1, 2].

Proof: If w is a non-zero code-word in C, then w = (λ1, λ2, λ3, ...λn) where λi ∈ F. Hence

the weight of w is n. Now we note from the definition of a dual of a code we observe that

the code word (1, |F∗|, 0, ..., 0) is in C⊥. Also if v = (v1, v2, v3, ...vn) is a non-zero codeword

of C⊥, then v1 + v2 + v3 + ... + vn = 0. So no codewords of weight 1 exist therefore the

minimum weight of C⊥ is 2. □

Remark 3.2.9 If C = [n, k, d] then C⊥ = [n, n − k, d′] and d′ is not necessarily related

to d, which can be proven using Lemma 3.2.7 and the Rank-Nullity Theorem from Linear

Algebra[30]. The minimum distance d′ of C⊥ is called the dual distance of C.

Definition 3.2.8 A code is called projective if any 2 of its coordinates are linearly indepen-

dent i.e. it has a dual distance d⊥ ≥ 3

25

Definition 3.2.9 A binary code is even if the weight each of its codewords is divisible by 2.

Definition 3.2.10 A binary code is doubly even if the weight of each of its codewords are

divisible by 4.

It can be seen that doubly even implies even.

Definition 3.2.11 A linear code is self-dual if C = C⊥ and it is self-orthogonal if C ⊆ C⊥.

Lemma 3.2.10 A binary self-orthogonal code C is even.

Proof: Suppose we have the w = (a1, a2, . . . , an) where ai ∈ {0, 1}. If it is in the self-

orthogonal code, then w ·w = 0 over the field of two elements, but w ·w = a21+a
2
2+a

2
3 · · ·+a2n

which equals the number of ones in w, that is the weight of w. So w · w = 0 in F2 if and

only if w has even weight. □

Definition 3.2.12 Let F be a field and C be a linear code over F then hull of C is the

intersection of C and its dual code denoted by Hull(C) = C ∩ C⊥.

Lemma 3.2.11 Let C be the code of length n over a finite field Fq and C⊥ the dual of C.

Then all codewords J lie in C if and only if q divides the sum of all coordinates of each

w ∈ C⊥. In particular if q = 2, then J ∈ C if and only if C⊥ is even.

Proof: See [19, Lemma 2] □

It is clear that Hull(C) is also a linear code. It is easy to see that a linear code C is

self-orthogonal if and only if the dimension of Hull(C) is equal to the dimension of C, i.e

Hull(C) = C, and it is self-dual if and only if Hull(C) = C⊥.

Definition 3.2.13 A linear code C is said to be linear complementary dual (LCD) if Hull(C) =

{0}.

Corollary 3.2.12 A code is even if and only if it is contained in the dual of the repetition

code.

26

Proof: See [19, Corollary 1]. □

Definition 3.2.14 Let C be a binary (n, k)-code. An automorphism of C is an element of

Sn that sends codewords to codewords. The automorphism group of C is

Aut(C) = {π ∈ Sn|cπ ∈ C for all c ∈ C}.

The automorphism group of C is thus a subgroup of Sn if C ⊆ FX . The existence of

automorphism for C can provide a richer structure for the code and allows us to make some

deeper results from algebra. This is particularly the case when C has a regular automorphism

group G ⊆ Aut(C), this means that G is transitive on X and thus |G| = |X| = n the block

length of C.

Definition 3.2.15 If Fq is a field, C a vector subspace of Fn
q (linear code), and G a subgroup

of linear automorphisms of Fn
q , then C is said to be G-invariant if g(C) = C for all g ∈ G.

Definition 3.2.16 Let C be an [n, k, d]q code, we have two matrices that determine the code.

i. A generator matrix of C denoted by G is a k × n matrix over Fq whose rows forms a

basis of C.

ii. A parity check matrix of C⊥ denoted by H is a (n− k)× n matrix over Fq whose rows

forms a basis of C⊥.

Theorem 3.2.13 Let H be a parity check matrix of linear code C. A linear code has mini-

mum weight d if and only if any d−1 columns of H are linearly independent and there exists

some d columns that are linearly dependent.

Proof: Let C be a linear code. Then wt(C) = d(C) = d. So, there must exist some

codewords in C with weight d. Suppose that the vector u is a code word in C such that

wt(u) = d. Since u ∈ C implies that HuT = 0 and u has d nonzero components, then there

are some d columns of H that are linearly dependent. For the other side, suppose that there

are d − 1 linearly dependent columns in H. Then there must exist a nonzero vector v ∈ C

such that wt(v) = d − 1. This however contradicts the fact that the minimum weight of C

is d. So any d− 1 columns of H are linearly independent. □

27

Definition 3.2.17 Let H be a generator matrix of C. Then the permutation automorphism

group of C is the stabilizer of C in the symmetric group Sn with respect to the action on the

set of the columns of H. We denote the permutation automorphism group of C by PAut(C).

Remark 3.2.14 The permutation automorphism group of a code must be distinguished from

the full automorphism group of a code, the stabilizer of the action of F
n
∗
q ⋊ Sn sending every

column of H to a scalar multiple of another column. Clearly Aut(C) = PAut(C) in the

binary case.

Two linear codes of the same length over field Fq are said to be equivalent if each can be

obtained from the other by permuting the coordinates of Fn
q and multiplying each coordinate

by non-zero elements of the field. They are isomorphic if each can be obtained from the other

by a permutation of coordinates and this is an isomorphism between two codes. In binary

linear codes the notion of equivalence and isomorphic coincide.

3.3 Decoding Schemes

In this section we talk about the ability of a code to detect or correct errors, how many errors

can a code detect or correct. These properties can be determined using the parameters (code

length, dimension and minimum distance) of a code.

Theorem 3.3.1 Let C be a code of the minimum distance d if d < s+ 1 for s > 0, then C

can detect up to s errors in any codeword or, if d ≥ 2t+ 1, then C can be used to correct up

to t-errors.

Proof: See [5, Theorem 2.1.1]. □

Theorem 3.3.2 Let C be a code with minimum distance d. Then C can detect up to d− 1

errors and can correct d−1
2

errors.

Proof: See [5, Corollary 2.1.1]. □

This means the code with larger minimum distance can detect and correct more errors.

The decoding scheme in which a received word y is decoded as the closest word in the

28

q-ary code to y, should such a word be uniquely determined, is called nearest neighbour

decoding. Here close is measured in terms of the Hamming distance between two codewords.

Thus, the greater the minimum distance of a code, the larger the number of errors that can

be corrected. Assuming the use of the symmetric q-ary channel, this decoding algorithm

maximizes the probability that, after decoding, the correct word is finally received. Note

that for large codes this algorithm is costly as it requires a comparison between the received

vector y and every codeword in the code. For a linear code, the syndrome of the received

vector y, denoted Syn(y), can be used to reduce the number of comparisons that are needed

and to reduce the amount of memory needed to implement nearest neighbour decoding. This

method is referred to as syndrome decoding (see [14]).

From Theorem 3.3.2 we note that a code needs to have a large minimum distance to correct

many errors, however code dimension needs to be small for fast transmission and code length

for large number of messages but this is a conflict so it’s not easy to have the code satisfying

those conditions.

Theorem 3.3.3 (Singleton Bound) For any code C with minimum distance d, we have

|C| ≤ qn−d+1. Moreover for a linear code, [n, k, d]-code, this means that qk ≤ qn−d+1. This

turn implies that k ≤ n− d+ 1 or d ≤ n− k + 1.

Proof: If we consider a code with size |C| and distance d, we know that every word differs in

at least d positions. If we were to truncate the codewords by ignoring the last d−1 positions,

all the new codewords must be different. So we still have |C| codewords remaining, but now

we are in dimension n − (d − 1). We know that there is total of q(n−1)+d codewords of

this dimension, therefore we see that |C| ≤ qn−d+1. This proves the result along with the

knowledge that when C is linear, |C| is just the size of the k-dimensional subspace over Fq,

which is qk. □

29

3.4 Designs

Definition 3.4.1 An incidence structure is a set D = (P ,B, I), where ρ is the point set,

B is the block set and I is an incidence relation between P and B. The elements of I are

called flags.

A finite incidence structure is the most basic structure of design theory. If the pair (P ,B) is

in I we say that P is incident with B or B contains the point P . The pair (P ,B) is called a

flag if it is in I and anti-flag otherwise (see [5]).

Example 3.4.1 Let P be any set and take B to any subset of the power set 2P , the set of

all subsets of P. The incidence in this case is defined by (ρ,B) ∈ I if and only if ρ ∈ B.

We will be concerned almost exclusively with those structures that have a particular degree of

regularity and that are traditionally called block designs. We will simply call them designs,

or t-designs when the degree of regularity is to be emphasized. A design can be defined

formally as follows.

Definition 3.4.2 An incidence structure D = (P ,B, I) is a t-design or a t− (v, k, λ) design

(where v, k, λ are non-negative integers called parameters) is an incidence structure D =

(P ,B, I) such that |P| = v, β ∈ B is incident with k points and t distinct points are together

incident with λ blocks. Symmetric design is a design with the same number of points and

blocks.

A 2 − (v, k, λ) design is called a block design. We say that a t − (v, k, λ) design D is a

quasi-symmetric design with intersection numbers x and y (x < y) if any two blocks of D

intersect in either x or y points (see[16, 17]).

Example 3.4.1 is a t-design provided that the cardinality of subset B of P is k for every

subset β ∈ B and that for every subset T of P of cardinality t, |{β ∈ B|β ⊇ T }| = λ. Thus

all blocks have the same cardinality and every t-subset is contained in the same number of

blocks.

30

Example 3.4.2 Let P = {1, 2, 3, 4, 5, 6, 7} and set

B = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 5, 7}, {3, 4, 6}}.

Then (P ,B) with a natural incidence forms a 3− (7, 3, 1) design.

Remark 3.4.1 A t− (v, k, λ) design is also referred to as a t-design. We shall assume that

all parameters are positive integers and v > k ≥ t to avoid trivial cases. Also members of B

are distinct, thus there are no repeated blocks.

Theorem 3.4.2 Let P = (P ,B) be a t− (v, k, λ) design. Then for every integer s such that

0 ≤ s < t, the number λs of blocks incident with s distinct points is independent of the s

points and is given by

λs = λ
(v − s)(v − s− 1) . . . (v − t+ 1)

(k − s)(k − s− 1) . . . (k − t+ 1)
.

In particular D is an s− (v, k, λs) design for every s with 1 ≤ s ≤ t.

Proof: Suppose that X ⊂ P with |X| = s. Let λs(X) denote the number of blocks

containing all the points in X. Define the set

T = {(Y,B)|Y ⊂ P , B ∈ B, |Y | = t− s, Y ∩X = ∅, Y ∪X ⊂ B}.

We compute |T | in two different ways.

First there are

 v − s

t− s

 ways to choose Y . For each Y , there λ blocks B such that

X ∪ Y ⊂ B. Hence

T = λ

 v − s

t− s

 .

On the other hand, there are λs(X) ways to choose a block B such that X ⊂ B for each

choice of B there are

 k − s

t− s

 ways to choose Y . Hence

T = λs(X)

 k − s

t− s

 .

31

Combining two equation we see that λs(X) = λs and the results follows. □

Definition 3.4.3 Suppose D = (P, β, I) is a design in which P = {p1, p2, ..., pv} and

B = {B1, B2, ..., Bi}. Then the incidence matrix of D is a b× v matrix A = (aij) such that

aij =
{ 1, if (pi, Bj) ∈ I

0, if (pi, Bj) /∈ I

The incidence matrix depends on the ordering of points and blocks. If we impose the labelling

on the points of a design D, {p1, p2, p3, . . . pv}, block B of the design can be represented as

an incidence vector vB of length v (see[7]).

Definition 3.4.4 A Steiner system is a type of block design, specifically a t − design with

λ = 1 and t ≥ 2.

A Steiner system with parameters t, k, n written S(t, k, n) for n > 1 is an n-element set S

together with a set of k-element subsets of S (called blocks) with the property that each

t-element subset of S is contained in exactly one block.

3.4.1 The construction of t-designs from linear codes

Let C be a linear code of length n. Consider all the code words of weight w in C. Let

c = (c1, c2, c2, . . . , cn) be a codeword of weight w in C. The support of c is defined by

suppt(c) = {1 ≤ i ≤ n : ci ̸= 0} ⊆ {1, 2, 3, . . . , n}.

Two different codewords of weight w may have the same support. Let P = {1, 2, 3, . . . , n}

and B be the set of the supports of the codewords of weight w in C, where no repeated

blocks are allowed. Let the incidence relation R be the usual containment of sets. Then it

is possible that (P ,B,R) is a t-design for some t. In this case, we say that the codewords of

weight w in C hold or support a t-design, which is called a support design of C.

The Assmus-Mattson Theorem describes t-designs from linear codes

32

Theorem 3.4.3 (Assmus-Watson) Let C be an [n, k, d] code over GF (q). Let d⊥ denote

the minimum distance of C⊥. Let w be the largest integer satisfying w ≤ n and

w − ⌊w + q − 2

q − 1
⌋ ≤ d.

Where ⌊x⌋ is the largest integer less than or equal to x. Define w⊥ analogously using d⊥. Let

(A1)
n
i=0 and (A⊥

1)
n
i=0 denote the weight distribution of C and C⊥, respectively. Fix a positive

integer t with t < d, and let s be the number of i with A⊥
1 ̸= 0 for 1 ≤ i ≤ n − t. Suppose

s ≤ d− 1. Then

i. the codewords of weight in C hold a t-design provided A1 ̸= 0 and d ≤ i ≤ w, and

ii. the codewords of weight in C⊥ hold a t-design provided A⊥
1 ̸= 0 and

d⊥ ≤ i ≤ min{n− t, w⊥}

.

Proof: See [20, Theorem 4.24]. □

The Assmus-Mattson Theorem applied to C is most useful when C⊥ has only a few nonzero

weights. It has been one of the two tools used for computing designs in linear codes. When

q = 2, Theorem 3.4.3 becomes the following.

Corollary 3.4.4 (Assmus-Watson) Let C be an [n, k, d] code over GF (q). Let d⊥ denote

the minimum distance of C⊥. Let (A1)
n
i=0 and (A⊥

1)
n
i=0 denote the weight distribution of C

and C⊥, respectively. Fix a positive integer t with t < d, and let s be the number of i with

A⊥
1 ̸= 0 for 1 ≤ i ≤ n− t. Suppose s ≤ d− t. Then

i. the codewords of weight in C hold a t-design provided A1 ̸= 0 and d ≤ i ≤ n, and

ii. the codewords of weight in C⊥ hold a t-design provided A⊥
1 ̸= 0 and d⊥ ≤ i ≤ n− t.

Proof: See [20, Corollary 4.26]. □

Remark 3.4.5 If a primitive permutation automorphism group G of degree n is contained

in the permutation automorphism group of a code C, then we say that C admits G as a

primitive permutation automorphism group.

33

Note that A = PAut(C) is also of degree n and all codewords in C are of length n. If

g ∈ A, then for 1 ≤ i, j ≤ n we have ig = j if and only if for any codeword v ∈ C, the ith

coordinate of vg is replaced by jth. This is how A acts on C. For a positive integer m, we

define: Wm(C) = {v ∈ C : wt(v) = m}. If there is no ambiguity, we may simply write Wm.

Since the automorphisms of C preserve the weight of codewords, we deduce that A acts on

Wm for every integer m with Wm ̸= ∅. The stabilizer of this action is of interest. If v ∈ Wm,

then the stabilizer of v in A is the set of all g ∈ A with vg = v. So if the code is binary, the

stabilizer of v in A is isomorphic to the stabilizer of the support of v in A. We can see that

some 1-designs may be constructed from the codes, using this action.

Proposition 3.4.6 Let C = [n, k, d]2 be a binary linear code admitting G as permutation

automorphism group and Wm(C) ̸= ∅. If S is an orbit of the action of G on Wm, then we

have a 1− (n,m,m|S|/n) design with block set B = {Supp(w) : w ∈ S}.

Proof: See [19, Proposition 1]. □

Corollary 3.4.7 Let C = [n, k, d]2 be a binary linear code admitting G as permutation

automorphism group and Wm(C) ̸= ∅. If |S| = n, then the resulting support 1-design is a

symmetric design.

Proof: The results follows directly from Proposition 3.4.6, if we have |S| = n then 1 −

(n,m,m|S|/n) = 1− (n,m,m) hence the symmetric design. □

We say that an incidence structure I is transitive if an automorphism group of I acts transi-

tively on points and blocks. An incidence structure I is called primitive if an automorphism

group acts primitively on points and blocks (see [26, 27]). In our dissertation we will use

construction method described in Theorem 3.4.6 to construct 1-designs.

34

Chapter 4

Constructions of combinatorial

structures

In this chapter, we turn our attention to the methods used in this dissertation for the

construction of codes and designs. These methods are the core of our research, enabling

us to develop algorithms that uncover structures and properties within coding theory and

design theory.

Central to these methodologies is the utilization of MAGMA [10], a powerful computa-

tional algebra system. MAGMA plays a pivotal role in our work, providing the computational

requirements to implement and test the algorithms that underlie our constructions. Other

computational algebra system such as GAP [22] can be used, but for our pirpose they are

very limited compared to MAGMA.

4.1 FG-modules and G-invariant codes

4.1.1 Codes from quotient modules

Constructing codes from quotient modules is a common and important technique in coding

theory. Quotient modules, also known as factor modules, are derived by dividing a module

by one of its submodules.

35

Given a representation of group elements of a group G by permutations one can work modulo

q and obtain a representation of G on a vector space V over Fq. The invariant subspaces are

then all the binary codes C for which G is a subgroup of Aut(C). In the context of coding

theory, this approach involves creating codes based on the quotient of a vector space V by

one of its subspaces W . The resulting quotient space, denoted as V/W , forms the basis for

constructing specific types of codes. (see [14])

If we consider a vector space V over a finite field Fq and a subspaceW of V . The quotient

space V/W consists of cosets ofW in V . Each coset represents an equivalence class of vectors

that have the same remainder when divided by the vectors in U . This quotient space inherits

a vector space structure from V , enabling the creation of codes based on its elements.

The properties of such codes, such as minimum distance and error correcting capabilities

depends on our choice of W . So careful selection of W is crucial in this method.

4.1.2 Codes from maximal submodules

In this dissertation we are interested in G-invariant codes from the primitive permutation

representations, hence we shall consider the permutation modules obtained from the action

of the group on the coset of its maximal subgroups and thus determine the corresponding

FΩ-submodules, in particular maximal submodules.

Given a permutation group G on a finite set Ω and a finite field F (i.e. the vector space over

F with basis Ω). The G-invariant submodules can be regarded as linear codes (see Theorem

3.2.1), and therefore we may find the properties of these codes such as weight distributions.

In this dissertation we use the approach of submodules, which involves the study of substruc-

tures within modules, which are algebraic structures closely related to vector spaces.Thus

we determine all binary codes invariant under a given group more directly, since we obtain

explicit bases for the codes. Moreover, for each primitive representation of a given permuta-

tion group G, we use MAGMA to construct the associated permutation module over F2 and

find all maximal submodules. These submodules are the G-invariant codes and we also find

36

lattices of submodules.

Let G be a finite primitive group action on set X, H = Gα its maximal subgroup, where

α ∈ X. Consider the action of G on a set of cosets Ω = {G,G/H}, where G/H = {gH :

g ∈ G} (see [14]). According to Theorem 1.2.1 and Theorem 1.2.2, G acts transitively and

primitively on Ω and its image is a permutation representation. From this we are able to

construct FΩ-permutation modules over Fq corresponding to this representation. We shall

consider these permutations to construct subspaces (i.e submodules). The G-invariant sub-

spaces (i.e., submodules) of the permutation module give all the p-ary codes invariant under

G. The approach offered by this section, which is at the core of the purpose of the disser-

tation, is more inclusive than those presented in Section 4.1.1. The codes constructed using

that method are in general subcodes of the ones constructed using those method that we

present in the ensuing section. Since this dissertation is concerned with binary codes we

focus mainly on the field F = F2. So the step by step procedure to find these codes start

with the vector space V over a field Fq, this is the fundamental space in which we want to

construct our codes. Within the vector space we identify the submodules, the submodule

are the subspaces of the vector which are also vector spaces, and they are essential in cre-

ating our codes. From those submodules then we focus on those which are maximal. Codes

are constructed based on the properties of these maximal submodules. Specifically, you use

the maximal submodules to define the structure and properties of your code. The codes

derived from maximal submodules are designed to have specific error-correcting capabilities

and performance characteristics.

4.1.3 Permutation codes

Permutation codes is a group of error correcting codes based on a group action of permu-

tation group. These codes have unique properties and are good for applications where the

groups action on the codewords is relevant. These codes are constructed by the action of

a permutation group on a set. On constructing these codes we first determine maximal

subgroups of the desired group. These subgroups are essential for constructing permutation

37

codes, we then find set of conjugates of each subgroup. These a found applying elements

of the group to the subgroup using the conjugation operation. Noting that each set of con-

jugates of these maximal subgroups represents a codeword and they are typically binary

vectors or over elements from a finite field. we then use action by conjugates to transform

each codeword into another codeword and this action is important for the construction of

permutation codes. we then use the orbits of the point stabilizer to generate a permutation

module over a suitable field such as F2 or F3 and they represent how the G permutes the

conjugates of its maximal subgroups and they are the basis of our codes. The permutation

code is constructed by considering the codewords in the permutation module. The code-

words are determined based on the orbits and stabilizers. Each codeword is a combination

of elements from the set of conjugates.

4.2 Construction of G-invariant codes.

The construction used in this dissertation is based on method described in section 4.1,

Theorem 3.2.1, Theorem 4.2.1 and Theorem 4.2.2, assuming that the Schur multiplier of the

group is trivial and that the codes used are binary. If the codes are non-binary, it might be

the challenge to identify all the codes accurately. However, even in such cases, our methods

can still be utilized under the condition that (|M/M ′|, |F∗
n|) = 1. This condition provides

exception where the methods remain applicable despite the field being non-binary.

Definition 4.2.1 Let G be a finite group, a Schur cover or a covering group or stem cover

of G is a finite group H with a normal subgroup N ⊆ Z(H) ∪H, with H/N ∼= G , that has

maximal order amongst all groups with this property.

Lemma 4.2.1 Assume (G,X) is a primitive permutation group and F a field such that

Ext(G/G′,F∗) = 0. Let E be a stem cover of G and E0 the inverse in E of the stabilizer of

G induced up to E all 1 − dimensional FE0-module. Then the submodules of the resulting

FE-modules provide for a complete list of codes over F admitting (G,X) as a permutation

group.

38

Proof: See [19, Theorem 1]. □

Theorem 4.2.2 Let G be a finite simple group with a maximal subgroup M . Let P be the

permutation FnG-module corresponding to the primitive action of G on M , where Fn is a

finite field. Also assume that the Schur multiplier of G is trivial and (|M/M ′|, |F∗
n|) = 1, for

M ′ a derived group of M . Then the set of linear codes of length m over GV (q) equals the

set of all submodules of P . (see [19, Theorem 2])

Proof: Since the Schur multiplier ofG is trivial. ThenG is its own covering group. Therefore

by Lemma 4.2.1 the set of linear codes of length m over GV (q) is the set of all submodules

of the induced modules of 1− dimensional FM -modules of G. Let ρ be a representation of

M of degree 1. We claim that ρ is trivial. Indeed M/Kerρ lies in a group over F∗. As F∗
n is

abelian we haveM ′ ≤ Ker(ρ). Hence |M : Ker(ρ)| divides both |F∗
n| and |M/F∗

n|. Hence we

have M = ker(ρ) and the result follows. We conclude that set of linear codes of length m

over GLV (q) is a set of all submodules of the permutation module of G of degree |G : M |,

hence the result follows. □

Given a permutation module acting on a set Ω, and ρ : G → GF (V) where ρ(g)v = g.v

for g ∈ G and v ∈ V we can find all codes with a group G acting as an automorphism group

as follows:

1. Let FΩ be a permutation module.

2. Use MAGMA to find all FΩ submodules.

3. By Theorem 3.2.1 and Theorem 4.2.2 these submodules are G-invariant codes.

The construction therefore enables us to find all submodules of the permutation module.

For this we decompose the permutation module into submodules. These constitutes the

building blocks for the construction of a lattice of submodules where possible. With the

characterization of these codes we respond to the problem of classification of the codes. As

was discussed in Chapter 3.2 decomposition of the modules into submodules depends on the

field. Maschke’s theorem (see Theorem 2.3.1) gives a characterization of decomposition over

39

a field whose characteristic is 0 or relatively prime to the order of the group. In this case

the permutation module is completely reducible and can be written as a direct sum of its

irreducible submodules. When a characteristic p of a field divides the order of the group i.e.,

p | |G|, we apply Krull-Schmidt’s theorem (see Theorem 2.4.2) which shows that any module

with finite length can be written as a direct sum of indecomposable submodules, and this

decomposition is unique up to isomorphism and the order of the summands. In addition to

Krull-Schmidt Theorem, we have the composition series of the module which provides a way

of breaking the module into simple components. These concepts have been used to develop

different methods to construct submodules hence codes invariant under a group. Applying

all these theories and techniques we construct G-invariant codes which have certain classes

of finite simple groups acting irreducibly on. In Chapter 5 we shall see how the techniques

outlined in Section 4.1 and Section 4.2 help us determine and classify a number of interesting

codes invariant under the simple group U(3, 3).

Corollary 4.2.3 A binary code is even if and only if it is contained in the dual of a repetition

code. [19, Corollary 1]

Proof: Let C1 be a repetition code Assume that a binary code C ⊆ C⊥
1 . C

⊥ consists of all

binary sequences of a fixed length n where each element is either 0 or 1. This means C⊥

contains all possible binary words of length n. If code C ⊆ C⊥, it means that each codeword

in C can be expressed as a linear combination of the basis vectors of the C⊥, which are the

binary words of length n. Since each codeword in C is a linear combination of binary words

of length n, it means that the weight in each codeword of C is even. This is because each

binary word in the C⊥ has an even weight, and a linear combination of binary words with

even weights will also have an even weight. Therefore, if C is even.

Conversely: Assume that a binary code C is even, meaning that all codewords in C have

even weights. We can construct a repetition code by taking a binary word of length n and

repeating it multiple times to form a code. Let’s say the repeated word is 0n (a binary

word of n zeros). Now, each codeword in this repetition code is a repetition of 0n. Since all

codewords in C have even weights, they can be expressed as linear combinations of 0n (with

40

suitable coefficients). This means that C is contained in the dual of this repetition code. □

Lemma 4.2.4 Let C be a code of length n over a finite field Fq and C⊥ the dual of code C.

The all-one codeword 1 lies in C if and only if q divides the sum of all coordinates of each

w ∈ C⊥. In particular if q = 2, then 1 ∈ C if and only if the length is even.

Proof: If 1 ∈ C, then for all w ∈ C⊥ we have <w, 1> = 0. Since <w, 1> is the sum of all

coordinates of w, we get q|<w, 1>. This completes the proof. □

41

Chapter 5

Codes invariant under U(3,3)

In this chapter we consider the unitary group G = U(3, 3) a classical simple group of order

6048 of Lie type with Steiner system S − (2, 4, 28) (see[11]) acting 2-transitive in 28 points.

The Schur multiplier of this group is trivial. We then use the discussed methods to construct

codes invariant under this group and also construct designs from supports of those codes.

5.1 The structure of the unitary group U(3,3)

According to Atlas (see[43]) U(3, 3) has 4 primitive permutation representation listed in

Table 5.1 where second column shows the structure of maximal subgroup and the third

column shows the degree which is number of cosets of point stabilizer.

Table 5.1: Maximal subgroups of U(3, 3)

Number Maximal subgroup degree

M1 31+2
+ : 8 28

M2 L(2, 7) 36

M3 4.S4 63

M4 42 : S3 63

The table shows that the group has 4 class maximal subgroups up to conjugation. So

42

for each maximal subgroup Mk, k = 1, 2, 3, 4, the action of G by conjugation on the set

of conjugates of Mk giving us the primitive action of degree |G:Mk| ∈ {28, 36, 63}. The

elements of each degree generate a permutation module over F2. We determine orbits of the

point stabilizer through coset action of G on the maximal subgroups. According to Theorem

4.2.2 every binary code of length |G:Mk| that admits G as a primitive permutation group

is a submodule of the permutation module of G with respect to the action of G. Moreover

if (|Mk:M
′
k|, q − 1) = 1 then the same results holds for codes over GF(q). For example if

Mk
∼= L(2, 7) then Mk is perfect therefore we can find linear codes of length 36 in GF(q)

where q divides the order of G. However, for the rest of the maximal subgroups Mk of G,

the value of |Mk:M
′
k| happens to be 2, 4 or 8 so it suffices to find only binary linear codes

of given length using our method. Using this method, we can only compute all binary codes

of given length. Using ATLAS or MAGMA, we have that the unitary group U(3, 3) has 5

irreducible G-modules in GF(2) with dimensions 1, 6, 14, 32, 32 and they are all absolutely

irreducible.

Our aim is to find the whole codes of length |G:Mk| that contain G in their permutation

automorphism group. Denote by Pi(q) the permutation module over GF(q) with respect to

the primitive action of G = U(3, 3) on the set of the conjugates of Mk in G. We want to find

the set of all binary codes whose automorphism groups contain G. According to Theorem

4.2.2, the codes are of type c = [n, d,m]2, where n ∈ {28, 36, 63}. If d = 0 or d = n, then we

consider the code as trivial. So the trivial codes are of type c = [n, 0,m]2 and c = [n, n,m].

Also if d = 1 the C is a repetition code therefore repetition codes are of type C = [n, 1,m].

As the results of the following lemma we can see that the repetition code and its dual have

restricted structure.

According to Theorem 4.2.1 the codes [n, n, 1] and [n, n−1, 2] corrects less than 1 errors,

so are of less interest.

43

5.2 Permutation representations and permutation mod-

ules of U(3,3)

5.2.1 Representation of degree 28

For a permutation group acting on set Ω of degree 28, we find a 28-dimensional permutation

module invariant under G. We take the permutation module to be our working module

and find all submodules. That permutation module breaks into submodules of dimension

0, 1, 7, 21 and 27, with composition series V = 28 ⊃ 27 ⊃ 21 ⊃ 7 ⊃ 1 ⊃ 0. The submodule

lattice of this representation is shown on Figure 5.2.1. This shows that the only irreducible

submodule is of dimension 1. The non-trivial submodules are dimension 1, 7, 21 and 27.

Therefore according to Theorem 4.2.2 it suffices to find codes of dimension 1, 7, 21 and 27

and we will denote these codes by C28,1, C28,2, C28,3 and C28,4 respectively. Codes arising

Figure 5.1: Submodule lattice for a 28-dimensional representation

28

27

21

7

1

0

from the submodule lattice in Figure 5.2.1 are shown in Tabl5.2.

Proposition 5.2.1 C28,1 is a repetition code and C28,4 is it’s dual code and they have min-

imum distances 28 and 2 respectively. Moreover C28,1 ≤ C28,4, and C28,1 is irreducible.

Proof: The dimension of C21,1 satisfies the definition of repetition code. Moreover |P1(2)|−

1 = 27 by Proposition 2.4.8 it follows that C28,4 is a dual code of C28,1. Now by Lemma

44

Table 5.2: Codes of length 28

Naming Code Weight distribution

C28,1 [28, 1, 28] 281

C28,2 [28, 7, 12] 01, 1263, 1663, 281

C28,3 = C⊥
28,2 [28, 21, 4] 01, 4315, 66048, 847817, 10206976, 12472059, 14630720,

16472059, 18206976, 2047817, 226048, 24315, 281

C28,4 = C⊥
28,21 [28, 27, 2] 01, 2378, 420475, 6376740, 83108105, 1013123110, 1230421755, 1440116600,

1630421755, 181312311, 203108105, 22376740, 2420475, 26378, 281

3.2.8 C21,1 = [28, 1, 28] and C28,4 = [28, 27, 2] hence C28,4 is the dual code of C21,1. Char(F2)

divides the order of |P1(2)| therefore also by Proposition 2.4.8 we have C21,1 ≤ C28,4 as

proposed. □

Using MAGMA we find that minimum distance of C28,2 is 12 and minimum distance of C28,3

is 4. From the fact that if C = [n, k, d] then C⊥ = [n, n − k, d′] we can conclude that C28,2

and C28,3 are each other’s dual code. From definition of trivial codes we have the code of

form C28,0 = [28, 0, 28] and C28,5 = [28, 28, 1] and the code C = [28, 1, 28] satisfies properties

of repetition code.

Proposition 5.2.2 Let M be a primitive subgroup of degree 28 of the unitary group U(3, 3)

and C28,2 a binary linear code of dimension 7. Then C28,2 is doubly even.

Proof: Using MAGMA the weight distribution of C28,2 is

{01, 1263, 1663, 281}

since all the weights of this code are divisible by 4, C28,2 is doubly even. □

Proposition 5.2.3 Let G be a primitive group of degree 28 of the unitary group U(3, 3) and

C28,3 a binary linear code of dimension 21. Then C28,3 = [28, 21, 4] is even but not doubly

even and it is self-orthogonal.

45

Proof: The weight distribution of C28,3 is

{01, 4315, 66048, 847817, 10206976, 12472059, 14630720, 16472059, 18206976, 2047817, 226048, 24315, 281}

all the weights of this code are even therefore it is even, but 6 is not divisible by 4 there-

fore the code is not doubly even. Furthermore the dual of C28,3 is C28,2 and according to

the composition series it is its subspace therefore C28,3 contains its dual therefore it is self

orthogonal. □

Since C28,3 is binary, it follows from Corollary 4.2.3 that C28,3 ≤ C28,4.

Proposition 5.2.4 every 28 dimensional binary code accepting U(3, 3) as primitive permu-

tation group is even.

Proof: Using the composition series we note that all the non-trivial submodules are con-

tained in the 27 dimensional submodule,this implies all the codes are contained in the di-

mensional code which is the dual of the repetition code therefore by Corollary 4.2.3 all the

codes are even. □

Proposition 5.2.5 The non-trivial codes C28,2 = [28, 7, 12] and C28,3 = [28, 21, 4] can cor-

rect up to 5 and 1 errors respectively.

Proof: Since the minimum weight of C28,2 = 12 and C28,3 = 4 then by Theorem 3.3.2 a code

can correct up to d−1
2

errors and the results follows. □

Table 5.3 shows some of the properties of the non-trivial codes we constructed. The compu-

tations were based on MAGMA.

Table 5.3: non-trivial codes of length 28

Code Parameters Aut(Ci) Primitivity of Ci

C28,2 [28, 7, 12] S(2, 6) yes

C28,3 [28, 21, 4] S(2, 6) yes

46

Designs held by support of codewords in C28,i

Suppose that wn is a codeword of nonzero weight m in a non-trivial code C = C28,i where

i = 1, 2, 3, 4. In this section we determine the structure of (Aut(C))wm , that is the stabilizer

of wm in Aut(C) where wm = {c ∈ C : w(c) = m}.

Definition 5.2.1 The designs constructed from the supports of codes are called support de-

signs.

We now examine the action of Aut(Ci) on the set of wm of non-trivial codewords of C and

describe their nature. In addition we look at the structure of stabilizer (Aut(C))wm and

construct the support 1-design using Theorem 3.4.6 and furthermore we take the image of

the support of wm under the action of G = Aut(C) to find the blocks of the 2 − (n,m, km)

design where km = |(wm)
G| × m

n
and show that Aut(C) acts primitively on those designs.

Proposition 5.2.6 Let w be a codeword of the code C28,i(i = 2, 3) of weight m and A =

Aut(ci) if wm ̸= ∅ then the action of A onWm(Ci) is transitive. The stabilizer of w = wm(Ci)

in A is a maximal subgroup of U(3, 3) and the support designs constructed from these codes

are shown in Table 5.4 and Table 5.5.

Table 5.4: Stabilizer and support designs from [28, 7, 12]

m s = |wm| Stabilizer Maximal in A Design

12 63 25 : S6 yes 1− (28, 12, 27)

16 63 25 : S6 yes 1− (28, 16, 36)

Table 5.5: Stabilizer and support designs from [28, 21, 4]

m Orbits’ size Stabilizer Maximal in A Design

4 315 2.[26] : (S3 × S3) yes 1− (28, 4, 45)

47

6
1008 A6.2

2 no 1− (28, 6, 216)

5040 A6.2
2 no 1− (28, 6, 1080)

8

945 (42 × 2).23.S3 no 1− (28, 8, 215)

22680 (42 × 2).23.S3 no 1− (28, 8, 6480)

24192 (42 × 2).23.S3 no 1− (28, 8, 6912)

18

336 S3 × S6 yes 1− (28, 18, 216)

5040 S3 × S6 yes 1− (28, 18, 3240)

15120 S3 × S6 yes 1− (28, 18, 9720)

22
1008 A6.2

2 no 1− (28, 22, 792)

5040 A6.2
2 no 1− (28, 22, 3690)

24 315 2.[26] : (S3 × S3) yes 1− (28, 24, 270)

Proof: The values of m and s are given in the weight distribution of the codes. Using

Theorem 3.4.6 the designs from the supports of these codes are of the form 1−(n,m, λ) where

n is the length of the code and λ = ms/n, where s is the size of orbits of wm. Transitivity,

stabilizers and maximality of stabilizer in A was determined using MAGMA and the results

follows. □

We notice that number of designs rely on number of orbits of wm an orbits’ size is the

number of blocks in the design. All support designs under each mi have the same stabilizer

so we can add all orbits’ size and get |wm| and use it to find one design with large parameter

λ, for example with m2 = 6 we can have |wm| = 1008 + 5040 = 6048 and construct a design

1− (28, 6, 1296) with 6048 blocks and stabilizer A6.2
2.

5.2.2 Representation of degree 36

We construct a 36-dimensional permutation module invariant under permutation group

G = U(3, 3) acting on set Ω of degree 36. We let the permutation module be our work-

ing module and recursively find all submodules. We find that permutation module breaks

into 11 submodules of dimension 0, 1, 7, 8, 14, 15, 21, 22, 28, 29 and 35. The submodules are

48

the dimensions of the codes related to permutation module. The submodule lattice of this

representation is shown in Figure 5.2.2, showing that only the code of dimension one is

irreducible.

Figure 5.2: Submodule lattice for a 36-dimensional representation

36

35

29

15 28

14 22

8 21

7

1

0

According to Theorem 4.2.2 there exist codes of length 36 and dimension k where

k ∈ {0, 1, 7, 8, 14, 15, 21, 22, 28, 29, 35}. We already know by definition of trivial codes that

we have C36,1 = [36, 0, 36], C36,2 = [36, 1, 36], C36,11 = [36, 35, 2] and C36,12 = [36, 36, 1].

What is left now is find the minimum weight of remaining non-trivial codes.

Proposition 5.2.7 Let C be a non-trivial binary linear code of length 36 which is invariant

under U(3, 3). Then C is one of the following codes.

1. C36,2 = [36, 1, 36].

2. C36,3 = [36, 7, 16].

3. C36,4 = [36, 8, 14].

4. C36,5 = [36, 14, 8].

5. C36,6 = [36, 15, 8].

6. C36,7 = C⊥
36,6 = [36, 21, 6].

7. C36,8 = C⊥
36,5 = [36, 22, 6].

8. C36,9 = C⊥
36,4 = [36, 28, 4].

49

9. C36,10 = C⊥
36,3 = [36, 29, 4]. 10. C36,11 = C⊥

36,2 = [36, 35, 2].

Proof: Using MAGMA we see that P2(2) contains 10 non-trivial proper submodules of

degree of dimensions;

1, 7, 8, 14, 15, 21, 22, 28, 29, 35.

Hence by Theorem 4.2.2, we have 10 non-trivial codes. Their minimum distances can be

computed using MAGMA or from their generator matrices. This completes the proof. □

By Theorem 3.3.2 the non-trivial codes C36,2 can correct up to 17 errors, C36,4 can correct

maximum of 6 errors, C36,5 and C36,6 both correct 3 errors each, C36,7 and C36,8 correct up

to 2 errors each, and finally C36,9 and C36,10 correct up to only one error each.

Proposition 5.2.8 Codes C36,9 and C36,4 are even.

Proof: The direct sum of C36,9 and C36,4 form C36,11 which is the dual code of a repetition

code now it follows from Corollary 4.2.3 that the codes are even. □

Proposition 5.2.9 Let G = U(3, 3) and F = F2. Then there are no linear codes of length

36 over F accepting G as primitive permutation group that are self dual.

Proof: Let C be the self dual code of dimension k then using Remark 3.2.9, 36 − k = k

which implies k = 18 but there is no submodule of P1(2) that has a dimension 18 meaning

such a code does not exist. Hence the result follows. □

Results of Proposition 5.2.9 can be generalised by Theorem 5.2.10.

Theorem 5.2.10 Let C be a binary code of length m and dimension k. Then C is self dual

if and only if k = m
2
.

Proof: Let C = [m, k, d] be a code and C⊥ = [m,m− k, d′] be it’s dual code since C is self

dual we must have m− k = k resulting in k = m
2
.

Conversely: Let C = [m, k, d] be a code and C⊥ = [m,m − k, d′] be it’s dual code suppose

k = m
2
, then

m− k = m− m
2
= m

2
. □

50

Table 5.6: Weight Distribution of some of the codes of Length 36

Naming Code Weight distribution

C36,3 [36, 7, 16] 01, 1663, 2063, 361

C36,4 [36, 8, 14] 01, 1436, 1663, 1856, 2063, 2236, 361

C36,5 [36, 14, 8] 01, 863, 12441, 142304, 163591, 183584, 203591, 222304,

24441, 2863, 361

We chose few codes of length 36 that we will work on, and give their weight distributions on

Table 5.6.

Proposition 5.2.11 The code C36,3 is doubly even.

Proof: Using MAGMA we find that the weight distribution of C36,3 is

{01, 1663, 2063, 361}

and we note all weights of above mentioned codes are divisible by 4. □

Proposition 5.2.12 Let G be a unitary group U(3, 3) and M a permutation module of di-

mension 36 invariant under G. Then all non-trivial codes of length 36 are even.

Proof:

i We proved in Proposition 5.2.11 that C36,3 is doubly even which implies that it is even.

ii C36,9 and C36,4 are even as proved on Proposition 5.2.8.

iii Using MAGMA we note that the weight distributions of all the codes are divisible by

2 hence it follows that they are all even.

Also using the lattice diagram we can see that all the codes are contained in the dual of the

repetition code so by Corollary 4.2.3 all the codes are even. □

51

Proposition 5.2.13 Let G be a primitive group of degree 36 of the unitary group U(3, 3)

and C36,1, C36,2, C36,3, C36,4, C36,5, C36,6, C36,7, C36,8, C36,9, C36,10, C36,11 and C36,12 of dimension

0, 1, 7, 8, 14, 15, 21, 22, 28, 29, 35 and 36 respectively, then the following holds.

i. C36,1 is a trivial code.

ii. C36,2 is a repetition code and its dual is C36,11.

iii. There is no non-trivial code of length 36 that can correct more than 7 errors.

Proof: We know that a trivial code is of the only code with the structure [n, 0, n], repetition

code is of the form [n, 1, n] and its dual is of form [n, n−1, 2]. By Theorem 3.3.2 if C is code

with length d then C can correct up to d−1
2

errors and the code of length 36 with the largest

minimum distance has d = 16 so it can correct only up 7 errors. □

Code C36,3 is more optimal because it has larger minimum distance compared to others so

it can detect and correct more errors, making it more optimal for error-prone channels. The

error correcting capability depends on the size of the minimum distance, but we must also

consider the ratio which is the ratio of the number of information bits to the total number

of bits in a codeword denoted by R = k
n
. Higher rates mean more efficient use of the

available channel bandwidth. In general the optimal code that achieves the best trade off

in between error correction and error detection, computational complexity and bandwidth

efficient (higher rate). So finding an optimal codes is not an easy task it depends on the

goals and constraints of communication system, because optimality needs, larger minimum

distance (for good error correcting capability), bigger ratio, which requires bigger length k

and smaller dimension m but at the same time larger dimension is required for larger bits of

codeword.

Table 5.7 shows some of the properties of the non-trivial codes we constructed using MAGMA

the last column shows whether the automorphism is primitive or not.

52

Table 5.7: non-trivial codes of length 36

Code Parameters Aut(Ci) Primitivity of Ci

C36,3 [36, 7, 16] S(2, 6) yes

C36,4 [36, 8, 14] G(2, 2) yes

C36,5 [36, 14, 8] G(2, 2) yes

C36,6 [36, 15, 8] S(2, 6) yes

C36,7 [36, 21, 6] S(2, 6) yes

C36,8 [36, 22, 6] G(2, 2) yes

C36,9 [36, 28, 4] G(2, 2) yes

C36,9 [36, 29, 4] S(2, 6) yes

Designs held by support of codewords in C36,i

Suppose that wn is a codeword of nonzero weight m in a non-trivial code C = C36,i where

3 ≤ i ≤ 10. In this Section we determine the structure of (Aut(c))wm , that is the stabilizer

of wm in Aut(C) where wm = {c ∈: w(c) = m}.

The procedure is the same as that of degree 28 as a results of more codes and larger weight

distribution we have many supports resulting in large number of support designs. In this

section we look at some of the support designs and stabilizers.

Proposition 5.2.14 Let w be a codeword of the code C36,i 3 ≤ i ≤ 10 of weight m and

A = Aut(Ci) if wm ̸= ∅ then the action of A on Wm(C1) is transitive. The stabilizer of

w = Wm(Ci) in A is a maximal subgroup of U(3, 3) and the support designs constructed from

these codes are shown in Table 5.8 and Table 5.9.

Table 5.8: Stabilizer and support designs from [36, 8, 14]

m s := |wm| stabilizer Maximal in A Design

14 36 L(3, 2) : 2 yes 1− (36, 14, 14)

53

16 63 M8.S4 no 1− (36, 16, 28)

18 56 31+2
+ : 8 yes 1− (36, 18, 28)

20 63 M8.S4 no 1− (36, 20, 35)

22 36 L(3, 2) : 2 no 1− (36, 22, 22)

Table 5.9: Some stabilizers and support designs from [36, 14, 8]

m s := |wm| stabilizer Maximal in A Design

8 63 M8.S4 yes 1− (36, 8, 14)

12 441 M8.S4 yes 1− (36, 12, 147)

14 2304 L(3, 2) : 2 no 1− (36, 14, 896)

16 3591 M8.S4 yes 1− (36, 16, 1596)

18 3584 31+2
+ : 8 no 1− (36, 18, 1792)

28 63 M8.S4 yes 1− (36, 28, 49)

Proof: Values of m and s are given in the weight distribution of the codes. Using

Theorem 3.4.6 the designs from the supports of these codes are of the form 1 − (n,m, λ)

where n is the length of the code and λ = ms/n and the result follows. □

Non-binary codes from representation of degree 36

As discussed in Section 5.1 M3
∼= L(2, 7) is perfect therefore we can find linear codes of

length 36 in GF(q) where q the prime factor of |G|. The method presented here can be

used to find non-binary codes. In this section we find codes of length 36 in GF(3) and

GF(7). Codes in GF(3) are called ternary codes. In the field F3 the permutation module

of degree 36 breaks into submodules of dimensions 0, 1, 144, 15, 21, 224, 23, 35 and 36. The

submodule lattice is shown in Figure 5.3, which also shows that the only irreducible code is

of dimension 1. According to Theorem 4.2.2 it suffices to find codes with those dimensions.

Due to triviality we exclude the code of dimension 0 and 36, therefore we have 11 non-trivial

54

Figure 5.3: Submodule lattice for a 36-dimensional representation in F3

36

35

23

22 2222 22

15 21

14 1414 14

13

1

0

ternary codes accepting U(3, 3) as primitive permutation group. We have the length and

the dimensions of the ternary codes we left with determining minimum distances to have the

complete codes. Using MAGMA we find that the non-trivial codes are as follows.

i [36, 13, 12]3

ii 3 of the form [36, 14, 8]3

iii [36, 14, 12]3

iv [36, 15, 8]3

v [36, 21, 6]3

vi 4 of the form [36, 22, 6]3.

Looking at the weight distribution computed by MAGMA we notice that 2 of the

[36, 14, 8]3 codes are isomorphic, their dual [36, 22, 4]3 are not isomorphic, this means that if

the codes are isomorphic it does not imply that their dual codes are also isomorphic.

We also notice that all the non-trivial codes have the minimum distance d ≥ 3 therefore from

definition of projective codes, all the non-trivial ternary codes under U(3, 3) are projective.

Table 5.10 shows weight distribution of some of the ternary code.

55

Table 5.10: Weight Distribution of some of the codes of Length 36

Code Weight distribution

[36, 13, 12]3 01, 12882, 153024, 1877196, 21381528, 24648270, 27421568,

3058716, 333024, 36114

[36, 14, 12]3 01, 122520, 158640, 18237720, 211125504, 241973160,

271242080, 30185472, 337560, 363132

Theorem 5.2.15 Let C be a code over Fn
3 . Then every code word c has a weight divisible

by 3 if and only if C is self orthogonal.

Proof: See [2, Theorem 1.4.8]. □

Proposition 5.2.16 The only self-orthogonal ternary codes accepting U(3, 3) as the primi-

tive permutation group are [36, 13, 12]3 and [36, 14, 12]3.

Proof: The weight distributions of [36, 13, 12]3 and [36, 14, 12]3 are,

{01, 12882, 153024, 1877196, 21381528, 24648270, 27421568, 3058716, 333024, 36114}

and

{01, 122520, 158640, 18237720, 211125504, 241973160, 271242080, 30185472, 337560, 36312}

respectively, the weight distribution shows that all the code words have weight divisible by

3, so by Theorem 5.2.15 these codes are self-orthogonal and they are the only ternary codes

with all the code words having weight divisible by 3, therefore they are the only self-dual

ternary codes. □

Proposition 5.2.17 The ternary repetition code accepting G = U(3, 3) as the primitive

permutation group is [36, 1, 36]3 and its dual is [36, 35, 2]3.

Proof: We know that the only perfect maximal subgroup of U(3, 3) is isomorphic to L(2, 7)

and is of degree 36 therefore we have one repetition code of ternary type with n = 36. By

Lemma 3.2.8, we have the code [36, 1, 36]3 and its dual code is of the form

56

[n, n− 1, 2]q = [36, 35, 2]3. □

In the field F7 the 36 dimensional representation splits into 5 non-trivial submodules of length

14, 15, 21, 22 and 35. So we have 5 non-trivial codes [36, 14, 8], [36, 15, 8], [36, 21, 6], [36, 22, 6]

and [36, 35, 2] which are all even and all projective. Table 5.11 shows the Aut(C) of all the

non-trivial ternary codes.

Table 5.11: Automorphism and permutation automorphism groups of non-trivial ternary

codes.

Parameters Aut(C) Primitivity of Aut(C)

[36, 13, 8]3 2× U(3, 3) : 2 yes

[36, 14, 8]3 W (E7) yes

[36, 14, 12]3 U(3, 3) : 2 yes

[36, 15, 8]3 W (E7) yes

[36, 21, 6]3 W (E7) yes

[36, 22, 6]3 U(3, 3) : 2 yes

[36, 23, 6]3 2× U(3, 3) : 2 yes

5.2.3 Representations of degree 63

We have 2 representations of degree 63 under U(3, 3) we shall name them 63a and 63b to

distinguish them and later compare their codes. We construct 63-dimensional permutation

module invariant under U(3, 3) acting on a set of degree 36 by letting the permutation

module be our working module and find all submodules.

Representation 63a

Looking at the first permutation module of degree 63, and letting it be our working module

and find all its submodules. The module splits into 44 submodules of dimension

0, 1, 6, 73, 8, 13, 143, 15, 20, 213, 22, 27, 283, 29, 34, 353, 36, 41, 423, 43, 48, 493, 50, 55, 563, 57, 62, 63.

57

The submodule lattice of this representation is shown in Figure 5.4, showing that codes of

dimension 6 and 1 are irreducible. According to Theorem 4.2.2 there are 44 codes of length

Figure 5.4: Submodule lattice for a 63-dimensional representation

63

62 57

56 56 4356

55 50 42 42 42

49 49 49 41 36

48 35 35 35

34 29

28 28 1528

27 22 14 14 14

21 21 21 13 8

20 7 7 7

6 1

0

63 and dimensions given above. So it is left to find the minimum distance of those linear

codes so that the parameters will be complete.

Proposition 5.2.18 Let G = U(3, 3) and H a representation of degree 63 under G then

there exist codes C63a,0 = [63, 0, 63], C63a,1 = [63, 1, 63], C63a,42 = [63, 62, 2] and C63a,43 =

[63, 63, 1]. Moreover C63a,42 is the dual code of C63a,1.

Proof: By definition for every permutation module of dimension n there exist 2 trivial codes

[n, 0, n] and [n, n, 1] hence for H we have [63, 0, 63] and [63, 63, 1]. Then by Lemma 3.2.8 we

note that there is a code [n, 1, n] and its dual is [n, n− 1, 2] hence we have [63, 1, 63] and its

dual is [63, 62, 2] and the result follows. □

58

Codes under this representation are of the form [63, n, d] where n is the dimension of the

submodule and d is the minimum weight. Since we have dimensions of all the codes, we are

left with finding the minimum weight.

Using MAGMA to compute the minimum weight we find that some of the non-trivial codes

are as follows.

1. C63a,2 = [63, 6, 32]

2. C63a,3 = [63, 7, 28]

3. C63a,4 = [63, 7, 27]

4. C63a,5 = C63a,2 ⊕ C63a,1 = [63, 7, 31]

5. C63a,6 = C63a,3 ⊕ C63a,1 = [63, 8, 27]

6. C63a,7 = [63, 13, 20]

7. C63a,8 = [63, 14, 20]

8. C63a,9 = [63, 14, 14]

9. C63a,10 = C63a,7 ⊕ C63a,1 = [63, 14, 20]

10. C63a,11 = [63, 15, 14]

11. C63a,12 = [63, 20, 16]

12. C63a,13 = [63, 21, 16]

13. C63a,14 = [63, 21, 15]

14. C63a,15 = [63, 21, 15]

15. C63a,16 = [63, 22, 15]

16. C63a,17 = [63, 27, 12]

17. C63a,18 = [63, 28, 12]

18. C63a,19 = [63, 28, 12]

19. C63a,20 = [63, 28, 11]

20. C63a,21 = [63, 29, 11]

21. C63a,22 = C⊥
63a,21 = [63, 34, 8]

22. C63a,23 = C⊥
63a,20 = [63, 35, 7]

23. C63a,24 = C⊥
63a,19 = [63, 35, 8]

24. C63a,25 = C⊥
63a,18 = [63, 35, 7]

25. C63a,26 = C⊥
63a,17 = [63, 36, 7]

26. C63a,27 = C⊥
63a,16 = [63, 41, 8]

27. C63a,28 = C⊥
63a,15 = [63, 42, 8]

28. C63a,29 = C⊥
63a,14 = [63, 42, 7]

29. C63a,30 = C⊥
63a,13 = [63, 42, 7]

30. C63a,31 = C⊥
63a,12 = [63, 43, 7]

59

31. C63a,32 = C⊥
63a,11 = [63, 48, 4]

32. C63a,33 = C⊥
63a,10 = [63, 49, 4]

33. C63a,34 = C⊥
63a,9 = [63, 49, 4]

34. C63a,35 = C⊥
63a,8 = [63, 49, 3]

35. C63a,36 = C⊥
63a,7 = [63, 50, 3]

36. C63a,37 = C⊥
63a,6 = [63, 55, 4]

37. C63a,39 = C⊥
63a,5 = [63, 56, 3]

38. C63a,40 = C⊥
63a,4 = [63, 56, 4]

39. C63a,41 = C⊥
63a,3 = [63, 56, 3]

40. C63a,42 = C⊥
63a,2 = [63, 57, 3]

Table 5.12: Weight Distribution of some of the codes of Length 63

Naming Code Weight distribution

C63a,2 [63, 6, 32] 01, 3263

C63a,3 [63, 7, 28] 01, 2836, 3263, 3628

C63a,7 [63, 13, 20] 01, 20252, 24378, 281800, 323591, 362044, 40126

Having that from MAGMA the weight distribution of C63a,2 is {01, 3263} and C63a,5 =

C63a,2 ⊕ C63a,1 where C63a,1 is an all one code we can find the weight distribution of C63a,5

by adjoining the ones-vectors of C63a,2 to get {01, 3163, 3263, 631} and we can see that the

minimum distance is 31 and the code is not even. In a similar way we can find weight

distributions of C63a,6 = C63a,3⊕C63a,1 = [63, 8, 27] and C63a,10 = C63a,7⊕C63a,1 = [63, 14, 20]

and all other codes that can be written as the direct sum of another code and the repetition

code.

Proposition 5.2.19 Let G = U(3, 3) and H be a permutation module of degree 63. Then

only the following codes are not even.

1. C63a,42

2. C63a,41

3. C63a,39

4. C63a,36

5. C63a,35

6. C63a,34

60

7. C63a,31

8. C63a,30

9. C63,29

10. C63a,26

11. C63a,25

12. C63a,23

13. C63a,21

14. C63a,20

15. C63a,18

16. C63a,16

17. C63a,15

18. C63a,14

19. C63a,11

20. C63a,10

21. C63a,8

22. C63a,6

23. C63a,5

24. C63a,4

Proof: According to Corollary 4.2.3 the only even codes are those contained in the dual of

the repetition code, which is a code of dimension 62. Using the lattice structure we note

that the codes mentioned are not contained in the code of length 62, hence they are not even

and all others are contained in the code of length 62 there they are even. □

Based on codes C63a,8 and C63a,10 we notice that codes may have same parameters but have

different structures and hence not isomorphic, since the have different weight distributions.

Proposition 5.2.20 The following codes are doubly even.

i C63a,2

ii C63a,3

iii C63a,7

Proof: Using MAGMA to compute the weight distributions we notice that the weight dis-

tributions of the above codes are {01, 3263}, {01, 2836, 3263, 3628} and

{01, 20252, 24378, 281800, 323591, 362044, 40126} respectively and we note that all weights are di-

visible by four, therefore the codes are doubly even. □

61

Codes mentioned in Proposition 5.2.20 are not the the only doubly even codes, we just men-

tioned few for simplicity.

With the application of Theorem 3.3.2 we note that the code C63a,2 corrects more errors

(⌊32−1
2

⌋ = 15) than any other 63 dimensional codes.

Proposition 5.2.21 every non-trivial codes under 63a is projective.

Proof: We note that all the non trivial codes have a minimum distance d ≥ 3, therefore the

dual distances of all the codes is at least three hence all the codes are projective. □

Proposition 5.2.22 Codes C63a,2 and C63a,7 are self orthogonal.

Proof: We note the dual code of C63a,2 and C63a,7 are C63a,42 and C63a,36 respectively, using

the lattice diagram we note that those codes are subsets of their dual codes, therefore the

codes are self orthogonal. □

Table 5.13 shows properties of some non-trivial codes of length 63 we constructed. We choose

codes with different automorphism groups, all other codes has either of those group as their

automorphism groups. The computations were based on MAGMA.

Table 5.13: non-trivial codes of length 63

Code parameters Aut(Ci) Primitivity of Ci

C63a,2 [63, 6, 32] L(6, 2) yes

C63a,3 [63, 7, 28] S(2, 6) yes

C63a,7 [63, 13, 20] U(3, 3) yes

Designs held by supports of codewords in C63a,i

Suppose that wn is a codeword of nonzero weight m in a non-trivial code C = C63a,i where

3 ≤ i ≤ 42. In this section we determine the structure of (Aut(c))wm , that is the stabilizer

of wm in Aut(C) where wm = {c ∈: w(c) = m}.

The procedure is the same as that of degree 28 as a results of more codes and larger weight

62

distribution we have to many supports resulting in large number of support designs. In this

section we look on some of the support designs and stabilizers.

Proposition 5.2.23 Let w be a codeword of the code C36,i, 3 ≤ i ≤ 42 of weight m and

A = Aut(Ci). If wm ̸= ∅ then the action of A on Wm(C1) is transitive. The stabilizer of

w = Wm(Ci) in A is a maximal subgroup of U(3, 3) and the support designs constructed from

these codes are shown in Table 5.14 and Table 5.15.

Table 5.14: Stabilizers and support designs from [63, 6, 32]

m s := |wm| stabilizer maximal in A Design

32 63 25 : L(5, 2) yes 1− (63, 32, 32)

Table 5.15: Stabilizers and support designs from [63, 7, 28]

m s := |wm| stabilizer maximal in A Design

28 36 S8 yes 1− (63, 28, 16)

32 63 22 : S6 yes 1− (63, 32, 32)

36 28 U(4, 2) : 2 yes 1− (63, 36, 16)

Proof: Values of m and s are given in the weight distribution of the codes. Using Theorem

3.4.6 the designs form the supports of these codes are of the form 1 − (n,m, λ) where n is

the length of the code and λ = ms/n. To find stabilizers we used MAGMA and [43], they

show all the maximal subgroups of A = S(2, 6) and the results follows. □

Representation 63b

We now look at the second permutation module of degree 63, and letting it be our working

module and find all its submodules. The module splits into 28 submodules of dimension

0, 1, 14, 15, 20, 213, 22, 27, 283, 29, 34, 353, 41, 423, 43, 48, 49, 62, 63.

63

According to Theorem 4.2.2 there are 28 codes of length 63 and dimensions given above. So

it is left to find the minimum distance of those linear codes so that the parameters will be

complete. Trivial codes under 63b are similar to those under 63a mentioned in Proposition

5.2.18. The submodule lattice of this representation as shown in Figure 5.5, in which we note

that the irreducible submodules are of dimension 14 and 1, resulting in irreducible codes of

those dimensions.

Figure 5.5: Submodule lattice for a 63-dimensional representation

63

62 49

48 43

42 2942 42

41 36 28 2828

35 35 35 2722

34 21 21 21

20 15

14 1

0

Table 5.16 show some codes of length 63 and their weight distribution.

Table 5.16: Weight Distribution of some of the codes of Length 63

Code Weight distribution

[63, 14, 16] 01, 16126, 241596, 282880, 327497, 36252

[63, 20, 16] 01, 16693, 203024, 2478456, 28278064, 32420651, 36222768, 4041832, 4863

[63, 15, 16] 01, 16126, 23252, 241596, 274032, 282880, 317497,

327497, 352880, 364032, 391593, 40252, 631

Corollary 4.2.3 says that the codes are even if and only if they are contained in the dual of

64

repetition code, so using the lattice diagram we can tell which codes are even and we use

MAGMA to find their minimum weight and they are

1. [63, 48, 4]

2. [63, 42, 6]

3. [63, 41, 6]

4. [63, 28, 12]

5. [63, 35, 8]

6. [63, 27, 12]

7. [63, 34, 8]

8. [63, 21, 16]

9. [63, 20, 16]

10. [63, 14, 16]

For optimality we have 3 codes with minimum distance 16 (i.e [63, 21, 16], [63, 20, 16],[63, 14, 16])

but the code [63, 21, 16] is more optimal than those 2 because it has larger dimension, re-

sulting in larger ratio.

Proposition 5.2.24 The following codes are doubly even.

1. [63, 14, 16]

2. [63, 20, 16]

Proof: The codes, have the weight distribution {01, 16126, 241596, 282880, 327497, 36252} and

{01, 16693, 203024, 2478456, 28278064, 32420651, 36222768, 4041832, 443024, 4863}, respectively and we

note that all the weights are divisible by 4 therefore the codes are doubly even. □

Now having the code [63, 14, 16] and its weight distribution, and from the lattice diagram we

note we have code [63, 15, d] = [63, 14, 16] + ⟨J⟩, where ⟨J⟩ is the all one code. The weight

distribution of [63, 15, d] can be determined by adjoining the ones-vectors to get

{01, 16126, 23252, 241596, 274032, 282880, 317497, 327497, 352880, 364032, 391593, 40252, 47126, 631}

and hence we can get the minimum distance (16) from the weight distribution and we have

the code [63, 15, 16] which is not even. Which is contained in its dual code C⊥ = [63, 44, 3]

therefore the code [63, 44, 3] is self-orthogonal, also both codes have d ≥ 3 therefore they

65

are both projective. Table 5.17 shows properties of some non-trivial codes of length 63 we

constructed. We choose codes with different automorphism groups, all other codes has either

of those group as their automorphism groups. The computations were based on MAGMA

the last column tell whether Aut(Ci) is primitive or not.

Table 5.17: Non-trivial codes of length 63

parameters Aut(Ci) Primitivity of Aut(Ci)

[63, 14, 16] U(3, 3) : 2 yes

[63, 15, 16] U(3, 3) : 2 yes

[63, 20, 16] U(3, 3) : 2 yes

We notice that all non-trivial codes under representation 63b have U(3, 3) : 2 as their auto-

morphism group.

Designs held by support of codewords in C63b,i

Table 5.18 shows designs held by support of the code [63, 14, 16] with weight distribution

{01, 16126, 241596, 282880, 327497, 36252}.

Table 5.18: Stabilizers and support designs from [63, 14, 16]

m s := |wm| stabilizer maximal in A Design

16 126 S8 no 1− (63, 16, 32)

24 1596 22 : S6 no 1− (63, 24, 608)

28 2880 U(4, 2) : 2 no 1− (63, 28, 1280)

32 7497 S3 no 1− (63, 32, 2304)

36 252 M8 : S4 no 1− (63, 36, 160)

66

Conclusion

We found binary linear codes of length 28, 36 and 63 and there are no self dual codes accepting

U(3, 3) as primitive permutation group but there is a number of self orthogonal and projective

codes. There is also set of Golay and ternary codes all of length 36 invariant under U(3, 3).

Code C and its dual C⊥ always have the same automorphism group and the automorphism

group always contains U(3, 3). The order of our group U(3, 3) divides the order of all the

automorphism groups of codes invariant under U(3, 3). Each code has weight distribution

and supports which we used to find designs corresponding to each supports and one code

can support more than one design.

67

Bibliography

[1] E. Abbe, Coding theory and coding techniques, Princeton Education, pp01, (2020).

[2] M.M. Al-Ashker, Coding theory lectures, University of Gaza, Palestine.

[3] J.L. Alperin, and R.B Bell, Groups and representations, Springler, (1995).

[4] E.F. Assmus, and J.D Key, Affine and projective planes, Discrete. Math., vol. 83,

pp161-187, (1990).

[5] E.F. Assmus, and J.D Key, Designs and their codes, volume 103 of Cambridge Tracts

in Mathematics, pp389-419, (1993).

[6] A.B.M. Basheer, Representation theory of finite groups, AIMS, (2006).

[7] N.L. Biggs, and A.T. White, Permutation groups and combinatorial structure, Series

33 lecture notes of Cambridge University Press, (1979).

[8] S. Biswas, Introduction to coding theory: Basic codes and Shannon’s theorem. pp6,

(2011).

[9] L. Bolcar, On the weights of linear codes and their dual, Digital commons, (2020).

[10] W. Bosma, J. Cannon, and C. Playoust, The MAGMA algebra system I: The user

language, journal of symbolic computation, 24(3-4), pp235-265, (1997).

[11] P. L. H. Brooke, On the Steiner system S(2, 4, 28) and codes associated with the simple

group of order 6048, J. Algebra 97, (1985).

68

[12] R. Brauer, On modular characters of groups, Annals of mathematics 42, pp556-

590,(1941)

[13] S.K. Buddha, Hamming and Golay Codes, Indiana University Terre Haute, pp04,

(2011).

[14] L. Chikamai, J. Moori, and B. G. Rodrigues, Linear codes obtained from 2-modular

representations of some finite simple groups. Ph.D. thesis, University of Kwazulu Natal,

(2012).

[15] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite

Groups, (1985).

[16] D. Crnković, V. Mikulić, On some combinatorial structures constructed from

the groups L(3, 5), U(5, 2) and S(6, 2), Int. J Comb. 2011 (2011). http:

//dx.doi.org/10.1155/2011/137356. Article ID 137356, 12 pages

[17] D. Crnković, and V. Mikulić, Unitals, projective planes and other combinatorial struc-

tures constructed from the unitary groups U(3, q), q = 3, 4, 5, 7, Ars Combin. 110

pp3–13, (2013).

[18] R.C. Daileda, Modules and vector space, (2017).

[19] M.R. Darafsheh, B. G. Rodrigues, and A. Saeidi, On linear codes constructed from

finite groups with a trivial Schur multiplier, Mathematical communication, 28(2023)

85-104, (2013).

[20] C. Ding and C. Tang, Designs from linear codes, Second edition, World Scientific,

(2022).

[21] D.S. Dummit, R.M. Foote, Abstract algebra, John Wiley and sons, Inc, (2004).

[22] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.12.2; 2022

(https://www.gap-system.org)

69

[23] J. Grossman, Coding theory: introduction to linear codes and applications. Insight:

River Academic Journal, 4(2), pp1-17, (2008).

[24] A.R. Hurson, AI and cloud computing, pp150, (2021).

[25] G. James, and M. Leibeck, Representations and characters of groups, Second edition,

Cambridge, (2003).

[26] J.D. Key, and J. Moori, Codes, designs and graphs from the janko groups J1 and J2,

J. Combin. Math. Combin. Comput. 40 pp143–159, (2002).

[27] J.D. Key, and J. Moori, Correction to: Codes, designs and graphs from the Janko

groups, J. Combin. Math. Combin. Comput. 64, (2008).

[28] W. Knapp, and P. Schmid, Codes with prescribed permutation automorphism, J Alge-

bra 67 no.2, pp41-435, (1980).

[29] R. Lal, Algebra 2, linear algebra, Galois theory, representation theory, group extension

and Schur Multiplier, Springler, (2017).

[30] D.C. Lay, S.R. Lay, and J.J. McDonald, Linear algebra and its application, Pearson,

(2015).

[31] Y. Lindell, Introduction to coding theory lecture notes, Department of Computer Sci-

ence Bar-Ilan University, Israel, (2010).

[32] M.G Mahmoudi, A proof of Krull-Schmidt’s theorem for modules, Shariff University of

Technology, (2012).

[33] V.N. Marani, Some linear codes, graphs and designs form Matheu groupsM24 andM23.

Ph.D thesis University of Kwazulu Natal, (2019).

[34] J.S. Milne, Group theory, v4.00, (2021), www.jmilne.org/math/.

[35] J. Moori, AIMS course on further group theory/representation theory, North West

University, Mafikeng, (2011).

70

[36] J. Moori, Finite Groups, Designs and Codes, Northwest University, Mafikeng (2011).

[37] R. Pinch, Coding theory: The first 50 years, plusadmin, (1997).

[38] R. Prag, A brief summary of modular representation theory, Lecture notes.

[39] B.G. Rodrigues, Codes of designs and graphs from finite simple groups, PhD disserta-

tion,University of Kwazulu Natal, (2002).

[40] G. Sheng, On the classification of finite simple groups, (2022).

[41] P. Webb, A course in finite group representation theory, Cambridge university press

161, (2016).

[42] S.H. Weintruab, Representation theory of finite group: Algebra and arithmetic, Amer-

ican Mathematics Society, (2003).

[43] R.A. Wilson, R.A. Parker, and J.N. Bray, Atlas of finite group represanta-

tions,http://brauer.maths.qmul.ac.uk/Atlas/clas/S62/.

71

Appendixes

load”u33”;

Max:=MaximalSubgroups(G);

F:=GF(2);

i:=3;

m:=Max[i]‘subgroup;

a1,g,a3:=CosetAction(G,m);

M:=Stabilizer(g,1);

v:=#g/#m;

P:=PermutationModule(g,F);s:=Submodules(P);;

I:=IrreducibleModules(g,F);

c:=[];cc:=[];

for i in [1..#s] do

f:=Morphism(s[i],P);

c[i]:=LinearCode(f);

end for;

for i in [1..#s] do

cc[i]:= [Dimension(P), Dimension(c[i]),

72

MinimumDistance(c[i])];

end for;

cc;

t:=[];

sw:=[];

for i in [1..#s] do

sw[i]:=[];

end for;

r:=1;

w:=MinimumDistance(c[r]);

for i in [1..#s] do w:=WeightDistribution(c[i]);

sw[i]:=[w[i][1]:i in [1..#w]];

end for;

A:=[];

for r in [3..#s] do

A[r]:= AutomorphismGroup(c[r]);

end for;sw

r:=1;

C:=c[r];

sw[r];

m:=16;

73

edd:=Words(C,m);

gg:=GSet(A[r],edd);

ob:=Orbits(A[r],gg);#ob;

S:=[];

// Choose j in [1..#ob] #ob;

j:=1;

b:=Setseq(ob[j]);

for i in [1..#ob[j]] do

S[i]:=Support(ob[j][i]);

end for;

SS:=Set(S);

st:=Stabilizer(A[r],S);

D1:=Design¡1,v—SS¿;

D1;

C=code; m = Weight;

Ac= Aut (C);

Ac:=AutomorphismGroup(C);

edd:=Words(C,m);

gg:=GSet(Ac,edd);

ob:=Orbits(Ac,gg);#ob;

b:=Setseq(ob[1]);

for i in [1..#ob[1]] do

S:=Support(ob[1][i]);

end for;

74

SS:=Set(S);

st:=Stabilizer(Ac,S);

j:=j+1; j-1;

D:=Design¡2,v—SS¿;

for m in sw[r] do

edd:=Words(C,m);

gg:=GSet(A[r],edd);

ob:=Orbits(A[r],gg);#ob;

// #ob is the number of stabilizers

end for;

// fix j in [1..#ob]

b:=Setseq(ob[j]);

S:=Support(b[1]);

st:=Stabilizer(A[r],S);

stb:={};

for x in A[r] do if b[1]∧x eq b[1] then

stb:= stb join x;

end if; end for;

stab:= sub¡A[r]—stb¿;

for i in [1..100000] do

v:=Random(C);

75

if Weight(v) le Weight(w) then

w:=v;

end if; end for; Weight(w);

76

