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CHAPTER ONE 
 
 

INTRODUCTION  
 
1.1 BACKGROUND STUDY 

The physiological network of the human body is an embodiment of complex fluid flow 

systems among which are blood in the circulatory system, airflow in the airways, flow 

systems for transporting lymph and the urinary circulatory systems [1-3]. Recently, 

considerable attention has been given to the study of physiological fluid flow in order to 

understand the development of several arterial lesions such as stenosis, thrombosis, 

aneurysm [20, 37], etc. Blood is generally regarded as a continuum, especially in the 

region of large arteries. However, its dynamics is influenced by many factors among 

which are unusual multiplicity of tube branching, unusual pulsatility, unusual range of 

Reynolds number due to viscosity variation, unusual distensibility of the containing 

vessel [3]. The arterial blood flow provides a way for glucose, oxygen and hormones to 

reach various organs around the body. Blood leaves the heart from the left ventricle into 

the biggest artery called the aorta. It is important that fresh blood from the aorta goes 

directly to the brain, because the brain needs oxygen constantly to avoid irreversible 

damage to it [17, 18]. Another important organ which the blood must pass through is the 

lungs where waste carbon dioxide is replaced with fresh oxygen. Blood must move from 

an area of higher pressure on the arterial side to an area of lower pressure on the venous 

side by means of a pressure gradient. The difference in the arterial and venous pressure 

facilitates blood flow [1-3] (see Figures 1.1.1).          
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Figure 1.1.1:  Red blood cells in the arterial 

 

Ideally blood should be studied as liquid containing a suspension of flexible particles. 

Such a liquid can be characterized by a mechanical behavior which is non-Newtonian. 

This behavior becomes particularly significant when the particle size is large in 

comparison to the dimension of the channel in which the fluid is flowing. Red blood cell 

makes up more than 99% of all blood cell and approximately 40% to 45% of the blood 

volume (see Figures 1.1.2). In men there is an average of 5.2 millions red blood cells per 

cubic millimeter and in woman there is an average of 4.6 millions per cubic millimeter. 

The reason for lower red blood cells in women is that women lose lot of blood each 

month during menstruation period [22, 30].  
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Figure 1.1.2:  Composition of the blood 

 

Hematocrit is the ratio of the volume of packed blood cells to the total blood volume and 

is thefore also known as the packed cell volume [31, 38]. The hamatocit is reported as a 

percentage or a ratio. In healthy adult individuals the red blood cells constitute 

approcimately 40-48% of blood volume, whereas they may have hematocrits of up to 

60%. A low hematocrit reflects a low number of circulating red blood cells and is an 

indication of a decrease in the oxygen- carrying capacity or of over-hydration. A high 

hematocrit may reflect an absolute increase in the number of erythrocytes, or a decrease 

in plasma volume, in conditions such as [37, 41, 42]: 

• Severe dehydration – e.g. in case of burns, diarrhea or excessive 

use of diuretics  

• Erythrocytosis – excessive red blood cell production  

• Polycythemia vera – abnormal increase of blood cells  

• Hemachromatosis – an inherited iron metabolism disorder  
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High hematocrit is also used as an indicator of the excessive intake of exogenous 

erythropoitin (EPO), which stimulates the production of red blood cells. Athletes can 

artificially improve their performance by enhancing the oxygen-carrying capacity with 

EPO [22, 31]. The concentration of erythrocytes in the blood has a strong influence on 

blood viscosity. At a hematocrit of 40-45%, blood viscosity is approximately 3 times the 

value for plasma and approximately 5 times that of water. Blood viscosity shows a 

curvilinear relation with the hematocrit and it increases sharply when the hematocrit is 

raised much beyond the normal range [39, 40]. The remarkable deformability of the 

normal red cells, besides making it possible for them to traverse narrow capillaries, 

serves to minimize the rise of blood viscosity with increasing cell concentration. The 

relation between blood viscosity and red cell concentration indicates that, when all other 

conditions are equal, blood flow would decrease with an increase in hematocrit, 

especially at high hematocrit levels [38].  

Red blood cells are the oxygen carriers [1-3] (see Figures 1.1.3). As they travel away 

from the heart, they traverse smaller and smaller arteries, finally arriving at the 

collections of microscopic blood vessels known as capillaries. Here, they exchange 

nutrients and oxygen for cellular waste products. The waste products are eventually 

eliminated from the blood stream through the urinary and respiratory systems. The 

exchange of oxygen and nutrients between the red blood cells and the surrounding tissues 

occurs through a process called diffusion [33]. During diffusion process, whenever 

capillaries contain a high concentration of oxygen and nutrients, and the surrounding 

tissues contain a lower concentration, oxygen and nutrients leave the capillaries and enter 

the tissues. Conversely, whenever body tissues contain high concentrations of carbon 
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dioxide and metabolic waste, and the capillaries contain a lower concentration, the waste 

products diffuse from the tissues into the capillaries and from there are carried by the 

venous system back toward the heart [3].  

 

 

                  

            
 

Figure 1.1.3: The red blood cells 

 

In the course of blood flow in a large artery, the red blood cells in the vicinity of the 

arterial wall move to the central region so that the hematocrit ratio becomes quite low 

near the arterial wall which results in lower viscosity in this region. Blood viscosity 

and its major determinants such as plasma viscosity, fibrinogen (a protein involved in 
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clotting), may be an important risk factor for the early development of atherosclerosis 

[19, 20]. Atherosclerosis refers to the occlusion of the arterial lumen. The process 

starts from the build-up of cholesterol, fats and biological debris in the tissue lining 

the inside of blood vessels [37]. The build-up can obstruct blood to the heart and brain 

and thereby cause a heart attack or stroke. No single cause for atherosclerosis can be 

given but it seems to occur more frequently in those who are over weight due to 

eating, take too little exercise and are under stress and smoke. Therefore cigarette 

smoking and hypertension were independently associated with higher blood viscosity 

together with high pulse wave velocity [40]. Hence, smoking and hypertension may 

change the flow properties of the blood and the behavior of the arterial wall and this 

may explain the arterial damage observed in cigarette smokers and hypertensive 

patients [41, 42]. 

It has been shown that human blood is Newtonian at all rates of shear for hematocrit up 

to about 12%. At low shear rates blood has a higher viscosity than plasma, the viscosity 

of the suspension increases and non-Newtonian behavour is observed as the hamatocrit 

rises, studies of human blood show that viscosity is independent of shear rate when the 

rate is high with a reduction of 2% shear rate the viscosity increases slowly until a shear 

rate less than 15% where it rises steeply [17, 18]. At low shear rate the blood viscosity 

increased since red blood cells can easily form network of aggregated cell structures 

leading to high hematocrit level. At high shear rate the percentage of red blood cells is 

too low to produce the aggregate structures and no yield stresses will be found and blood 

viscosity is low. Blood viscosity in small vessels differs considerably from the viscosity 

in larger vessels. The progressive variation in blood viscosity with the size of the vessels 
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is more evident in vessels with a diameter of 0.1mm to 0.2mm. The variation in blood 

viscosity with vessel size is known as the Fahrawus and Lidquist effect. Moreover due to 

high shear rate near the arterial wall the viscosity of blood is further reduced in that 

region [2, 30]. Hence for flow problems in large blood vessels the blood may be treated 

as an incompressible fluid with variable viscosity, which takes its minimum value near 

the arterial wall and its maximum value along the central region of the artery.  

  

 
1.2 HYDRODYNAMIC STABILITY THEORY 

The subject of hydrodynamic stability deals mainly with the investigation of the time-

space behavior of disturbances in fluid flows. It is a field of active research, because of its 

various applications in aerodynamics, engineering, geophysics, oceanography and 

meteorology. The chief stimulus for research in hydrodynamic stability is the need to 

understand the mechanism of transition to turbulence of laminar flows and the need to 

find possible ways of controlling the transition process. The mechanism of transition to 

turbulence of laminar flows is closely connected with the behavior of disturbances of 

finite amplitudes. Hydrodynamic stability emerged in the nineteenth century as a result of 

many studies [8, 32, 35]. The contribution by Reynolds [7] should however be 

emphasized. Through his series of classic experiments on the instability of flow in pipes, 

Reynolds showed that laminar flow breaks down when the Reynolds number (Re) 

exceeds a certain critical value - the critical Reynolds number (Rec). In [4-6, 10, 16] the 

study of inviscid theory of stability of steady two-dimensional parallel flows was 

initiated. Rayleigh [6] deduced the celebrated theorem on the role of inflection points in 

the velocity profile, and this was independently verified by Reynolds in his also 
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celebrated experiments on transition to turbulence of flow in pipes. The viscous theory 

began with the work of Orr and Sommerfield as described in [9, 25] who independently 

derived the famous Orr-Sommerfield equation. The asymptotic methods of analysis of 

this equation were advanced notably by [12, 15, 26]. The analysis of the Orr-Sommerfield 

equation is rather involved and in any case well covered in the literature. Other works, 

notably [11, 26, 34] have pointed out that the flow structure can be described by 

subdividing the flow field into a multi-layer profile with several asymptotic zones. 

Meanwhile, the use of spectral methods to investigate the stability of various fluid flow 

problems has increased in recent years. The popularity of spectral methods comes from 

the fact that they have been proven to produce more accurate results than the finite 

difference and finite element in numerical schemes [13, 14]. In this project, we envisage 

using the spectral method in our analysis.  

 
 
1.3  MECHANISM OF INSTABILITY 

By saying that a system is stable, we actually mean that all the forces governing that 

system are in equilibrium. In fluid mechanics, these forces are the inertial, viscous, 

pressure or gravitational forces, say. If the fluid is disturbed in such a way that the forces 

acting on it are no longer in equilibrium, then instability sets in. Instability can occur for 

example when a heavier fluid lies on top of a lighter fluid; this will be mainly due to the 

effects of gravitational forces. From physical arguments, it can be conjectured that 

viscous forces can damp out small disturbances and hence act as stabilizing influences [8, 

9]. However, comparison of the results in the viscous and inviscid studies reveals that 

viscosity can also serve as a cause for instability [4-6]. According to the studies of 
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Prandtl [16], viscous forces are capable of inducing Reynolds stresses absent in the non-

viscous cases. If such stress converts energy from the basic flow into the disturbance, it 

could induce instability. Lin [21] later showed that this stress favours the conversion of 

energy into the disturbance motion. 

 

1.4   SMALL DISTURBANCE CONCEPT 

Theoretically speaking, our problem consists of following up in time the behaviour of 

hydrodynamically possible small wave-like disturbances which are imposed on the basic 

steady flow inside the blood vessel. The disturbance may originate, for example, at the 

inlet of a large artery or due to the arterial wall roughness. If the disturbance vanishes 

with time, the basic flow will be considered stable whereas if the disturbance increases 

with time, the flow will be considered unstable [8, 9]. We are concerned with small 

disturbances so that equations governing the behaviour of the disturbances can be 

linearised [21, 32, 34]. This implies that the quadratic or higher order terms in the 

disturbance properties and their derivatives will be very small and can be neglected. The 

linearization process greatly simplifies our task. We consider a linear system of partial 

differential equations and boundary conditions which have coefficients that vary in space 

but not in time (t). In such a case solutions containing an exponential factor such as icte− , 

for some complex number ir iccc +=  ( i.e. the phase speed of the disturbance) may be 

expected We adopt here the method of normal modes, whereby each disturbance is 

resolved into dynamically independent wave components (modes). If there is a phase 

speed whose imaginary part is positive ( 0>ic ) then icte−  will increase indefinitely with 

time so that the corresponding disturbance is amplified, and the basic flow is unstable. 
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The mode is said to be neutrally stable if 0=ic . We say the mode is asymptotically 

stable or just stable if .0<ic  

 

1.5  AIM OF THE STUDY 

This study aims to investigate theoretically the nature of variable viscosity arterial blood 

flow and its stability against small disturbances. 

1.5.1 Specific objectives 

a) To develop a mathematical model for blood flow with variable viscosity in 

a large artery. 

b) To investigate the temporal stability of the basic flow against small 

disturbances. 

c) To investigate the effect of viscosity variation on the flow structure. 

d) To solve high-order linear ordinary differential equations numerically 

using the Chebyshev collocation spectral technique. 

e) To determine the critical values of flow parameters, for example flow 

Reynolds number, disturbance wave number and disturbance wave speed. 
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CHAPTER TWO 
 
 

VARIABLE VISCOSITY ARTERIAL BLLOD FLOW: A 
MATHEMATICAL MODEL  

 
 

2.1 SUMMARY  

In this chapter, a mathematical model is developed by treating blood as an incompressible 

Newtonian fluid with viscosity which is lower near the vessel wall due to the presence of 

plasma layer in this peripheral region than the viscosity in the central core region which 

depends on the hematocrit. The governing equations of continuity and momentum are 

derived and solved. Graphical results are presented and discussed in quantitatively.  

 

2.2 INTRODUCTION  

Blood together with its composition may be classified as an incompressible non-

Newtonian fluid. However, in the course of flow in the large arteries, the red blood cells 

in the vicinity of the arterial wall move to the central region of the artery so that the 

hematocrit ratio becomes quite low near the arterial wall, which results in lower viscosity 

in this region [31, 39, 40]. Moreover, due to high shear rate near the arterial wall, the 

viscosity of blood is further reduced. Mathematically speaking, blood flow theory 

includes solving a system of partial differential equations subject to some boundary or 

initial conditions. The flow in the artery is three dimensional, but the mathematics is 

extremely difficult to handle. Consequently, some assumptions are made to simplify the 
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equations to tractable forms and at the same time preserving the characteristics of the 

flow. The two-dimensional model fairly reduces the problem [1-3, 27-29].  

 

2.3 MATHEMATICAL MODEL 

For the development of mathematical model (as illustrated in fig. 2.3.1 below), the 

following assumptions are made: 

(i) In the large artery, blood is assumed to be an incompressible Newtonian fluid. 

(ii) Due to the presence of plasma layer near the vessel wall, the local viscosity in this 

peripheral region would be close to that of the plasma and it would be lower than the 

viscosity in the central core region which depends on the hematocrit. 

(iii) A two-dimensional flow problem is considered. 

The governing equations of continuity and momentum for axially symmetric flow of 

blood through an artery in dimensionless form under the above mentioned assumption are 

[1-3, 33, 36]; 

 

                                        u = 0,              v = 0,                               y = H 

                    v        

 

                                 u 

 

                                        u = 0,             v = 0,                                 y = -H 

              Figure 2.3.1:  Geometry of the problem 
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where x   and y  are the streamwise and normal coordinates respectively, u and v  are the 

streamwise and normal velocity respectively, t  is the time, P  is pressure, Re  is the 

Reynolds number. Based on the transverse variation in the hematocrit ratio within the 

blood vessel (see Figure 2.3.1), the variable viscosity function µ is modeled as; 

 

   )(sec yh βµ = ,                 (2.3.4)  

 

here β is the blood viscosity variation parameter. It is important to emphasis here that an 

increase in the positive values of β represents a decrease in the blood plasma viscosity in 

the periphery of the arterial wall. The governing Eqs. (2.3.1)-(2.3.3) have been non-

dimensionalised using the following dimensionless variables: 

 

  
.  ,,Re  ,  , 

 ,  ,  ,  ,  ,  ,

0

0

2

γβ
ρ
µ

ν
µ
µµ

ρ

H
x
PG

v
UH

U
PP

H
yy

H
xx

H
tUt

U
vv

U
uu

=
∂
∂

−====

======
     (2.3.5) 

 



 14 

where H is the channel characteristic half width, ρ  is the fluid density, U is the velocity 

scale, v  is the hematocrit viscosity coefficient and G is the constant axial pressure 

gradient parameter.  

 

BASIC FLOW: The basic steady state of the arterial blood flow system corresponds to a 

parallel flow with velocities u = U(y) and v = 0. The equation and the boundary 

conditions describing the basic state are 

G
dy
dU

dy
d

−=







µ ,   .0)1(   ,0)0( == U

dy
dU      (2.3.6) 

 

The solution is given by 
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The volume flux is as follows 
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The skin friction caused by the blood against the arterial wall is given by 
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2.4 RESULTS AND DISCUSSION 

The blood viscosity variation model and the flow basic velocity are computed from 

equations (2.4.1) and (2.4.2) for given fixed values of β and G. Figure (2.4.1) shows the 

transverse variation of arterial blood viscosity with maximum value in the central region 

and minimum value at the arterial wall. It is noteworthy that increasing values of 

viscosity variation parameterβ leads to a decrease in the plasma viscosity near the arterial 

wall and an increase in the viscosity around the central region of the artery due to 

hematocrit concentration. Figure (2.4.2) illustrates the arterial blood velocity profile. 

Generally, a parabolic plane-Poiseuille profile is observed with maximum value along the 

centerline and minimum at the wall. However, an increase in the blood viscosity variation 

parameter causes a further increase in the blood velocity due to a decrease in plasma 

viscosity.  

 

 
Figure 2.4.1: Arterial blood viscosity variation, _____β=0.1, oooooβ=0.5, +++++β=1.0 



 16 

 
 

 
Figure 2.4.2: Velocity profile, G = 2; _____β=0, oooooβ=0.5, +++++β=1.0 
 
 

Figure (2.4.3) depicts the volume flux across the arterial cross-section with increasing 

positive values of β. Interestingly, an increase in the blood volume flux across the artery 

is observed with a decrease in plasma viscosity near in the wall. Hence, more blood will 

flow downstream as β increases in values. Figure (2.4.4) illustrates the variation of 

arterial wall shear stress with increasing values of β. It is noteworthy that a decrease in 

the plasma viscosity near the arterial wall causes an increase in the skin friction, hence 

increasing the possibility of any frictional damage to the arterial wall. 
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Figure 2.4.3: Variation of volume flux (Q) with blood viscosity parameter (β), G= 2. 

 

 

 

 

 
Figure 2.4.4: Variation skin friction (τ) with blood viscosity parameter (β), G=2.  
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CHAPTER THREE 
 
 

ARTERIAL BLOOD FLOW: LINEAR STABILITY ANALYSIS  
 
 

3.0 SUMMARY: In this chapter we derived the equation governing the temporal 

stability of small disturbances in a variable viscosity arterial blood flow. The equation is 

essentially a generalized eigenvalue problem.  

 
 
3.1 INTRODUCTION 
 
Here, we examine the temporal stability of the basic steady flow to small two 

dimensional disturbances in a variable viscosity arterial blood flow. The disturbance may 

originate in the area of a large artery maybe due to the arterial roughness. If the 

disturbance vanishes with respect to time then the basic flow will be considered stable 

and if the disturbance increases with time, the flow will be considered unstable. We are 

concerned with small disturbances so that equation governing the behavior of the 

disturbances can be linearised [8, 9, 21, 25, 26, 34]. This implies that the quadratic or 

higher order terms in the disturbance properties and their derivative will be very small 

and their derivative will be very small and can be neglected. Squire [35] made an 

important contribution to linear stability theory when he discovered that two-dimensional 

waves are the first to become unstable, and that an oblique wave always can be 

transformed into a two-dimensional wave associated with a lower Reynolds number, 

using the today well-known “Squire’s theorem.” This threw a smoke-screen over the 

important role of three-dimensionality, and had the rather counter-productive effect that 

most of the early work concerned only two dimensional waves.  
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3.2 DERIVATION OF STABILITY EQUATION  

Consider the flow of variable viscosity blood flow in a large artery. In two dimensions, 

the governing equations as stated in the previous chapter are 
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In the stability analysis, two-dimensional disturbances will be considered which implies 

that Squire’s transformation [35] is applicable. Introducing small disturbances to the 

basic flow as follows: 

),,,(ˆ)(),,(  ),,,(ˆ),,(  ),,,(ˆ)(),,( tyxpxPtyxptyxvtyxvtyxuyUtyxu +==+=   (3.2.4) 

where vu ˆ  ,ˆ  and p̂  are very small. 

 Eq. (3.2.4) is then substituted into Eqs. (3.2.1)-(3.2.3) and the nonlinear terms are 

neglected. We obtain 
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Following Orszag [14], we seek a normal mode solution for Eqs.(3.2.5)-(3.2.7) defined in 

terms of a stream-function as 
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    ( ) ( ) ( ) ,,, ctxieytyx −= αφψ        (3.2.8) 

where ( )yφ  is the amplitude function and α,c are the disturbances wave speed and wave 

number respectively. The disturbance velocity components can be expressed as follows: 

     ( ) ( ) ,ˆ ctxiey
y

u −′=
∂
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= αφψ                             (3.2.9)  

     ( ) ( )ctxieyi
x
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where the prime symbol denotes differentiation with respect to y. Substituting 

Eqs.(3.2.8)-(3.2.10) into Eqs. (3.2.5) –(3.2.7) and eliminating the pressure terms yields 
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with the boundary conditions 
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Equation (3.2.11) is essentially a generalized eigenvalue problem written in the form   
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where the operators E and B are given by  
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It is noteworthy that Eq.(3.2.11) reduces to the classical Orr-Sommerfield equation [9, 

21] when µ =1 which correspond to constant blood viscosity situation with β =0. In order 

to find a non-trivial functionφ  satisfying Eq. (3.2.11) with boundary conditions (3.2.12), 

the parameters βα Re,,  and c must satisfy a certain complex eigenvalue relation, say 

  ( ) .0Re,,, =βα cF                   (3.2.15)  

For temporal development of the disturbances, α  is real and c is complex which can be 

expressed as 

         ( ) ( )Re,,Re,, βαβα ir iccc +=                 (3.2.16) 

The imaginary part of Eq. (3.2.16) determines whether the disturbances grow or decay. 

When 0>icα  the disturbances grow; when 0=icα  they neither grow nor decay, in this 

case the disturbance modes are said to be neutrally stable.  
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CHAPTER FOUR 
 

 
NUMERICAL ANALYSIS, GRAPHICAL RESULTS AND 

DISCUSSION 

 
4.0 SUMMARY: In this chapter we derived the discretise form of the generalized 

eigenvalue problem governing the temporal stability of small disturbances in variable 

viscosity arterial blood flow. Chebyshev collocation spectral method is employed to 

obtain numerical solutions for the problem. Graphical results and tables showing the 

computations for the most unstable mode, disturbance growth rate, critical Reynolds 

number ceR , the critical wave number αc, the critical wave speed cc and the marginal 

stability curve are obtained for a wide range of the blood viscosity variation parameter β. 

 
4.1 CHEBYSHEV COLLOCATION SPECTRAL METHOD 
 
In this section, we briefly describe the numerical approach employed in solving and 

analyzing the eigenvalue problem resulting from the stability analysis of flow in a 

channel saturated with a porous medium. Consider basis functions φj that are polynomials 

of degree N−1 satisfying φj(xk) = δj,k for the Chebyshev nodes 

   ,
)1(

)1(cos
−Ν
−

=
πkxk  k = 1, . . . ,N.,      (4.1.1) 
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interpolates the points (xj, uj), that is, p(x) = u. The values of the interpolating 

polynomial’s dth derivative at the nodes are 

p(d) (x) = D(d) u,         (4.1.3) 

where the i, jth element of the differentiation matrix D(d) is  )()(
k

d
j xφ . In the spectral 

collocation method for solving differential equations, the interpolating polynomial is 

required to satisfy the differential equation at the interior nodes. The values of the 

interpolating polynomial at the interior nodes are p(x2:N-1) = u2: N-1 = I2:N-1: u and the 

derivative values are uDxp d
NN

d )(
1:21:2

)( )( −− = . Boundary conditions that involve the 

derivative can be handled by using the formulas  

uDuDp d
N

dd )((d))(
1

)( )1(p  ,)1( =−=  .      (4.1.4) 

Now we give a prescription for generating the collocation matrices. Let us denote 

1,...,0,, )( −== NjijidD  (see Canuto et al. [23]) the N x N matrix corresponding to the first 

derivative. It is explicitly given by  
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and  

{ }




−=
−∈

=
2,..,1      ,1
1,0      ,2

Ni
Ni

ci      (4.1.6) 

The Differentiation Matrix Suite [24] provides useful Matlab functions for spectral 

collocation method using Chebyshev polynomials.  
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4.2 APPLICATION OF SPECTRAL COLLOCATION METHOD TO ARTERIAL 

BLOOD FLOW STABILITY PROBLEM 

The eigenvalue problem derived in Chapter (3) will be solved using the Chebyshev 

spectral collocation method where the solution of the differential equation and its 

boundary conditions are expanded as a finite series in Chebyshev polynomials of the 

form 

            ( ) ( ) ( )∑
Ν

=
Ν Τ=≈

ok
jkkj yyy ,~φφφ  Ν=  ..., ,1 ,0j                           (4.2.1) 

where kΤ  is the kth Chebyshev polynomial defined by 

            ( ) ( ) ( ) ( ) ( ) ,02  ,  ,1 1110 =Τ+Τ−Τ=Τ=Τ −+ yyyyyyy kkk   ( ),11 ≤≤− y          (4.2.2) 

kφ
~ represents the unknown coefficients and jy  are the Gauss-Lobatto collocation points 

on [-1,1] defined by 

           ,cos
Ν

=
jy j
π            .,...,1,0 Ν=j                                                  (4.2.3) 

Substituting equation (4.2.3) into (4.2.1) and requiring that the differential equation be 

satisfied at the (N+1) collocation points. We obtain (N+1)x(N+1) algebraic equations 

which form the eigenvalue problem 

           ,φφ Β=Ε c                                                                             (4.2.4)  

where  

 ( ),~,...,~,~
10 Ν

Τ = φφφφ                                                                              (4.2.5) 

is the transpose of the column vectorφ . The clamped boundary conditions are 

incorporated explicitly in the first two and last rows of the matrices E and B by setting   
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the transpose of the column vectorφ . The clamped boundary conditions are incorporated 

explicitly in the first two and last rows of the matrices E and B by setting 

  ( ) ( )
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where 
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 ( )ID 22~ α−=Β                   (4.2.9) 

( )[ ] IyUdiagU j ,=  is the (N+1)x(N+1) identity matrix and D is the usual differential 

matrix (Canuto et al. [23]). Here [ ]diag  means that the entries placed on the main 

diagonal of an (N+1)x(N+1) matrix with the rest of the entries being zero. Using this 

approach, results in the matrix B being singular. The problem is avoided by employing 

the idea of Weidmann and Reddy [24] i.e. using Hermite interpolating polynomials that 

satisfy the boundary conditions, thus, we obtain 

 ,0~
0 =φ             ∑

Ν

=

=
0

0 0~
n

nnD φ    on ,1=y        (4.2.10) 

 ,0~
=Νφ  ∑

Ν

=
Ν =

0
0~

n
nnD φ    on .1−=y                               (4.2.11) 
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4.3 RESULTS AND DISCUSSION  

Chebyshev spectral collocation method is implemented in MATLAB 5.1 to compute the 

fastest growing mode although there is no reason to believe that more than one mode of 

the present problem grows for given fixed values of β , G, α and Re. The convergence 

rate of the spectral method employed in the numerical experiment is demonstrated in 

Table 4.3.1. It is interesting to note that at N=70 to N=100 the imaginary part of the most 

unstable mode converge up to 8 digits and from N= 80 to N=100 the convergence rate 

increased up to imaginary10 digits. Hence, the convergence rate increases with an 

increase in the size of derivative matrix and the collocation points employed in the 

computation.  Table 4.3.2 shows the numerical results for the eigenvalues of the most 

unstable mode for increasing values of β at fixed values of G, α and Re. It is interesting 

to note that a slight increase in the values of β due to a decrease in blood plasma viscosity 

near the arterial wall has the effect of decreasing the imaginary parts of the wavespeed. 

This shows that an increase in a decrease in blood plasma viscosity has a stabilising 

effect on the flow. decrease in blood plasma viscosity near the arterial wall acts like a 

control parameter that eliminates the growth of small disturbances in the flow field. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 27 

 
Table 4.3.1: Computations showing the convergence of the procedure most unstable 
mode (G = 2, 10000=eR , α=1,β =1)   

 
      N c (waves speed) 

10 0.56720767556780 - 0.00294408098869i 
20 0.25611034993082 - 0.00929922067276i 
30 0.26848937286877 - 0.00010690738790i 
40 0.26846507294410 - 0.00143442422134i 
50 0.26837157858502 - 0.00145411481056i 
60 0.26836641964802 - 0.00145379743103i 
70 0.26836621819964 - 0.00145385265964i 
80 0.26836621533910 - 0.00145385712210i 
90 0.26836621537906 - 0.00145385722646i 
95 0.26836621539255 - 0.00145385720451i 
100 0.26836621553378 - 0.00145385703953i 

 
 

 
 
Table 4.3.2: Computations showing the eigenvalue of the most unstable mode (G=2, 

10000=eR Re=20000, 1=α ,N=100 ) 
 

β  (waves number) c (waves speed) 
0.0000000000 0.23752648888092 + 0.00373967084384i 
0.1000000000 0.23783691596441 + 0.00364708008511i 
0.2000000000 0.23876667964504 + 0.00337568670771i 
0.3000000000 0.24031185075161 + 0.00294413963135i 
0.4000000000 0.24246778028024 + 0.00238189269759i 
0.5000000000 0.24523135666099 + 0.00172677584590i 
0.6000000000 0.24860316820788 + 0.00102176838274i 
0.7000000000 0.25258895109069 + 0.00031134840173i 
0.8000000000 0.25719998734185 - 0.00036202427177i 
0.9000000000 0.26245247446899 - 0.00096074513624i 
1.0000000000 0.26836621553378 - 0.00145385703953i 
5.0000000000 15.99128665570440 - 0.03365818644236i 
6.0000000000 38.32239623023935 - 0.01462612066866i 
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Table 4.3.3: Computations showing the eigenvalue of the most unstable mode (G=2, 

10000=eR Re=20000, 1=β , N=100) 
 

α (waves number) c (waves speed) 
0.1000000000 0.54918892627669 - 0.09958491169248i 
0.2000000000 0.46793110681176 - 0.07316298645205i 
0.3000000000 0.42472646669667 - 0.06278459365044i 
0.4000000000 1.20834227248723 - 0.05566598516907i 
0.5000000000 0.18822548792957 - 0.04368189196264i 
0.6000000000 0.21067169267241 - 0.02782403998107i 
0.7000000000 0.22896852233968 - 0.01408636148472i 
0.8000000000 0.24428709628862 - 0.00518093718562i 
0.9000000000 0.25743106050596 - 0.00116903915401i 
1.0000000000 0.26836621553378 - 0.00145385703953i 
5. 0000000000 1.24828993857017 - 0.01482611451890i 

 
 

Table 4.3.3 shows that increasing values of the disturbance wave number is destabilizing. 

The critical Reynolds number Rec and the critical wave number αc at the instability 

threshold for varying values of β are shown in Table 4.3.4.   For β =0, the result obtained 

is in perfect agreement with the one reported in [14]. We observe that an increase in β 

leads to an increase in the critical Reynolds number and a slight decrease in the critical 

wavespeed. This means that the stable region in (Re, α)-plane increases as the plasma 

viscosity decreases (see Figure 4.3.2). Figure 4.3.1 shows the variation in the growth rate 

of the most unstable mode against the wavenumber. It is interesting to note that 

increasing values of β have the effect of damping the disturbances.  
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Table 4.3.4 Computations showing the critical value at which unstable modes begin to 
exist (G=2 ) 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.3.1: Growth rate αci for Re = 20000. 
 
 
 

β            α        Rec 

00 1.02052 5772.2283 
0.1 1.00260 5869.2054 
0.2 1.01260 6053.6434 
0.3 1.00955 6408.1816 
0.4 0.99225 6886.2840 
0.5 0.98561 7492.1303 
0.6 0.96705 8176.7969 
0.7 0.95429 8915.4290 
0.8 0.94512 9649.2259 
0.9 0.94015 10323.7569 
1.0 0.93110 10878.4282 
2.0 0.90211 84799.4481 
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Figure 4.3.2: Marginal stability curve for G = 2. 
 
 
 

 

4.4 CONCLUSIONS  

The Chebyshev spectral collocation method implemented in MATLAB is employed to 

investigate the temporal development of small disturbances in a variable viscosity arterial 

blood flow due to variation in plasma viscosity. We obtained accurately the critical 

Reynolds number Rec and the critical wave number αc for increasing positive values of 

blood viscosity variation parameter. The velocity increases with increasing values of 

viscosity parameter (β). Increasing values of viscosity parameter (β) also produce a 

decrease in the disturbances growth rate. Finally, it is observed that a decrease in plasma 

viscosity near the arterial wall has a stabilizing effect on the flow. 
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APPENDIX 
 
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
%@  Cheb computer D= differentiation Matrix,  
%@  x=Chebyshev Grid 
%@ 
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
 
function [D,x] = cheb(N) 
 
if N==0, 
   D=0;  
   x=1;  
   return,  
end 
x = cos(pi*(0:N)/N)'; 
c = [2; ones(N-1,1);2].*(-1).^(0:N)'; 
X = repmat(x,1, N+1); 
dX = X-X'; 
D = (c*(1./c)')./(dX +(eye(N+1)));     % Off-diagonal entries 
D = D - diag(sum(D'));                 % diagonal entries 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
%  The progrqam komaneM.m computes the eigenvalues of the Orr-      
Sommerfeld 
%  of the arteria blood flow, you input in the value of beta and it 
will   
% give you the most unstable eigenvalue and alpha is fixed at 1. 
%  equation using N+1xN+1 Chebyshev differentiation matrices. 
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
 
N=100; 
[D,y]=cheb(N); 
D2=D^2; 
D3=D^3; 
D4=D^4; 
I=eye(N+1); 
 
G=2; 
alpha =1; 
R= 10000; 
 
disp('                                                                                                                  
')    
disp('                                                                                                                  
') 
disp('        This Programs gives us the most unstable eigenvalue                      
') 
disp('                                                                                 
') 



 32 

disp(' *************************************************************') 
disp('    *                                                         ') 
disp('    *               Renold Number = 10000                     ') 
disp('    *               Alpha = 1                                 ') 
disp('    *               N = 100                                   ') 
disp(' *************************************************************') 
disp('                                                                                                                  
') 
  beta = input(' YOU CAN GIVE THE VALUE OF BETA=  '); 
disp('                                                              ') 
disp('                                                              ') 
 
if(beta==0) 
   U= diag(((-1/2*G)*y.^2 + (1/2)*G) + (((-1/8)*G)*y.^4 + 
(1/8)*G)*beta^2); 
   U2= diag((-G)+(-3/2*G*y.^2)*beta^2); 
    
else    
 U = diag((-G*y.*sinh(beta*y)/beta) + (G*cosh(beta*y)/(beta^2))+ 
((G*sinh(beta))/beta)-(G*cosh(beta))/(beta^2)); 
   U2 = diag((-G*cosh(beta*y))-((G*beta)*y).*sinh(beta*y));   
end 
  
M = diag(sech(beta*y)); 
M1 = diag(beta*(-sech(beta*y)).*tanh(beta*y)); 
M2 = diag((beta^2)*(sech(beta*y).*(tanh(beta*y).^2) - sech(beta*y).*(1-
tanh(beta*y).^2))); 
 
A = U*(D2 - alpha^2*I)- U2*I + (i*M/(alpha*R))*( D4 - (2*alpha^2)*D2 + 
alpha^4*I) + i*((2*M1)/(alpha*R))*( D3 - (alpha^2)*D) + 
(i*M2/(alpha*R))*(D2 + (alpha^2)*I);    
 
B = (D2- alpha^2*I); 
 
 
A(1,:)=0; 
A(N+1,:)=0; 
B(1,:)=0; 
B(N+1,:)=0; 
A(2,:)=D(1,:); 
A(N,:)=D(N+1,:); 
B(2,:)=0; 
B(N,:)=0; 
A1=A(2:N,2:N); 
B1=B(2:N,2:N); 
 
V=eig(A1,B1); 
V=V(5:N-5); 
[kk,jj]=max(imag(V)); 
cc=V(jj); 
 
disp('                                                            ') 
disp('    The most Unstable eigenvalue is  ');    
disp('                                                            ') 
disp(cc) 
disp('                                                            ') 
disp('                                GOD BLESS YOU       ') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
 
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
%  The progrqam komaneal.m computes the eigenvalues of the Orr-
 Sommerfeld 
%  of the arteria blood flow, you input in the value of beta to be        
%  fixed.   
% give you the most unstable eigenvalue at different value of alpha. 
%  equation using N+1xN+1 Chebyshev differentiation matrices. 
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
 
N=100; 
[D,y]=cheb(N); 
D2=D^2; 
D3=D^3; 
D4=D^4; 
I=eye(N+1); 
 
G=2; 
beta=1, 
R= 10000; 
 
disp('                                                              ')    
disp('                                                              ') 
disp('        This Programs gives us the most unstable eigenvalue   ') 
disp('                                      
                         ') 
 
 
disp('***************************************************************') 
disp('    *                                                                            
') 
disp('    *               Renold Number = 10000                                        
') 
disp('    *               beta = 1                                                     
') 
disp('    *               N = 100                                                      
') 
disp('**********************************************************') 
disp('                                                          ') 
 alpha = input(' YOU CAN GIVE THE VALUE OF alpha=  '); 
disp('                                                          ') 
disp('                                                          ') 
 
if(beta==0) 
   U= diag(((-1/2*G)*y.^2 + (1/2)*G) + (((-1/8)*G)*y.^4 + 
(1/8)*G)*beta^2); 
   U2= diag((-G)+(-3/2*G*y.^2)*beta^2); 
    
else    
 U = diag((-G*y.*sinh(beta*y)/beta) + (G*cosh(beta*y)/(beta^2))+ 
((G*sinh(beta))/beta)-(G*cosh(beta))/(beta^2)); 
   U2 = diag((-G*cosh(beta*y))-((G*beta)*y).*sinh(beta*y));   
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end 
  
M = diag(sech(beta*y)); 
M1 = diag(beta*(-sech(beta*y)).*tanh(beta*y)); 
M2 = diag((beta^2)*(sech(beta*y).*(tanh(beta*y).^2) - sech(beta*y).*(1-
tanh(beta*y).^2))); 
 
A = U*(D2 - alpha^2*I)- U2*I + (i*M/(alpha*R))*( D4 - (2*alpha^2)*D2 + 
alpha^4*I) + i*((2*M1)/(alpha*R))*( D3 - (alpha^2)*D) + 
(i*M2/(alpha*R))*(D2 + (alpha^2)*I);    
 
B = (D2- alpha^2*I); 
 
 
A(1,:)=0; 
A(N+1,:)=0; 
B(1,:)=0; 
B(N+1,:)=0; 
A(2,:)=D(1,:); 
A(N,:)=D(N+1,:); 
B(2,:)=0; 
B(N,:)=0; 
 
A1=A(2:N,2:N); 
B1=B(2:N,2:N); 
 
V=eig(A1,B1); 
V=V(5:N-5); 
[kk,jj]=max(imag(V)); 
cc=V(jj); 
 
disp('                                                                            
') 
disp('    The most Unstable eigenvalue is  ');    
disp('                                                                            
') 
disp(cc) 
disp('                                                                            
') 
disp('                                GOD BLESS YOU       ') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
%  The progrqam komaneN.m computes the eigenvalues of the Orr-
Sommerfeld 
%  of the arteria blood flow, you input in the value of N and it will   
% give you the most unstable eigenvalue and alpha is fixed at 1 also 
beta=1. 
%  equation using N+1xN+1 Chebyshev differentiation matrices. 
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
 
disp('                                                            ')    
 
N = input(' YOU CAN GIVE THE VALUE OF N=  '); 
disp('                                                            ')    
[D,y]=cheb(N); 
D2=D^2; 
D3=D^3; 
D4=D^4; 
I=eye(N+1); 
 
G=2; 
alpha =1; 
R= 10000; 
beta=1; 
 
disp('                                                            ')    
disp('                                                            ') 
disp(' This Programs gives us the most unstable eigenvalue at differece 

N value ') 
disp('                                                            ') 
disp('************************************************************') 
disp('*                                                           ') 
disp('*               Renold Number = 10000                       ') 
disp('*               Alpha = 1                                   ') 
disp('*               Beta = 1                                    ') 
disp('************************************************************') 
disp('                                                             ') 
 
disp('                                                             ') 
disp('                                                             ') 
 
if(beta==0) 
   U= diag(((-1/2*G)*y.^2 + (1/2)*G) + (((-1/8)*G)*y.^4 + 
(1/8)*G)*beta^2); 
   U2= diag((-G)+(-3/2*G*y.^2)*beta^2); 
    
else    
 U = diag((-G*y.*sinh(beta*y)/beta) + (G*cosh(beta*y)/(beta^2))+ 
((G*sinh(beta))/beta)-(G*cosh(beta))/(beta^2)); 
   U2 = diag((-G*cosh(beta*y))-((G*beta)*y).*sinh(beta*y));   
end 
  
M = diag(sech(beta*y)); 
M1 = diag(beta*(-sech(beta*y)).*tanh(beta*y)); 
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M2 = diag((beta^2)*(sech(beta*y).*(tanh(beta*y).^2) - sech(beta*y).*(1-
tanh(beta*y).^2))); 
 
A = U*(D2 - alpha^2*I)- U2*I + (i*M/(alpha*R))*( D4 - (2*alpha^2)*D2 + 
alpha^4*I) + i*((2*M1)/(alpha*R))*( D3 - (alpha^2)*D) + 
(i*M2/(alpha*R))*(D2 + (alpha^2)*I);    
 
B = (D2- alpha^2*I); 
 
 
A(1,:)=0; 
A(N+1,:)=0; 
B(1,:)=0; 
B(N+1,:)=0; 
A(2,:)=D(1,:); 
A(N,:)=D(N+1,:); 
B(2,:)=0; 
B(N,:)=0; 
 
A1=A(2:N,2:N); 
B1=B(2:N,2:N); 
 
V=eig(A1,B1); 
V=V(5:N-5); 
[kk,jj]=max(imag(V)); 
cc=V(jj); 
 
disp('                                     ') 
disp('    The most Unstable eigenvalue is  ');    
disp('                                                                                                                  
') 
disp(cc) 
disp('                                                    ') 
disp('                                GOD BLESS YOU       ') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
 
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@ 
%  The script file komane.m computes the eigenvalues of the Orr-
Sommerfeld 
%  and it has been used or called by different file to be runed. 
%  This program is importand to execute other programs. 
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@ 
 
N=100; 
[D,y]=cheb(N); 
D2=D^2; 
D3=D^3; 
D4=D^4; 
I=eye(N+1); 
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G=2; 
 
if(beta==0) 
   U= diag(((-1/2*G)*y.^2 + (1/2)*G) + (((-1/8)*G)*y.^4 + 
(1/8)*G)*beta^2); 
   U2= diag((-G)+(-3/2*G*y.^2)*beta^2); 
    
else    
 U = diag((-G*y.*sinh(beta*y)/beta) + (G*cosh(beta*y)/(beta^2))+ 
((G*sinh(beta))/beta)-(G*cosh(beta))/(beta^2)); 
   U2 = diag((-G*cosh(beta*y))-((G*beta)*y).*sinh(beta*y));   
end 
  
M = diag(sech(beta*y)); 
M1 = diag(beta*(-sech(beta*y)).*tanh(beta*y)); 
M2 = diag((beta^2)*(sech(beta*y).*(tanh(beta*y).^2) - sech(beta*y).*(1-
tanh(beta*y).^2))); 
 
A = U*(D2 - alpha^2*I)- U2*I + (i*M/(alpha*R))*( D4 - (2*alpha^2)*D2 + 
alpha^4*I) + i*((2*M1)/(alpha*R))*( D3 - (alpha^2)*D) + 
(i*M2/(alpha*R))*(D2 + (alpha^2)*I);    
 
B = (D2- alpha^2*I); 
 
 
A(1,:)=0; 
A(N+1,:)=0; 
B(1,:)=0; 
B(N+1,:)=0; 
A(2,:)=D(1,:); 
A(N,:)=D(N+1,:); 
B(2,:)=0; 
B(N,:)=0; 
 
A1=A(2:N,2:N); 
B1=B(2:N,2:N); 
 
V=eig(A1,B1); 
V=V(5:N-5); 
[kk,jj]=max(imag(V)); 
 
pp= max(imag(V)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This program plots the rate of growth curve. This program calls  
%%  komane.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
vstore=[]; 
aa=[]; 
vstore=[vstore,0]; 
aa=[aa,0]; 
R=20000; 
astep=0.005; 
beta=0; 
for alpha = 0.5:astep:1.1, 
   komane; 
   vstore=[vstore,alpha*pp]; 
   aa=[aa,alpha]; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This program komaneR.m computes the Reynolds number on the  
%%  marginal stability curve for a given value of the wavenumber alpha 
%%  and beta it call komane.m program. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
error = 0; 
Rstepdiv=5; 
Rstepinitial=100; 
Rmax=100100;  
Rstepmin=19; 
itermax=10000; 
itertolerance=0.0000001; 
Rstep = Rstepdiv * Rstepinitial; 
Rmin=4000; 
R = Rmin; 
Xa = Rmin;  
disp('                           ')   
beta = input(' YOU CAN GIVE THE VALUE OF BETA=            '); 
disp('                         ')  
alpha = input(' YOU CAN GIVE THE VALUE OF ALPHA =         '); 
disp('                         ')   
komane; 
 
Ya = max(imag(V)); 
if Ya > 0  
 error = 1; 
        error('initial Reynolds to large ...'); 
end 
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Yb = -1; 
while (Rstep > Rstepmin  & Yb < 0) 
 Rstep = Rstep/Rstepdiv; 
 R = Rmin; 
 while (Yb < 0 & R < Rmax), 
  R = R + Rstep; 
  komane; 
  Yb = max(imag(V)); 
 end 
end 
Xb = R; 
if Yb < 0, 
 error = 1; 
 error('localisation fails ...'); 
end 
Y = Yb;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%           CONVERGENCE TO THE ROOT 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
iterorr2=0; 
arretnewton=0; 
while (iterorr2 < itermax & abs(Y) > itertolerance), 
   R = Xa - Ya*(Xb-Xa)/(Yb-Ya); 
   komane; 
   Y = max(imag(V)); 
   if Y >= 0 
      Xb = R; 
      Yb = Y; 
   else 
   Xa = R; 
   Ya = Y; 
   end 
      iterorr2 = iterorr2+1; 
   end 
  Rec = R; 
disp('   The Reynolds number is ');    
disp('                                            ') 
disp(R) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%*************************************************************** 
%*************************************************************** 
% The program name is komane2.m its calls 'renoldnumber.m'   
% It compute the critical value at which the unstable modes 
% begin to exist. 
% As you run the program you input the value of beta first  
% and type the word 'alpha' to get the wave number at which   
% the most unstable occure andtype the word 'Rec' to find 
% the critical value at which the unstable modes begin to exist 
%*************************************************************** 
 
 
Recerr = 100000; 
RR0=100000; 
Rmin=5000; 
alpha =1.01; 
 
disp(' ************************************************************ ') 
disp(' * It compute the critical value at which the    ') 
disp(' * unstable modes begin to exist        ')          
disp(' *                         ')          
disp('                          ')          
disp(' Type "Rec" for reynold Number  or "alpha" for the wave Number')          
 
disp('                ')          
beta = input(' YOU CAN GIVE THE VALUE OF BETA=  '); 
disp('                ')          
disp('                ')          
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  This is the increment value looping.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
steph=0.0001; 
 
while (Recerr > 0), 
   renoldnumber; 
   Recerr = RR0-Rec; 
   RR0=Rec; 
   alpha = alpha + steph; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This program renoldnumber.m computes the corresponding Reynolds   
%% number on the marginal stability curve for a given value of the  
%% wavenumber alpha and beta it call komane.m program. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
error = 0; 
Rstepdiv=5; 
Rstepinitial=100; 
Rmax=100100;  
Rstepmin=19; 
itermax=10000; 
itertolerance=0.0000001; 
Rstep = Rstepdiv * Rstepinitial; 
Rmin=4000; 
R = Rmin; 
Xa = Rmin;  
 
komane; 
 
Ya = max(imag(V)); 
if Ya > 0  
 error = 1; 
        error('initial Reynolds to large ...'); 
end 
Yb = -1; 
while (Rstep > Rstepmin  & Yb < 0) 
 Rstep = Rstep/Rstepdiv; 
 R = Rmin; 
 while (Yb < 0 & R < Rmax), 
  R = R + Rstep; 
  komane; 
  Yb = max(imag(V)); 
 end 
end 
Xb = R; 
if Yb < 0, 
 error = 1; 
 error('localisation fails ...'); 
end 
Y = Yb;  
 
iterorr2=0; 
arretnewton=0; 
while (iterorr2 < itermax & abs(Y) > itertolerance), 
   R = Xa - Ya*(Xb-Xa)/(Yb-Ya); 
   komane; 
   Y = max(imag(V)); 
   if Y >= 0 
      Xb = R; 
      Yb = Y; 
   else 
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   Xa = R; 
   Ya = Y; 
   end 
      iterorr2 = iterorr2+1; 
   end 
  Rec = R; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This program komane4.m plot the graph of the wave number verses  
%% the Reynolds number. It shows the region of the stability at  
%% difference value of beta, It call komane.m program and renoldnumber. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
disp('                                            ') 
  beta = input(' YOU CAN GIVE THE VALUE OF BETA=  '); 
disp('                                            ') 
 
 
alpha = 0.75; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
renoldnumber; 
R = Rec; 
ainit = alpha; 
Rinit = R; 
a0 = alpha; 
R0 = R; 
normgradient = 10; 
curvepoints=500; 
curvenumber =0; 
curvegradient=0.00001; 
dR=0.1; 
da=0.001; 
curvestep=0.005; 
for Icurve = 1:curvepoints, 
 criticalrey(Icurve) = 0; 
end 
while (normgradient > curvegradient & curvenumber < curvepoints ), 
curvenumber = curvenumber + 1; 
% Estimation of dc / dR 
R = R0; 
alpha = a0; 
komane; 
c0 = pp; 
R = R0 + dR; 
alpha = a0; 
komane; 
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c = pp; 
dcdR = (c - c0)/dR*10000; 
R = R0; 
alpha = a0 + da; 
komane; 
c = pp; 
dcda = (c - c0)/da; 
%%%%%%%%%%%%%% Norm of the gradient.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
normgradient = sqrt(dcda*dcda + dcdR*dcdR); 
%%%%%%%%%%%%%%%%Incrementation.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
a0 = a0 + dcdR/normgradient*curvestep; 
R0 = R0 - dcda/normgradient*curvestep*10000; 
criticalrey(curvenumber) = R0 + i * a0; 
end 
nn=real(criticalrey); 
mm=imag(criticalrey); 
plot(nn,mm) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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