COMPARATIVE STUDY OF VITAMIN B12 AND HOLOTRANSCOBALAMIN OR ACTIVE B12 AS A MARKER FOR VITAMIN B12 DEFICIENCY AT DR GEORGE MUKHARI HOSPITAL

By

Dr Louise M Murray

Submitted in partial fulfillment of the requirements for the degree

MMED (CHEMICAL PATHOLOGY)

In the Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences

University of Limpopo (Medunsa Campus)

2012

Supervisor: Prof HF Joubert

Co-supervisor: Dr M de Jongh

Department of Chemical Pathology

University of Limpopo (Medunsa Campus)
DECLARATION

I, Dr LM Murray, hereby declare that this work, unless where acknowledged, is my own. It is being submitted in partial fulfillment of MMed in Chemical Pathology, in the Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences at the University of Limpopo, Medunsa campus.

... ...
Signature of candidate Date
ACKNOWLEDGEMENTS

Many people have made important contributions towards the completion of this project:

1. My Lord and Savior, Jesus Christ, for the potential and love invested in me.

2. My husband and family whose support and understanding helped me through.

3. My supervisor Prof HF Joubert, thank you for your guidance and assistance through this project, I appreciate it.

4. My co-supervisor Dr M De Jongh, thank you for your patience, time and constant input throughout this process, it is greatly appreciated.

5. Mr M Dreyer, thank you for your help, time and understanding with the method validation process.

6. Mr F Kuhn, thank you for the help in ordering the kits.

7. Financial assistance from the National Health Laboratory Service Research Trust
Abstract

Aim: This study was undertaken to compare the diagnostic sensitivity and specificity of total vitamin B12 analyses to active B12 (holoTC) analyses in a population of patients attending the Dr George Mukhari Hospital in Pretoria.

Methods: Routine serum folate, full blood count (FBC), thyroid function test, homocysteine, serum total vitamin B12 and active B12 analyses were performed on 30 samples.

Results: Serum folate was determined in all patients and 96% of the patients had a normal folate value. When looking at the FBC results it is important to note that three times as many males as females presented with anemia (36% versus 16%). Thyroid function tests were normal in 90% of patients. When the total vitamin B12 test was performed only 10% of patients tested positive for vitamin B12 deficiency, in contrast to the active B12 analyses where 16% of patients tested positive for vitamin B12 deficiency. Both tests had a diagnostic sensitivity of 50%. The diagnostic specificity for total vitamin B12 was 93% in comparison with the 86% obtained by the active B12 analyses; when homocysteine was used as the true marker for vitamin B12 deficiency.

Conclusion: Diagnostic sensitivity was the same and the total vitamin B12 test’s specificity was better in comparison to the active B12 analyses. Thus the active B12 assay cannot be recommended for routine use, since it has no benefit.
TABLE OF CONTENTS

Title page i
Declaration ii
Acknowledgements iii
Abstract iv
Table of contents v
List of figures ix
List of tables ix
List of abbreviations x

Chapter 1: Literature review and experimental proposal

1.1 Introduction 1
1.2 Cyanocobalamin 2
1.2.1 Chemistry 2
1.2.2 Dietary sources 3
1.2.3 Absorption, transport, metabolism and excretion 3
1.2.4 Functions 4
1.2.5 Requirements 5
1.2.6 Deficiency 6
1.2.7 Comparison of clinical and subclinical cobalamin deficiency

1.2.8 Toxicity

1.2.9 Screening and laboratory assessment

1.2.9 Treatment

1.2.10 Reference Intervals

1.3 Anaemia

1.3.1 Classification of anaemia

1.3.2 Megaloblastic anaemias

1.3.3 Causes of megaloblastic anaemias

1.4 Folate

1.4.1 Absorption, transport and function

1.4.2 Vitamin B12 interaction with folate or folic acid

1.4.3 Folate deficiency

1.4.4 Diagnosing folate deficiency

1.4.5 Effects of vitamin B12 and folate deficiency

1.4.6 Laboratory findings

1.4.7 Homocysteine and folate metabolism

1.5 Active vitamin B12 or holotranscobalamin (HoloTC)

1.6 Method validation
1.7 Assess the clinical accuracy of the test 29
1.7.1 Diagnostic or clinical sensitivity and specificity 29
1.8 Experimental proposal 31
1.8.1 Problem statement 31
1.8.2 Aim and objective 32
1.8.2.1 Aim 32
1.8.2.2 Specific objectives 32
1.8.3 Expected significance of the study 32

Chapter 2: Materials and methods

2.1 Ethical consideration 34
2.2 Study design and site 34
2.3 Study population and sample size 34
2.4 Inclusion criteria 36
2.5 Exclusion criteria 36
2.6 Homocysteine 36
2.7 Laboratory methods 37
2.7.1 Serum folate 37
2.7.2 Full blood count 37
2.7.3 Thyroid function test 37
Chapter 3: Results

3.1 Patients demographics

3.2 Serum folate

3.3 Full blood count

3.4 Thyroid function test

3.5 Vitamin B12 determination

3.5.1 Routine vitamin B12

3.5.2 Active B12

3.5.3 Validation for active B12

3.6 Homocysteine

3.7 Calculation of sensitivity and specificity

3.8 Measurement of uncertainty (MU)
Chapter 4: Discussion

Chapter 5: Conclusion

References

List of figures

<table>
<thead>
<tr>
<th>Figure no</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>The structure of vitamin B12</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Functions of vitamin B12</td>
</tr>
</tbody>
</table>

List of tables

<table>
<thead>
<tr>
<th>Table no</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Results of patients (n = 30)</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>IQC, MU provided by the manufacturer, the standard MU and the expanded MU with a 95% confidence level for folate</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>IQC, MU provided by the manufacturer, the standard MU and the expanded MU with a 95% confidence level for Hb</td>
</tr>
</tbody>
</table>
Table 3.4 IQC, MU provided by the manufacturer, the standard MU and the expanded MU with a 95% confidence level for folate TFT 46

Table 3.5 IQC, MU provided by the manufacturer, the standard MU and the expanded MU with a 95% confidence level for vitamin B12 47

Table 3.6 IQC, MU provided by the manufacturer, the standard MU and the expanded MU with a 95% confidence level for active B12 49

Table 3.7 IQC, MU not provided by the manufacturer, the standard MU and the expanded MU with a 95% confidence level for homocysteine 50

List of abbreviations

CoA Coenzyme A
CLIA Clinical Laboratory Improvement Amendments
CV Coefficient of variation
Da Dalton
DGM Dr George Mukhari
DNA Deoxyribonucleic acid
dTMP Deoxythymidine monophosphate
dUMP Deoxyuridine monophosphate
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DxI</td>
<td>Beckman Coulter UniCel DxI 800 Immunoassay System</td>
</tr>
<tr>
<td>e.g.</td>
<td>exempli gratia (for example)</td>
</tr>
<tr>
<td>FBC</td>
<td>Full blood count</td>
</tr>
<tr>
<td>FN</td>
<td>False negative</td>
</tr>
<tr>
<td>FP</td>
<td>False positive</td>
</tr>
<tr>
<td>FT3</td>
<td>Free triiodothyronine</td>
</tr>
<tr>
<td>FT4</td>
<td>Free thyroxine</td>
</tr>
<tr>
<td>g/dl</td>
<td>gram per deciliter</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography mass spectrometry</td>
</tr>
<tr>
<td>GUM</td>
<td>Guide to the Expression of Uncertainty in Measurement</td>
</tr>
<tr>
<td>Hb</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>HC</td>
<td>Haptocobalamin</td>
</tr>
<tr>
<td>Hct</td>
<td>Hematocrit</td>
</tr>
<tr>
<td>H⁺/K⁺ ATPase</td>
<td>Hydrogen potassium adenosine triphosphate enzyme(ase)</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>holoTC</td>
<td>Holotranscobalamin</td>
</tr>
<tr>
<td>IF</td>
<td>Intrinsic factor</td>
</tr>
<tr>
<td>IQC</td>
<td>Internal quality control</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Liquid chromatography tandem mass spectrometry</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean cell volume</td>
</tr>
<tr>
<td>MEIA</td>
<td>Microparticle enzyme immunoassay</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
</tbody>
</table>
mIU/l milli International Units per litre
MU Measurement of uncertainty
ng/l nanogram per litre
NHANES National Health and Nutritional Examination Survey
NHLS National Health Laboratory Services
NIST National Institute of Standards and Technology
nmol/l nanomol per litre
pmol/l picomol per litre
RBC Red blood cell
RDA Recommended daily amount
RE Random error
SD Standard deviation
SE Systematic error
SRM Standard Reference Material
TC Transcobalamin
TC-II Transcobalamin II
TE Total error
TFT Thyroid function test
THF Tetrahydrofolate
TN True negative
TP True positive
TSH Thyroid stimulating hormone
µg microgram
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/100g</td>
<td>microgram per 100 gram</td>
</tr>
<tr>
<td>µg/day</td>
<td>microgram per day</td>
</tr>
<tr>
<td>µmol/l</td>
<td>micromol per litre</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>