THE INFLUENCE OF FORAGE LEGUMES ON ANNUAL FODDER GRASSES
IN DIFFERENT INTERCROPPING SYSTEMS IN THE LIMPOPO PROVINCE

A DISSERTATION
SUBMITTED TO THE SCHOOL OF AGRICULTURE AND ENVIRONMENTAL
SCIENCES OF THE UNIVERSITY OF THE NORTH

BY

MAHLODI SOLOMON BOLOKO
(B Agric. Education, B Agric Hons. UNIN)

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
MASTER OF AGRICULTURAL MANAGEMENT

NOVEMBER, 2004
TABLE OF CONTENTS

DESERATION

ACKNOWLEDGEMENT

DEDICATION

LIST OF FIGURES

LIST OF TABLES

THESIS ABSTRACT

CHAPTER 1

1 INTRODUCTION AND LITERATURE REVIEW

1.1 ANIMAL PRODUCTION IN THE LIMPOPO PROVINCE

1.2 THE POSSIBLE ROLE OF PLANTED PASTURES IN THE PROVINCE

1.2.1 Motivation for the use of legumes

1.2.2 Motivation for the choice of species

1.2.3 INTERCROPPING

1.2.3.1 THE ADVANTAGES OF INTERCROPPING

1.2.3.2 OVERYIELDING

1.2.4 THE PRODUCTION OF FODDER GRASS/LEGUME MIXTURES

1.3 Hypothesis of the study

1.6 The objective of the study

CHAPTER 2

2 MATERIAL AND METHODS
2.1 EXPERIMENTAL SITE
2.1.1 The UNIN Experimental farm 22-24
2.1.2 The PTK Experimental farm 24-26
2.1.3 The Dan district 26-28

2.2 TREATMENTS 28-29

2.3 PREPARATION AND LAYOUT OF EXPERIMENTAL PLOTS 29

2.4 ESTABLISHMENT OF THE CROPPING SYSTEMS 29-30

2.5 DATA COLLECTION 30-33

2.6 DATA ANALYSIS 33

CHAPTER 3

3 RESULTS ON THE UNIVERSITY OF THE NORTH EXPERIMENTAL FARM 34

3.1 TOTAL DM PRODUCTION (t ha\(^{-1}\)) OF DIFFERENT COMPONENTS 34

3.1.1 DM production of the grass/legume mixtures 34-35

3.2 THE EFFECT OF CUTTING TREATMENTS AND CROPPING SYSTEMS ON DM PRODUCTION (t ha\(^{-1}\)) OF THE GRASS/LEGUME MIXTURES 35

3.3 GRASS/LEGUME RATIOS 35-36

3.4 PROTEIN CONTENT AND PRODUCTION OF DIFFERENT COMPONENTS 36

3.4.1 Protein content of the grass component 36-37

3.4.2 Protein content of the leguminous component 37

3.4.3 Total protein production (kg ha\(^{-1}\)) of grass/legume mixtures 37-38

3.5 FIBRE CONTENT (%) OF THE DIFFERENT COMPONENTS 38

3.5.1 Fibre content of the grass component 38-39

3.6 PHOSPHORUS CONTENT AND PRODUCTION OF DIFFERENT COMPONENTS 39

3.6.1 Phosphorus content of the grass component 39

3.6.2 Phosphorus content of the leguminous component 40

3.6.3 Total phosphorus production (kg ha\(^{-1}\)) of the grass/legume mixtures 40-41

3.7 CALCIUM CONTENT AND PRODUCTION OF THE DIFFERENT COMPONENTS 41

3.7.1 Calcium content of the grass component 41-42

3.7.2 Calcium content of the leguminous component 42

3.7.3 Total calcium production (kg ha\(^{-1}\)) of the grass/legume mixtures 42-43
3.8 FAT CONTENT (%) OF THE DIFFERENT COMPONENTS 43
 3.8.1 Fat content of the grass component 43

3.9 ASH CONTENT (%) OF THE DIFFERENT COMPONENTS 44
 3.9.1 Ash content of the grass component 44

3.10 DISCUSSION OF THE RESULTS AT THE UNIN EXPERIMENTAL FARM 44
 3.10.1 DM production (t ha\(^{-1}\)) of the grass/legume mixtures 44
 3.10.2 Cutting treatments and total DM production (t ha\(^{-1}\)) of grass/legume mixtures 45
 3.10.3 Grass/legume ratios (%) 45
 3.10.4 The protein content (%) of the grass component 45-46
 3.10.5 The protein content (%) of the leguminous component 46
 3.10.6 The protein production (kg ha\(^{-1}\)) of grass/legume mixtures 46
 3.10.7 Fibre content (%) of the grass component 46
 3.10.8 Phosphorus content (%) of the grass component 46
 3.10.9 Phosphorus content (%) of the leguminous component 47
 3.10.10 Phosphorus production (kg ha\(^{-1}\)) of the grass/legume mixtures 47
 3.10.11 Calcium content (%) of the grass component 47
 3.10.12 Calcium content (%) of the leguminous component 48
 3.10.13 Calcium production (kg ha\(^{-1}\)) of the grass/legume mixtures 48
 3.10.14 Fat content (%) of the grass component 48
 3.10.15 Ash content (%) of the grass component 48-49

CHAPTER 4

4 RESULTS ON THE PTK EXPERIMENTAL FARM, MOKOPANE 50

4.1 TOTAL DM PRODUCTION (t ha\(^{-1}\)) OF DIFFERENT COMPONENTS 50
 4.1.1 DM production of the grass/legume mixtures 50-51

4.2 THE EFFECT OF CUTTING TREATMENTS AND CROPPING SYSTEMS ON DM PRODUCTION (t ha\(^{-1}\)) OF THE GRASS/LEGUME MIXTURES 51

4.3 GRASS/LEGUME RATIOS 51-52

4.4 PROTEIN CONTENT AND PRODUCTION OF DIFFERENT COMPONENTS 52
 4.4.1 Protein content of the grass component 52-53
 4.4.2 Protein content of the leguminous component 53
 4.4.3 Total protein production (kg ha\(^{-1}\)) of grass/legume mixtures 53-54
4.5 FIBRE CONTENT (%) OF THE DIFFERENT COMPONENTS 54
 4.5.1 Fibre content of the grass component 54-55

4.6 PHOSPHORUS CONTENT AND PRODUCTION OF DIFFERENT COMPONENTS 55
 4.6.1 Phosphorus content of the grass component 55
 4.6.2 Phosphorus content of the leguminous component 55-56
 4.6.3 Total phosphorus production (kg ha\(^{-1}\)) of the grass/legume mixtures 56

4.7 CALCIUM CONTENT AND PRODUCTION OF THE DIFFERENT COMPONENTS 57
 4.7.1 Calcium content of the grass component 57
 4.7.2 Calcium content of the leguminous component 57
 4.7.3 Total calcium production (kg ha\(^{-1}\)) of the grass/legume mixtures 58

4.8 FAT CONTENT (%) OF THE DIFFERENT COMPONENTS 58
 4.8.1 Fat content of the grass component 58-59

4.9 ASH CONTENT (%) OF THE DIFFERENT COMPONENTS 59
 4.9.1 Ash content of the grass component 59

4.10. DISCUSSION OF THE RESULTS AT MOKOPANE AT THE PTK EXPERIMENTAL FARM 60
 4.10.1 DM production (t ha\(^{-1}\)) of the grass/legume mixtures 60
 4.10.2 Cutting treatments and total DM production (t ha\(^{-1}\)) of grass/legume mixtures 60
 4.10.3 Grass/legume ratios (%) 60-61
 4.10.4 The protein content (%) of the grass component 61
 4.10.5 The protein content (%) of the leguminous component 61
 4.10.6 The protein production (kg ha\(^{-1}\)) of grass/legume mixtures 61
 4.10.7 Fibre content (%) of the grass component 62
 4.10.8 Phosphorus content (%) of the grass component 62
 4.10.9 Phosphorus content (%) of the leguminous component 62
 4.10.10 Phosphorus production (kg ha\(^{-1}\)) of the grass/legume mixtures 62-63
 4.10.11 Calcium content (%) of the grass component 63
 4.10.12 Calcium content (%) of the leguminous component 63
 4.10.13 Calcium production (kg ha\(^{-1}\)) of the grass/legume mixtures 63
 4.10.14 Fat content (%) of the grass component 64
 4.10.15 Ash content (%) of the grass component 64

CHAPTER 5

5 RESULTS ON DAN DISTRICT IN THE COMMUNAL FIELDS 65

5.1 TOTAL DM PRODUCTION (t ha\(^{-1}\)) OF DIFFERENET COMPONENTS 65
 5.1.1 DM production of the grass/legume mixtures 65-66
5.2 THE EFFECT OF CUTTING TREATMENTS AND CROPPING SYSTEMS ON DM PRODUCTION (t ha\(^{-1}\)) OF THE GRASS/LEGUME MIXTURES

5.3 GRASS/LEGUME RATIOS

5.4 PROTEIN CONTENT AND PRODUCTION OF DIFFERENT COMPONENT

5.4.1 Protein content of the grass component
5.4.2 Protein content of the leguminous component
5.4.3 Total protein production (kg ha\(^{-1}\)) of the grass/legume mixtures in an early stage

5.5 FIBRE CONTENT (%) OF THE DIFFERENT COMPONENTS

5.5.1 Fibre content of the grass component

5.6 PHOSPHORUS CONTENT AND PRODUCTION OF DIFFERENT COMPONENTS

5.6.1 Phosphorus content of the grass component
5.6.2 Phosphorus content of the leguminous component
5.6.3 Total phosphorus production (kg ha\(^{-1}\)) of the grass/legume mixtures

5.7 CALCIUM CONTENT AND PRODUCTION OF THE DIFFERENT COMPONENTS

5.7.1 Calcium content of the grass component
5.7.2 Calcium content of the leguminous component
5.7.3 Total calcium production (kg ha\(^{-1}\)) of the grass/legume mixtures

5.8 FAT CONTENT (%) OF THE DIFFERENT COMPONENTS

5.8.1 Fat content of the grass component

5.9 ASH CONTENT (%) OF THE DIFFERENT COMPONENTS

5.9.1 Ash content of the grass component

5.10. DISCUSSION OF THE RESULTS AT THE DAN DISTRICT ON THE COMMUNAL FIELDS

5.10.1 DM production (t ha\(^{-1}\)) of the grass/legume mixtures
5.10.2 Cutting treatments and total DM production (t ha\(^{-1}\)) of grass/legume mixtures
5.10.3 Grass/legume ratios (%)
5.10.4 The protein content (%) of the grass component
5.10.5 The protein content (%) of the leguminous component
5.10.6 The protein production (kg ha\(^{-1}\)) of grass/legume mixtures
5.10.7 Fibre content (%) of the grass component
5.10.8 Phosphorus content (%) of the grass component
5.10.9 Phosphorus content (%) of the leguminous component
5.10.10 Phosphorus production (kg ha\(^{-1}\)) of the grass/legume mixtures
5.10.11 Calcium content (%) of the grass component
5.10.12 Calcium content (%) of the leguminous component
5.10.13 Calcium production (kg ha\(^{-1}\)) of the grass/legume mixtures
5.10.14 Fat content (%) of the grass component
5.10.15 Ash content (%) of the grass component

CHAPTER 6

6 CONCLUSION 80-81

7 REFERENCES 82-87

8 TABLES OF RESULTS 88-113
DECLARATION

I hereby declare that the work herein submitted as dissertation for the degree Master of Agricultural Management. I assert that this is the result of my own investigation, and that it has neither wholly nor partially been presented as dissertation for the degree in this University or elsewhere. Work by other authors, which served as sources of information, has duly been acknowledged by way of in-text referencing and bibliography.

Prof. Christian S Dannhauser
(Supervisor)

__

Date

Mr. Mahlodi Solomon Boloko
(Student)

__

Date
ACKNOWLEDGMENTS

Firstly I would like to thank God the Redeemer for all He has done for me until completion of this study. Without limits, thanks are extended to my supervisor Prof. Chris S Dannhauser for his ever-ready advises, guidance, patience and encouragement from implementation of the project till the production of this thesis.

Lastly I would like to pass my sincere gratitude to all my co-students and University drivers, not forgetting students from Tompi Seleka Agricultural College and Mashamba N. R. for help they gave to me in the field. Gratitude is also expressed to my former supervisor Prof. Kingsley K Ayisi for the statistical advice.
DEDICATION

This paper is dedicated to the following: My elder sister and her husband, Mr. & Ms I. Manyekoane, my parents Phineas Moroko and Johanna Moloko, all my siblings, more especially my younger sister Ms Manoko Annitjie, my grandmother Mosibudi Seemola and her son James Matome. I do thank all of you for both the moral and financial support you gave me towards the completion of both my junior and Honours degrees and this study. To my wife Duduzile Constance Petunia, and my relatives, not forgetting my role model and brother in law Mr. Phuphuti Maputla and his wife Phuti Annesia; who in any way made a mark in my studies. I couldn’t climb the recent ladder without you guys; I do thank you all.
LIST OF FIGURES

FIGURES

1. The map showing the area where the study was conducted at the University of the North Experimental farm. 24
2. The map showing the area where the study was conducted at the PTK Experimental farm. 26
3. The map showing the area where the study was conducted at the Dan district on the communal fields. 28

LIST OF TABLES

TABLES

3.1.1 The effect of cropping systems on DM production (t ha\(^{-1}\)) of sole grass and grass/legume mixtures at the UNIN experimental farm. 89
3.1.2 The effect of cutting treatments and cropping systems on DM production (t ha\(^{-1}\)) of sole grass and grass/legume mixtures at the UNIN experimental farm. 89
3.1.3 The grass/legume ratio of the mixtures at different cutting stage at the UNIN experimental farm. 90
3.2.1 The effect of cropping systems on protein content (%) of the grass component at the UNIN experimental farm. 90
3.2.2 The effect of cropping systems on protein content (%) of the leguminous component at the UNIN experimental farm. 91
3.2.3 The effect of cropping systems on protein production (kg ha\(^{-1}\)) of sole grass and grass/legume mixtures at the UNIN experimental farm. 91
3.3.1 The effect of cropping systems on fibre content (%) of the grass component at the UNIN experimental farm. 92
3.4.1 The effect of cropping systems on phosphorus content (%) of the grass component at the UNIN experimental farm. 92
3.4.2 The effect of cropping systems on phosphorus content (%) of the leguminous component at the UNIN experimental.

3.4.3 The effect of cropping systems on phosphorus production (kg ha\(^{-1}\)) sole grass and grass/legume mixtures at the UNIN experimental farm.

3.5.1 The effect of cropping systems on calcium content (%) of the grass component at the UNIN experimental farm.

3.5.2 The effect of cropping systems on calcium content (%) of the leguminous component at the UNIN experimental farm.

3.5.3 The effect of cropping systems on calcium production (kg ha\(^{-1}\)) of sole grass and grass/legume mixtures at the UNIN experimental farm.

3.6.1 The effect of cropping systems on fibre content (%) of the grass component at the UNIN experimental farm.

3.7.1 The effect of cropping systems on ash content (%) of the grass component at the UNIN experimental farm.

4.1.1 The effect of cropping systems on DM production (t ha\(^{-1}\)) of sole grass and grass/legume mixtures at the PTK experimental farm, Mokopane.

4.1.2 The effect of cutting treatments and cropping systems on DM production (t ha\(^{-1}\)) of sole grass and grass/legume mixtures at the PTK experimental, Mokopane.

4.1.3 The grass/legume ratio of the mixtures at different cutting stage at the PTK experimental farm, Mokopane.

4.2.1 The effect of cropping systems on protein content (%) of the grass component at the PTK experimental farm, Mokopane.

4.2.2 The effect of cropping systems on protein content (%) of the legume component at the PTK experimental farm, Mokopane.

4.2.3 The effect of cropping systems on protein production (kg ha\(^{-1}\)) of sole grass and grass/legume mixtures at the PTK experimental farm, Mokopane.

4.3.1 The effect of cropping systems on fibre content (%) of the grass component at the PTK experimental farm, Mokopane.

4.4.1 The effect of cropping systems on phosphorus content (%) of the grass component at the PTK experimental farm, Mokopane.
4.4.2 The effect of cropping systems on phosphorus content (%) of the leguminous component at the PTK experimental farm, Mokopane.

4.4.3 The effect of cropping systems on phosphorus production (kg ha$^{-1}$) sole grass and grass/legume mixtures at the PTK experimental farm, Mokopane.

4.5.1 The effect of cropping systems on calcium content (%) of the grass component at the PTK experimental farm, Mokopane.

4.5.2 The effect of cropping systems on calcium content (%) of the leguminous component at the PTK experimental farm, Mokopane.

4.5.3 The effect of cropping systems on calcium production (kg ha$^{-1}$) of sole grass and grass/legume mixtures at the PTK experimental farm, Mokopane.

4.6.1 The effect of cropping systems on fibre content (%) of the grass component at the PTK experimental farm, Mokopane.

4.7.1 The effect of cropping systems on ash content (%) of the grass component at the PTK experimental farm, Mokopane.

5.1.1 The effect of cropping systems on DM production (t ha$^{-1}$) of sole grass and grass/legume mixtures at the Dan district.

5.1.2 The effect of cutting treatments and cropping systems on DM production (t ha$^{-1}$) of sole grass and grass/legume mixtures at a later cutting stage at the Dan district.

5.1.3 The grass/legume ratio of the mixtures at different cutting stage at the Dan district.

5.2.1 The effect of cropping systems on protein content (%) of the grass component at the Dan district.

5.2.2 The effect of cropping systems on protein content (%) of the leguminous component at the Dan district.

5.2.3 The effect of cropping systems on protein production (kg ha$^{-1}$) of sole grass and grass/legume mixtures at the Dan district.

5.3.1 The effect of cropping systems on fibre content (%) of the grass component at the Dan district.

5.4.1 The effect of cropping systems on phosphorus content (%) of the grass component at the Dan district.
5.4.2 The effect of cropping systems on phosphorus content (%) of the leguminous component at the Dan district.

5.4.3 The effect of cropping systems on phosphorus production (kg ha\(^{-1}\)) sole grass and grass/legume mixtures at the Dan district.

5.5.1 The effect of cropping systems on calcium content (%) of the grass component at the Dan district.

5.5.2 The effect of cropping systems on calcium content (%) of the leguminous component at the Dan district.

5.5.3 The effect of cropping systems on calcium production (kg ha\(^{-1}\)) of sole grass and grass/legume mixtures at the Dan district.

5.6.1 The effect of cropping systems on fibre content (%) of the grass component at the Dan district.

5.7.1 The effect of cropping systems on ash content (%) of the grass component at the Dan district.

6.1.1 Feeding potential of grass/legume mixtures in terms of phosphorus production (kg ha\(^{-1}\))

6.1.2 Feeding potential of grass/legume mixtures in terms of calcium production (kg ha\(^{-1}\))
Identification of annual grass/legume intercropping or mixtures with superior nutrient traits and Dry matter (DM) production is critical to increasing productivity of the crop and animal production among small-scale farmers in the Limpopo Province. Three similar field experiments were established at different locations in the Province to determine the significance of the contribution of annual summer legumes, and cutting treatments on the nutritive value and dry matter accumulation of the popular forage sorghum (Sorghum spp) and pearl millet (Pennisetum glaucum) intercropped with cowpea (Vigna unguiculata) and dolichos (Lablab purpureus). The cropping systems evaluated were sole sorghum, sole pearl millet, sorghum + cowpea, sorghum + dolichos, pearl millet + cowpea and pearl millet + dolichos. The treatments sole sorghum and pearl millet significantly ($P<0.05$) outperformed the other treatments in terms of DM production at most cutting stages. The remaining four treatments though, inferior in DM in this study, yielded better than the average yield on farmers' fields in the Province. Higher protein content was obtained in mixtures than in sole cropping, and generally there was lower protein production and content at matured stages (CT3) in the study. The other chemical composition analyzed in the study was not significant for both mixtures and sole cultures.

Keywords: Annual grasses, annual legumes, cropping systems, dry matter intercropping and protein,