Isolation and Characterisation of Bioactive Compounds from Commelina benghalensis Linn: Biological activity analysis of extracts against Wil-2 NS lymphoma cancer cell lines and selected pathogenic microorganisms

By

MATLOU P. MOKGOTHO

RESEARCH THESIS Submitted in fulfilment of the requirements for the degree of

PHILOSOPHIAE DOCTOR (PhD)

in

BIOCHEMISTRY

in the

FACULTY OF SCIENCE AND AGRICULTURE

(School of Molecular and Life Sciences)

at the

UNIVERSITY OF LIMPOPO

Supervisor:

Prof Mampuru L.J.

Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo

Co-Supervisor: **Prof Eloff J.N.**

Department of Paraclinical Sciences, University of Pretoria

2009

DECLARATION

I declare that the thesis hereby submitted to the **University of Limpopo** for the degree of **PHILOSOPHIAE DOCTOR (PhD)** has not been previously submitted by me for the degree at this or any other University, that it is my own work in design and in execution, and that all material contained herein has been duly acknowledged.

M.P Mokgotho (Mr)

25 September 2009

DEDICATION

I dedicate this work to all the people who always believed in me and positively contributed to my success.

ACKNOWLEDGEMENTS

The initial idea for this research came from Professor L.J Mampuru and it was suggested as a thesis topic to me. I want to express my deepest thanks to him for supervising me as a Ph.D student. He has been the inspiring source of new ideas for the progress of my work. Without his supportive encouragement, I would not have started or ever got the energy necessary to finalise this work. He also made it possible for me to pursue my work at the University of Pretoria.

I am greatly indebted to Professor J.N Eloff, Head of Phytomedicine Programme in Paraclinical Sciences at the University of Pretoria for giving me an opportunity to work in his laboratory and introducing me to the world of natural compounds. To work in a laboratory with such a scientifically stimulating atmosphere was most educative. He has given valuable guidance to my work and put significant effort in the extraction methods, activities and isolation procedures. My special thanks are also due to other colleagues in Professor Eloff's laboratory who made my stay memorable and scientifically productive. Drs. P. Masoko and L.J Shai helped me in many ways to kindly familiarise me with various extraction techniques. Dr. L.J McGaw for her valuable guidance in cytotoxicity assays, Drs. L. Mdee and M.A Aderogba for their immense experience in the isolation and structural elucidation of the purified bioactive compounds.

iv

My special thanks go to Medicinal Plants Research Group, Biochemistry Department, University of Limpopo. I am lucky to have friends such as Thabe Matsebatlela, Vusi Mbazima and Lefoka Molepo who had the ability to cheer me up even during the hardest time of experimental failures. I will never forget the good times I had with my postgraduate students, to name but a few, Kgomotso Lebogo, Nicole Sibuyi, Stanley Gololo, Alister Ngobeni, Tshepiso Makhafola, Kholofelo Chokoe, Rebone Pilane and Comet Mogashoa.

I would also like to thank my colleagues at the University of Limpopo, Department of Biochemistry, for showing interest in my project. I say thank you for the teamwork you have shown. For that, I am very grateful.

My parents, Ramokone and Makwena, my sisters Nare and her family and Mapitsi (deceased), my brothers Mawisha, Tabuti and Ketetji for having supported me unselfishly. I am most grateful to them for all these years.

To my wife, Landi, who never understood why I was always diluting cells. I say the sleepless nights and worries are now over, at least for a while. Thank you for your understanding and always reminding me that you love me nevertheless. My daughter, Lebone, who always wanted to know what are 'cells', thank you for putting my imagination on the toes.

I also like to extend a word of appreciation to the

support staff in the department, Mr M. Mokubedi for availing most of the reagents and equipments, Ms T. Mabokela for cleaning all the laboratory

V

glassware, Ms A. Mothiba for cleaning and keeping the floor super shining. Mr G. Lebepe, Ms Shai-Ragoboya and Ms S. Sweleng, I thank you very much for tolerating me.

To the Almighty, 'Proverbs 31.1: The fruits of the plants shall heal the world'

This study was funded by the National Research Foundation (NRF) and University of Limpopo, all of which are gratefully acknowledged.

CONTENTS

	Page
Thesis title	i
Declaration	ii
Dedication	iii
Acknowledgements	iv
Contents	vii
List of Figures	xiii
List of Tables	xvi
List of Abbreviations	xvii
Abstract	xxiii

1	Introduction	1
2	Literature review	2
2.1	Medicinal plants	2
2.2	The importance of medicinal plants	4
2.3	Plant secondary metabolites	5
2.3.1	Isoprenoids, terpenes and phenolic compounds	7
2.3.1.1	Isoprenoids	9
2.3.1.2	Terpenoids	10
2.3.1.3	Phenolic compounds	12
2.3.1.4	Phenols and phenolic acids	12
2.3.1.5	Phenylpropanoids	13
2.3.1.6	Flavonoids	14

2.4	Cancer treatment	15
2.4.1	Semi-synthetic anticancer drugs	15
2.4.2	Surgery	16
2.4.3	Chemotherapy	17
2.4.4	Radiation therapy	17
2.5	Side effects of commercial drugs	19
2.5.1	Safety of traditional medicine	22
2.6	Anticancer and cytotoxicity of medicinal plants	22
2.7	Phytochemicals in cancer prevention	23
2.8	Antioxidant properties of extracts	25
2.9	Isoprenylation and Ras protein	27
2.10	Carcinogenesis and apoptosis	28
2.11	Natural products chemistry	30
2.12	Commelina benghalensis Linn	31
2.12.1	Biology and ecology	31
2.13	Separation techniques and structural elucidation	32
3	Rationale, Aim and Objectives	35
3.1	Rationale	35
3.2	Aims and Objectives	36
3.2.1	The specific objectives of the study	36
4	Hypothesis	36

2.1	Research model	37
2.2	Experimental procedure	37
2.2.1	Plant collection	37

2.2.2	Plant storage	38
2.3	Extraction procedure	38
2.3.1	Laboratory extraction methods	38
2.3.2	Phytochemical analysis	39
2.3.3	Microbial test organisms	40
2.4	Thin layer chromatography (TLC)	41
2.5	Bioautography methods	42
2.6	Minimum inhibitory concentration (MIC)	42
2.7	Antioxidant activity	43
2.7.1	Qualitative analysis on TLC	43
2.7.2	Quantitative analysis	43
2.8	Animal cell cultures	44
2.8.1	Cell culture maintenance	44
2.8.2	Antiproliferative studies	45
2.8.2.1	MTT assay	45
2.8.3	Nuclear morphological evaluation	46
2.8.3.1	Acridine orange/ethidium bromide (AO/EB) dual stain assay	46
2.9	Isolation of the active compound(s)	47
2.9.1	Open column liquid chromatography	47
2.9.2	Nuclear magnetic resonance spectroscopy	47
2.9.3	Mass spectrometry	48

3	Introduction	49
3.1	Antimicrobial activity	49
3.2	Antioxidant activity	51
3.3	Materials and methods	52

3.3.1	Extraction procedure	52
3.3.2	Bioautography	52
3.3.3	Microdilution assay	53
3.3.4	Qualitative analysis of antioxidant screening	54
3.4	Results	54
3.4.1	Bioautography	54
3.4.2	Quantification of anti-bacterial activity of C. benghalensis	58
3.4.2.1	Determination of minimum inhibitory concentration (MIC)	58
3.4.2.2	Reciprocal of MIC values	59
3.4.2.3	Total activity	60
3.5	Screening of antioxidant compounds from extracts of C.	61
	benghalensis	
3.6	Discussion and conclusion	62

4.1	Introduction	68
4.2	Material and methods	69
4.2.1	Plant collection	69
4.2.2	Extraction	70
4.2.3	Phytochemical analysis	70
4.2.4	Bioautography	70
4.2.5	Isolation of target compound	70
4.2.6	Bioassay guided fractionation	71
4.3	Results	71
4.3.1	Extracted mass from the plant material	71
4.3.2	Phytochemical analysis	72
4.3.3	Bioautography	73

4.4	Isolation of the active compound(s)	75
4.4.1	Vacuum liquid column chromatography (VLC)	75
4.4.2	TLC analysis	77
4.5	Isolation procedures	79
4.5.1	Isolation of the active compound(s)	79
4.5.2	Isolation of compounds CI and CII	80
4.6	TLC profiles of the purified compounds	85
4.7	Discussion and conclusion	88

5.1	Introduction	91
5.1.1	Spectroscopic techniques	91
5.2	Material and methods	93
5.2.1	Nuclear magnetic resonance	93
5.2.2	Mass spectrometry	93
5.3	Results	93
5.3.1	Structural elucidation of the isolated compound, CI	93
5.3.2	Structural elucidation of the isolated compound, CII	100
5.4	Discussion and conclusion	104

6.1	Introduction	107
6.2	Materials and methods	108
6.2.1	Experimental procedure	108
6.2.2	Maintenance of cell lines	109
6.2.3	MTT assay	109
6.2.4	Nuclear morphology using the acridine orange/ethidium	109

bromide dual stain assay

6.3	Results and discussion	109
6.3.1	Cytotoxicity test	109

General discussion and conclusion	118
-----------------------------------	-----

References	125
Appendix	150

LIST OF FIGURES

		Page
Figure 1.1	Mevalonate pathway	8
Figure 1.2	Structure of a phenolic acid ion	13
Figure 1.3	Structure of a phenylpropanoid, eugenol	13
Figure 1.4	Structure of Tamoxifen	20
Figure 1.5	Structure of Taxol	21
Figure 1.6	Representative picture of flowering C. benghalensis L.	31
Figure 3.1	Bioautography profiles of C. benghalensis	55
Figure 3.2	The TLC profiles of scavenging powers of extracts of C.	
	benghalensis	62
Figure 4.1	Amount in grams extracted from C. benghalensis	71
Figure 4.2	Comparison of the chemical components of C.	
	benghalensis exhaustively fractionated with n-hexane,	
	DCM, acetone and methanol	73
Figure 4.3	TLC bioautograms of C. benghalensis exhaustively	
	fractionated with <i>n</i> -hexane, DCM, acetone and methanol	74
Figure 4.4	Chromatograms of C. benghalensis VLC fractions	
	separated by BEA	78
Figure 4.5	Bioautograms of C. benghalensis fractions separated with	
	BEA and sprayed with Pseudomonas aeruginosa	79
Figure 4.6	Chromatograms of C. benghalensis of fraction-X eluted	
	with chloroform:methanol (4:1), developed in a BEA and	
	visualized using vanillin/H $_2SO_4$ reagent	80
Figure 4.7	The TLC chromatograms depicting the stepwise	
	purification of the target compound	83
Figure 4.8	The TLC chromatograms showing the pooled fractions of	

	target compounds	84
Figure 4.9	The TLC chromatograms depicting stepwise purification of	
	the target compound	84
Figure 4.10	The TLC profiles of the isolated compound CI, developed	
	in BEA and CEF	85
Figure 4.11	Flow chart diagram of the bioassay-guided purification of	
	compounds from C. benghalensis	87
Figure 5.1a	The ¹³ C-NMR spectrum of Compound I	94
Figure 5.1b	The ¹³ C-NMR expanded spectrum from 12 ppm to 58 ppm	
	of Compound I	94
Figure 5.2	The ¹ H-NMR spectrum of Compound I	95
Figure 5.3a	The DEPT-NMR spectrum of Compound I	95
Figure 5.3b	The DEPT-NMR expanded spectrum of Compound I	96
Figure 5.4	The HMBC-NMR spectrum of Compound I	96
Figure 5.5	The HMQC-NMR spectrum of Compound I	97
Figure 5.6	The COSY-NMR spectrum of Compound I	97
Figure 5.7	The mass spectrum of compound I	99
Figure 5.8	The chemical structure of Compound I	100
Figure 5.9a	The ¹ H-NMR spectrum of Compound II	101
Figure 5.9b	The ¹ H-NMR expanded spectrum of Compound II	101
Figure 5.10	The DEPT-NMR spectrum of Compound II	102
Figure 5.11	The mass spectrum of Compound II	103
Figure 5.12	The chemical structure of compound II	103
Figure 6.1	The toxicity test studies of <i>n</i> -hexane crude extract.	111
Figure 6.2	The effect of <i>n</i> -hexane and dichloromethane extract on	
	Wil-2 NS cells	112
Figure 6.3	The morphological changes of nuclei of <i>n</i> -hexane and	

	dichloromethane extracts-treated Wil-2 NS cells after 48	
	hours	114
Figure 6.4	The effect of <i>n</i> -hexane VLC fractions on the proliferation	
	of Wil-2 NS lymphocytes as determined by MTT assay	
	after 48 hours	115

LIST OF TABLES

		Page
Table 1.1	Examples of secondary metabolites containing isoprenoidal	
	constituents	10
Table 1.2	Secondary products derived from activated isoprenes	11
Table 1.3	Properties of the different flavonoids classes	14
Table 1.4	Classification of C. benghalensis	32
Table 1.5	Botanical differences among the major Commelina species	32
Table 2.1	Composition of the spray reagents used to detect the various	
	isolated compounds	40
Table 3.1	Inhibition of bacterial growth by C. benghalensis extracts on	
	TLC plates separated by BEA and CEF mobile phase	56
Table 3.2	Amount in mg extracted from five grams sample and MIC	
	values (in mg/ml) for <i>C. benghalensis</i>	59
Table 3.3	Reciprocal of the MIC values of the fractions	60
Table 3.4	Total activity of the four test pathogens	61
Table 4.1	Solvent mixtures used in eluting the <i>n</i> -hexane fraction by	
	VLC	77
Table 4.2	The R_f values and yields of compounds isolated from C.	86
	benghalensis	
Table 5.1	The ¹³ C (600 MHz) spectra data of the isolated compound.	98

LIST OF ABBREVIATIONS

_
•
A
<u> </u>

ACE	acetone
AGC	accelerated gradient chromatography
AIDS	acquired immunodeficiency syndrome
AO/EB	acridine orange/ethidium bromide
ATCC	American type culture collection

B

BEA	benzene: ethanol:	ammonium hydroxide
	benzene. ethanoi.	ammonium nyuroxiue

<u>C</u>

CAAX	cysteinyl-leucyl-isoleucyl/valinyl-methionine
CHCl ₃	trichloromethane
CI	compound I
CII	compound II
٥C	degree Celsius
CEF	chloroform: ethyl acetate: formic acid
¹³ C-NMR	carbon-13 nuclear magnetic resonance
CoA	coenzyme A
CO ₂	carbon dioxide
COSY	correlation spectroscopy

<u>D</u>

DEPT	distortionless enhancement by polarisation transfer
DCM	dichloromethane
D-MEM	Dulbecco minimum Eagle's medium
DMSO	dimethylsulfoxide
DNA	deoxyribose nucleic acid
1D-NMR	one dimensional nuclear magnetic resonance
2D-NMR	two dimensional nuclear magnetic resonance
dH_2O	distilled water
DPPH	2,2-diphenyl-1-picrylhydrazyl

<u>E</u>

EBRT	external beam radiotherapy
EGCG	epigallocatechin gallate
EMW	ethyl acetate: methanol: water
EMR	electromagnetic radiation
EtOAc	ethyl acetate

<u>F</u>

F2	fraction 2
FBS	fetal bovine serum
FTase	farnesyl pyrophosphate transferase

<u>G</u>

g	gram
-	-

GAP	GTPase activating protein
GGTase	geranylgeranyl pyrophosphate transferase
GTP	guanosine triphosphate
GDP	guanosine diphosphate

<u>H</u>

H_2O_2	hydrogen peroxide
H_2SO_4	sulphuric acid
Hex	hexane
¹ H-NMR	proton nuclear magnetic resonance
h	hour
HMBC	heteronuclear multiple bond correlation
HMG-CoA	3-hydroxy-3-methylglutaryl-coenzyme A
HMQC	heteronuclear multiple quantum coherence
HPLC	high performance liquid chromatography

Ī

INT	<i>p</i> -iodonitrotetrazolium violet
IR	infrared

<u>K</u>

K ₃ Fe(CN) ₆	potassium ferricyanide
kDa	kilodalton

L

LC/MS	liquid chromatography/mass spectroscopy
LC/DAD/UV	liquid chromatography/diode array detection/ultraviolet
LC/UV/MS	liquid chromatography/ultraviolet/mass spectroscopy

M

MeOH	methanol
mg	milligram
MH2	isolated compound
MHz	megaHertz
MIC	minimum inhibitory concentration
min	minutes
ml	millilitre
MS	mass spectroscopy
MTT	3-(4,5-dimethylthiozyl-2-yl)-2,5-diphenyl tetrazolium
	bromide

<u>N</u>

NaCl	sodium chloride
NCI	national cancer institute
nm	nanometer
NMR	nuclear magnetic resonance

<u>o</u>

ОН	hydroxyl radicals
	TIYUTUXYI TAUICAIS

<u>P</u>

PBS	phosphate buffered saline
PI	propidium iodide
PPi	inorganic pyrophosphate
ppm	parts per million
PSN	penicillin, streptomycin, neomycin

<u>R</u>

R _f	retardation factor
RF	radio frequency
RPMI-1640	Roswell Park Memorial Institute 1640
ROS	reactive oxygen species

<u>S</u>

SEM	standard error of the mean
SO ₄	superoxide ion
SOD	superoxide dismutase
SRB	sulforhodamine B

T

TLC	thin layer chromatography
-----	---------------------------

<u>U</u>

μΙ	microliter
U	units

UV u	ltraviolet
------	------------

<u>v</u>

VLC	vacuum liquid chromatography
v/v	volume to volume
v/w	volume to weight

<u>W</u>

WHO	World Health Organization
-----	---------------------------

ABSTRACT

Traditional medicine based on herbal remedies has always played a key role in the health systems of many countries. *Commelina benghalesis* Linn is frequently used in traditional medicine as an anti-inflammatory, anticancer and anti-diarrheal agent. It is used as coarse food for livestock and in other countries like Ghana the leaves are cooked and eaten as a vegetable. Several other medicinal benefits of this plant have been reported viz., as a heating pad for sore feet, treatment for sore throat, burns, eye complaints and leprosy. Despite its several uses, the plant is not well investigated and the biologically active compounds are not yet fully elucidated. The current study investigated the anti-oxidative, anti-bacterial, anti-fungal and anti-proliferative (anti-cancer) activity of the organic solvents-extracted crude extracts from *C. benghalensis*. The study also reports on the isolation, purification and structural elucidation of the bioactive entities inherent to *C. benghalensis*.

For experimental purposes, the fleshy stem samples of the plant were collected from the north-western parts of Mpumalanga Province under the guidance of a traditional healer and the materials were subsequently dried and milled to a fine powder. Different crude extracts were prepared by using n-hexane, dichloromethane (DCM), acetone and methanol. The chemical profiles of the resultant crude extracts were analysed by thin layer chromatography (TLC); the TLC plates were developed in benzene/ethanol/ammonia (90:10:1) [BEA], chloroform/ethyl acetate/formic acid (5:4:1) [CEF] and ethyl acetate/methanol/water (40:5.4:4) [EMW].

xxiii

Consequently, methanol extracted a greater quantity of the plant material than the other solvents used. For the detection of the chemical entities extracted, vanillin-sulphuric acid and *p*-anisaldehyde-sulphuric acid reagents were sprayed on the chromatograms and heated at 110°C for optimal colour development. Most of the separated compounds reacted with vanillinsulphuric acid; however, the chemical profiles of the different extracts displayed little differences.

The stable free radical, 2, 2-diphenyl-1-picrylhydrazyl (DPPH), was used to evaluate the antioxidant activity of the four crude extracts. The TLC-DPPH method exposed few compounds that possess antioxidant activity in the methanol extract developed in BEA; the other extracts displayed little or no antioxidant activity. Four bacterial strains viz., Escherichia coli ATCC 27853, Enterococcus faecalis ATCC 21212, Staphylococcus aureus ATCC 29213 and *Pseudomonas aeruginosa* ATCC 25922, were used as test organisms for the evaluation of the extracts' antibacterial activity. The results showed compounds on the chromatograms that demonstrated antibacterial activity against all the bacteria tested. The n-hexane and DCM extracts had 2 compounds with the most active antibacterial activity, followed by acetone extract with 4 compounds having less activity. Methanol extract had showed 2 compounds with less antibacterial activity. Furthermore, the serial microdilution assay was used to determine the minimum inhibitory concentration (MIC) values of the individual extracts. The MIC values from the *n*-hexane and DCM extracts ranged between 0.15-0.62 mg/ml; however, the methanol

xxiv

extract had low activity, with a high MIC value of 2.5 mg/ml. The observed MIC values corresponded and complemented the bioautography results.

The compounds that displayed the most growth inhibitory activity of the test bacterial strains were then targeted for further isolation and purification. This was accomplished by using the bioassay-guided isolation of the target antibacterial compounds from the *n*-hexane extract, since this extract contained most of the target compounds. The compounds were successfully isolated and their chemical structures were elucidated by means of nuclear magnetic resonance (NMR) and the masses and structure of the pure compounds were confirmed by mass spectroscopy (MS). The purified compounds were found to be two of the well known plant sterols viz., a mixture of β -sitosterol/stigmasterol and a long carbon chain compound identified as pentatriacontane. These purified plant sterols, together with the *n*-hexane and DCM extracts, were further evaluated for their cytotoxicity on the normal Monkey kidney Vero cells using 3-[4,5-dimethylthiazol-2-yl]-2-5 diphenyltetrazolium bromide (MTT) assay. There was no observable inhibitory activity that was exerted on the normal Monkey kidney Vero cells at the experimental concentrations $(0 - 250 \mu g/ml)$ used. However, the *n*-hexane and DCM extracts demonstrated a concentration-dependent inhibitory activity against Wil-2 NS cancerous cells. The purified compounds were not tested for their efficacy against the Wil-2 NS cells since there was no sufficient material left to complete these studies. The DCM extract was the most toxic at 15.6 μ g/ml (7%), as compared to the *n*-hexane extract when used at the same concentration. However, higher concentrations (62.5 µg/ml) of the *n*-hexane

XXV

extract had a higher inhibitory activity (>55%) than the DCM extract. The *n*-hexane extract was further fractionated and the Hex70 and Hex30 fractions had more antiproliferative activity against Wil-2 NS cells, with the Hex30 fraction displaying the greatest inhibitory effect at lower concentrations (39 μ g/ml, 28%) than the Hex70 fraction under similar concentrations (16%).

In conclusion, the *C. benghalensis* extracts contained antibacterial compounds that were non-polar based on the quantity present in the extract. A mixture of plant sterols was isolated together with a long hydrocarbon chain compound, pentatriacontane. The isolated sterols have antibacterial activity and it could be speculated that these sterols are the source of the protective effect for the plant against undesirable plant pathogens. The antiproliferative activity against cancerous lymphoma cells (Wil-2 NS) was due, in part, to these isolated sterols. Furthermore, the Hex30 fraction had a higher antiproliferative activity against the Wil-2 NS cells. However, the DCM extract had the highest antibacterial and anticancer activity. This suggests that the DCM extract may possess compounds that elicit anticancerous activity, and when combined they may act in a synergistic manner. Future endeavour will be focused towards further purification and characterisation of the bioactive entities of the DCM extract.

The overall outcome of this study is the validation of the ethnobotanical claims in the use of *C. benghalensis* as a medicine for treatment of various skin ailments that are related to bacterial infections and skin tumours. The study thus corroborates the assertion by the practitioners of indigenous medicine

xxvi

that extracts of *C. benghalensis* proffer beneficial effects toward alleviation of skin outgrowths.