Show simple item record

dc.contributor.advisor Jooste, A.
dc.contributor.author Kekana, Milicent Barileng
dc.contributor.other Luus-Powel, W. J.
dc.contributor.other Addo-Bediako, A.
dc.date.accessioned 2013-11-20T06:50:36Z
dc.date.available 2013-11-20T06:50:36Z
dc.date.issued 2013
dc.identifier.uri http://hdl.handle.net/10386/1001
dc.description Thesis (M.Sc. (Zoology)) --University Limpopo, 2013 en_US
dc.description.abstract Major anthropogenic activities such as, mining, coal-fired power stations and intensive agricultural practices in the upper catchment area of the Olifants River, have a dramatic impact on the water quality downstream. As a result the river is presently the third most polluted river in South Africa. The aim of this study was to assess the impact of water and sediment quality on the health of Labeo rosae and Schilbe intermedius. The aim was accomplished by applying the Fish Health Assessment Index (HAI) which includes the Parasite Index (PI) at Flag Boshielo Dam in the Middle Olifants River, Limpopo Province. This was achieved through; assessing the water quality of the dam by determining the levels of physical and chemical constituents in the water at three sampling sites, determining the bioaccumulation of selected metals in the muscle tissue of the two fish species, assessing the fish health (including the fish condition factor) and the fish parasites in the dam by using the fish HAI and PI, and ascertaining the Human Health risk factor upon consumption of fish contaminated with metals from the dam. The water and sediment quality were seasonally sampled at three sites in the dam: inflow, middle and wall. Dorsal muscle tissues from both fish species were collected for metal bioaccumulation analyses. The water, sediment and fish muscle tissue samples were analysed by an accredited laboratory by means of ICP-OES spectrometry. For the fish health and parasites, ten fish per species were collected seasonally (July 2009 to April 2010) by means of gill nets and examined at a field laboratory using the HAI and PI protocol. Generally the water quality of Flag Boshielo Dam was acceptable for aquatic ecosystems according to the SAWQG with the exception of phosphorus and some metals at the inflow area. The pH ranged between slightly acidic to alkaline values; water temperature: 15°C to 26°C; water hardness medium soft, salinity within the freshwater range; turbidity in the clear water range. The TDS and major ions (salts) were acceptable for the duration of the study. The highest concentrations of nutrients (specifically phosphorus) as well as metals (aluminium, cadmium, copper, iron and lead) were recorded at the inflow area of the dam. The nutrients were very low except the eutrophic range phosphorus concentrations recorded at the inflow whereby, the Elands River may be an additional source of nutrients into Flag Boshielo Dam. The metals that were recorded above TWQR are; aluminium, cadmium, copper, iron and lead, of which were mostly recorded at the inflow. However, statistically there was no significant difference among the three sampling sites. The metal concentrations at the inflow were recorded only slightly higher than the middle and the dam wall. The main source of the metals may be the water coming from catchment area of the dam given the intensive agricultural activities taking place between Loskop Dam and Flag Boshielo Dam. Sediment and bioaccumulation: All the metals were recorded at higher concentrations in the sediment than in the water and fish muscle tissue, except antimony, selenium and strontium. The most abundant metals recorded in the sediment were iron and aluminium. However, the concentrations above the TEL were cadmium, nickel and zinc. The elevated metal concentrations in the sediment are indicating that the metal load in the sediment of Flag Boshielo Dam could be a potential risk for the aquatic biota if they become bioavailable. Antimony, selenium and strontium metal concentrations were recorded at higher concentrations in the muscle tissue of both fish species than in the sediment and water. Iron was the most accumulated metal in the muscle tissue of both fish species. In terms of numbers, more metals were recorded in the muscle tissue of S. intermedius than in L. rosae however the metal concentrations were higher in the latter. This can be attributed to their different trophic levels in the food chain; L. rosae is a primary consumer while S. intermedius is a tertiary consumer. However, the metals that accumulated in the fish muscle tissue were indicative of bio-availability of the toxic metals in the dam and not water/sediment pollution. According to a Human Health risk assessment (Chapter 3), metals that may have risks upon consumption of L. rosae are; antimony, arsenic, chromium, iron and vanadium; for S. intermedius are; antimony, chromium, iron, vanadium and arsenic (in descending order). These metals may pose toxic and carcinogenic risks to humans. Therefore, the rednose labeo (L. rosae) and to a lesser extend the silver catfish (S. intermedius) fish species from Flag Boshielo Dam may not be suitable for humans if consumed above 350 g per week. Fish health and parasites: The Health Assessment Index (HAI) values of the two fish species differed significantly with higher index values recorded for S. intermedius than L. rosae. Besides the Parasite Index (PI), abnormal haematocrit readings, liver conditions, skin lesions and clubbed gills are the necropsy anomalies that contributed predominantly to the HAI. Overall, the PI contributed mostly to the total HAI value. The parasite load and therefore also the mean intensity, mean abundance and prevalence of S. intermedius were higher during all seasons than that of L. rosae. The dominant ectoparasites for both species were from the Class Monogenea and the dominant endoparasites were nematodes. Out of 40 L. rosae sampled, 139 parasites were retrieved; five parasite species were ectoparasites and two endoparasites. From the 40 S. intermedius sampled, 2473 parasites were retrieved, from which two species (one genus) were ectoparasites and three species were endoparasites. The condition factor is used to compare the “condition”, “fatness” or wellbeing of fish and it is based on the hypothesis that heavier fish of a particular length are in a better physiological condition. The L. rosae had a better condition factor, recorded at values less than (2) as compared to S. intermedius (>2). The cause of the HAI necropsy anomalies may have been also from parasite load other than the metals in the water and sediment. However, the HAI alone cannot be used for metal pollution, unless it is done in conjunction with a histopathological study of the tissues/organs. Therefore, the cause of the recorded anomalies from both fish species is inconclusive. On the hand, fish can be used as bioindicators because the accumulated metals in the fish tissues are indicative of the bioavailability of metals in Flag Boshielo Dam. en_US
dc.format.extent vi, 113 leaves. en_US
dc.language.iso en en_US
dc.publisher University of Limpopo (Turfloop Campus) en_US
dc.relation.requires PDF en_US
dc.subject Sediment guality en_US
dc.subject Water quality en_US
dc.subject Aquatic ecosystem en_US
dc.subject.lcsh Fishes -- Effect of water quality on en_US
dc.subject.lcsh River sediments en_US
dc.title The impact of water and sediment quality on the health of schilbe intermedius r"uppel, 1832 and labeo rosae steindachner, 1984 at Flag Boshielo Dam, Olifants River System, Limpopo Province en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ULSpace


Browse

My Account