Show simple item record

dc.contributor.advisor Mariga, I. K. Ngwepe, Mantlo Richard 2017-05-23T11:55:08Z 2017-05-23T11:55:08Z 2015
dc.description Thesis (MSc .(Agronomy)) -- University of Limpopo, 2015 en_US
dc.description.abstract The changes in climate, especially poor rainfall patterns and distributions are key issues posing major agricultural challenges for food security and threaten the rural livelihoods of many communities in the Limpopo Province. Rainfall (P) is low and limited. These limited P is mostly lost through runoff and evaporation, which result in low soil moisture availability and possible crop failure. Therefore, techniques that reduce these water losses are important for improving dryland crop production and rainwater productivity (RWP). The objectives of this study were to determine the potential and effectiveness of rainwater harvesting and conservation techniques (RWH&CT’s) to conserve and improve plant available water (PAW) for dryland maize production and also determine the efficiency of the RWH&CT’s to improve dryland maize yield and RWP compared to conventional tillage (CON). The study was conducted over a period of two growing seasons (2008/09; 2009/10) using maize as indicator crop at the Towoomba Research Station of the Limpopo Department of Agriculture in the Limpopo Province of South Africa, on an Arcadia ecotope. The experiment was laid out in a randomized complete block design, with four replications and five treatments. The five treatments used in the study were; conventional tillage (CON), No-till (NT), In-field rainwater harvesting (IRWH), Mechanized basins (MB) and Daling plough (DAL). The IRWH and DL were classified as rainwater harvesting techniques (RWHT’s), whilst MB and NT were classified as water conservation techniques. Two access tubes were installed at each treatment to measure the soil water content (SWC) at four different soil depths of 150, 450, 750 and 1050 mm using the neutron water meter. The data collected included climatic data, soil and plant parameters. The data were subjected to analysis of variance through NCSS 2000 Statistical System for Windows and GENSTAT 14th edition. Mean separation tests were computed using Fisher's protected least significant difference test. The SWC of IRWH, DAL and MB were about 510 and 490 mm higher compared to CON and NT treatment during the 2008/09 and 2009/10 seasons, respectively. The PAWT of the IRWH, MB and DAL was significantly different from the CON treatment during the 2008/09 season. For both seasons the biomass yield of the IRWH treatment was significantly different from the NT treatment, producing 23 and 50% more biomass in the 2008/09 and 2009/10 growing seasons, respectively. The grain yield under IRWH was significantly different from the NT treatment during both 2008/09 and 2009/10 seasons. The highest maize grain yield of IRWH was achieved during the 2009/10 season with 56% higher grain yield than the NT treatment. RWP from various RWHT’s were significantly different from the NT treatment. These results indicate that IRWH and DAL were 12 and 2% more effective in converting rainwater into harvestable grain yield than the CON treatment. R2 values of 68.6 and 78.4% for SWC and transpiration (Ev) were obtained when correlated with maize grain yield respectively. This indicates the importance of moisture conservation for improved dryland maize production under low P areas. Therefore, the use of appropriate RWHT’s by smallscale farmers maybe crucial to improve dryland maize production. IRWH outperformed all other treatments in terms of the soil parameters and plant parameter measured during the period of this study. Therefore, these results suggest IRWH has potential of sustaining maize yields under low rainfall conditions. Key words: Rainwater harvesting, conservation techniques, ecotope, rainwater productivity, maize yield, precipitation use efficiency. en_US
dc.format.extent xiv, 79 leaves en_US
dc.language.iso en en_US
dc.publisher University of Limpopo en_US
dc.relation.requires PDF en_US
dc.subject Rainwater harvesting en_US
dc.subject Conservation technique en_US
dc.subject Ecotope en_US
dc.subject Rainwater productivity en_US
dc.subject Maize yield en_US
dc.subject Precipitation use efficiency en_US
dc.subject.lcsh Rainwater en_US
dc.subject.lcsh Water harvesting en_US
dc.title Evaluating rainwater harvesting and conservation techniques on the Towoomba/Arcadia Ecotope en_US
dc.type Thesis en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ULSpace


My Account