Show simple item record

dc.contributor.advisor Summers, B.
dc.contributor.advisor Le Roux, J. Qatyana, Misa Sizipiwe 2012-09-14T06:52:23Z 2012-09-14T06:52:23Z 2010
dc.description Thesis (MSc (Med)(Pharmacy)) -- University of Limpopo (Medunsa Campus), 2010. en
dc.description.abstract Introduction: The aim of this study was to identify and assess compliance with published radiopharmacy procedures in the radiopharmacy units in the Departments of Nuclear Medicine at Steve Biko Academic Hospital, Pretoria and Dr. George Mukhari Hospital, Ga-rankuwa. Objectives: To identify current written SOPs in use by the selected hospitals and to compare them with the two selected audit documents. To describe the Operational Levels (OLs) according to the IAEA classification, staffing and workload of the selected radiopharmacy units. To assess the two selected radiopharmacy units for compliance with the South African Department of Radiation Control audit criteria and the International Atomic Energy Agency Operational Guidance on Hospital Radiopharmacy (IAEA IOG). To obtain the views of staff at operational, clinical and managerial level regarding constraints in the work situation and the potential implementation of „best practice‟ approaches. To identify the elements from the IAEA IOG (IAEA 2008), which are realistically achievable in the South African hospital setting. To compile a comparative report of the assessment and to make recommendations for practice improvement. Method: Quality assurance audit documents (local and international) for “Hot” Laboratories were sourced and compared. Only three radiopharmacy audit documents could be sourced (namely the South African Department of Radiation Control (DOH, 2007), the International Atomic Energy Agency, Operational Guidance on Hospital Radiopharmacy (IAEA, 2008) and United Kingdom Radiopharmacy Group, Radiopharmacy audit (United Kingdom, 2006). The most stringent of these documents the IAEA IOG was selected and was used to assess the equipment, facilities, practices and work flow in the selected radiopharmacy units. A pilot study was conducted at the Nuclear Medicine Department in Tygerberg Hospital to get a clear understanding of the IOG audit document and to develop a system with which to approach the audit of the two study sites. The numbers and qualifications of staff involved in preparation of radiopharmaceuticals were documented as part of the audit. The IOG audit was conducted in the Nuclear Medicine Departments of the two Gauteng Academic Hospitals. Key informants who included radiopharmacists with international experience, currently working in South Africa and the HODs of the Nuclear Medicine Departments audited. The IOG audit results together with the FGD and Key informant information were used to compile recommendations. Results: For anonymity, the hospitals are referred to as hospital X and Y in the results. In both hospitals the chief radiographer is responsible for the radiopharmacy unit. In Hospital X xiii this responsibility is shared with the medical physicist. The radiographers that work in both hospitals have had specific “hot” laboratory training. Neither hospital has a formal system of radiopharmaceutical record keeping, nor do they compile or review their SOPs in any formal or regular way. Neither hospital performs an annual performance review to check the competencies of their staff. Hospital X has equipment that was not in use at the time the research was conducted. Both hospitals are authorised to handle certain radionuclides and radiopharmaceuticals/kits. Hospital Y offers a wider range of Nuclear Medicine services as compared to Hospital X. Hospital Y had already conducted the IAEA Nuclear Medicine IOG Hospital Radiopharmacy audit on their facility, whereas Hospital X had not. Hospital Y, when assessed on verifiable items, met 70 to 100% the required standards for class A items for all components apart from staff at OL2, dispensing protocols and waste management. Hospital X met 70 to 100% of standards only for staff at OL1, facilities and purchasing. In the components of staff at OL2, dispensing, preparation, quality assurance and waste management, the percentages of items where standards were met were much lower at only 12.5 to 55%. In terms of the ease of administration of the IAEA IOG audit, the researcher found that some of the audit items (references) were difficult to interpret because they were presented as multiple questions, some were duplicated, and some lacked clarity. Conclusion: It can be concluded from the results that the one shortfall that both hospitals share is in terms of documentation and record keeping. Both the hospitals‟ waste management procedures need to be documented. Neither hospital has a radiopharmacists in charge of the radiopharmacy unit. Recommendations: Recommendations are made in terms of staff training, facility upgrades and the introduction of formal standard operating procedures (SOPs) and log books for batch traceability in both Hospitals. Radiopharmacist involvement is recommended. Since there are not enough trained radiopharmacists in South Africa, it could be a part-time function of those qualified or they could share responsibility for more than one radiopharmacy. The audit questions could be revised in order to eliminate factors that were noted by the researcher such as multiple questions, duplication and ambiguity. The IAEA is commended for its role in the promotion of Nuclear Medicine and Radiopharmacy training and audits. Regional summaries of audit results should be available from the IAEA to aid comparative benchmarking and monitoring of progress over time. en
dc.format.extent xiii, 107 leaves. en
dc.language.iso en en
dc.publisher University of Limpopo (Medunsa Campus) en
dc.relation.requires Adobe Acrobat Reader, version 6.0 en
dc.subject Radiopharmaceuticals en
dc.title Quality assurance of radiopharmacy in selected Gauteng Academic Hospitals en
dc.type Thesis en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ULSpace


My Account